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Abstract

A neural network model for the simultaneous self-organization of topographic re-
ceptive fields and lateral interactions in cortical maps is presented. The afferent and
lateral connection weights in the network are initially random, but self-organize based
on external input to form topographic maps. The maps are in dynamic equilibrium
with the input, and can reorganize in response to lesions in the network. During
reorganization, the area of functional loss resulting from the lesion first increases as
lateral connections adapt, and then decreases as afferent connections reorganize to
compensate. The reorganizing behavior closely matches experimental observations
on cortical lesions and stroke. The model shows how lateral interactions produce dy-
namic receptive fields and predicts that adapting lateral interactions are fundamental
to cortical reorganization. Based on the model, two techniques to accelerate recovery
from stroke and cortical surgery are suggested.

1 Introduction

Until recently, it was believed that the structure of the cerebral cortex is essentially
static after a critical period of early development. Recent results, however, show that
the adult cortex can undergo significant, often reversible, reorganization in response to
various sensory and cortical manipulations such as lesions in the receptive surface and
the cortex (for review see [4; 8; 2]). The cortex appears to be a continuously adapting
structure in a dynamic equilibrium with both the external and intrinsic input. This
equilibrium is maintained by cooperative and competitive lateral interactions within
the cortex, mediated by lateral connections.

Previous models of cortical development and plasticity concentrated on the self-
organization of the afferent connections to the cortex [9; 11; 3]. Lateral interactions
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within the cortex were assumed to be predetermined and fixed, and the models were
aimed at explaining how the afferent connection weights organize. However, recent
studies show that lateral interactions in the cortex are highly plastic—the long-range
lateral connections in the cortex change structure in response to input manipulations
such as sensory deprivation and strabismus and adapt together with the afferent
connections [1; 5; 6; 7]. Several aspects of cortical plasticity, such as the reorganization
of the map in response to cortical lesions, involve significant adaptation of the lateral
connections as well, and cannot be explained by these previous models.

A new model of cortical self-organization called LISSOM (Laterally Interconnected
Synergetically Self-Organizing Map: [13; 14; 12]) was developed to explain how af-
ferent and lateral connections could self-organize cooperatively and simultaneously
to form topographic maps. The maps formed by LISSOM are continuously adapting
structures in a dynamic equilibrium, and susceptible to changes in the distribution
of external and intrinsic inputs. As a result, the model can account not only for the
plasticity due to reorganizing afferent synapses, but also plasticity due to adapting lat-
eral connections. This article (1) demonstrates how receptive fields in the cortex can
be maintained dynamically by such lateral interactions, (2) how the self-organizing
process accounts for the reorganization of the cortex after cortical lesions and (3)
suggests techniques to accelerate recovery following cortical surgery and stroke.

2 The LISSOM Model

The LISSOM network is a sheet of neurons interconnected by short-range excitatory
lateral connections and long-range inhibitory lateral connections (figure 1). Neurons
receive input from a receptive surface or “retina” through the afferent connections.
These connections come from overlapping patches on the retina called anatomical re-
ceptive fields, or RFs. The patches are distributed with a given degree of randomness.
The N x N network is projected on the retina of R x R receptors, and each neuron
is assigned a receptive field center (¢;, c;) randomly within a radius p* R (p € [0,1])
of the neuron’s projection. Through the afferent connections, the neuron receives
input from receptors in a square area around the center with side s. Depending on its
location, the number of afferents to a neuron could vary from 3s x 3s (at the corners)
to s x s (at the center).

The afferent and lateral weights are organized through an unsupervised learning
process. At each training step, neurons start out with zero activity. The initial
response 7;; of neuron (1, 7) is based on the scalar product

M =0 (E &ri .rz#ej.nrz> ; (1)
T1,72

where &, ., is the activation of a retinal receptor (r;,r;) within the receptive field of
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the neuron, u;;,r, is the corresponding afferent weight, and o is a piecewise linear
approximation of the familiar sigmoid activation function. The response evolves over
time through lateral interactions. At each time step, the neuron combines retinal
activation with lateral excitation and inhibition:

mij(t) =¢ (Z Eryrabbijrirs + Ve 3 Eijmia(t — 8t) — % Y Lijumia (t — 5t)) v )
k,l

T1,72 ki,

where E;; x; is the excitatory lateral connection weight on the connection from neuron
(k,1) to neuron (2,7), I;;x is the inhibitory connection weight, and 7 (¢t — ét) is the
activity of neuron (k,!) during the previous time step. The constants v, and v; are
scaling factors on the excitatory and inhibitory weights and determine the strength
of the lateral interactions.

The primary effect of lateral interaction is to sharpen the contrast between areas
of high and low activity. The activity pattern starts out diffuse and spread over a
substantial part of the map, but within a few iterations of equation 2, converges into a
stable focused patch of activity, or activity bubble. After the activity has settled, the
connection weights of each neuron are modified. Both afferent and lateral connection
weights adapt according to the same mechanism: the Hebb rule, normalized so that
the sum of the weights is constant:

w;j,mn(t) - an,-ij,. (3)
Zmn [w"jvm"(t) * aninmﬂ] ’
where 7;; stands for the activity of the neuron (7,7) in the settled activity bubble,
Wijmn is the afferent or the lateral connection weight (iijryr,y Eijki 0T Lijki), @ is the
learning rate for each type of connection (a4 for afferent weights, ag for excitatory,
and o7 for inhibitory) and X, is the presynaptic activity (&, r, for afferent, ny for
lateral). Afferent inputs, lateral excitatory inputs, and lateral inhibitory inputs are
normalized separately. The larger the product of the pre- and post-synaptic activity
1ni; Xmn, the larger the weight change. Therefore, connections between areas with
correlated activity are strengthened the most; normalization then redistributes the
changes so that the sum of each weight type for each neuron remains constant.

wij,mn(t + 1) =

3 Development of Topographic Maps and Lateral
Interaction

The LISSOM network was simulated with Gaussian spots of “light” on the retina as

input. At each presentation, the activation &, ., at the receptor (ry,r;) was given by:

(i — ) + (ra — i)’
a2

I éem— ) (4)



where n is the number of spots, a® specifies the width of the Gaussian, and the spot
centers (z;,:): 0 < z;,¥i < R, were chosen randomly.

Figures 2—4 illustrate the self-organization of the LISSOM network. The afferent
connections from the retina were initially ordered topographically, but their synaptic
weights were completely random (figure 2a). Also, because several neurons connected
to the same area of the retina, there was considerable overlap in anatomical receptive
fields, and the initial topographic map was locally disordered (figure 3a). During self-
organization, the initial rough pattern of afferent weights of each neuron evolved into
a hill-shaped profile (figure 2b). As the afferent weight profiles of neurons peaked over
different parts of the retina, their center of gravities (calculated in retinal coordinates)
formed a precise topographical map (figure 3b).

The lateral connections evolve together with the afferents. By the normalized Heb-
bian rule (equation 3), the lateral connection weights of each neuron are distributed
according to how well the neuron’s activity correlates with the activities of the other
neurons. As the afferent receptive fields organize into a uniform map (figure 3), these
correlations fall off with distance approximately like a Gaussian, with strong correla-
tions to near neighbors and weaker correlations to more distant neurons. The lateral
excitatory and inhibitory connections acquire the Gaussian shape, and the combined
lateral excitation and inhibition becomes an approximate difference of Gaussians (or
a “Mexican hat”; figure 4).

Even after self-organization, the afferent and lateral connections in the network
are not static. Each time an input is presented, the synaptic weight patterns adapt.
As long as the distributions of afferent and lateral inputs seen by each neuron are
stable, the map remains in a dynamic equilibrium and the weight patterns fluctuate
around their self-organized state. However, when either of the distributions change,
this equilibrium is altered, and the network reorganizes to compensate. Below, it
is shown how cortical lesions change this self-organized state, and how it may be
possible to accelerate the network’s compensating reorganization.

4  Self-Organization After a Cortical Lesion

To study the effects of cortical lesions, a small set of neurons in the organized network
were made unresponsive to input. Three phases of reorganization were observed,
as in neurobiological studies [8]. Initially, the lesion reduces the inhibition of the
perilesion neurons, and unmasks previously suppressed input activation. Therefore,
immediately after the lesion, perilesion neurons begin responding to a broader range
of inputs than before and their receptive fields appear to expand. The expansion is
symmetric about the original receptive field centers, and the centers themselves do
not shift. As a consequence of the expansion, perilesion receptive fields overlap to a
greater degree with the receptive fields of the lesioned neurons. In effect, the neurons
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right outside the lesioned area immediately take over representing part of the input
to the lesioned region, and the apparent loss of receptive surface representation is
smaller than expected based on the prelesion map (figure 5b).

The lesion disrupts the dynamic equilibrium of the network, and both lateral and
afferent connections of the active neurons adapt to forge a new balance. Neurons
close to the lesion boundary encounter a large imbalance of lateral interaction in
their neighborhood, with no lateral activation from inside the lesion and normal
activation from outside. As a result, the lateral connection weights to the lesioned area
decrease to zero, and by Hebbian adaptation and normalization, all the lateral weights
rapidly redistribute to the the lesion’s periphery. Neurons at the lesion boundary
have the largest number of inhibitory connections from the lesioned zone; therefore,
the reorganization of inhibition is especially pronounced in the boundary neurons
(figure 6). As a result, the lateral inhibition very rapidly becomes strong outside the
lesion, and the activity that was previously unmasked is partly suppressed (figure 5c¢).
Because the suppression is strongest at the boundary of the lesion, the receptive fields
of boundary neurons appear to move outward. The functional loss is exacerbated,
and there appears to be a regression from the initial recovery phase.

Even after the lateral connections reorganize, inputs that were previously stim-
ulating the lesioned zone activate the boundary neurons. Driven by the Hebbian
self-organizing mechanism, the afferent weights reorganize so that neurons respond
better to these inputs. Gradually, receptive fields shift back inwards and represen-
tation of the receptive surface within the lesion zone is taken over by the neurons
around it (figure 7). As a result, the cortical lesion is partly compensated for, as
observed after stroke.

5 Discussion

The LISSOM model suggests two techniques to accelerate recovery following surgery
or stroke in the sensory cortices. Normally, the recovery time after cortical surgery
would include some immediate recovery, a phase of regression due to the reorgani-
zation of inhibition, and gradual and slow compensation afterward. The regression
phase could be ameliorated if a transient blocker of inhibitory neurotransmitters were
applied locally around the surgical area. Neurons around this area would then fire in-
tensively because of reduced inhibition, and afferent connections would adapt rapidly
to compensate for the lesion. By the time the blocker goes away, a substantial number
of afferent receptive fields would have shifted and compensated for the lesion. Though
the inhibition would strengthen when the blockade disappears, the pace of recovery
would have been hastened.

Secondly, the receptive fields of perilesion neurons could be forced to shift and
the topographic map reorganized as in figure 7 even before surgery. This could be
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achieved by intensive and repetitive stimulation of the area expected to lose sensation
and by sensory deprivation of its surroundings. Driven by the excessive stimulation,
neurons oustside the surgical zone would shift receptive fields inward. Then, after
surgery, the receptive fields would have to move much less to reach their final state,
and the recovery would be faster.

The model shows that receptive fields are maintained dynamically by excitatory
and inhibitory interactions within the cortex. The combined effect of afferent input,
lateral excitation and lateral inhibition determine the responses of neurons. When the
balance of excitation and inhibition is perturbed, neuronal response patterns change
dynamically, and receptive fields appear to expand or decrease in size rapidly. If the
perturbations are transient, they produce only transient changes in synaptic weight
patterns and the topographic map does not shift much. However, if the perturbation
persists for long, synaptic weight changes accumulate, and the topographic map re-
organizes substantially. Such receptive field dynamics has been recently observed in
the visual cortex [10]. LISSOM provides a computational explanation of why such
dynamics occur, and illustrates the primary role of lateral interactions in cortical
plasticity.

6 Conclusion

The LISSOM model demonstrates that not only the self-organization of topographic
maps, but also many aspects of cortical lesion plasticity can be explained based on the
simultaneous adaptation of afferent and lateral connections. The simulated reorga-
nizations are reversible, and demonstrate how a topographic map can be maintained
in a dynamic equilibrium with extrinsic and intrinsic inputs. The model suggests
that functional recovery after cortical surgery may be hastened by blocking lateral
inhibition locally in the cortex and by forced presurgical reorganization of cortical
topographic maps.
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Figure 1: The LISSOM architecture. The afferent and lateral connections of a single neuron
in the network are shown. All connection weights are positive.

Figure 2: Self-organization of the afferent input weights. The afferent weights of five neurons
(located at the center and at the four corners of the network) are superimposed on the retinal surface
in this figure. The retina had 21 x 21 receptors, and the receptive field radius was chosen to be
8. Therefore, neurons could have anywhere from 8 x 8 to 17 x 17 afferents depending on their
distance from the network boundary. (a) The anatomical RF centers were topographically ordered,
and the weights were initialized randomly. There are four concentrated areas of weights slightly
displaced from the corners, and one larger one in the middle. At the corners, the profiles are taller
because the normalization divides the total afferent weight among a smaller numer of connections.
(b) As the self-organization progresses, the weights organize into smooth hill-shaped profiles. In this
simulation, each input consisted of 3 randomly-located Gaussian spots with a = 2.0. The lateral
interaction strengths were y. = v = 0.9, with total lateral excitation = total inhibition = 1.0. The
learning rates were a4 = ag = ay = 0.002, and the upper and lower thresholds of the sigmoid were
0.65 and 0.1 respectively. Only the parameters v, and the sigmoid’s upper threshold were somewhat
sensitive.

Figure 3: Self-organization of scattered receptive fields into a topographic map. The
center of gravity of the afferent weight vector of each neuron in the 64 x 64 network is projected
onto the receptive surface (represented by the square). Each center of gravity point is connected
to those of the four immediately neighboring neurons by a line. The resulting dark grid depicts
the topographical organization of the map. In (a), the anatomical RF centers were topographically
ordered, but because the afferent weights were initially random, the center of gravities are locally
scattered. As the self-organization progresses, the network unfolds and the weight vectors spread
out to form a regular topographic map of the receptive surface, such as shown in (b).

Figure 4: Self-organization of the lateral interaction. The lateral interaction profile for a
neuron at position (32,32) in the 64 x 64 network is plotted. The excitation and inhibition weights
are initially randomly distributed within radii 3 and 18. The combined interaction is the sum of
the excitatory and inhibitory weights and illustrates the total effect of the lateral connections. The
sums of excitation and inhibition were chosen to be equal, but because there are fewer excitatory
connections, the interaction has the shape of a rough plateau with a central peak (a). During self-
organization, smooth patterns of excitatory and inhibitory weights evolve, resulting in a smooth
“Mexican hat” shaped lateral interaction profile (b).

Figure 5: How response patterns change after a cortical lesion. The activity of neurons
across the network are shown for the same input before the lesion (a), immediately after (b) and a
few hundred adaptation steps later (c). The lesioned area is seen as a white square with no activity
in figure (b). Immediately after the lesion, the activity spreads out to neurons that were previously
inactive and therefore, the functional loss appears less severe than expected. As lateral connections
reorganize (figure 6), the unmasked activity decreases because of increased lateral inhibition.



Figure 6: Reorganization of lateral inhibition at the lesion boundary. The inhibitory
connections of a neuron at the boundary of the lesion are shown. The neuron has 40 x 40 connections,
and the prelesion inhibition is circularly symmetric around the neuron (a). Shortly after the lesion,
the inhibitory weights from the lesioned neurons decrease to zero. Because the total inhibitory weight
is kept constant by weight normalization, the inhibition concentrates in the connections outside the
lesioned zone, and the trough becomes deeper (b).

Figure 7: Topography and activity in the reorganized network. Several thousand adapta-
tion steps after the lesion, afferent weights of the perilesion neurons have spread out into the area
previously represented by the lesioned neurons. Though lateral inhibition is still stronger in the per-
ilesion area, the input activation after reorganization overcomes the inhibition, and neurons at the
boundary of the lesion become more responsive to inputs previously stimulating lesioned neurons.
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(a) Initial random weights (b) Final organized receptive fields
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(a) Activity before lesion (b) Immediately after - (c) After 500 iterations
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(a) Inhibition before lesion

(b) After 500 steps
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(a) Reorganized map (b) Final activity



