
 
 

 

  

Abstract— A perceptron-based scaled neural predictor 
(SNP) was implemented to emphasize the most recent branch 
histories via the following three approaches: (1) expanding the 
size of tables that correspond to recent branch histories, (2) 
scaling the branch histories to increase the weights for the most 
recent histories but decrease those for the old histories, and (3) 
expanding most recent branch histories to the whole history 
path. Furthermore, hash mechanisms, and saturating value for 
adjusting threshold were tuned to achieve the best prediction 
accuracy in each case. The resulting extended SNP was tested 
on well-known floating point and integer benchmarks. Using 
the SimpleScalar 3.0 simulator, while different features have 
different impact depending on whether the test is floating point 
or integer, overall such a well-tuned predictor achieves an 
improved prediction rate compared to prior approaches. 

I. INTRODUCTION 
YNAMIC branch prediction is a fundamental 

component in modern computer architecture design to 
achieve high performance. A branch in machine code is 
essentially analogous to an if-statement in high level code. 
When a branch is first encountered, it may not be possible to 
decide whether or not it should be taken: the code is 
executed in multiple pipelined stages and the needed 
information may not be available yet. Instead of stalling, 
however, a pipelined processor uses branch prediction to 
predict the target of a branch, and pre-fetches and executes 
instructions on the path of the predicted decision. The more 
accurate such branch prediction is, the more likely such 
speculation is to be useful. Accurate branch prediction is 
therefore essential to facilitate instruction-level parallelism 
and better performance [1]. 

Most research in the 1990’s focused on branch predictors 
based on two-level adaptive scheme [2]. Two-level 
predictors make predictions from previous branch histories 
stored in a pattern history table (PHT) of two-bit saturating 
counters. The table is indexed by a global history shift 
register that stores the outcomes of previous branches. This 
scheme led to a series of subsequent works that focused on 
eliminating aliases [3]-[5]. However, all such improvements 
were within the framework of the existing prediction 
mechanism.  

On the other hand, machine learning techniques offer 
 

Manuscript received  February 25th, 2013.  
Zihao Zhou is a graduate student in the Department of Computer Science 

at the University of Texas at Austin, TX 78712, USA (e-mail: 
zzhou@cs.utexas.edu).  

Mayank Kejriwal is a graduate student in the Department of Computer 
Science at the University of Texas at Austin, TX 78712, USA (e-mail: 
mayankkejriwal@utexas.edu). 

Risto Miikkulainen is Professor in the Department of  Computer Science 
at the University of Texas at Austin, TX 78712, USA (e-mail: 
risto@cs.utexas.edu). 

possibility of further improvement in the prediction 
mechanism itself. Jimenez and Lin [6] proposed to use fast 
perceptrons [7], instead of PHT. Compared to other artificial 
neural networks that are able to fit high-dimensional non-
linear data, perceptrons are easier to understand and 
implement, faster to train, and computationally economical. 
In particular, they work well with linearly separable 
branches, which cover a significant number of branches of 
practical interests. Furthermore, perceptron-based predictors 
can take advantage of longer histories than traditional 
saturating counters. Thus, improvements in perceptron based 
predictors have become an active area of research. For 
example, more complicated mechanisms like expanded 
branch histories, path histories, separate storage of weights, 
and different training methods were introduced [8]-[12]. 

In this paper, several different approaches proposed in the 
literature are combined to improve the prediction rates. In 
particular, the effect of using different saturating numbers to 
change threshold [10] and different ways to make use of 
history of branch addresses to form path history [11] are 
considered, along with the usage of expanded history [12], 
and the scaling of branch histories by coefficients [12]. 
Although the previous works proposed the models and 
methods of perceptron-based branch predictor in sufficient 
detail, they did not address the issue of how different values 
of the parameters or different choices of mechanism may 
influence the prediction rates. Furthermore, to date this issue 
has not been investigated empirically. This paper aims at 
bridging this gap by using a wide range of both integer and 
floating point benchmarks. The above techniques are 
implemented into a Scaled Neural Predictor (SNP) [12], and 
thoroughly evaluated and tested on a well-known open-
source simulator, SimpleScalar 3.0 [13]. Conclusions are 
then drawn on recommended choices of each mechanism for 
both floating point and integer tasks, in order to optimize the 
performance of SNP. The paper shows that adopting the 
recommendations can lead to significant improvements in 
branch prediction rates. 

SNP offers a crucial advantage over other digital neural 
predictors in that many of the crucial components of the 
SNP can be implemented using analog circuitry. Since 
branch prediction is primarily hardware oriented, practical 
branch predictors would have to be competitive in a 
hardware implementation. A reasonable implementation and 
the efficiency gains are discussed in detail in the original 
SNP paper [12]. 

The remainder of the paper is organized as follows. 
Section II briefly introduces the mechanism of perceptron-
based branch predictors and techniques for their 
improvement. Section III presents the design and 
implementation of predictors based on SimpleScalar [13]; 
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Section IV presents comparison between difference choices 
of parameters as well as an analysis of the results on integer 
and floating point benchmarks. 

II. BACKGROUND ON NEURAL BRANCH 
PREDICTORS 

A perceptron is a vector of h + 1 small integer weights, 
where h is the history length of the predictor. A branch 
history is a list of 1 (taken) and -1 (not taken) of length h, in 
reference to the most recent h branches. The first h weights, 
called the correlation weights, are in one-to-one 
correspondence to the h branches, understood as the 
influence of the ith branch to the next prediction, and the last 
weight is the bias. A table of n rows is used to store the 
weights of n perceptrons, with each row containing the h + 1 
weights of one perceptron. Given the branch program 
counter (PC), the address is mapped to one row of the table 
by a hash function, for example, modulo n, such that the 
weights of the perceptron are dot-multiplied to the branch 
history. The resulting value plus the bias is the predicted 
value: if the value is no less than zero, the branch will be 
taken, and not taken otherwise. This process is illustrated by 
Fig. 1. 

At any time when a misprediction is made, an update 
procedure is triggered, changing the weights of the 
perceptron. The bias will be decremented if the branch was 
taken and incremented if it was not. Each correlation weight 
is either increased or decreased, depending on whether the 
corresponding value in the branch history is 1 or -1. As an 
example, if the result of the branch prediction in Fig. 1 
(taken) is incorrect, then the weight update once the true 
result is known is triggered. As shown in Fig. 2, the same 
branch will now be predicted as not taken, after this single 
update.   
 Recent works focus on improving the basic perceptron 
predictors for better accuracy. Jimenez [11] suggested using 
path and the history of branch addresses, and proposed a 
path-based predictor, where weights are accessed as a 
function of the PC and the path. The benefit is that the 
predictor can correlate not only with the pattern history, but 
also with the path history. Seznec [9] suggested that 
breaking the weights into a number of independently 
accessible tables rather than keeping them in a single table 
with h columns correlates the branch history with perceptron 
weights better. Renee, Jimenez and Burger [12] proposed 
using coefficients to scale weights, the idea of which was 
motivated by a practical observation that the more recent 
branching behavior should have more influence on the 
prediction in near future. They also suggested using 
expanded history, which contains a history of 128 bits 
repeatedly selected from a branch history of 40 bits. For 
training perceptrons, Seznec [10] proposed an adaptive 
threshold training algorithm in which weight update is 
triggered not only when the prediction is incorrect, but also 
when the perceptron output is less than a threshold. 
 

 
Fig. 1 Dot product of weight vector of a perceptron and branch history 
register. In this instance, the perceptron output is no less than 0, so the 
branch is predicted taken. 

 

 
Fig. 2 Adjusting weights by a misprediction. The components of the 
weight vector that had positive influence are incremented while those that 
had negative influence are decremented. As a result, the dot product now 
evaluates to a negative value, so the branch is correctly predicted as not 
taken now.  
 

Even though the prediction is correct, this procedure aims 
to achieve the balance of adjusting weights so that the 
computed dot product, when making a prediction, is equal to 
at least the threshold value. The threshold is adaptive in that it 
is increased after a certain number of incorrect predictions 
and decreased after a certain number of correct predictions. 
Good accuracy was achieved when training algorithm was 
thus invoked both after correct and incorrect predictions [10]. 
More details about the implementation of the adaptive 
threshold algorithm are provided in the next section. 

III. DESIGN AND IMPLEMENTATION 
In this paper, the original scaled perceptron-based branch 

predictor SNP [12] is implemented in SimpleScalar 3.0 [13]. 
The techniques discussed in Section II and incorporated in 
the original SNP were implemented, including the update 
procedure invoked on mispredictions, the adaptive threshold, 
coefficient scaling of weights to give greater preference to 
recent branches and usage of both the path and history of 
branch addresses. The relative effects of each of these 
techniques were then investigated to determine which of 
these yield the most significant improvements, and under 
what parameter settings.  

SimpleScalar 3.0 is a system software infrastructure that is 
widely deployed commercially and in academic research for 
program performance analysis, detailed micro-architectural 
modeling, and hardware-software co-verification [13]. 



 
 

 

Each perceptron in the implementation has 128 correlation 
weights, stored in 16 tables, each having eight columns 
containing eight weights ranging from -64 to 63. The first 
table has 512 rows, because the most recent weights are the 
most important, and all the others have 256 rows. Bias 
weights are stored in a vector of length 2048. All correlation 
weights in perceptron tables are initialized to be zeroes. 
Seznec [10] showed that good performance was achieved 
with bias weights initialized to be 2.14 × (expanded history 
+ 1) + 20.58. Here, expanded history refers to the number of 
the most recent branch addresses that are considered by the 
predictor. The bias weights in this paper’s implementation 
were initialized in accordance with the above expression, 
with expanded history set to 128, for all experiments that 
were conducted.   

To index each table, branch PC is hashed to 11 bits. Eight 
of the 11 bits are XORed with a fraction of the array A, 
resulting in an eight or nine bit index for one of the 256 rows 
(or 512 rows for the first table). The whole 11 bits are also 
used to index one of 2048 bias weights. The indexed 
correlation weight vector is dot multiplied with the expanded 
history, and subsequently added to the indexed bias weight; 
this final value then leads to the prediction.  

As described in Section II, an adaptive threshold training 
algorithm is used. The weights are updated not just on 
mispredictions, but also if the calculated dot product is 
below a threshold that changes dynamically as the program 
executes. The change in threshold is controlled by a 
saturating counter, which records the number of consecutive 
correct or consecutive incorrect predictions. This counter 
increments every time when a correct prediction is made and 
decrements otherwise. Unlike correlation weight update, the 
threshold is only changed once the magnitude of this counter 
reaches a pre-set maximum value. The algorithm to trigger 
modification of threshold is illustrated in Fig. 3. The pre-set 
maximum value shown in this figure is set to 32. 
Experiments are conducted in which different pre-set 
maximum values are used to find the best frequency to 
change the threshold and the results are discussed in Section 
IV-A.  

In the implementation discussed in this paper, expanded 
path history is used. The addresses of recent branches are 
hashed into 128 bits, forming the so-called path history, 
stored in an array A[128]. The algorithm uses an eight bit 
sliding window to obtain the vector A[0…7], A[8… 15],…, 
A[120-127] by moving the sliding window 16 times on recent 
branch histories. Only one bit of each branch address is 
selected. The moving distance of the sliding window can be 
one bit, two bits, four bits, or eight bits, thus allowing a choice 
of different numbers of branch addresses to generate the path 
array. The algorithm for generating eight bit long Ak for kth 
table is illustrated in Fig. 4. The coefficient before k controls 
the moving distance of the sliding window. If the  
moving distance is one bit each time, then only the most 
recent branch addresses are used.  

 
Fig. 3 Changing threshold by saturating number  
 

 
Fig. 4 Path selecting and hashing algorithm  
 

However, if the moving distance is eight bits, then no 
repeated history addresses are used and total of 128 different 
branch addresses are taken into account. The influence of 
different moving distances on prediction accuracy is 
discussed in Section IV-B. 

Another way to investigate the influence of path is to 
consider different hashing schemes. A hash function aims to 
select the most representative bits from the branch addresses 
to predict a future branch, but some bits may be more 
representative than others. For example, the third lowest bit 
is much more representative than the second and first lowest 
bit because the lowest two bits may never change if the 
instructions are stored by word. Different hashing schemes 
are evaluated: hashing the third and fourth lowest bits, 
hashing the third lowest bit, or hashing the second lowest bit 
from branch addresses into path, and their influences. 
Results are shown and discussed in section IV-C. 

Renee, Jimenez and Burger [12] proposed that the branch 
history be stored in a global branch history register H using 
40 bits, and then expanded into 128 bits by repeatedly 
selecting bits from this register. They reported that expanded 
history, hashing from the most recent 40 branches to 128 
bits, leads to better prediction rates. The claim was evaluated 
in this paper by comparing a 128 bit expanded history with a 
128 bit ordinary history. The results are discussed in section 
IV-D.  

The more recent histories have a larger correlation with 
current prediction. To emphasize the recent branch histories, 
the recent histories were scaled to a larger value while 
reducing the effect of old histories. To this end, each bit in 



 
 

 

the expanded history has a coefficient to stress stronger 
influence of more recent branches on future predictions. In 
particular, Renee, Jimenez and Burger [12] obtained the 
relationship between the coefficient and ith bit in expanded 
history from experiments, which is 1/(0.1111+0.037i). In 
their implementation, they placed an upper bound of one for 
the coefficients, i.e. the coefficient is either 1 / (0.1111 + 
0.037i), when the value is smaller than one, or one 
otherwise. In this paper, experiments are conducted to 
investigate the effect of scaling coefficients by assigning 
coefficients without bound, assigning coefficients with an 
upper bound of one, and not assigning any coefficients. The 
results are discussed in Section IV-E. 

It should be noted that in these experiments, the 
traditional training-prediction paradigm of machine learning 
is not used, in which the perceptron is first trained off-line 
by a set of training samples until weights converge, and then 
used for static prediction. Instead, an on-line training and 
prediction approach is used, wherein the weight update 
procedure is invoked every time the calculated dot product is 
below the adaptive threshold, as detailed in Section II. This 
is in contrast to a two-stage system, where the first stage 
only involves training, and the second, testing or evaluation. 
The branch predictor is therefore not static and can change 
continuously during the program flow. Also, during the 
training and prediction, an out-of-order simulator is 
employed, which means that the CPU is allowed to pipeline 
ahead of instructions. Hundred million instructions are used 
for each round of testing. 

IV. EXPERIMENTAL RESULTS  
In this section, comparisons of prediction rates under 

different configurations of the predictors are presented and 
the influence of those parameters on prediction accuracy is 
studied. All figures in this section have prediction accuracy 
on the y-axis, scaled to a range between zero and one. 
Prediction accuracy is defined as the ratio of the number of 
successful predictions to the total number of predictions 
made by the predictor. 

 

A. Saturating Counter for Changing Threshold 
Based on the algorithm in Fig. 3, saturating numbers for 

the saturation counter are chosen to be 0 (basic training 
method), 1, 16, 32, or 64. The third lowest bit of all 128 
branch addresses is used to form path array A. Scaling 
coefficients are also applied to branch histories. Both integer 
benchmarks and floating point benchmarks are tested, as 
shown in Fig. 5. 

The results show that using a saturating number larger 
than zero generally leads to better results for integer 
benchmarks and for most floating point benchmarks. For 
integer benchmarks, there is not a significant difference as 
long as the saturating number takes a value larger than zero.  

 
Fig. 5 Integer benchmark results (a) and floating point benchmark 
results (b) results for different saturating numbers. In this figure, and 
figures 6-9, the benchmarks are on the x-axis and prediction accuracy, 
scaled to [0,1] is on the y-axis. In this figure, the bars for each benchmark 
represent the accuracies for five different saturation values of the saturating 
counter. The results show that a saturation value of 32 would be best overall 
for maximizing branch prediction accuracy.  
 
For floating point benchmarks, saturating number of 32 
generally yields better results, according to the geomean 
benchmark, indicating that for floating point benchmarks, 
the threshold should be adapted at every 32 consecutive 
correct or consecutive incorrect predictions. For general 
prediction design therefore, setting the saturation value to 32 
is recommended since this value would maximize prediction 
accuracy on both integer and floating benchmarks, according 
to these benchmark results. 

B. Expanding Path History 
As proposed in the previous section, the path array A is 

employed to establish better correlation between branch 
address history patterns and future predictions. It is 
important to study the effects of different hashing schemes 
on the branch addresses to generate path array A. In this 
section, different moving distances are used, e.g. one bit, 
two bits, four bits or eight bits, of sliding window to 
generate path array A (this algorithm is shown in Fig. 4). A 
smaller moving distance corresponds to repeatedly selecting 
more recent branch addresses, while a larger moving 
distance also takes branch addresses further in the past into 
account. To complete the comparison, the prediction rate is 
determined if the path array A is not used. The results are 
illustrated in Fig. 6. 

This result empirically confirms the proposal of Jimenez 
[11] that taking address path patterns into account, along 
with branch history patterns, leads to better prediction rates. 
Using paths is always much better than not using paths.  



 
 

 

 
Fig. 6 Integer benchmark results (a) and floating point benchmark 
results (b) for generating array A at different moving distance. The bars 
represent different values for d, the moving distance. For integer 
benchmarks, maximum accuracy (on average) is achieved when d equals 
two bits, and for floating point benchmarks, maximum accuracy (on 
average) is achieved when d equals four bits. 
 

However, the results also show that it is not necessarily the 
case that the longer the actual branch history addresses that 
are taken into account, the better the prediction rates will be. 
For integer benchmarks, a moving distance of two bits yields 
the best results, and for floating point, a moving distance of 
four bits proves to be superior to the suggestion of Renee, 
Jimenez and Burger [12], who use a moving distance of 
eight bits along with 128 different branch addresses. This 
result may be explained as follows: the most recent branches 
are just enough for future predictions, and taking into 
account recent branches from further into the past is not only 
useless, but also may increase mispredictions in the future. 
In conclusion, the recent branches have more positive 
influence and should be emphasized more when making 
future predictions. 
 

C. Different Hashing Schemes 
As mentioned earlier, when generating the path array A, 

only one bit of each branch address is chosen, so it is crucial 
to choose the most representative bit from each branch 
address. Different low-order bits or their combinations from 
branch addresses are used to form a path. In particular, the 
third lowest bit, combination of the fourth and third lowest 
bits, and second lowest bit, are used, as shown in Fig. 7. 
 Testing results clearly indicate that some bits or bit 
combinations are more representative than others: hashing 
instructions are stored by word. Hashing the third lowest bit 
is roughly similar to combining the third and fourth lowest 
bits for integer benchmarks, but leads to a 2% improvement 
for floating point benchmarks. Therefore, it is not 

necessarily the case that the combination provides more 
information than the single bit and the architectural cost of 
such combinations could be non-trivial. For general design 
therefore, hashing the third lowest bit is recommended. 

 

D. Expanded Branch History vs. Ordinary History 
The fourth experiment focused on using an expanded 

branch history of 128 bits that repeatedly hash from a history 
of the most recent 40 branches (i. e. the history of taken or 
not taken of each branch), and compared it with an ordinary 
history containing the results of most recent 128 branches. 
The results are illustrated in Fig. 8.  

The results show that the expanded history achieves 
roughly the same accuracy as ordinary history for floating 
point benchmarks, and slightly worse accuracy for integer 
benchmarks. The expanded history, i.e. 40 bits hashing to 
128 bits, forms a good approximation to a real history of 128 
bits. In general design with sufficient budget, an ordinary 
history of 128 bits is recommended, but in the case of 
limited budget, expanded history can be a good 
approximation. 
 

  

 
Fig. 7 Integer benchmark results (a) and floating point benchmark 
results (b) for different hashing schemes. The results show that hashing 
the second lowest bit of each address is the worst option, while hashing the 
third lowest bit offers nearly the same advantages as the combination of the 
third and fourth lowest bits.  
 
 

 
 



 
 

 

 
Fig. 8 Integer benchmark results (a) and floating point benchmark 
results (b) for expanded history and ordinary history. The results show 
that expanded history outperforms ordinary history for nearly all cases. 
 

E. Scaling Coefficients 
Three ways to assign scaling coefficients are considered: 

(1) 1/(0.1111+0.037i), (2) 1/(0.1111+0.037i) with an upper 
bound of one, and (3) no scaling where all coefficients are 
assigned to one. The testing results are shown in Fig. 9. The 
results confirm the suggestion of Renee, Jimenez and Burger 
[12] that scaling places more emphasis on recent branches, 
and thus, generally leading to better prediction rates. Non-
scaling is far worse than two other scaling methods. 

However, placing an upper bound behaves slightly worse 
than no upper bound: this result is intuitive because an upper 
bound limits the expressiveness of “recent influence” of 
branches. Therefore, for general design, placing no upper 
bound on the coefficients is recommended. 

V. CONCLUSION 
The SNP had already been shown in prior work to achieve 

state-of-the-art performance compared to other competitive 
schemes. In this paper, its original design was implemented 
in SimpleScalar 3.0, a powerful system software 
infrastructure that is widely deployed for program 
performance analysis and microarchitectural detailing. In 
addition, several modifications to SNP were implemented 
based on proposals in prior work. Extensive tests were 
performed on a wide range of integer and floating point 
benchmarks both with and without these modifications. 
Based on these empirical data, recommendations were made 
on how the original SNP could be further improved so that 
branch prediction can be made more accurate. 
 
 

 
Fig. 9 Integer benchmark results (a) and floating point benchmark 
results (b) for different scaling coefficient schemes. The results show that 
scaling outperforms non-scaling considerably. Not using an upper bound for 
the scaling is better than using it, although such an upper bound is one of 
the extensions proposed to the original SNP. 
 
Benchmark results show that adopting these 
recommendations can lead to significant improvements in 
performance.  

A range of further experiments were then performed to 
verify the SNP’s design choices empirically on both integer 
and floating point benchmarks and to suggest further 
refinements for better accuracy. Although many of these 
design choices are justified, better prediction rates can be 
attained by modifying some of the originally proposed 
parameters, and some of the modifications depend on 
whether they are applied to integer or floating point 
benchmarks. Overall, extended SNP proved to be a powerful 
approach, and should result in a significant practical 
application of neural networks in the future.  

 

REFERENCES 
[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative 

Approach, 2nd edition. San Francisco: Morgan Kaufmann, 1996, pp. 
380-383. 

[2] T. Y. Yeh and Y. Patt, “Two-level adaptive branch prediction,” in 
Proceedings of the 24th ACM/IEEE International Symposium on 
Microarchitecture (MICRO’91), 1991. 

[3] S. McFarling, “Combining branch predictors,” Digital Western 
Research Laboratory, Tech. Rep. TN-36m, 1993. 

[4] E. Sprangle, R. S. Chappell, M. Alsup and Y. Patt, “The Agree 
predictor: A mechanism for reducing negative branch history 
interference,” in Proceedings of the 24th International Symposium on 
Computer Architecture (ISCA’97), 1997. 

[5] A. N. Eden and T. Mudge, “The YAGS branch prediction scheme,” in 
Proceedings of the 31st Annual ACM/IEEE International Symposium 
on Microarchitecture, 1998. 

[6] D. A. Jimenez and C. Lin, “Dynamic branch prediction with 
perceptrons,” in Proceedings of the 7th International Symposium on 
High Performance Computer Architecture (HPCA-7), 2001. 



 
 

 

[7] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the 
Theory of Brain Mechanisms. New York: Spartan, 1962. 

[8] A. Seznec, “Redundant history skewed perceptron predictors: Pushing 
limits on global history branch predictors,” IRISA, Tech. Rep. 1554, 
2003. 

[9] A. Seznec, “Analysis of the o-geometric history length branch 
predictor,” in Proceedings of the 32nd Annual International 
Symposium on Computer Architecture (ISCA’05), 2005. 

[10] A. Seznec, “A 256 kbits L-TAGE branch predictor,” in Journal of 
Instruction-Level Parallelism (JILP) Special Issue: The second 
Championship Branch Prediction Competition (CBP-2), vol. 9, 2007. 

[11] D.A. Jimenez, “Fast path-based neural branch prediction,” in 
Proceedings of the 36th Annual IEEE/ACM International Symposium 
on Microarchitecture (MICRO-36), 2003. 

[12] A. Renee, D.A. Jimenez, D. Burger, “Low-Power, High-Performance 
Analog Neural Branch Prediction,” in Proceedings of the 41st Annual 
IEEE/ACM International Symposium on Microarchitecture 
(MICRO’08), 2008. 

[13] T. M. Austin and D. Burger. The SimpleScalar Tool Set, Version 3.0, 
1998. 


