
Latent Class Models for Algorithm Portfolio Methods

Bryan Silverthorn and Risto Miikkulainen
Department of Computer Science
The University of Texas at Austin
{bsilvert,risto}@cs.utexas.edu

Abstract

Different solvers for computationally difficult problems such
as satisfiability (SAT) perform best on different instances.
Algorithm portfolios exploit this phenomenon by predict-
ing solvers’ performance on specific problem instances, then
shifting computational resources to the solvers that appear
best suited. This paper develops a new approach to the prob-
lem of making such performance predictions: natural gen-
erative models of solver behavior. Two are proposed, both
following from an assumption that problem instances clus-
ter into latent classes: a mixture of multinomial distributions,
and a mixture of Dirichlet compound multinomial distribu-
tions. The latter model extends the former to capture bursti-
ness, the tendency of solver outcomes to recur. These mod-
els are integrated into an algorithm portfolio architecture and
used to run standard SAT solvers on competition benchmarks.
This approach is found competitive with the most prominent
existing portfolio, SATzilla, which relies on domain-specific,
hand-selected problem features; the latent class models, in
contrast, use minimal domain knowledge. Their success sug-
gests that these models can lead to more powerful and more
general algorithm portfolio methods.

Introduction
Heuristic solvers have become an essential tool for tack-
ling problems that appear otherwise intractable. Solvers for
the satisfiability problem (SAT), for example, verify hard-
ware designs whose encodings involve millions of variables
(Kautz and Selman 2007). Success has led to a profusion
of heuristics. None, however, dominates empirical compar-
isons; each has strengths and weaknesses.

Algorithm portfolio methods (Huberman, Lukose, and
Hogg 1997) use information about solvers and problem in-
stances to allocate computational resources among multiple
solvers, attempting to maximize the time spent on those well
suited to each instance. Portfolios have proved effective in
SAT (Gomes and Selman 2001; Xu et al. 2008) as well as
directly in application areas such as planning (Roberts and
Howe 2006) and scheduling (Cicirello and Smith 2005).

An algorithm portfolio must decide which solvers to run
and for how long to run them. These decisions rely on
expectations about solver behavior. Consider the situation

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

when a solver fails to find a solution. Should the same solver
be run again on the same instance? How likely is that solver
to succeed in that future run, given its earlier failure? It may
be nondeterministic, or require a longer run, or be unable to
solve the instance at all. How can a portfolio method make
these judgments?

This paper will argue that knowledge of solver behav-
ior can be captured by a well-chosen set of statistical as-
sumptions regarding solver-problem interaction. Those as-
sumptions can be used to learn predictable aspects of solver
behavior—such as how likely a solver is to succeed if it has
previously failed—given data such as the successes and fail-
ures of solvers on many other problem instances.

Existing portfolio approaches include those that apply
bandit methods (Gagliolo and Schmidhuber 2006), fixed ex-
ecution schedules (Streeter, Golovin, and Smith 2007), and
performance predictors built on domain-specific knowledge
of problem instances (Nudelman et al. 2004). The latter are
used heavily by SATzilla, the most prominent modern port-
folio method for SAT (Xu et al. 2008; 2009).

Latent class models of solver behavior, developed in this
paper, instead use solver performance data to identify groups
of similar problem instances. Two models are proposed: a
multinomial mixture that captures the basic correlations be-
tween solvers, runs, and problem instances, and a mixture of
Dirichlet compound multinomial distributions that also cap-
tures the tendency of solver outcomes to recur.

These models are integrated into a general algorithm port-
folio architecture outlined in the next section. Using greedy
action selection, this portfolio method is evaluated with the
solvers and benchmark collections published by the most
recent comprehensive SAT competition. Despite minimal
domain knowledge, this strategy beats baseline and non-
portfolio methods and is competitive with SATzilla. Latent
class models of solver behavior may thus lead to a new, more
general, and more effective family of portfolio methods.

A Model-Based Portfolio Architecture
An algorithm portfolio schedules the execution of its con-
stituent algorithms on previously-unseen instances of some
difficult problem. Horvitz et al. (2001) suggested that prob-
lem solving should be centered on a probabilistic model of
solver behavior. This paper proposes a portfolio architecture
in this paradigm.

In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence

2010.

Training
Outcomes

Training
Tasks

Model

Conditional
Predictions

Action
Selection

Test
OutcomesTest Tasks

Solvers

Figure 1: Solving instances of some difficult computational
problem, such as SAT, using the algorithm portfolio archi-
tecture described in this paper: a model is fit to training data,
its predictions are used to select solvers, and observed out-
comes affect later predictions.

Architecture Components
This architecture employs three core components: a portfo-
lio of algorithms; a generative model, which is fit to data
on those algorithms’ past performance, then used to predict
their future performance; and a policy for action selection,
which repeatedly chooses algorithms based on those predic-
tions. These components interact with a common set of en-
tities: tasks in the problem domain, solvers that take tasks
as input, runs of solvers on tasks, outcomes of runs, and the
duration of each run in processor time.

A model is a joint probability distribution over the random
variables of interest. Run outcomes are treated as observed
random variables. The model assumes the form of some
underlying structure in those outcomes; this structure is en-
coded by unobserved, or latent, variables. As new outcomes
are observed, the posterior distributions over the latent vari-
ables become increasingly informative.

Experiments in this paper are performed in the context
of SAT, in which tasks are Boolean formulae, solvers are
heuristic search algorithms, and a run’s outcome is either
“proved satisfiable or unsatisfiable” or “failed”.

Architecture Assumptions
This paper focuses on a specific problem-solving setting
whose five key assumptions are detailed below.

First, solvers are assumed to have discrete outcomes: they
must terminate in one of only a small and fixed number
of ways. While this assumption excludes problem domains
such as the optimization of objective functions mapping to
the real numbers, it includes many important domains as
well, such as all decision problems.

Second, while no ranking of outcomes is assumed when
modeling solver behavior, outcomes must be compared
when action selection weighs its options. Assigning each

outcome a numeric utility makes comparison easy, so let us
assume a utility function u : 1 . . . O → [0, 1] mapping out-
come indices to ordered real values in a fixed range, where
O is the number of possible outcomes. This paper’s utility
function for SAT maps proofs of satisfiability or unsatisfia-
bility to 1 and all other outcomes to 0.

Third, the possible durations of solver runs are limited
to a small and fixed set of values. This restriction makes the
portfolio less efficient, since a run of some durationN might
be required when a duration M < N would have sufficed,
but it simplifies modeling.

Fourth, the model is fit to data offline, but actions are cho-
sen online. Fitting involves two stages: solvers are executed
multiple times on training instances, and model parameters
are inferred from the resulting outcome data. Solvers and
run durations are then selected as tasks are presented to the
portfolio and outcomes are observed. Time spent in solver
selection is therefore time not spent in solver execution.

Fifth, the outcomes of solver runs are the only data avail-
able to the model. In practice, other sources of information
may exist, but these require additional domain knowledge
to identify and exploit. This paper examines whether gen-
eral patterns in solver behavior are sufficiently informative
to drive a competitive portfolio.

Portfolio Operation
Figure 1 places the components of this architecture in the
context of their operation under the assumptions above.
Portfolio operation begins with offline training, in which (1)
training tasks are drawn from the task distribution, (2) each
solver is run many times on each training task, and (3) a
model is fit to the outcomes observed in training.

In the test phase that follows, repeatedly, (1) a test task is
drawn from the same task distribution, (2) the model predicts
the likely outcomes of each solver, (3) the portfolio selects
and runs a solver for some duration, (4) the run’s outcome
conditions later predictions, and (5) the process continues
from (2) until a time limit expires. Task draws are assumed
independent, an assumption often violated but nonetheless
useful and common (Bishop 2006). Between different runs
of some solver of some maximum duration, the only param-
eter that changes is the seed provided to the solver’s pseudo-
random number generator.

The remaining sections of this paper construct the key
components of this architecture—a model of solver behav-
ior, a policy for action selection, and a portfolio of com-
plementary solvers—and evaluate their combination on the
SAT domain.

Models of Solver Behavior
The portfolio architecture above relies on an accurate model
of solver behavior. The following sections propose two re-
lated, natural models of solver behavior, and discuss how
they can be fit efficiently to data.

Basic Structure in Solver Behavior
A model of solver behavior should capture predictable as-
pects of that behavior. The most basic include relation-

ships between tasks, between solvers, and between run dura-
tions. Tasks are related because solvers are likely to perform
(dis)similarly on (dis)similar tasks; solvers are related be-
cause (dis)similar solvers are likely to perform (dis)similarly
on many tasks; runs are related because a solver’s runs of
some duration are likely to have outcomes (dis)similar to
runs of (dis)similar duration on the same task. The model
introduced in the following section captures these patterns
where they are present.

The Multinomial Latent Class Model
The mechanism of solver behavior suggests the model’s out-
line. Each run’s outcome is a function only of the input
task, the duration of the run, and any randomness internal
to the solver. Run outcomes are thus independent when con-
ditioned on a task and solver, since they depend only on the
solver’s uncorrelated internal randomness. If similar tasks
can be grouped into classes, runs’ outcomes would remain
nearly independent when conditioned on a class, and each
solver’s behavior on a class could be modeled separately.

This class-conditional independence can be expressed in
a hierarchical mixture model in which the outcomes of a
solver on all tasks in some class are sampled from a com-
mon multinomial distribution. The model is easily described
as a generative process. For now, let the duration of solver
runs be fixed. Assume that the number of classes K, the
number of tasks T , the number of solvers S, and the num-
ber of action outcomes O are known. Let an indicator kt of
the class of each task t be drawn from a multinomial dis-
tribution Mult(β) over classes in the task set, and draw the
outcome ot,s,r of run r ofRs,t of solver s from a distribution
Mult(θs,kt) over outcomes of that solver on tasks in class kt.
More formally:

β ∼ Dir(ξ),
kt ∼ Mult(β), t ∈ 1 . . . T,

θs,k ∼ Dir(αs), s ∈ 1 . . . S,
k ∈ 1 . . .K,

ot,s,r ∼ Mult(θs,kt), t ∈ 1 . . . T,
s ∈ 1 . . . S,
r ∈ 1 . . . Rs,t.

(1)

Dirichlet priors, denoted by Dir and parameterized by ξ ∈
R+K and eachαs ∈ R+O, were placed over β and each θs.

The model above emerges naturally from the perspective
on algorithm selection laid out across earlier sections, and
it has exactly the form of models such as multivariate latent
class analysis (McLachlan and Peel 2004; Bishop 2006).

The description above assumes a single, fixed solver run
duration. This assumption is relaxed by treating the com-
binations of solvers and run durations as entirely separate
actions—solver-duration pairs. To keep the number of ac-
tions manageable under this approach, possible run dura-
tions must be fixed and few, as assumed.

This multinomial mixture model is not complex, but
it captures the three essential aspects of solver behavior.
Classes link related tasks. Classes also link the outcomes of
actions, since information about the class of a task is infor-
mation about the distribution of every action’s outcomes. In-

formation from one action can thus affect the posterior prob-
abilities of another action’s outcomes. Since solver-duration
pairs are treated as distinct actions, run durations are linked
in the same way.

The DCM Latent Class Model
Solvers exhibit varied levels of determinism. Some are fully
deterministic and should be run at most once; others are
heavily randomized and should be run multiple times. The
level of determinism exhibited by a solver also depends on
the task distribution: any solver appears deterministic on a
set of impossible or trivial tasks.

The multinomial distribution does not directly capture this
aspect of solver behavior. Lessons from the area of text
analysis can help to explain why. Consider, for example, a
class of documents related to college sports. Individual doc-
uments focus on one or two teams, so a document that men-
tions a particular team is likely to mention that team again,
even if that team name is rare overall. This phenomenon is
described as burstiness in text (Katz 1996). The multinomial
distribution models this class of documents poorly because
the frequency of the name terms are not roughly the same in
every document. Viewing run outcomes as terms and tasks
as documents, solvers, too, exhibit this notion of burstiness.

The Dirichlet compound multinomial (DCM) distribu-
tion, also known as the multivariate Pólya distribution, has
been used to model burstiness in text (Madsen, Kauchak,
and Elkan 2005; Doyle and Elkan 2009), so it is a good can-
didate for modeling it in solver outcomes. The distribution
is hierarchical, rooted in a Dirichlet distribution parameter-
ized by α ∈ R+D, and can be interpreted as a draw of θ
from Dir(α) followed by a draw of x from Mult(θ).

Elkan (2006) noted that the equivalent Pólya-Eggenberger
urn scheme better conveys the burstiness of the DCM. Imag-
ine an urn from which colored balls are drawn repeatedly
with replacement. After returning each ball, another ball of
the same color is added to the urn, increasing the number
of balls inside. If the urn initially contains many balls, the
additional balls have little effect, but if the urn begins nearly
empty, they make colors already drawn more likely be drawn
again. The starting configuration of the urn corresponds to
the parameter vector α.

The DCM distribution can be used to extend the multi-
nomial latent class model by representing the per-solver
components of each class as Dirichlet distributions, draw-
ing each outcome from a multinomial distribution parame-
terized by a per-task Dirichlet draw. The model becomes:

β ∼ Dir(ξ),
kt ∼ Mult(β), t ∈ 1 . . . T,
θt,s ∼ Dir(αs,kt

), s ∈ 1 . . . S,
t ∈ 1 . . . T,

ot,s,r ∼ Mult(θt,s), t ∈ 1 . . . T,
s ∈ 1 . . . S,
r ∈ 1 . . . Rs,t.

(2)

The graph representation of this model is presented in Figure
2. Fitting it to data means inferring the Dirichlet parameter
vector αs,k for each of the S distributions in each of the K
mixture components.

S
T

Rs,t K

ξ β k o θ α

Figure 2: The DCM latent class model of solver behav-
ior, in its graph representation, using standard plate nota-
tion (Bishop 2006). The model is structurally similar to the
multinomial latent class model, but it additionally captures
the bursty nature of some solvers’ outcomes.

Fitting Solver Models to Data
Expectation maximization (EM) can be used to fit these
models to data. Its details are covered extensively else-
where (McLachlan and Peel 2004). For the DCM latent class
model, the responsibility γt,k of each class k for solver out-
comes on task t is

γt,k =
βk

∏S
s DCM(xt,s|αs,k)∑K

j βj

∏S
s DCM(xt,s|αs,j)

, (3)

where xt,s ∈ Z+O is the vector of counts defined by
xt,s,i =

∑Rs,t

r δ(ot,s,r = i). The corresponding formula
for the multinomial model differs only in the inner distribu-
tion term.

During the maximization step, an estimate of the DCM
parameter vector α can be calculated from count vectors,
such as each x above, using one of several procedures. The
digamma-recurrence fixed-point iteration of Wallach (2008)
is particularly efficient, and used here.

Conditional Prediction
In the test phase, the portfolio receives information about
each new task from the outcomes of the solvers it executes
on that task. This information narrows the likely class of the
new task, leading to probability

p(ot,s,r = i|ot) =
K∑

j=1

γt,kp(ot,s,r = i|kt = j,ot) (4)

that the outcome of solver s on task t will be i, conditioned
on the outcomes ot of actions previously taken on task t.
The term γt,k is the responsibility (as in Equation 3). For
the DCM model, the inner conditional probability is

p(ot,s,r = i|kt = j,ot) = DCM(ot,s + i|αs,j +ot,s), (5)

where i is the one-of-O vector for i. For the multinomial
model, this expression is simply θs,j,i.

Model-Based Algorithm Selection
Predictions of solver performance are useful only if they can
be used to run more appropriate solvers more often in real-
istic settings. This paper employs a simple, greedy scheme
to select actions using the predictions of latent class models.

Greedy, Discounted Selection Policies
Among the simplest selection policies are those that use ex-
pected utility but ignore the potential utility of later actions.
Such policies are efficient, and are easy to understand, im-
plement, and test.

Runs of different durations have different computational
costs, and a model-based selection policy should incorpo-
rate these costs into its decisions. A greedy approach that
ignored cost would prefer long solver runs to short, even if
multiple short runs would lead to higher overall utility on
average. As in other settings (DeGroot 1970), later rewards
are thus discounted according to a factor γ: utilityw accrued
after c seconds has present value γcw.

Two selection policies are evaluated. Both assume a par-
ticular fixed discount rate. The first policy, “hard” selection,
deterministically selects the solver-duration pair with max-
imum expected discounted utility. The action that appears
best, in other words, is always chosen. This method places
the most trust in its model. The second policy, “soft” selec-
tion, nondeterministically selects a solver-duration pair with
probability proportional to its expected discounted utility u′.
The probability that action l is the selected action s is

p(s = l) =
∑O

i=1 p(ot,s,r = i|ot)u′(i)∑S
i=1

∑O
j=1 p(ot,i,r = j|ot)u′(j)

. (6)

This method places less trust in its model. Evaluating two
policies in this manner tests how sensitive the portfolio is to
the details of selection.

Experiments
The core components of a model-based portfolio architec-
ture have been developed in the sections above. In this sec-
tion, the assembled architecture will be evaluated by apply-
ing it to SAT, an attractive test domain common in prior port-
folio work (Gomes and Selman 2001; Streeter, Golovin, and
Smith 2007).

The SAT Setting
SAT asks whether a given Boolean formula, typically ex-
pressed in conjunctive normal form (CNF), can be made
true. These formulae often encode instances of concrete
problem domains, such as planning (Kautz and Selman
1992), verification (Biere et al. 1999), and electronic de-
sign automation (Wood and Rutenbar 1997), among others
(Gomes et al. 2007). Application areas therefore benefit
from improved SAT methods.

SAT is an appealing testbed for portfolio research. Its
solvers are diverse and complementary. Competitions held
by the SAT research community lead to the open distribution
of solvers, solver source, and task collections. Using such
material from a competition mitigates the risk of cherry-
picking an easy environment: competitions include repre-
sentative modern solvers, as well as qualitatively different
applied and synthetic tasks.

The latent class portfolios tested in this section use every
solver from the main round of the 2009 competition—except
for the SATzilla portfolios, which are presented separately—
and are tested on all three of its benchmark collections:

random (570 generator-sampled instances), crafted
(281 manually-selected instances), and industrial (292
real-world instances).

SATzilla is the most prominent SAT portfolio method and
an impressive solver: in the 2009 competition, it won three
of the nine categories and placed second in another two. It
uses per-solver regression-based predictors of performance
trained on ≈ 90 task features, such as statistics of the for-
mula clause graph and of local search probes. Three vari-
ants of SATzilla competed in 2009, one trained for each of
the three benchmark collections.

SATzilla performance numbers are included in the results
below, with each variant tested on its associated collection.
The comparison between methods, however, is inherently
imperfect. SATzilla trains on thousands of training instances
drawn from multiple benchmark collections, while the latent
class portfolios learn from fewer instances drawn from the
single test distribution. Furthermore, SATzilla employs a
set of solvers chosen by its designers; this set does not in-
clude every solver in the 2009 competition, and it includes
some that did not compete, such as recent automatically-
discovered local search solvers (KhudaBukhsh et al. 2009).
The SATzilla performance scores therefore provide only
rough targets.

Since SATzilla applies the large body of research on
properties of CNF formulae in SAT, its prediction scheme
requires substantial domain knowledge. The latent class
model approach, in contrast, makes more complex assump-
tions but uses minimal domain knowledge. Even a rough
comparison between these different approaches is useful.

Methodology

The performance of several problem-solving strategies are
compared: hard and soft selection policies coupled with the
DCM and multinomial models across a range of K; ran-
dom action selection, which provides a baseline; the best
individual solvers, selected by an oracle with knowledge of
each solver’s true performance across each benchmark col-
lection, which provide non-portfolio points of reference; and
SATzilla, which represents the most successful alternative
portfolio approach.

In each evaluation, the portfolio was built and operated as
in Figure 1, and was allowed 5,000 seconds to solve each
test task. This cutoff was chosen to match that used by the
competition on the majority of its instances. Training and
test tasks were drawn without replacement. As in the com-
petition scoring system, SATSPEC, strategies are ranked ac-
cording to the number of test tasks they are able to solve.

The means (µ) and standard deviations (σ) of the scores of
at least 32 randomly-reinitialized evaluations were obtained
for each configuration. The discount factor was 1−10−4, 12
run durations were linearly spaced from 2 to 5,000 seconds,
and 16 restarts were made on each of 64 training tasks. Each
evaluation’s test set contained all of its collection’s instances
not used for training. Outcomes were simulated during eval-
uation using precomputed per-task solver distributions.

0
10
20
30
40
50

σ

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of Mixture Components (K)

200

240

280

320

360

400

440

SA
T

In
st

an
ce

s
So

lv
ed

Best Single
SATzilla
S + Mult.

H + Mult.
S + DCM
H + DCM

Figure 3: The number of tasks solved by selected strategies
on random. Performance improves as the number of as-
sumed latent classes, K, is increased, suggesting that class
structure is an aspect of solver behavior useful to portfolio
methods. All methods beat random selection, which is not
shown. Portfolios using the DCM model beat those using
the multinomial, and, at higher K, portfolios using hard se-
lection (“H”) beat those using soft selection (“S”) and the
same model.

Results
Figure 3 presents the connection between the assumed num-
ber of latent classes K and the performance of the portfo-
lio employing each combination of model and selection pol-
icy. If the models capture useful patterns in solver behav-
ior, we would expect performance to clearly improve with
K, as it does. The behaviors of the different model-policy
combinations are distinguishable. Model information is bet-
ter exploited by the hard selection policy, but soft selection
yields runs with lower variance at low K. In general, the
DCM model performs best, and performs surprisingly well
at K = 1; knowledge of solver burstiness is useful even
when separate from that of latent class structure.

Table 1 presents the performance scores for every latent
class portfolio combination at representative values of K
across every benchmark collection. It also provides the per-
formance of the random-selection baseline, the best single
solvers, and, as a rough comparison, SATzilla. In general,
the best-performing latent-class portfolio method is the com-
bination of DCM mixture model and hard selection policy.
Its performance substantially exceeds the random policy and
all single solvers on random, noticeably beats the oracle-
selected best single solver on crafted, and is only slightly
worse than it on the challenging industrial set. The la-
tent class portfolio architecture, in other words, is an effec-
tive system for solving SAT instances.

Overall, the DCM-based portfolio performs at least
roughly comparably to SATzilla. These results suggest that

SAT Instances Solved (σ)
Method random crafted indust.

Best Single 320.8 (3.7) 122.6 (3.8) 153.5 (3.2)
Random 261.6 (4.8) 89.3 (3.5) 54.5 (3.4)
SATzilla 407.5 (3.1) 125.6 (3.3) 137.6 (3.3)
Soft + Mult. 319.3 (8.2) 116.9 (4.9) 136.2 (4.3)
Soft + DCM 342.2 (8.2) 118.2 (4.3) 138.1 (5.0)
Hard + Mult. 340.3 (45.7) 104.8 (9.7) 129.4 (8.0)
Hard + DCM 424.2 (12.9) 129.4 (6.5) 146.0 (5.6)

Table 1: Problem-solving performance under each selection
policy and model on every benchmark collection, with K
set to the number of training tasks. Hard selection combined
with the DCM model is roughly competitive with SATzilla.

the latent class approach is a viable and promising alterna-
tive method for building algorithm portfolios.

Future Work
Three open research avenues are worth noting in particu-
lar. First, offline training is reasonable in domains with col-
lections of benchmark instances, such as SAT, but efficient
online inference could make model-based portfolios more
widely applicable. Second, more powerful planning tech-
niques could better exploit model information, and could
potentially balance exploration and exploitation concerns in
online settings. Third, instance features, such as those lever-
aged by SATzilla, could be utilized in latent class models as
well. They would make the model more complex and less
general, but would likely further improve performance.

Conclusions
Models of solver behavior improve algorithm portfolio
methods by allowing them to predict solver performance
more accurately. This paper proposed two latent class mod-
els as particularly appropriate: a multinomial mixture model
of the outcomes of solver-duration pairs, and a DCM mix-
ture model that additionally captures the burstiness of those
outcomes. Each model was embedded in a portfolio of
diverse SAT solvers and evaluated on competition bench-
marks. Both models support effective problem solving, and
the DCM-based portfolio is competitive with the prominent
SATzilla portfolio. Portfolio methods are already a power-
ful approach to problem solving, and the modeling work in
this paper lays the foundation for making them both more
powerful and more general. This work is thus a step toward
better solution strategies for some of the most difficult com-
putational problems.

Acknowledgments
This research was supported in part by the NSF under grants
EIA-0303609, IIS-0757479, and IIS-0915038, and by the
THECB under grant 003658-0036-2007.

References
Biere, A.; Cimatti, A.; Clarke, E. M.; Fujita, M.; and Zhu,
Y. 1999. Symbolic Model Checking using SAT procedures
instead of BDDs. In ACM/IEEE Design Autom. Conference.
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning.
Cicirello, V., and Smith, S. 2005. The Max K-Armed Ban-
dit: a New Model for Exploration Applied to Search Heuris-
tic Selection. In AAAI.
DeGroot, M. H. 1970. Optimal Statistical Decisions.
Doyle, G., and Elkan, C. 2009. Accounting for Word Bursti-
ness in Topic Models. In ICML.
Elkan, C. 2006. Clustering Documents with an Exponential-
Family Approximation of the Dirichlet Compound Multino-
mial Distribution. In ICML.
Gagliolo, M., and Schmidhuber, J. 2006. Learning dynamic
algorithm portfolios. AMAI.
Gomes, C., and Selman, B. 2001. Algorithm portfolios. AI.
Gomes, C. P.; Kautz, H.; Sabharwal, A.; and Selman, B.
2007. Satisfiability Solvers.
Horvitz, E.; Ruan, Y.; Gomes, C. P.; Kautz, H. A.; Selman,
B.; and Chickering, D. M. 2001. A Bayesian Approach to
Tackling Hard Computational Problems. In UAI.
Huberman, B.; Lukose, R.; and Hogg, T. 1997. Economics
Approach to Hard Computational Problems. Science.
Katz, S. 1996. Distribution of content words and phrases in
text and language modelling. NLE.
Kautz, H., and Selman, B. 1992. Planning as Satisfiability.
In ECAI.
Kautz, H., and Selman, B. 2007. The state of SAT. DAM.
KhudaBukhsh, A.; Xu, L.; Hoos, H.; and Leyton-Brown,
K. 2009. SATenstein: Automatically Building Local Search
SAT Solvers From Components. In IJCAI.
Madsen, R. E.; Kauchak, D.; and Elkan, C. 2005. Modeling
Word Burstiness Using the Dirichlet Distribution. In ICML.
McLachlan, G., and Peel, D. 2004. Finite Mixture Models.
Nudelman, E.; Leyton-Brown, K.; Hoos, H. H.; Devkar, A.;
and Shoham, Y. 2004. Understanding Random SAT: Beyond
the Clauses-to-Variables Ratio. In CP.
Roberts, M., and Howe, A. 2006. Directing a Portfolio with
Learning. In AAAI.
Streeter, M.; Golovin, D.; and Smith, S. F. 2007. Combining
Multiple Heuristics Online. In AAAI.
Wallach, H. 2008. Structured Topic Models for Language.
Ph.D. Dissertation, University of Cambridge.
Wood, R. G., and Rutenbar, R. A. 1997. FPGA Routing
and Routability Estimation Via Boolean Satisfiability. In
Int. Symposium on Field-Programmable Gate Arrays.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K.
2008. SATzilla: Portfolio-based Algorithm Selection for
SAT. JAIR.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2009.
SATzilla2009: an Automatic Algorithm Portfolio for SAT.
In SAT Competition 2009.

