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Discovering Multimodal Behavior in Ms. Pac-Man
through Evolution of Modular Neural Networks

Jacob Schrum and Risto Miikkulainen

Abstract—Ms. Pac-Man is a challenging video game in which
multiple modes of behavior are required: Ms. Pac-Man must
escape ghosts when they are threats and catch them when they are
edible, in addition to eating all pills in each level. Past approaches
to learning behavior in Ms. Pac-Man have treated the game as a
single task to be learned using monolithic policy representations.
In contrast, this paper uses a framework called Modular Multi-
objective NEAT (MM-NEAT) to evolve modular neural networks.
Each module defines a separate behavior. The modules are used
at different times according to a policy that can be human-
designed (i.e. Multitask) or discovered automatically by evolution.
The appropriate number of modules can be fixed or discovered
using a genetic operator called Module Mutation. Several versions
of Module Mutation are evaluated in this paper. Both fixed
modular networks and Module Mutation networks outperform
monolithic networks and Multitask networks. Interestingly, the
best networks dedicate modules to critical behaviors (such as
escaping when surrounded after luring ghosts near a power pill)
that do not follow the customary division of the game into chasing
edible and escaping threat ghosts. The results demonstrate that
MM-NEAT can discover interesting and effective behavior for
agents in challenging games.

Index Terms—Multiobjective Optimization, Multimodal Be-
havior, Neuroevolution, Ms. Pac-Man, Modularity

I. INTRODUCTION

MS. PAC-MAN is among the most popular video games
of all time. This popularity extends to AI research, as

evidenced by numerous papers and two different competitions.
Ms. Pac-Man is interesting because simple rules give rise to
a game in which complex strategies are needed to succeed.

Ms. Pac-Man is a predator-prey scenario, with a twist. Ms.
Pac-Man is usually the prey of the ghosts, but if she eats
a power pill, the situation is reversed: Ghosts temporarily
become her prey. The switch in game dynamics requires
a switch in play strategy. In other words, multiple distinct
modes of behavior are required. Despite the need for multi-
modal behavior, most learning approaches to the game have
focused on learning monolithic policies that control Ms. Pac-
Man regardless of whether ghosts are threatening or edible.
Although it is possible to represent multimodal behavior with
such policies, it is difficult to do so.

In contrast, this paper evolves neural networks with multiple
output modules using a framework called Modular Multiobjec-
tive NEAT (MM-NEAT). Each module represents a different
policy, and the agent can use one at a time. Arbitration between
modules (i.e. when to use which module) can be based on a
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human-specified task division similar to that used in Multitask
Learning [1], or discovered automatically through the use of
special neurons that indicate the network’s preference for using
each module. The number of preference neuron modules can
be fixed, or discovered using Module Mutation (also called
Mode Mutation [2]).

This paper builds on earlier results showing that modular
neural networks can be successfully evolved for Ms. Pac-
Man [3]. The earlier research focused on preference neuron
networks with a fixed number of modules, and networks
evolved using one form of Module Mutation. This paper
evaluates various numbers of modules, and compares with two
more forms of Module Mutation [2], a combination of all three
forms, and the aforementioned Multitask Learning approach.
Further, while all earlier results were based on sensors that do
not distinguish between threat and edible ghosts, this paper
also evaluates split sensors (Section VI-B), demonstrating how
task divisions can be incorporated at the level of sensors.
The results achieved with modular networks are the strongest
learning results in Ms. Pac-Man to date.

The main conclusion is that learning a task division
with preference neurons produces networks superior to non-
modular and Multitask networks. The best module division
using preference neurons is unexpected: One module handles
the critical behavior of escaping when surrounded, often after
luring threat ghosts near a power pill, which makes them easier
to eat. Therefore, MM-NEAT is a promising approach for
discovering behavior for game agents automatically.

The paper progresses as follows: Related work in multi-
modal behavior and Ms. Pac-Man is in Section II. The Ms.
Pac-Man simulator is described in Section III, and the need for
multimodal behavior in Ms. Pac-Man is motivated in Section
IV. Section V describes evolutionary methods for discovering
such behavior. Sections VI and VII describe experiments
evaluating these methods, which are discussed in Section VIII.

II. RELATED WORK

This section first discusses related research in multimodal
behavior, and then describes previous work in Ms. Pac-Man.

A. Multimodal Behavior Research

Domains requiring multimodal behavior are common in
both video game and robotics research, so various approaches
have been implemented to deal with such domains.

For complex tasks, it is common to combine controllers
into a hierarchy. The components of such hierarchies can be
hand-designed [4] or learned. For example, Togelius’s evolved
subsumption architecture [5] was used in EvoTanks [6] and
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Unreal Tournament [7], and Stone’s Layered Learning [8]
was applied to RoboCup Soccer. Recently, Lessin et al. used
the principles of Encapsulation, Syllabus, and Pandemonium
to learn complex behavior for virtual creatures [9]. These
approaches still require a programmer to divide the domain
into constituent tasks and develop effective training scenarios
for each task.

Hierarchical Reinforcement Learning (HRL) also produces
hierarchical controllers consisting of multiple sub-controllers.
Early HRL research required the hierarchy to be human-
specified [10]. Today, ways of learning the hierarchy in
addition to all sub-controllers also exist [11]. Most HRL tech-
niques are based on the formalism of Semi-Markov Decision
Processes (SMDPs), which was first used to develop partial
control policies called options [12]. Similar techniques, e.g.
skills [13], activities [14], modes [15], and behaviors [16], also
fit this formalism. The methods developed in this paper can
also be cast in the SMDP formalism, but they do not depend
on it.

A hierarchical control policy is also a modular policy, and
some approaches to learning multimodal behavior, including
those in this paper, simply focus on learning modular policies.
The concept of modularity used is similar to that of Calabretta
et al. [17]. They evolved modular neural networks to control
robots using a duplication operator, which copies one output
neuron with all of its connections and weights (duplication
can only be performed once per output neuron). The network
then has two outputs for the same actuator, and needs to arbi-
trate between them. Such arbitration is performed by selector
units: For each actuator, the output neuron with the highest
corresponding selector unit activation controls the actuator for
that time step, and the combination of an actuator neuron and
its selector unit is a module.

A similar approach is Mode Mutation [2], whose modules
define complete policies rather than the behavior of indi-
vidual actuators. Each new policy has an additional neuron
to arbitrate between modules. The behavior-defining neurons
are called policy neurons, and the one arbitration neuron per
module is called a preference neuron. Preference neurons
are similar to the selector units used by Calabretta et al.
Unlike duplication, however, Mode Mutation can be performed
multiple times, with no bound on the number of new mod-
ules produced. The name Mode Mutation suggests that each
module encapsulates a single mode of behavior, which is not
necessarily true: One module may exhibit multiple modes of
behavior, and the same behavior can be represented in multiple
modules. So, it is more appropriate to rename this operation
Module Mutation [3]. Since Module Mutation is used in this
paper, it is discussed further in Section V-C3.

The modules discussed so far have only consisted of output
neurons. A benefit of such modules is that it is clear when
and how each module is being used. However, according to
a more common and general definition of modularity [18],
[19], a module is simply a cluster of interconnected neurons
with few connections to neurons in other clusters. Such
modular networks can also be created using generative and
developmental methods [20], [21], [22]. These methods evolve
modular neural networks, assuming that distributing a domain

across modules makes optimization easier.
Modular policies have also been explored in Genetic Pro-

gramming (GP). An early example is Koza’s Automatically
Defined Functions [23], which encapsulate portions of a
program tree that can potentially be re-used. A similar GP
technique is Adaptive Representation through Learning (ARL;
[24]), which culls modules from program trees based on
differential parent/child fitness. Interestingly, ARL has also
been applied to Pac-Man, and is the only modular/multimodal
approach that has been so applied. Even though Pac-Man is
composed of multiple sub-tasks, the large body of research
on Pac-Man has focused on monolithic control policies. This
body of research is the focus of the next section.

B. Pac-Man Research

Pac-Man (1980) and its sequel Ms. Pac-Man (1981) are
among the most popular video games of all time. They feature
gameplay that is simple, yet requires complex strategies for
success. This combination has made the game appealing to
computational intelligence researchers.

Until recently, individual researchers created their own
simulators. This diversity was problematic because it made fair
comparisons difficult, and because in some cases the custom
simulators were less challenging than the original game. For
example, Koza [25] used GP to learn Pac-Man behavior in a
custom simulator, whose rules were then copied by others [24],
[26]. However, this variant of the game is actually much easier
than the arcade version [27], [28].

Even the original Pac-Man is a poor choice for AI research.
Ghost behavior is deterministic, so it is possible to maximize
the score by following memorized paths, without any strategic
intelligence. For this reason, current research focuses on Ms.
Pac-Man, which is non-deterministic. Non-determinism makes
evaluations noisy, which in turn makes learning hard. Another
difference is that Ms. Pac-Man has four mazes in comparison
to Pac-Man’s one. Because of these differences, success in Ms.
Pac-Man depends more on generalization than memorization.

Microsoft’s Revenge of Arcade port of this game was used
in the Ms. Pac-Man screen-capture competition1 at IEEE com-
putational intelligence conferences from 2007 to 2011. Many
approaches have been evaluated in this domain. Thawonmas
and others constructed a rule-based system [29], and later used
Evolution Strategies to optimize its parameters [30]. Handa
and Isozaki evolved fuzzy logic systems [31], while Wirth and
Gallagher created an influence map model for the game [32].
Robles and Lucas [33] adapted traditional game-tree search
to work in Ms. Pac-Man, and in the most recent competition,
Ikehata and Ito [34] used Monte-Carlo Tree Search (MCTS)
in their winning entry. The competition has not been run
since 2011, but in 2012 Foderaro et al. [35] painstakingly
modeled the idiosyncratic details of the ghosts’ behaviors2 and
decomposed the corridors and junctions of the mazes into cells
in order to learn a decision-tree-based policy that outperformed
MCTS (though this success is likely due to their detailed,
human-supplied ghost model).

1http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html
2Based on http://home.comcast.net/∼jpittman2/pacman/pacmandossier.html
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A common conclusion throughout these papers is that the
quality of any learning method is greatly affected by the
quality of the screen-capture procedure used to assess the
current game state. In order to separate issues of computer
vision from issues of machine learning, Lucas [27] developed
a Ms. Pac-Man simulator that has gradually become standard
for research on Ms. Pac-Man.

This simulator has changed since it was introduced. Ini-
tially, it was designed to evolve after-state evaluating neural
networks [27], but it improved as it was used for other research
projects, such as showing how evolved multi-layer perceptrons
(MLPs) outperformed temporal difference learning using both
interpolated tables and MLPs [36], and showing how game-
tree search could be applied to Ms. Pac-Man [33].

The most recent version of the simulator was used in the Ms.
Pac-Man vs. Ghosts competitions3 in 2011 [37] and 2012. The
primary appeal of this simulator is that it allows controllers for
both Ms. Pac-Man and the ghosts to be programmed. However,
it also includes a standard Legacy team that is an approx-
imation of the ghost team in the original commercial game.
Several approaches have been evaluated against the Legacy
team. GP was used with complex sensors and actions [38],
[39], with simple sensors and primitive actions [40], and in
conjunction with MCTS [41]. MCTS was also used on its own,
though the best results occurred under different evaluation
conditions (given an unfair amount of evaluation time to search
the tree, performed in the first maze only [42], or evaluated
against ghost teams other than the Legacy team [43]). Ant
Colony Optimization (ACO) [28] was also evaluated. Scores
from most of these methods are compared with the results of
this paper in Section VII-C.

Although these common platforms are useful, other plat-
forms are still used. Bom et al. [44] used a custom simulator
to train Ms. Pac-Man using Q-Learning on neural networks.
Subramanian et al. [45] automatically learned options (an
HRL approach mentioned in Section II-A) based on game
recordings of human subjects using another simulator [46].
Though these studies are interesting, it is difficult to compare
these results with those obtained using the more common Ms.
Pac-Man vs. Ghosts simulator.

Since the Ms. Pac-Man vs. Ghosts simulator is the most
common, it will be used as a platform to learn multimodal
behavior in this paper. Details of how it works are given next.

III. MS. PAC-MAN SIMULATOR

In Ms. Pac-Man, each maze contains several pills and four
power pills. All pills and power pills must be eaten to clear a
level. Each pill earns 10 points, and each power pill earns 50
points. To reduce learning time, Ms. Pac-Man visits each
maze exactly once (mazes are repeatedly visited in the original
game), and evaluation ends when the fourth maze is cleared.
There are 932 pills across all mazes.

In each evaluation, four hostile ghosts start in a lair near the
center of the maze. They come out one by one and pursue Ms.
Pac-Man according to different algorithms. If a ghost touches
Ms. Pac-Man, she loses a life. However, if Ms. Pac-Man eats

3http://www.pacman-vs-ghosts.net/

a power pill, then for a limited time the game dynamics are
reversed, and Ms. Pac-Man can eat the ghosts. The 1st, 2nd,
3rd, and 4th ghosts eaten in sequence are worth 200, 400, 800,
and 1600 points, respectively. The maximum score is achieved
by eating all four ghosts after eating each power pill in each
level. This goal becomes more challenging in each subsequent
level, because the edible time decreases as the level increases.

The highest score that can be achieved across four levels
is 58,120. Though Ms. Pac-Man normally has multiple lives,
experiments in this paper only allow her to have one, both
to reduce evaluation time and to encourage consistently good
behavior (since dying will have a large impact on fitness).

In the original game, the speed of all agents depends on
various factors. The simulator simplifies movement by having
agents usually move at the same speed. However, edible ghosts
move at half speed, which is necessary for Ms. Pac-Man to
have a chance at catching them.

Another change is the behavior of the ghosts. The Legacy
team approximates the ghosts in the original game using
different path metrics for each ghost: The red, blue, and pink
ghosts pursue Ms. Pac-Man along paths minimizing distance
according to shortest path, Manhattan distance, and Euclidean
distance, respectively. The orange ghost makes uniformly
random movement choices. These choices are one source of
non-determinism in the game. The other source applies to all
ghosts: Normally, ghosts can only go forward or turn left or
right, but every time step there is a 0.15% chance that all
ghosts will randomly reverse direction. Such random reversals
are unpredictable events that can either help or harm Ms. Pac-
Man. Reversals also occur deterministically whenever a power
pill is eaten, so that edible ghosts flee Ms. Pac-Man.

This version of Ms. Pac-Man is challenging, has proven
worthwhile as a benchmark (Section II-B), and does not
require screen capture. Therefore, it was used to carry out
the experiments in this paper. The next section explains why
multimodal behavior is required to succeed in it.

IV. MULTIMODAL BEHAVIOR

The research surveyed in Section II-A presents many dif-
ferent perspectives on how best to learn multimodal behavior.
Some approaches micromanage the behavioral hierarchy to the
point where individual modes can be as simple as turn left or
move to point A. If the hierarchy has several layers, then these
low-level behaviors are often subsumed by more interesting
behavioral modes, like retreat and attack.

The perspective taken in this paper counts only relatively
high-level behaviors as behavioral modes. These modes are
organized in a flat hierarchy, i.e. high-level behaviors are
not explicitly sub-divided into low-level behaviors. The exact
threshold between low- and high-level behaviors is subjective,
but it is generally the case that a label for a high-level
behavioral mode will describe what a behavior accomplishes
without fully divulging the details of how it is executed.

In Ms. Pac-Man specifically, multimodal behavior is needed
because she must respond differently to edible and threat
ghosts. At the least, she must avoid threats and eat pills to clear
levels. To maximize her score, she must also pursue edible
ghosts, which requires a reversal of the typical behavior.
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Limited computational resources are part of the challenge of
learning different behavioral modes. Representing a complex
policy as a massive collection of perfect memorized responses
to every situation would make it easy to exhibit different
modes of behavior, but such a policy is hard to learn in practice
for any interesting domain. Therefore, function approximation
is used to generalize across similar states, including many
which have never been seen during learning.

This paper uses neural networks to represent Ms. Pac-
Man policies, which determine behavior as described in Sec-
tion VI-A. However, all forms of function approximation are
limited in terms of what they can represent with limited
structure. The difficulty in producing different behavioral
modes also depends on the sensor information supplied to the
policies, which is an issue explored in Section VI-B.

Developing separate behavioral modes is even more difficult
when there is no clear boundary between tasks. Although the
ghosts are usually all threats or all edible, there are also cases
when both types of ghosts are in the maze at the same time.
After a ghost is eaten it returns to the lair for a short time
before reemerging as a threat, which can happen before the
edible time has expired for the other ghosts. A learned policy
must therefore not only have behaviors against threat and
edible ghosts, but also for the blended situations in between.
It is difficult to supply a proper hand-designed task division in
such blended tasks, as shall be demonstrated in Section VII.

Although the threat/edible split seems obvious, other task
divisions also have merit. Dealing with threat ghosts is actually
a collection of tasks, since Ms. Pac-Man must avoid threats,
collect pills, and decide when to eat power pills so that
she can eat all ghosts. This last behavior, a form of luring,
will prove important in the experiments below: The best
performing policies dedicate a network module to escaping
when surrounded, which is required in order for luring to be
effective rather than suicidal. The discovery of this escape
module is a surprising and powerful result. The next section
describes how these modular networks are evolved.

V. EVOLUTIONARY METHODS

Evolutionary multiobjective optimization is used to evolve
controllers for Ms. Pac-Man. The evolved individuals are neu-
ral networks, and modular architectures are used to encourage
multimodal behavior.

A. Evolutionary Multiobjective Optimization

The research community has always treated Ms. Pac-Man
as a single-objective problem, where the goal is to maximize
game score. Even though all that matters is the score, pill and
ghost eating contribute to this score in different ways. In this
paper, results are evaluated according to the highest scoring
individual in each population, but populations are evolved
using multiobjective optimization to maximize pill and ghost
eating scores separately. Optimizing with multiple objectives
improves search by helping avoid local optima [47]. A
principled way of dealing with multiple objectives is provided
by the concepts of Pareto dominance and optimality:

Pareto Dominance: Vector ~v = (v1, . . . , vn) dominates vector
~u = (u1, . . . , un) iff

1. ∀i ∈ {1, . . . , n} : vi ≥ ui, and
2. ∃i ∈ {1, . . . , n} : vi > ui.

Pareto Optimality: A set of points A ⊆ F is Pareto optimal
iff it contains all points such that ∀~x ∈ A: ¬∃~y ∈ F such that
~y dominates ~x. The points in A are non-dominated, and make
up the non-dominated Pareto front of F .

The above definitions indicate that one solution is better
than (i.e. dominates) another if it is strictly better in at least
one objective and no worse in the others. The best solutions are
not dominated by any solutions, and make up the Pareto front
of the search space. The next best individuals are those that
would be in a recalculated Pareto front if the actual Pareto
front were removed. Layers of Pareto fronts can be defined
by iteratively removing the front and recalculating it for the
remaining individuals. Solving a multiobjective optimization
problem involves approximating the first Pareto front as well
as possible. This paper accomplishes this goal using the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II [48]).
The approximation produced by NSGA-II potentially contains
multiple solutions that must be analyzed in order to determine
which fulfill the needs of the user. For Ms. Pac-Man, the notion
of game score determines which solution is best.

NSGA-II is indifferent as to how these solutions are repre-
sented. This paper uses the standard NSGA-II algorithm [48],
which is based on (µ+λ) elitist selection favoring individuals
in higher Pareto fronts over those in lower fronts. Within a
given front, individuals that are more distant from others in
objective space are favored by selection so that the algorithm
explores diverse trade-offs. However, instead of the usual bit-
string representation, neural networks are evolved.

B. Neuroevolution

Neuroevolution is the simulated evolution of neural net-
works. All behavior in this paper is learned using the network
representation of NEAT (Neuro-Evolution of Augmenting
Topologies [49]), a constructive neuroevolution method that
starts with simple networks that become more complex from
mutations across generations. The initial population of net-
works has no hidden neurons, only input and output neurons.

Whenever NSGA-II creates λ new child networks from µ
parents, offspring can be modified by three mutation operators.
Weight mutation perturbs the weights of existing network
connections, link mutation adds new connections between
existing nodes, and node mutation splices new nodes along
existing connections. New links can connect any node to any
other node, which allows them to be recurrent or even self-
recurrent. Another key innovation of NEAT is topological
crossover based on historical markers. Every new link and
neuron introduced by mutation is given a unique innovation
number to identify it. The genotype that encodes each neural
network stores these innovations linearly in a consistent order
across all members of the population. This representation
makes it easy to align components with a shared origin within
different genotypes, thus making crossover between networks
computationally efficient.
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The NEAT method has been used to solve many challenging
problems [50], [49], but the resulting networks only define
single control policies. The next section describes methods for
augmenting network architectures so that they possess multiple
policies, making it easier to learn multimodal behavior.

C. Modular Networks

The networks in this paper can have multiple output mod-
ules. Each such module defines a different control policy.
These sub-policies correspond to options in the SMDP for-
malism (Section II-A). Arbitration between modules can be
based on a human-specified division, which is done with
the Multitask Learning approach, or can be discovered using
preference neurons. In preference neuron networks where the
modules are fixed, evolution must discover how to use the
modules. With Module Mutation, evolution must also settle
on an appropriate number of modules. More specifically:

1) Multitask Learning: Multitask networks were first pro-
posed by Caruana [1] in the context of supervised learning
using neural networks and backpropagation. One network
has multiple modules, where each module corresponds to a
different, yet related, task (Fig. 1b). Each module is trained
on the data for the task to which it corresponds, but because
hidden-layer neurons are shared by all outputs, knowledge
common to all tasks can be stored in the weights of the hidden
layer. This approach speeds up supervised learning of multiple
tasks (or even just a single task of interest) because knowledge
shared across tasks is only learned once and shared, rather than
learned independently multiple times.

Although Multitask Learning is a powerful technique, there
are known problems with it. The first one is that the individual
tasks to learn need to be identified a priori. The appropriate
task division is not always obvious, and obvious divisions
may actually hurt learning. In the supervised learning contexts
where Multitask Learning is commonly applied, even when it
is clear how to divide the tasks, it may be unclear which tasks
are related enough to benefit from sharing information. For
this reason, methods have been developed to learn how tasks
should share information [51], [52].

Multitask Learning with neuroevolution has been previously
applied to domains with isolated tasks [2]. In such domains,
the agents are always aware of the task they currently face.
Each network has a module for each task, and these modules
are initially connected only to input neurons; the modules can
share information if they evolve to share hidden neurons.

Multitask Learning can supply a learning system with a
helpful bias, but this bias will only be useful if it is appropriate.
When tasks are blended, as in Ms. Pac-Man, it is hard to
provide an appropriate bias (i.e. division). In order to discover
better task divisions, a means of learning how to arbitrate
between tasks is needed.

2) Preference Neurons: Preference neurons make module
arbitration without human-specified task divisions possible.
Each module’s preference neuron outputs the network’s rel-
ative preference for using that module. Whenever inputs are
presented to the network, the module whose preference neuron
output is the highest is used to define the output of the network.

For example, assume a domain requires two outputs to
designate the behavior of an agent, and a network has two
modules (Fig. 1c). Then the network has six outputs: two
policy neurons and one preference neuron for Module 1, and
two policy neurons and one preference neuron for Module 2.
Whenever the output of Preference Neuron 1 is higher than
the output of Preference Neuron 2, the two policy neurons
of Module 1 define the behavior of the agent. Otherwise, the
policy neurons of Module 2 are used.

This architecture assumes that a designer specifies the
number of modules. If a good guess at the number cannot be
made, one option is to simply give a network lots of modules,
and hope that it evolves to ignore those it does not need.
However, adding extra modules needlessly increases the size of
the search space, defeating some of the benefits of constructive
neuroevolution. However, new modules can also be introduced
gradually, using Module Mutation.

3) Module Mutation: Module Mutation is any structural
mutation operator that adds a new output module to a neural
network. An indefinite number of modules may be added in
this way. Such networks depend on preference neurons for
module arbitration. New populations start with a single module
and a preference neuron that only becomes relevant after more
modules are added. Each Module Mutation adds a new set of
policy neurons and a new preference neuron.

Different versions of Module Mutation were evaluated in
prior research [2]. MM(P), for previous, creates modules
with lateral inputs from a previous module, each with a
connection weight of 1.0 (Fig. 1e). The new module is thus
similar to the previous module, but not identical because the
tanh activation function is applied at every node. In contrast,
MM(R), for random, creates modules with random input link
weights and sources (Fig. 1f). New MM(R) modules are
often very different from existing modules, and explore the
space of policies better, but they also have a higher chance
of decreasing the fitness of a network. MM(R) was shown
to be superior to MM(P) in two previous domains requiring
multimodal behavior [2].

Another form of Module Mutation was introduced re-
cently [3]: Module Mutation combined with the duplication
operator (Section II-A). This operator is called MM(D), for
duplicate (Fig. 1g), because the new module duplicates the
behavior of an existing module. For every link into a policy
neuron in the original module, a duplicate link into the
corresponding policy neuron of the new module is created,
and it has the same source neuron and link weight as the link
being copied. A network that undergoes MM(D) will have the
exact same behavior as the original network. MM(D) provides
a network with new structure for evolution to explore without
altering the network’s fitness. However, links to the new
module’s preference neuron are not copied from the parent
module. Rather, the new preference neuron has a single link
with a random source and weight, to encourage the module to
be used in different circumstances.

Support for all these types of modular networks, combined
with NSGA-II, results in a software framework called Modular
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(a) Single-module Network

2 21 1

(b) Multitask Network (c) Preference Neuron Network

(d) Before Module Mutation (e) Module Mutation Previous (f) Module Mutation Random (g) Module Mutation Duplicate

Fig. 1: Modular Networks: These example networks are designed for a domain where two policy neurons define the behavior of an
agent. Inputs are at the bottom, and each output module is contained in its own red box. (a) Standard neural network with just one module.
(b) Multitask network with two modules, each consisting of two policy neurons. A human-specified task division indicates when to use
Policy 1 vs. Policy 2. (c) A fixed network with two modules that uses preference neurons (colored gray) to determine which module to
use. (d) A starting network in a population where Module Mutation is enabled. It has one module, and an irrelevant preference neuron.
(e) After MM(P), there is a new module connected to a previous module by lateral connections. (f) After MM(R), there is a new module
with random source inputs and link weights. This new module will represent a random policy based on signals generated by pre-existing
neurons in the network. (g) After MM(D), the network gains a new module with policy neurons linked to the same neuron sources with the
same link weights as policy neurons in the module that was duplicated. However, the new preference neuron is linked to a random source
with a random weight so that the new module is used in different situations. Once any form of Module Mutation is performed, both the
pre-existing and newly added preference neurons become relevant. Extra modules allow these networks to learn multimodal behavior more
easily by making it possible to associate a different module with each behavioral mode.

Multiobjective NEAT (MM-NEAT)4. The core evolutionary
algorithm of MM-NEAT is NSGA-II, but the evolved rep-
resentations are neural networks. They can either have a
single output module like networks in the original NEAT, or
multiple modules as just described. Also, in addition to the
standard mutation operators supported by NEAT, several forms
of Module Mutation are available in MM-NEAT. MM-NEAT’s
ability to discover multimodal behavior is demonstrated next.

VI. EXPERIMENTAL SETUP

This section describes the policy representation, sensors,
objectives, and specific network architectures used to evolve
multimodal behavior in Ms. Pac-Man. Then the procedure for
evaluating the final results is explained.

A. Direction-Evaluating Policy

A learned policy can control Ms. Pac-Man in several dif-
ferent ways (Section II-B), regardless of the method used to
represent the function approximator defining the policy.

This paper uses an approach introduced by Brandstetter and
Ahmadi (BA [40]). First, direction-oriented sensors evaluate
each available direction using a function approximator with a
single output, then the direction with the highest output value
is picked. This approach is similar to the common Reinforce-
ment Learning (e.g. SARSA, Q-Learning [53]) approach of
using Q-values (also known as state-action values) to pick

4Download at http://nn.cs.utexas.edu/?mm-neat

the best action to use in each state. Q-Value learning using
Reinforcement Learning approaches has not been attempted in
this simulator, though Temporal Difference learning has been
used to learn state values by evaluating afterstates [27], [36].
The BA approach has proven superior to these early afterstate-
based approaches to Ms. Pac-Man. Because each network is
evaluated once per direction, it is possible for networks with
preference neurons to use a different module for each direction
on the same time step. When discussing module usage in the
results (Section VII), the chosen module for a time step is the
one that the network used when fed inputs for the direction
that Ms. Pac-Man ultimately chose to move in.

The BA approach was chosen because it uses primitive ac-
tions (↑, ↓,←,→) and simple sensors. Other evolved Ms. Pac-
Man agents [25], [24], [38], [39] use high-level actions that
bias learning and impose an additional programming burden.
Primitive actions assure that intelligent behavior discovered is
due to evolution, rather than sophisticated high-level actions.
Sensors also have an impact on how challenging it is to
learn complex, multimodal policies. Therefore, two sensor
configurations are evaluated: split sensors and conflict sensors.

B. Sensor Configurations

Previous approaches to learning Ms. Pac-Man nearly always
made a distinction between edible and threat ghosts. Any
sensor dealing with threat ghosts, such as the distance to
the nearest one, was accompanied by a similar sensor that
only gave information about edible ghosts. This design choice
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makes it clear how the sensor should be interpreted: Threat
ghosts are always bad and edible ghosts are always good. In
other words, sensors dealing with ghosts are split into two
categories, and are therefore called split sensors. Such sensors
are the norm in Ms. Pac-Man research, but they bias learning
toward discovering a particular task division.

In contrast, if there was only one type of sensor for all
ghosts, and sensors did not distinguish ghosts based on type,
then there would be conflicting ways of interpreting these
sensors. Such general sensors are called conflict sensors: They
make learning harder, but remove an additional source of bias,
and provide a better test for the evolution of modular networks.
Methods that can learn from conflict sensors are important
because it may not be obvious how to design appropriate split
sensors for every domain.

This paper shows how modular networks can learn multi-
modal behavior even with unbiased conflict sensors that do not
suggest how to break up the domain into sub-tasks. However,
it also shows how split sensors using an appropriate task
division can perform well even without modular networks.
These approaches differ in how they handle ghosts, but they
share several other sensors. These sensors can be divided
into those that are direction-oriented, and those that are not.
Recall that neural networks are evaluated for each direction in
which Ms. Pac-Man can potentially move. The sensors that are
not direction oriented will provide the same reading for each
direction on any given time step. These sensors are listed in
Table I. The direction-oriented sensors depend on the specific
direction being evaluated, and are listed in Table II.

Most undirected sensors measure useful proportions. Sens-
ing whether any ghost is edible indicates when some are
vulnerable, but does not provide information about any spe-
cific ghost. Awareness of threat presence and the power pill
proximity [38], [39] are useful because they help optimize the
timing of eating power pills.

Most directed sensors are from the BA approach [40]. The
one exception is Options From Next Junction (OFNJ). OFNJ
looks at the next junction in a given direction, and counts the
number of subsequent junctions that can be safely reached
from the first junction without reversing. The safety of a route
can be determined by taking all agent distances into account
and conservatively assuming ghosts will follow the shortest
path to the target junction. No forward simulation is needed
to calculate this value. BA has a weaker version of this sensor
that merely detects whether an upcoming junction is blocked
by a threat. OFNJ makes it easier to avoid ghosts. However,
high scores depend on eating edible ghosts, which are only
detectable by the ghost sensors.

Conflict sensors have 16 direction-oriented ghost sensors:
distances to the 1st, 2nd, 3rd, and 4th closest ghosts, whether
each ghost is approaching, whether a directional path to each
ghost contains junctions, and whether each ghost is edible.
Because ghosts are sorted by directional distances, a different
sorting could apply to each direction. The sorting ignores
whether each ghost is edible, but this information is provided
via the additional sensor for each ghost.

In contrast, split sensors have 24 direction-oriented ghost
sensors: distances to the 1st, 2nd, 3rd, and 4th closest threat

TABLE I
Common Undirected Sensors in Ms. Pac-Man.

Sensor Name Description

Bias Constant value of 1
Proportion Pills Number of regular pills left in maze
Proportion Power Pills Number of power pills left in maze
Proportion Edible Ghosts Number of edible ghosts
Proportion Edible Time Remaining ghost edible time
Any Ghosts Edible? 1 if any ghost is edible, 0 otherwise
All Threat Ghosts Present? 1 if four threats are outside the lair,

0 otherwise
Close to Power Pill? 1 if Ms. Pac-Man is within 10 steps

of a power pill, 0 otherwise

These sensors are shared by both the split and conflict sensor
configurations. All sensors that measure a proportion are scaled to
the range [0, 1]. These sensors do not depend on direction, so the
same values will be returned for each potential movement direction
on each time step. They can only meaningfully influence direction
preference when combined with direction-oriented sensors (Table II).

ghosts, and 1st, 2nd, 3rd, and 4th closest edible ghosts, whether
each threat ghost is approaching, whether each edible ghost is
approaching, whether a directional path to each threat ghost
contains junctions, and whether a directional path to each
edible ghost contains junctions. At any given time, each ghost
can only be edible or a threat, but not both. Therefore, there
will not always be a 3rd closest threat ghost, or a 1st closest
edible ghost, etc. For these missing ghosts, distance sensors
return 1, because they are effectively infinitely distant, and the
other sensors return 0, because an absent ghost is clearly not
approaching, or at the end of a path with any junctions. Notice
that sets of four conflict sensors correspond to groups of eight
split sensors, except for edible conflict sensors; split sensors
do not need this information because it is already provided in
how the sensors are split.

Both sensor setups provide sufficient information to make
intelligent decisions in Ms. Pac-Man, but the split sensors bias
evolution towards a particular task division. In contrast, the
conflict sensors must learn an appropriate task division in order
to perform well in this domain.

Having explained how the evolving Ms. Pac-Man controllers
sense their environment, it is now time to explain what they
try to achieve and how they will be evaluated.

C. Objectives and Performance

Populations are evolved with separate pill and ghost ob-
jectives. The Pill Score is simply the number of pills eaten.
This count includes power pills, even though they are worth
more than regular pills in terms of game score. Both types are
treated the same since both need to be eaten to clear levels.
Because there are 932 pills across the four mazes and four
power pills per maze, this objective has a maximum of 948.

The Ghost Score is more complicated. Once a power pill
is eaten, the value of the first eaten ghost is 200, and each
subsequently eaten ghost value is doubled, so this objective
gives higher rewards for ghosts that are worth more points.
The 1st, 2nd, 3rd, and 4th ghosts are worth 1, 2, 4, and 8 points,
respectively. Therefore, it is possible to earn 15 Ghost Score
points per power pill, which adds up to 60 points per maze,
and 240 points across all four mazes.
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TABLE II
Common Directed Sensors in Ms. Pac-Man.

Sensor Name Description

Nearest Pill Distance Distance to nearest regular pill in given direction
Nearest Power Pill Distance Distance to nearest power pill in given direction
Nearest Junction Distance Distance to nearest maze junction in given direction
Max Pills in 30 Steps Number of pills on the path in the given direction that has the most pills
Max Junctions in 30 Steps Number of junctions on the path in the given direction that has the most junctions
Options From Next Junction Number of junctions reachable from next nearest junction that Ms. Pac-Man is closer to than a threat ghost

These sensors are shared by both the split and conflict sensor configurations. The maximum distance that can be sensed is 200. Higher
distances, and distances to objects that are no longer in the maze, are reduced to 200. All such distance sensor values are divided by 200 so
that they are confined to the range [0, 1]. The remaining sensors are similarly scaled to the range [0, 1] according to their maximum values.
These sensors are direction oriented, meaning that they can compute different values for each direction. Distance measurements and object
counts are made along the shortest path in the given direction without reversing. When combined with the undirected sensors in Table I, Ms.
Pac-Man can sense everything of importance except for ghosts, which are handled differently by the split and conflict sensor configurations.

Because evaluation in Ms. Pac-Man is noisy, each neural
network is evaluated 10 times. Fitness scores are the average
scores across evaluations. Because 10 evaluations take a long
time to carry out, a limit of 8,000 time steps is imposed for
each maze, after which Ms. Pac-Man is killed. This restriction
discourages behaviors that allow staying alive a long time
without making progress, such as moving in circles while the
ghosts chase from behind. This time limit is high enough to
not affect the champions by the end of evolution.

The game score is almost a weighted combination of the Pill
Score and Ghost Score (different score values for regular and
power pills cause a small discrepancy). Results in Section VII
are given in terms of game scores. However, learning based
only on game score would throw away valuable information
about how these objectives interact; using both objectives
along with NSGA-II allows evolution to explore different areas
of the trade-off surface to find skilled, multimodal behavior.

D. Evolving Networks

The experiments show the benefits of modular neural net-
works in a domain requiring multimodal behavior. Populations
of networks with one module (1M), two modules (2M), and
three modules (3M) are evolved. Modular networks include
preference neurons to decide which module to use on each
time step. If either two or three modules happens to be the
ideal number of modules for this domain, then evolving to
use these fixed modules should be easier than using Module
Mutation (which must also discover how many modules to
use). Populations of networks that start with one module,
but can add more via MM(P), MM(R), or MM(D), are also
evaluated. Additionally, the MM(D,P,R) approach allows all
three forms of Module Mutation to be applied to networks.
Finally, Multitask Learning using both two modules (MT2) and
three modules (MT3) is evaluated. The different approaches are
summarized in Table III.

Because Ms. Pac-Man blends the tasks of dealing with
edible and threat ghosts, it is not obvious how to split the tasks
across Multitask modules, so two approaches are evaluated.
MT2 uses one module if any ghost is edible, and a differ-
ent module otherwise. This second module must sometimes
deal with threat and edible ghosts simultaneously. The MT3
approach uses an additional module for these circumstances:

TABLE III
Evolutionary Approaches.

Label Description

1M Networks with one module (control).
2M Two modules arbitrated by preference neurons.
3M Three modules arbitrated by preference neurons.
MM(D) Networks can gain new modules via MM(D).
MM(P) Networks can gain new modules via MM(P).
MM(R) Networks can gain new modules via MM(R).
MM(D,P,R) MM(D), MM(P), and MM(R) can all be performed.
MT2 Two modules: one used if all ghosts are threats, the

other if any is edible.
MT3 Three modules: one used if all ghosts are threats,

one if all are edible, and one if there is a mix of
both types.

All experimental approaches are summarized in this table. Each
approach is evaluated using both conflict sensors and split sensors.

one module for all threats, one module for all edible, and one
module for any combination of threat and edible ghosts.

Since both split and conflict sensors are used, subscripts S
and C are used to identify each approach. For example, 1MS
refers to 1M runs using split sensors, and MM(D)C refers to
MM(D) results using conflict sensors.

Populations of each type are evolved 30 times for 200
generations, with a population size of µ = λ = 100. When
offspring are produced, each network link has a 5% chance of
Gaussian perturbation. Additionally, each network has a 40%
chance of having a new random link added between existing
neurons, and a 20% chance of a new neuron being spliced
along a randomly chosen link. In MM(P), MM(R), and MM(D)
runs, Module Mutation has a 10% chance of being applied per
offspring. In MM(D,P,R) runs, each type of Module Mutation
occurs with an independent 3.3% chance. Finally, topological
network crossover has a 50% chance of being applied when
offspring are produced, with parents chosen via tournament
selection, as normally done in NSGA-II.

Networks are initialized with a randomly weighted link from
each input neuron to each policy neuron. In modular networks,
each preference neuron begins with only a single incoming
link from a randomly chosen input, to allow module arbitration
to be swayed by mutations more easily. Evolving populations
of networks under these conditions produces several evolved
populations. The champion of each population, in terms of
game score, is then submitted to post-evolution evaluations.
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E. Post-Evolution Evaluation

Averaging scores across 10 evaluations only mitigates some
of the noise in evaluation. To get a more reliable evaluation
of the final results, the champion of each run is evaluated an
additional 1,000 times, post-evolution. These average scores
are then compared across methods.

The distribution of these scores for each method often
does not conform to a normal distribution, so non-parametric
tests are used to compare methods. The Kruskal-Wallis test
is used to compare all methods using a given sensor con-
figuration (split or conflict). For each test, a p-value below
0.05% indicates a significant difference between at least two
champions. In this case, it is appropriate to do additional
post-hoc analysis using two-tailed Mann-Whitney U tests.
Conducting multiple comparisons in this fashion increases
the chance of finding significant differences when there are
none, so Bonferroni error correction is used to adjust p-values
appropriately. Such analysis capabilities are built in to the R
programming language, which is used to perform all statistical
tests. The results of these tests, and all other outcomes from
the experiments discussed in this section, are discussed next.

VII. RESULTS

First the results from experiments using split sensors are
presented, then results from experiments using conflict sen-
sors. Results with both types of sensors are compared against
past results from the literature. Videos of behaviors are avail-
able online at http://nn.cs.utexas.edu/?ol-pm.

A. Split Sensor Results

All nine methods using split sensors achieve close to the
same level of performance (Fig. 2). By the end of 200
generations there are no significant differences between any of
them, as indicated by the Kruskal-Wallis test (H = 9.22, df =
8, N = 30, p ≈ 0.32).

Despite a lack of significant differences in performance,
there are interesting differences in the behaviors of cham-
pions. Fig. 3 plots module usage vs. average game scores
across 1,000 evaluations. Multitask champions are required by
their human-specified task divisions to use certain modules at
certain times, resulting in fairly consistent usage. Most other
champions use one module 100% of the time, and ignore
other modules, if they exist. However, the highest scoring
champions—which are 2MS, 3MS, and MM(D)S networks—use
one module only about 95% of the time. The remaining 5% is
dedicated to an escape module that helps Ms. Pac-Man decide
when to eat power pills after luring ghosts near by so as to
maximize the number of ghosts that will be eaten (Fig. 4).

The division into an escape module and another module
that handles everything else is unexpected. The expected
module division would distinguish between situations with
threat and edible ghosts, but this division does not emerge
because the split sensors already divide the domain in this
way at the level of sensors. As a result, networks that only
use one module exhibit two distinct modes of behavior within
that module. Ms. Pac-Man switches from fleeing to chasing
ghosts when the edible ghost sensors take over the network.
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Fig. 2: Median Champion Scores Over Evolution With Split
Sensors: Each line is the median champion score across 30 runs of
evolution for a particular method, where an individual champion’s
score is in turn the average across 10 evaluations. Medians are
compared instead of averages because the data is not normally
distributed, but rather bimodal with medians close to the lower mode
in each case. The order of methods in the key corresponds to the
order of median scores in the final generation, but all methods are
so tightly clustered that there are no significant differences between
them. However, there are modular networks with effective behaviors
that are difficult for 1MS networks to discover.
When ghosts of both types are present, the threat and edible
sensors compete with each other to settle on a behavior that is
appropriate to the specific situation. As a result, networks that
use only one module can exhibit a threat/edible split on par and
sometimes better than Multitask Learning, which is explicitly
programmed to treat threat and edible ghosts differently.

Using split sensors enabled most networks with preference
neurons to settle on behaviors that used a single module and
still achieve decent scores. However, the highest scores still
depend on having a distinct module for escaping, because the
split sensors do not divide the domain along this dimension.
Therefore, these results serve as a good example of how
modular networks can discover a useful task division not
anticipated in how the sensors were designed.

The next set of results, using conflict sensors, show that
the benefits of modular architectures become even more pro-
nounced as sensors become more general. These sensors do
not bias evolution towards the threat/edible division. Instead,
evolution is forced to discover task divisions across modules.

B. Conflict Sensor Results
In contrast to split sensors, with conflict sensors, some

methods perform significantly better than others. The order
of performance in the final generation from best to worst is
2MC, MM(P)C, 3MC, MM(D)C, MM(D,P,R)C, MT3C, MM(R)C,
MT2C, and finally 1MC (Fig. 5). 1MC is worse than all modular
approaches.

Applying the Kruskal-Wallis test to the results from post-
evolution evaluations indicates that there is a significant dif-
ference between at least two of the nine methods (H =
65.07, df = 8, N = 30, p ≈ 4.7 × 10−11). Table IV shows
adjusted p-values for post-hoc Mann-Whitney U tests. The re-
sults support the general conclusion that modular networks are
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Fig. 3: Average Post-Evolution Champion Scores vs. Module Usage With Split Sensors: Each champion was evaluated 1,000 times, and
the average scores plotted against the percentage of the time each chose a particular module. (a) The percentage of time steps the most used
module is chosen to control Ms. Pac-Man is shown on the y-axis. Champions with scores below 17,000 nearly all use one module 100%
of the time. However, both Multitask Learning approaches are required to use their favored module between 65% and 82% of the time,
which is how often all ghosts are threats. A few MM(D,P,R)S champions have a similar usage percentage, but in general only Multitask
networks use their primary module so seldom. However, most of the few champions with scores above 17,000 use their favored module
more than 95% of the time, leaving just under 5% to dedicate to a useful escape behavior. (b) Usage of the second most used module is
now shown on the y-axis. Champions with an escape module use it just under 5% of the time, often to signal when Ms. Pac-Man should
move toward a nearby power pill after luring ghosts to the point where she is nearly surrounded (Fig. 4). If she is nearly surrounded, but no
power pills are near, this module will sometimes activate to guide Ms. Pac-Man along the best escape route. This behavior is the reason that
these champions receive higher scores than the many individuals that do not use their second module (points on the 0% line). The different
Multitask usage patterns also result in lower scores. The second most used module for MT3S networks activates when all ghosts are edible,
whereas the second most used MT2S module activates when any ghost is edible, hence the difference in usage between these two methods.
(c) Usage of the third most used module is now shown on the y-axis. MT3S uses this module when there is a mixture of threat and edible
ghosts. All 3MS champions and a few Module Mutation champions have a third module, but except for one MM(P)S champion, none of
these networks actually use their third module. These results show that split sensors can help networks achieve good scores with just one
module, but the best scores depend on two modules: one for escaping after luring, and the other for everything else.

(a) Escaping To Power Pill (b) After Eating Power Pill

Fig. 4: Luring Behavior With an Escape Module: (a) Ms. Pac-
Man waits at the junction for the ghosts to get close, then activates
the escape module, which leads her and the ghosts to the power
pill. The cells in the upper left are shaded blue to indicate locations
in which the escape module was used. (b) After eating the power
pill, Ms. Pac-Man quickly eats the ghosts that were chasing her,
then chases the remaining ghosts. The escape module was not used
after the power pill was eaten. Though it is rarely activated, half of
the network’s neural resources are dedicated to this module because
luring is only effective if Ms. Pac-Man can successfully escape the
surrounding threats to reach a power pill, which in turn leads to the
highest scores. An animation of this and other behaviors can be seen
at http://nn.cs.utexas.edu/?ol-pm.

better than single-module networks. Additionally, preference
neuron networks are generally better than Multitask networks.

As in Fig. 3, Fig. 6 plots the average scores from post-
evolution evaluations against module usage percentages of
each champion across 1,000 evaluations. Nearly all modular
approaches use just two modules. The one major exception
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Fig. 5: Median Champion Scores Over Evolution With Conflict
Sensors: In a plot of all methods (as in Fig. 2), 2MC greatly surpasses
all the others. The remaining modular methods are all better than 1MC,
but by varying degrees. MM(P)C, 3MC, and MM(D)C are all far above
1MC. MM(D,P,R)C is slightly lower. Then come MT3C, MM(R)C,
and MT2C, which are just barely above 1MC. The different Module
Mutation approaches are scattered between the other methods, but
methods with a fixed number of modules and preference neurons
generally perform well, and Multitask networks generally perform
poorly.

is MT3C, which is required to use three modules by design.
There are also two MM(D,P,R)C champions whose third most
used module is chosen 15%–17% of the time. A few more
Module Mutation results have champions whose third most
used module is chosen 1%–4% of the time: four MM(P)C runs,
one MM(R)C run, one MM(D)C run, and one MM(D,P,R)C
run. Such rare usage can still have a major impact, as has



11

TABLE IV
Adjusted p-Values From Pairwise Mann-Whitney U Tests Comparing Post-Evolution Conflict Sensor Results.

1MC MT2C MM(R)C MT3C MM(D,P,R)C MM(D)C 3MC MM(P)C
MT2C 1.0 - - - - - - -

MM(R)C 1.0 1.0 - - - - - -
MT3C 0.00589 0.58242 1.0 - - - - -

MM(D,P,R)C 0.00059 0.01355 0.60734 0.98573 - - - -
MM(D)C 0.00394 0.07998 1.0 1.0 1.0 - - -

3MC 0.000036 0.00051 0.07192 0.01629 1.0 1.0 - -
MM(P)C 0.000088 0.000052 0.05196 0.00117 1.0 1.0 1.0 -

2MC 0.000027 0.00094 0.02478 0.03931 1.0 1.0 1.0 1.0

The champion of each run of each method was evaluated further in 1,000 trials after evolution. Each number is a p-value resulting from
a two-tailed Mann-Whitney U test comparing two neuroevolution methods, that has been adjusted according to Bonferroni correction as
performed by R. Values below 0.05 (bold) indicate statistically significant differences. Methods are sorted from worst to best according to
the order established in Fig. 5, which results in most significant differences clustering near the lower-left of the table. Nearly all modular
approaches are better than 1MC. The only two preference neuron approaches that are significantly different from each other are 2MC and
MM(R)C. Each approach with preference neurons is also significantly better than at least one of the two Multitask Learning approaches, with
the exceptions of MM(D)C and MM(R)C. These results provide a more in-depth analysis of champion performance than the results during
evolution. The main result is that modular networks in general and preference neuron networks in particular have an advantage over typical
single-module networks.
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Fig. 6: Average Post-Evolution Champion Scores vs. Module Usage With Conflict Sensors (plotted as in Fig. 3): (a) All 1MC networks
use their single module 100% of the time, and most score below 13,200. Both Multitask approaches are confined to using their primary
module (for dealing with all threat ghosts) between 68% and 83% of the time, and always score less than 14,000. Behavior of networks with
preference neurons is more varied: Many MM(R)C champions use only one module, and have scores similar to poor 1MC runs. Preference
neuron champions near the Multitask cluster mostly split their modules into a threat/edible division as well, but their division is seldom as
strict as the Multitask divisions. However, many MM(P)C and some MM(D,P,R)C runs have slightly higher scores (14,000–17,000) and
use their most used module between 50% and 85% of the time, but modules in this cluster are used in erratic and confusing ways, and
therefore the function of each module is not clear. However, the best modular approaches (scoring 16,000–20,500) use one module over 95%
of the time because the other module, used for escaping, is only needed a small percentage of the time. (b) Most champions only use two
modules, resulting in a plot that is nearly a vertical mirror of the previous plot. For a threat/edible split, the edible module is used second
most. Networks with an escape module use it second most. Points that do not mirror the previous plot are for champions that use more than
two modules, i.e. all MT3C and a few Module Mutation champions. The second most used module for MT3C networks activates when all
ghosts are edible, and is thus chosen 10% to 18% of the time. (c) Most champions with a third module use it less than 0.7% of the time.
However, MT3C champions use their module, for a mixture of threat and edible ghosts, 7% to 15% of the time. Module Mutation runs that
use a third module more than a negligible amount are uncommon. These figures show that even though different module usage patterns are
possible in Ms. Pac-Man, high scores can be achieved with just two modules. In particular, the best scorers primarily use just one module,
however, the few time steps when they do use the other module end up being very important to the overall success of the agent.

already been demonstrated by the split sensor results that use
an escape module. All other champions with a third module
use it less than 0.7% of the time, which is too low to noticeably
affect behavior. A few rare Module Mutation results have and
use four or five modules to no noticeable effect (except for
one exception discussed below).

Most champions fit into clusters corresponding to module
usage patterns, which can be analyzed by observing agent
behavior. As with split sensor results, the highest scoring
champions are those that favor one module over 95% of the
time and use the other module for escaping, often after luring
ghosts near a power pill. In these cases, it is surprising that a
single module can handle both threat and edible tasks, since

the conflict sensors do not distinguish between threat and
edible ghosts directly.

In fact, the highest scoring MM(P)C champion has five
modules, and makes meaningful use of four of them: one
module for escaping, one for eating edible ghosts, and two
for avoiding threats. However, there are several 2MC, 3MC,
MM(D)C, and even MM(R)C champions that achieve higher
scores by exhibiting luring behavior using only two mod-
ules (as in Fig. 4). Among the different Module Mutation
approaches, MM(D)C produces the most champions that lure
with an escape module, though its median champion score
across 30 runs is between MM(D,P,R)C and MM(P)C.

A major difference from results with split sensors is that
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networks with conflict sensors often use preference neurons
to establish a threat/edible module division. Because conflict
sensors do not distinguish between threat and edible ghosts
directly, it is easier for modular networks to dedicate a separate
module to handling each situation. This division is common
across all modular networks, and leads to scores comparable
to those achieved by Multitask Learning approaches. However,
the division is seldom as stark as with Multitask networks.
When ghosts of both types are present, these networks gener-
ally use the edible module until threat ghosts block the path
to any remaining edible ghosts, which is a sensible strategy.

There is another common way of using two modules that
is harder to interpret. It is exhibited by a few MM(D,P,R)C
champions and many MM(P)C champions. There is usually
one module that is mostly used when ghosts are edible, and
another that is mostly used when ghosts are threats, but the
modules are not as clearly divided between tasks as those
learned by other methods. Ms. Pac-Man seems to arbitrarily
switch between these modules at inappropriate times. Similar
module switching was observed in previous research using
MM(P) [2], and seems to result from the manner in which
new modules are connected to previous modules. Because
each new module is directly connected to a previous module,
it is inclined to maintain similar behavior and usage, and
it is therefore more difficult to specialize each module’s
behavior. Despite resulting in modules whose functional role is
difficult to interpret, MM(P)C champions using this confused
module division generally score higher than networks using a
pure threat/edible split. Because this division was discovered
consistently, MM(P)C has the highest median performance
among the Module Mutation approaches. However, MM(P)C is
the least likely modular approach to discover luring behavior
via an escape module, which is responsible for the highest
scores presented in this paper.

The worst individuals are 1MC networks that do not learn
what to do when ghosts are edible: Ms. Pac-Man jitters
helplessly, and tends to only eat them if they wander directly
into her path. The worst modular networks also exhibit this
behavior, but these networks mostly use only one of their
available modules. The MM(R)C method in particular pro-
duces champions that only use one module, likely because
the completely random modules introduced by MM(R) are
often quickly discarded by evolution. Learning to use multiple
modules makes learning multimodal behavior more likely.

However, there are also three high performing 1MC outliers.
The best of these lures ghosts near power pills before suc-
cessfully escaping. With only one module, improvements in
one behavior often come at the expense of other behaviors,
and in this case, the network’s ability to chase ghosts suffers
(as with all behaviors described, this one can be seen at
http://nn.cs.utexas.edu/?ol-pm). This is why is
is difficult for single-module networks to evolve effective
multimodal behavior. In contrast, modular networks separate
these behaviors into different modules, and are thereby able
to achieve higher scores.

However it emerges, multimodal behavior leads to high
scores in Ms. Pac-Man. This conclusion holds true in the full
game as well, as shall be shown in the next section.

C. Comparison Results

To compare performance with the literature, slight changes
must be made in the game setup. In particular, scores discussed
so far have been achieved using only one life, whereas results
in the literature generally let Ms. Pac-Man start with three
lives, and earn a fourth after achieving 10,000 points, as in the
original game. This simple change leads to the FourMaze
variant, so-called because evaluation remains restricted to a
single visit to each maze.

However, much of the literature describes entrants in the Ms.
Pac-Man vs. Ghosts competitions (MPMvsG variant), and these
scores were achieved under the following additional rules: (1)
clearing the fourth maze leads back to the first maze, until each
maze is visited four times (16 levels); (2) the per-level time
limit is 3,000 time steps, but running out of time advances
Ms. Pac-Man to the next level instead of killing her; and (3)
Ms. Pac-Man is awarded half the score from remaining pills
in the level when time runs out.

Furthermore, evaluations in both variants are timed, mean-
ing Ms. Pac-Man only has 40ms to decide on each action. This
time limit is seldom a problem for the evolved networks, but
whenever an action is not returned in time, the action made
on the previous time step is repeated.

To compare scores achieved by modular networks with
those in the literature, champions from each run were
evaluated an additional 100 times in both the FourMaze
(Fig. 7) and MPMvsG (Fig. 8) variants. Modular networks with
preference neurons produce several champions with average
scores far exceeding those achieved in previous work in both
FourMaze and MPMvsG. Average scores of Multitask Learn-
ing champions are on par with previous work in MPMvsG,
but are superior in FourMaze. When comparing maximum
scores instead of averages, the best GP result in FourMaze
(44,560) is slightly less than the best MM(D)S result (44,920),
and comparable to the best results of other modular networks.
The best maximum scores in MPMvsG evaluations are much
higher than maximum scores from the literature. Even the best
1MC results are superior to most previously published results,
although typical 1MC performance is lower.

The results demonstrate the success of MM-NEAT in Ms.
Pac-Man. There are many promising directions for future
research, as will be described next.

VIII. DISCUSSION AND FUTURE WORK

The discovery of luring behavior via an escape module is an
interesting and surprising result. In fact, all networks (whether
with split or conflict sensors) that do not have a module for
escaping are more likely to eat power pills at inopportune
times because effective luring is too risky. Unfortunately, the
edible time is so short that even if Ms. Pac-Man immediately
switches to a module that pursues the ghosts, she has a hard
time catching them before time runs out. Thus, while variants
of threat/edible divisions are an intelligent way of splitting up
the domain across modules, luring behavior still leads to the
highest scores.

However, luring champions still need to have distinct be-
haviors for fleeing threats and chasing edible ghosts, and
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Fig. 7: Comparison To Previous FourMaze Scores in the Literature: The (a) average and (b) maximum scores of 30 champions from
each method are compared with scores from the literature in FourMaze evaluations. Previous results include plain GP [38] and GP plus
Training Camps [39]. For each column, the left box depicts performance with conflict sensors, and the right box shows performance with
split sensors. These box-and-whisker plots show the lowest non-outlier, first quartile, median, third quartile, and highest non-outlier scores,
with outliers defined as being over 1.5IQR (inter-quartile range) distance from the nearest quartile. The average across all champions is also
shown as a green line intersecting each box. For each method, the majority of average champion scores are higher than those of previous
methods. Notice that GP has only one result, i.e. one from the best run in that study. The trailing away of the whisker represents uncertainty
about the distribution of the other scores. Interestingly, even 1MC outperforms previous work. There are many potential reasons for this result:
evolution is driven by multiple objectives, the evaluation scheme is more demanding (only one life), direction-evaluating policies are used
(the BA approach), and the sensors are different. With split sensors, even the worst champion of each run has a higher average score than
those obtained in previous work. However, the best overall champions are modular networks that discovered an escape module, demonstrating
the benefits of modular approaches. In terms of maximum champion scores, the best results of this paper are better than GP(Camps) and
comparable to plain GP. These results show the power of modular neuroevolution in Ms. Pac-Man.
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Fig. 8: Comparison To Previous MPMvsG Scores in the Literature: The (a) average and (b) maximum scores of 30 champions from
each method are compared with scores from the literature in MPMvsG evaluations, and depicted as in Fig. 7. Previous results include GP
used to learn a direction-evaluating policy (the BA method [40]), GP used to learn a default policy for MCTS [41], and ACO [28]. Scores
with MPMvsG rules are much higher than with FourMaze rules because the evaluation scheme is more lenient, and Ms. Pac-Man can visit
more levels. The best scores from this paper are again better than all previously published results. In terms of average champion scores, the
best previous approach is ACO (which only produces a single result rather than a distribution), but all methods from this paper produce
champions with higher average scores. In terms of maximum champion scores, the best previous approach is GP+MCTS, but once again
the methods from this paper perform better. 1MC and 1MS also perform better than methods in previous work, but the best approaches are
again modular networks with preference neurons. The neuroevolution approach of this paper is thus very strong, and is enhanced further by
evolving modular architectures.

for networks using conflict sensors it is surprising that one
module can handle both of these modes of behavior. The OFNJ
sensor likely helps these behavioral modes coexist in the same
module. If the urge to pursue ghosts is slightly overwhelmed

by the pressure to go towards safety, then Ms. Pac-Man will
head towards ghosts when they are edible, and run away from
them when they are threats because the influence of OFNJ is
stronger. However, escaping when surrounded is a different
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behavior from all of these, which is why it tends to need a
dedicated module in order to execute correctly.

Networks evolved with split sensors perform well even
with only one module, but the highest scoring results are
still modular networks that have a separate escape module.
Split sensor results would be better if an escape module were
discovered reliably. In contrast, when conflict sensors are used,
discovering multiple modules becomes more important: 1MC
networks have trouble learning multiple modes of behavior
because they only have one module, which is why most
modular approaches are significantly better. As with split
sensors, conflict sensor champions would perform even better
if the escape module were discovered reliably. Therefore,
one way to improve the results is to develop methods that
encourage the use of multiple modules more generally.

Multiobjective evolution should fill this role by encouraging
exploration of trade-offs, but vanilla multiobjective evolution
does not consistently capitalize on the potential of extra
modules. One extension of multiobjective evolution that could
do so is Targeting Unachieved Goals [50]. This fitness-based
shaping technique turns off objectives in which the population
is performing well so that evolution can focus on the objectives
that need it most. Such a change in focus encourages modular
networks to use additional modules better [54].

Another shaping technique that is easily combined with
multiobjective evolution is Behavioral Diversity [55]: An extra
objective rewards individuals that exhibit behaviors substan-
tially different from the norm of the population, and thus may
encourage use of additional modules when the majority of the
population is ignoring them.

Additional objectives could also be used to reward multiple
modules directly, but care must be taken in how such ob-
jectives are defined. For example, simply encouraging equal
usage of all available modules would be detrimental in Ms.
Pac-Man, because the high-scoring networks that have an
escape module use it only a small portion of the time. Even the
threat/edible division does not result in an even split, because
ghosts are more often threats than edible. An alternative
approach would be to reward diverse module usage, effectively
applying Behavioral Diversity on module usage. This approach
seems more promising, and is an interesting direction for
future work.

Although the Multitask Learning approaches in this paper
performed poorly, Multitask networks would presumably be
successful if they were explicitly programmed to use an es-
cape/edible/threat task division. In particular, the availability of
a good escape module makes effective luring possible. Though
such a task division was not considered in this paper, the rule-
based agent that won the CEC 2009 Ms. Pac-Man screen-
capture competition actually had explicit rules for encouraging
luring [29]. Of course, it is difficult to optimize parameters to
coordinate luring with other behaviors, which is why a later
version of this agent used Evolution Strategies to do it [30].

Therefore, even if a Multitask division with escape and/or
luring modules had been implemented, it would have been
difficult to design rules about when to use such modules. In
contrast, preference neurons are able to discover the escape
module on their own, and also discover when to use it. The

extra flexibility of preference neurons make them generally a
better choice than Multitask Learning.

A different set of split sensors could also be designed to
explicitly encode a distinction between escaping and not es-
caping, but once again, this is not an obvious a priori decision.
Using split sensors to encode the obvious threat/edible division
proved useful, but escaping was still a mode of behavior
that required its own module, discovered by evolution. If the
sensors could be configured by evolution, then perhaps sensors
that encourage escaping behavior could be discovered without
the need for multiple output modules. How to accomplish such
discovery is yet another open question.

IX. CONCLUSION

Ms. Pac-Man is a challenging game requiring multimodal
behavior to succeed. Modular approaches are superior because
they can dedicate separate modules to different modes of
behavior. Some evolve to handle threat and edible ghosts with
separate modules, which is a sensible division. This division
can also be encoded with Multitask networks or split sensors,
leading to similar performance. However, the best networks
evolve an even better, unexpected division that focuses one
module on the behavior of escaping ghosts after luring them
near power pills, so that they can be easily eaten. This task
division results in the best behavior, regardless of whether split
or conflict sensors are used. Evolution of modular networks
using MM-NEAT should be useful in other domains requiring
multimodal behavior, especially if ways are found to evolve the
best task divisions more reliably. Encouraging the evolution of
these divisions via shaping is an interesting direction for future
work.
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