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Abstract—Friction Stir Welding (FSW) is an innovative manu-
facturing process, which is used to join two pieces of metal with
frictional heating and plastic deformation due to stirring action.
Melting is avoided during the process, therefore problems related
to microstructure phase transformation (i.e., cooling from the
liquid phase) are avoided. The temperature distribution in the
weld zone, as a function of the heat generation, highly affects
the evolution of the residual stresses in the work piece, hence
the performance of the final product. Therefore, thermal models
play a crucial role in detailed analysis and improvement of this
process. In this study, a previously developed and validated three-
dimensional steady state thermal model of FS welding of AA2024-
T3 plates has been used for evaluating the quality of the candidate
solutions. It should be noted that this is a computationally expen-
sive model and closed form formulations (i.e. analytical equations)
for the underlying physics are not available, which forces us
to use them sparingly during the optimization procedure. A
mathematical correlation model, a surrogate in other words,
is iteratively constructed to replace the FSW simulations and
guide the search towards feasible and promising regions. A new
surrogate-based optimization algorithm named EICTS, Expected
Improvement with Constrained Tournament Selection has been
developed. The striking difference of EICTS from other surrogate
based constrained optimization methodologies that it needs to
construct only two surrogates, i.e. one for the objective function
and another one to handle all constraint functions (i.e., instead of
approximating each of them individually). EICTS is first tested on
some well-known engineering problems with multiple constraints
and finally on the FSW problem briefly mentioned above. Its
runtime and convergence performances are compared with EIPF
(Expected Improvement with Probability of Feasibility) method
and found very promising.

I. INTRODUCTION

The friction stir welding (FSW) process is getting more
attractive especially in aerospace and automotive industries
where there is a high demand for lightweight structures built
of materials having high strength-to-weight ratio such as
aluminum alloys [1], [2]. First and foremost, the mechanical
properties of the metal are preserved as much as possible since
there is no melting during the process. It is also advantageous
in case of welding large structures which cannot be heat-
treated afterwards. The process starts with clamping the work-
pieces on to an anvil to avoid abutting surfaces spread apart.
Then a rotating wear-resistant tool is submerged and traversed
along the joint line while stirring the two pieces of metal
together. The frictional heating, together with the plastic work

provided by the forging and stirring motions, softens the
material and makes the FSW tool move forward easier. The
process is finalized by removing the tool out of the two
workpieces and by let- ting it cool down to form the weld.
These steps have been schematically shown in Fig. 1.

Fig. 1. Schematic view of the FSW process and a typical FSW tool.

Since the development of the process in 1991, FSW mod-
eling studies involving several research areas such as heat
transfer [3], [4], [5], [6], material flow [7], material science
and metallurgy [8], and solid mechanics [3], [4], [9], [10],
[11] are increasing every year. However, the common ground
behind those models is the requirement for high demanding
computation time. Therefore, the number of numerical opti-
mization studies is limited [12], [13], and design improvements
mostly were performed by experimental works. Most of these
numerical optimization studies are based on pure thermal
models concerning single objectives or serving for inverse
modeling purposes. The reason why the emphasis is put
on thermal models is not only the less requirement for the
computational resources, but also the dominant relationship
between the microstructure as well as the residual stress
evolution in the weld zone and the final the performance of the
weld. Therefore, thermal models play a crucial role in detailed
analysis and improvement of this process. Few multiobjective
optimization studies regarding thermal [14], [15] and thermo-
mechanical aspects (i.e., residual stresses) of the FSW process
have recently been presented by [16].

Having given an overview about the general activities and
challenges about the multi-physics simulation and optimiza-
tion of the FSW process [12], [13], it is worth here to mention
about the computationally more efficient optimization algo-
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rithms which are based on approximating methods (surrogates,
meta-models, or response surfaces in mathematical parlance
[17], [18], [19], [20], [21], [22], [23], [24]). Most known
surrogates in the literature vary from simple polynomial re-
gression models and moving least squares to neural networks,
radial basis functions, Kriging, and support vector regression.
Some of these methods are also listed under machine learning,
statistical learning, or in general supervised learning tech-
niques. Despite the variety in their mathematical construction,
they all work on the same consecutive principles: training
(learning) and testing (prediction or generalization). Training,
in simple terms, is the procedure of learning the behavior
of the underlying response as a function of some chosen
parameters, which can also be called as the mathematical
mapping. Once this mapping is learned using limited sample
size, e.g., in case of using multidisciplinary manufacturing
process simulations, it can be used to iteratively replace the
computationally expensive black-box function. This simpler
model allows the user to predict any response at an unknown
design set at a negligible cost.

This article is structured as follows. First, a three-
dimensional steady state thermal model of FSW of AA2024-
T3 plates simulated in COMSOL has been presented in section
II. Next, a brief introduction to Kriging, i.e,. the surrogate
(approximation function), to be used in the Efficient Global
Optimization (EGO) (see (section III-B)) is described in
section III-A. Then two update criteria, EIPF and the proposed
method EICTS, are introduced in sections III-C and III-D
respectively. The results of the validation cases as well as the
simulation-based optimization problem in FSW are given in
section IV. Following the discussions of the results, the article
is finalized with the concluding remarks and addressing the
future work.

II. SIMULATION OF FSW

In this study, the temperature distribution during FSW of
two AA2024-T3 plates has been simulated using commercial
multi-physics finite element software COMSOL [25]. The
plunge, the dwell, and the pull-out periods have been ne-
glected; therefore, only the steady-state period has been the
focus of the modeling procedure. This assumption alleviates
some remarkable complexities and still allows capturing the
first-order effects the process parameters on the fully de-
veloped temperature field in the welding domain [5], [6].
Moreover, the performance of the numerical optimization is
enhanced by reducing the computational cost of the model,
hence increasing the number of function evaluations in a
limited time frame [14], [12].

The heat generation in FSW is often simulated by the
application of a surface heat flux in case of sliding or a volume
heat flux in case of sticking boundary condition [5], [6].
However, the uncertainty in the contact status at the interface
reveals other problems related to the model input parameters
such as the friction coefficient or the yield shear strength.
In most of the studies, common effort is put into deriving
the total heat generation or the friction coefficient from the

tool force and torque measurements as the main heat source.
However, this is conflicting with the aim of the thermal model
that is in essence used to predict the heat generation. Besides,
the need for the measurements for each different case having
different process parameters would not be straightforward. In
order to overcome these limitations, thermal models should be
integrated with mechanical and flow models in which contact
condition, deformation, etc. can be captured simultaneously.
On the other hand, taking all these effects into account would
obviously be an overkill for an optimization study since even
only one function evaluation would take several days or weeks
to compute [12].

In the present optimization study, a three-dimensional
steady-state Eulerian thermal model involving an analytical
heat source called Thermal-Pseudo-Mechanical (TPM) model
[6], which is capable of incorporating with the prescribed
material flow [5], has been implemented in COMSOL. It is a
well-known phenomenon that once the material is heated, its
yield stress decreases and vice versa. When the temperature
exceeds the solidus temperature, it behaves as a fluid having
almost no resistance to deformation; therefore, contribution
to heat generation becomes negligible. Therefore, the solidus
temperature acts as a switch button for turning the heat
generation from "on" to "off". This information has been
implemented here in the TPM model. As evident from its
name, it is a purely thermal model which takes some me-
chanical information (i.e., yield strength variation of the metal
with temperature) into account, thus bypassing the solution
of the mechanical field. Even though some nonlinearity is
introduced by application of this solution (i.e., temperature)
dependent heat source, the computation time is still much
more reasonable as compared to the solution time of a full
thermo-mechanical model. The details of the model, i.e., heat
source, boundary conditions, enmeshment, etc., are given in
the following paragraphs.

For the purpose of predicting the thermal field in the work-
piece, the classical time-dependent heat conduction equation
should be solved regardless of the complexity of the heat
source, see Eq. 1,

ρcpṪ = ∇(k∇T ) + qvol, (1)

where ρ (kg/m3) shows the material density, cp (J/kgK)
the specific heat capacity, T (K) the temperature output, k
(J/mK) the heat conductivity, and qvol (W/m3) the volu-
metric heat source term. In case of describing the heat flow
in a Eulerian reference frame under steady-state conditions,
the time dependent term is removed and a convective term is
added to Eq. 1 as given by the following equation,

0 = ∇(k∇T ) + qvol − ρcpuṪ , (2)

where u is the velocity field vector defined analytically in
the shear layer region (around the tool) which changes between
the tool welding velocity and the tool rotational speed [5].
The heat generation (qvol) defined in the shear layer regions
is varying with the rotational speed (ω), the position (r(x, y)),



TABLE I
THERMO-PHYSICAL AND MECHANICAL PROPERTIES FOR THE

AA2024-T3 [26]

T [°C] k [W/mK] ρ [kg/m3] cp [J/kgK] σy [MPa]
20 100 2780 929 306
100 121 2767 969 261
200 136 2749 1022 152
300 137 2729 1075 57
400 124 2709 1128 13
500 98 2689 1181 5

the yield strength of AA2024-T3 (σyield(T )), and the shear
layer thicknesses (tSL), see Eq. 3:

qvol(x, y, T ) =
ωr(x, y)σyield(T )√

3tSL
, (3)

Fig. 2. Temperature distribution for the steady-state thermal FSW model.
The figure on the left side is adapted from [5].

The calculation domain, shown in Fig. 3, composed of a
7 mm-thick plate geometry. The volume of the tool pin is
removed. The volume heat flux given in Eq. 3 is defined
in the cylindrical volumes drawn around the tool (Fig. 2).
Temperature dependent AA2024-T3 thermo-physical material
properties are assigned in the calculation domain (see Table
I). The prescribed velocity field is implemented in the same
way as in [5], the details are given in the original study. The
velocity vectors (u and v) in the shear layers can be prescribed
as in Eq. 4,

u = −yω(1− ζ) + ζuweld,
v = xω(1− ζ),

(4)

where uweld is the tool feed rate and ζ is the position
dependent interpolation coefficient in a shear layer region, i.e.,

ζSh−side(z) =
tplate−z

tSh−side−SL
,

ζPr−side(r) =
t−Rprobe

tPr−side−SL
,

ζPr−tip(z) =
zPr−tip−z
tPr−tip−SL

,

(5)

where tplate, tSh−side−SL, tPr−side−SL, and tPr−tip−SL

are, respectively, the thicknesses of the plate, the shoulder side,
the probe side as well as the probe tip shear layers, and zPr−tip
is the vertical coordinate of the probe tip.

Fig. 3 represents a characteristic temperature distribution
in an FSW application with the appropriate thermal boundary

conditions. The front surface of the plate is kept constant at the
room temperature (20 °C). The convection heat flow is applied
at the back surface of the workpiece. Thermal insulation is
enforced on both sides of the plate. Asymmetric temperature
distribution (i.e., higher temperature values are observed at
the advancing side over the retreating side) caused by the
material flow close to the tool shoulder is also captured as
very well known [2], [27]. The anvil and the FSW tool are
neglected in this model. This is due to two reasons: first,
inclusion of these will introduce extra uncertainties in the
model (temperature boundary condition at the tool holder head,
the heat flux diffused into the tool, etc.), and second, the size
of the enmeshment will get larger, and this will immensely
increase the computation time. The steel backing plate is
equivalently replaced by a heat flux boundary condition having
a heat transfer coefficient (HTC) of 1000 W/m2K [27]. The
cooling from the top surface is also taken into account by
applying an HTC value of 10 W/m2K.

Fig. 3. Temperature distribution for the steady-state thermal FSW model.

III. OPTIMIZATION
A. Surrogate Model: Kriging

Kriging is a well-known surrogate technique that is fre-
quently used to approximate computationally expensive func-
tions in the course of optimization. The method, named after
a South African geologist D. Krige [28], was developed to
estimate mineral concentrations within a particular field and
popularized by the work of Sacks et al. [29], which made
it also known as Design and Analysis of Computer Exper-
iments. The procedure starts with obtaining a sample data
of limited size (i.e., n-design sets each having d-variables),
Xn×d = [x(1),x(2), ...,x(n)]T , and a corresponding vector of
scalar responses yn×1 = [y(1), y(2), ..., y(n)]T . It is assumed
that if design points, e.g., x(i) and x(j), are positioned close
together in the design space, their respective function values
y(i) and y(j) are expected to be similar, and vice versa. This
can be formulated statistically by considering the correlation
between two points as,



cor
[
y(x(i)), y(x(j))

]
=

d∏
k=1

exp

(
−θk

∣∣∣x(i)
k − x

(j)
k

∣∣∣2) , (6)

where θk is a correlation parameter or hyperparameter (i.e.,
θk = θ1, θ2, ..., θd) which controls how fast the correlation
changes from one point to the other one along each dimension.
Here, Gaussian basis function is used; therefore the exponent
is fixed at 2 yielding a smooth and continuous transition at x(i).
Eq. 6 is used to build the symmetric correlation matrix (R) of
all n-points in X, which will be used in the process of tuning
the unknown hyperparameter θk to maximize the likelihood of
the assumed Gaussian model on the given dataset. Having the
Kriging model parameters tuned, the next step is to predict a
new response value, i.e., an objective or a constraint function
value, at an unobserved design point using the sample data
that are used to train the Kriging model. Ordinary Kriging
predictor (ŷ) has such a form,

ŷ(x∗) = µ̂+ r(x∗,x)TR(x)−1 (y(x)− 1µ̂) , (7)

where r(x,x) is the linear vector of correlations between
the unknown point to be predicted (x∗) and the known sample
points (x), (µ̂) is the estimated mean, and 1 is an unit vector of
size n x 1. Ordinary Kriging assumes a constant term (µ̂) for
the global fitting term in the predictor equation, whereas the
Universal Kriging uses a known functional form. The second
part on the right side of Eq. 7 represents the local deviation
from the global term. Kriging is in general known for its good
performance in fitting complex functional behavior; however,
what makes Kriging a very popular surrogate technique is in
essence its ability to estimate the mean squared error (MSE)
at the unknown point,

ŝ2(x∗) = σ̂2

[
1− rTR−1r +

1− 1TR−1r

1TR−11

]
, (8)

where ŝ2 represents the MSE estimate. The third term inside
the square parentheses is very small and is often neglected.
Since Kriging is an interpolation method, ŝ2 reduces to zero
at the sample points and consequently ŷ becomes equal to the
corresponding response value.

B. Efficient Global Optimization (EGO)

Knowing the fact that the Kriging model just constructed
on the limited number of sample points (initial sample set) is
only an approximation for the underlying black-box function;
thus, new sample points (infill points) should iteratively be
sought to update or in other words to improve the accuracy of
the surrogate. This update procedure, i.e., infill criterion, may
consider either only focusing on the optimum region of the
predictor (i.e., running the risk of premature convergence) or
to continue exploring the search space to increase the overall
accuracy thereby having a higher probability of finding the
global optimum. Another strategy is to balance both efforts,
i.e., simultaneously utilizing the information of the predictor
ŷ(x) calculated by Eq. 7 and the estimation of the variance

ŝ2(x) calculated by Eq. 8. Jones et al. [30] suggested an
algorithm called Efficient Global Optimization (EGO), which
relies on building iteratively a probabilistic model (i.e., Krig-
ing, section III-A) of the objective function and a criterion
based on improving upon the best sample found so far, ybest,
by searching this probabilistic model. Recall that the Kriging
predictor is the realization of a Gaussian process Y(x) with the
mean ŷ and the variance ŝ2(x); therefore, due to the uncertainty
in the predictor, an improvement at a point x can be defined
as,

I(x) = max (ybest − Y (x)) , (9)

which can be used to maximize the expectation of it
(expected improvement) as the infill criterion ([31], [32]),

E[I(x]) =(ybest − ŷ(x))Φ

(
ybest − ŷ(x)

ŝ(x)

)
+

ŝ(x)φ

(
ybest − ŷ(x)

ŝ(x)

)
,

(10)

where Φ(.) and φ(.) are the cumulative distribution function
and the probability density function of a normal distribution,
respectively. Readers are referred to [33] for the derivation of
Eq. 10. EGO iterates until a user-defined stopping criterion is
met, e.g., total number of infill points, change in the objective
function, tolerance on MSE, etc.

C. EIPF
As berifly described in the previous section, EGO frame-

work is initially developed to handle unconstrained optimiza-
tion problems by maximizing the expected improvement of
the objective function. Schonlau [34] had suggested an intu-
itive and effective methodology which modifies the expected
improvement idea in a way to handle the constraint functions
as well. The idea is simply to convert the constrained opti-
mization problem into an unconstrained one by multiplying
the standard expected improvement value with the probability
value of that point being feasible. The Probability of feasibility
of a solution for a single constraint could be calculated as in
Eq. 11,

P [F (x)] = P [g ≤ glimit] =

∫ glimit

−∞
φ(g)dg, (11)

where glimit is the constraint limit. This new constrained
expected improvement criterion, which is called as EIPF in
short,

E[I(x) ∩ F (x)] = E[I(x)]P [F (x)], (12)

is maximized like in the unconstrained case. Hence, if
the point to be evaluated is located in a feasible region
(i.e., P [F (x)] → 1), the constrained expected improvement
value would be equal to E[I(x)], otherwise if the solution is
estimated to be in the infeasible region (i.e., P [F (x)] → 0),
then the constrained expected improvement value would be
zero. EIPF criterion is implemented in the EGO framework
and used as infill criterion.



TABLE II
A SAMPLE OF 8 SOLUTIONS WITH THEIR OBJECTIVE (Yi) VALUE AND

CONSTRAINT VIOLATION (CV 1−3
i ) VALUES

Xi Yi CV1
i CV2

i CV3
i

X1 3628.2 0.10786 0.048429 13.129
X2 2144.4 -0.72429 -0.43514 -13.994
X3 39.876 -0.42857 -0.85714 14.075
X4 151.34 0.12786 0.061571 14.042
X5 172.75 -0.005 -0.21757 14.048
X6 2332.8 -0.82714 -0.30543 -12.829
X7 3360.3 -0.025 -0.34071 -12.944
X8 4323.5 -0.02 -0.72743 13.276

D. Proposed Method: EICTS
In this paper, a new constraint handling methodology is

proposed within the EGO framework without transforming
the constrained problem into an unconstrained one. As usual,
a uniform sampling method such as optimal Latin Hyper-
cube Sampling (LHS) method is applied to obtain the initial
sampling set within the bounded design space. Next, the
true objective and constraint function values (i.e. high-fidelity
simulations) are computed at these initial design sites. Up to
this point, it is same with the standard EGO (both with E[I(x)]
and EIPF criterions) algorithm. The proposed method needs
to build only two surrogates; one for the objective function and
another one for the total constraint violation (TCV ), which is
computed using all constraint violations. The constraints are
defined in a way that negative values indicate that the solution
is feasible whereas the positive value indicates that the
solution is infeasible. While computing the TCV value, only
positive values (i.e. CVi values of those infeasible solutions)
are taken into account. However, building only one surrogate
for multiple surrogates having values at different orders of
magnitudes requires an additional normalizing step. To make
the following discussion more clear, a sample of 8 solutions
having an objective (Yi) and three constraint violation values
(CV 1−3

i ) is provided in Table II,
In the next step, each CVi column is checked separately;

feasible solutions (CVi ≤ 0.0) are normalized between -1.0
and 0.0, infeasible solutions (CVi > 0.0) are normalized
between 10−8 and 1.0. Then, in order to compute single TCVi
value for each Xi solution, rows having only positive or only
negative values are summed up, however in other rows, only
positive values are summed up. The normalized CVi and the
computed TCVi values are shown in Table III,

According to Table III solutions X1, X3, X4, X5, X8 are
infeasible and the other 3 solutions are feasible. These TCVi
values are then approximated using Kriging function. The
next important step is to compute the standard E[I(x)] values
for all candidate solutions in the course of global search
algorithm. The purpose is to find feasible candidate solutions
(i.e., TCVi ≤ 0) with maximum E[I(x)] values. To efficiently
search the constrained design space Constrained Tournament
Selection, with tournament size equal to 5, is implemented.
During the iterations of the global optimization algorithm, 5
randomly selected individuals are first compared with respect
to their TCVi values: i) if all (or at least one) TCVi values are

TABLE III
CONSTRAINT VIOLATION (CV 1−3

i ) VALUES ARE NORMALIZED. ROWS
WHICH HAVE only ALL NEGATIVE OR ALL POSITIVE VALUES ARE SUMMED
UP, WHEREAS IN OTHER ROWS, ONLY POSITIVE VALUES ARE SUMMED

UP.

Xi Yi CV1
i CV2

i CV3
i TCVi

X1 3628.2 10−8 10−8 10−8 3x10−8

X2 2144.4 -0.8748 -0.3402 -1.0 -2.2151
X3 39.876 -0.5152 -1.0 1.0 1.0
X4 151.34 1.0 1.0 0.9658 2.9658
X5 172.75 0.0 0.0 0.9715 0.9715
X6 2332.8 -1.0 -0.1374 0.0 -1.1374
X7 3360.3 -0.0243 -0.1925 -0.0988 -0.3157
X8 4323.5 -0.0182 -0.7972 0.1554 0.1554

negative (i.e., feasible) then the solution with the maximum
E[I(x)] value wins the tournament, ii) if all TCVi values are
positive (i.e., infeasible) then the solution with the minimum
TCVi value wins the tournament. At the end of the global
optimization procedure, the optimal candidate solution, which
is found using the surrogate models, is re-evaluated using high-
fidelity simulations.

IV. RESULTS

In the following sections, three well known analytical
engineering constrained optimization problems are given to
validate the performance of the proposed method, EICTS. For
each test problem, 30 experiments with different initial LHS
set are performed. These three problems, Gas Transmission
Compressor Design (GTCD), Pressure Vessel Design (PVD),
Welded Beam (WB), are well studied by the constrained
optimization researchers, however the application of surrogate-
based constrained optimization algorithms are limited. More-
over, the performance of EICTS is only compared with EIPF
due to the limited availability of the alternative open-source
algorithms. Our main objective was to achieve comparable
results in shorter computational time. The summary of the
results in Table IV as well as in Figs. 4, 5, 6 and 7 show that
even better solutions (i.e., better feasible objective values as
well as closer solutions to the analytical optimum solution)
are obtained in shorter time period.

A. Validation Cases

In the following three engineering problems, the global
optimum solutions are known and reported in the literature.
30 experiments are performed for each validation case using
both EIPF and EICTS methods. All problems have four design
variables. The initial sample sets include 20 solutions and a
budget of 40 infill point calculations are allowed for each
experiment. Normalized distance of the current best solution
to the analytical optimal solution and the 95% confidence
intervals are shown in the following figures. Since algorithms
are tested with the same initial sample sets, the average best
and variance values between 1st and 20th samples are same.
The infill points start to deviate from each other due to
different algorithm performances.



1) Gas Transmission Compressor Design (GTCD): The
problem is taken from [35]. It has 4 design variables and 1
constraint function. It is clearly seen from Fig. 4 that EICTS
is able to find better solutions (i.e., closer to optimal solution).
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Fig. 4. Average of the smallest Euclidean distance to the optimal solution
in 30 experiments for the GTCD problem.

2) Pressure Vessel Design (PVD): The problem is taken
from [36] and [37]. It has 4 design variables and 3 constraint
functions. In this case, the performances look closer but
EICTS still performs better. The runtime performance of
the two algorithms are also given in Table IV and EICTS
starts to get faster as compared to EIPF, because different
surrogate approximations for the multiple constraint functions
need to be performed by EIPF, whereas only single surrogate
approximation for all the constraint functions is needed for
EICTS.
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Fig. 5. Average of the smallest Euclidean distance to the optimal solution
in 30 experiments for the PVD problem.

3) Welded Beam (WB): The last validation problem is
taken from [36], [37], [38]. It has 4 design variables and 6
constraints. The performances in Fig. 6 look similar however
the runtime performance of EICTS is approximately 3.5 times
faster than EIPF. Moreover, Table IV shows the average

number of feasible solutions found in 30 experiments for
each problem and EIPF could not find any feasible solution,
whereas EICTS could find at least 1 or 2 feasible solutions in
approximately 10 out of 30 experiments.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

Iterations

N
o
r
m
a
l
i
z
e
d
 
d
i
s
t
a
n
c
e
 
t
o
 
t
h
e
 
o
p
t
i
m
a
l
 
s
o
l
u
t
i
o
n

Problem−3: WB

 

 

INITIAL SAMPLE

INFILL POINTS

EIPF

EICTS

Fig. 6. Average of the smallest Euclidean distance to the optimal solution
in 30 experiments for the WB problem.

B. Simulation-based Optimization Problem: FSW

Original problem was formulated as a multi-objective opti-
mization problem in [15] and here it is converted to a single-
objective optimization problem. The design variables are the
radius of the tool shoulder (8 ≤ Rsh ≤ 12 mm), radius of the
probe (3 ≤ Rpr ≤ 6 mm), welding speed (1 ≤ uweld ≤ 8
mm/s) and the tool rotational speed in terms of revolutions
per minute (400 ≤ nrev ≤ 1000 rpm). As common in
other manufacturing processes as well, the production rate
is desired to be maximized in the FSW process; this can
obviously be achieved by increasing the traversing speed
(uweld); however, increasing the welding speed promotes the
risk of tool probe failure due to colder (i.e., harder) material
ahead of tool. Therefore, temperature gradient in the narrow
region of the tool probe surface (i.e., 1 mm ahead and one
fourth of the height) should also be minimized for safety
purposes. This evaluation can be done in more detail with
a computational solid mechanics (CSM) or a computational
fluid mechanics (CFD) approach; however, the computational
cost would be very high (varies from hours to a day), and
consequently, the integration of these type of models with
the numerical optimization algorithms would be impractical.
Hence, this safety issue has been considered as the objective
function (i.e., to minimize), and thus bypassed the costly
CSM/CFD calculations using a pseudo-mechanical link with
an engineering intuition. Some of the other important constants
in the FSW simulation are the thickness of the plate (7 mm),
the height of the tool probe (6 mm), observed shear layer
thickness at the shoulder and probe sides as well as at the tip
of the probe are 2 mm, 0.5 mm and 0.25 mm, respectively.
The welded plates are 100 mm-long and 50 mm-wide. Three
constraints are defined: 1 and 2) Average temperature in the



TABLE IV
PERFORMANCE COMPARISON OF EIPF AND EICTS, WITH RESPECT TO (1)

AVERAGE NUMBER OF FEASIBLE SOLUTIONS, (2) AVERAGE COMPUTING
TIME AND (3) BEST FEASIBLE FITNESS VALUE AMONG 30 EXPERIEMENTS.

Performance
Criterion Problem EIPF EICTS

nfeas,avg

GTCD 41.467 20.300
PVD 0.3667 1.2667
WB None 0.0333
FSW 15.500 6.7500

CPU − timeavg

GTCD 225.95 214.63
PVD 353.15 210.53
WB 702.25 213.56
FSW 5385.3 3797.8

Fitnessfeas,best

GTCD 4,075,744.10 3,035,175.86
PVD 6680.9 6049.2
WB None 5.195
FSW 3.722 3.693

shoulder side shear layer should be between 450°C and 500°C
respectively, 3) the material temperature in front of the tool
probe should be higher than 425°C.

The optimal solution to this FSW problem is [R∗shoulder,
R∗probe, u∗weld, n∗rev] = [12 mm, 3 mm, 1 mm/s, 700 rpm].
This is also intuitive because promoting a large volume of
heat generation by using a FSW tool having the maximum
tool shoulder radius and minimum tool probe radius (i.e.,
VolumeSh−side−SL = π(R2

shoulder −R2
probe)tSh−side−SL) as

well as keeping the traversing speed at its minimum value
leaves only one process parameter to optimize, i.e., that is
nrev . Due to higher computational cost of the simulations, 10
experiments are performed instead of 30 only for this problem.
The results are shown in Fig. 7 and it clearly shows the
dominance of the EICTS results. EICTS clearly finds process
and design parameters yielding lower temperature difference
between the probe and the incoming material. Moreover, the
variance in the average of best solutions in 10 experiments are
much narrower which shows the reliability of the proposed
method. The runtime performance (∼1.5 times faster) also
supports the success of EICTS.
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Fig. 7. Average of the smallest Euclidean distance to the optimal solution
in 30 experiments for the FSW problem.

V. CONCLUSIONS

The steady-state thermal simulation of the Friction Stir
Welding (FSW) process is implemented in COMSOL for
optimizing the process parameters and the tool geometry to
minimize the risk of tool failure (i.e., by minimizing the
temperature gradient between the incoming material and tool
probe). The average temperature is desired to be kept above
450°C to avoid tool pin failure and below 500°C to reduce the
tool wear. The effect of the tool rotation on the distribution
of the temperature field is also taken into account. Since the
average computational time for a single FSW simulation is
changing from 5 minutes to 9 minutes (on a desktop computer
with Intel Core i7, 2.67 GHz CPU and 8 GB of RAM), these
high fidelity simulations need to be executed sparingly. There-
fore a surrogate-based optimization methodology, in which the
computationally expensive function calls are replaced by low
fidelity approximation functions (i.e., surrogates), is applied. A
new constraint handling methodology, employing Constrained
Tournament Selection, is developed and integrated within the
well known efficient global optimization (EGO) framework.
The runtime and convergence performance of the algorithm
is tested on three analytical engineering test problems, and
finally, on the simulation-based optimization problem in FSW.
The performance of the proposed method, EICTS (Expected
Improvement with Constrained Tournament Selection), is com-
pared with EIPF (Expected Improvement with Probability
of Feasibility). A budget of 60 high-fidelity simulations is
allowed. Findings can be summarized as follows:
• Multiple number of constraint functions are approximated

by only a single surrogate function, which is a different
approach from most other surrogate-based optimization
methods presented in the literature. This shortcut obvi-
ously speeds up the model building process.

• The order of magnitudes of any constraint can be han-
dled with this method, because all constraint values are
properly normalized without using any parameters (i.e.,
without knowing the maximum value of the constraint
function can get, which is then used as a denominator
constant). The proposed method does not need the ac-
tual constraint function violation values; instead it only
compares the relative magnitudes of the total constraint
violation (TCV) value within the Tournament Selection
process to guide the search towards the feasible design
region.

• EICTS has been tested on relatively difficult well known
engineering test problems as well as the simulation based
optimization problem for the FSW process. Both the
runtime and convergence performances found to be very
promising.

A few pointers to improve the performance of the proposed
method could be given as following. Here, Kriging is used for
both the objective and constraint functions, but the method-
ology can be extended to other surrogates (Support Vector
Machines, Radial Basis Functions, etc.) as long as a mea-
sure of uncertainty (Mean Squarred Error) estimation for the



objective function is available. Such information can also be
incorporated while handling constraints, i.e., instead of using
only TCVi, the value of TCVi + ŝi

2 can be evaluated (ŝi2 is
the estimation of MSE for TCVi). In that case, predictions at
crowded regions would result in lower ŝi2 values, whereas
predictions at less explored regions would result in higher
ŝi

2 values. Handling higher number of design variables is
an important aspect of the constrained optimization practice,
and it should be noted that the Bayesian Optimization (BO)
Algorithms (such as EGO) are known to perform slower at
higher number of dimensions (d ≥ 15). A trust-region-based
BO methodology could be a good alternative for such a case.
This will be addressed in a further study.
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