

Abstract— A perceptron-based scaled neural predictor
(SNP) was implemented to emphasize the most recent branch
histories via the following three approaches: (1) expanding the
size of tables that correspond to recent branch histories, (2)
scaling the branch histories to increase the weights for the most
recent histories but decrease those for the old histories, and (3)
expanding most recent branch histories to the whole history
path. Furthermore, hash mechanisms, and saturating value for
adjusting threshold were tuned to achieve the best prediction
accuracy in each case. The resulting extended SNP was tested
on well-known floating point and integer benchmarks. Using
the SimpleScalar 3.0 simulator, while different features have
different impact depending on whether the test is floating point
or integer, overall such a well-tuned predictor achieves an
improved prediction rate compared to prior approaches.

I. INTRODUCTION
YNAMIC branch prediction is a fundamental

component in modern computer architecture design to
achieve high performance. A branch in machine code is
essentially analogous to an if-statement in high level code.
When a branch is first encountered, it may not be possible to
decide whether or not it should be taken: the code is
executed in multiple pipelined stages and the needed
information may not be available yet. Instead of stalling,
however, a pipelined processor uses branch prediction to
predict the target of a branch, and pre-fetches and executes
instructions on the path of the predicted decision. The more
accurate such branch prediction is, the more likely such
speculation is to be useful. Accurate branch prediction is
therefore essential to facilitate instruction-level parallelism
and better performance [1].

Most research in the 1990’s focused on branch predictors
based on two-level adaptive scheme [2]. Two-level
predictors make predictions from previous branch histories
stored in a pattern history table (PHT) of two-bit saturating
counters. The table is indexed by a global history shift
register that stores the outcomes of previous branches. This
scheme led to a series of subsequent works that focused on
eliminating aliases [3]-[5]. However, all such improvements
were within the framework of the existing prediction
mechanism.

On the other hand, machine learning techniques offer

Manuscript received February 25th, 2013.
Zihao Zhou is a graduate student in the Department of Computer Science

at the University of Texas at Austin, TX 78712, USA (e-mail:
zzhou@cs.utexas.edu).

Mayank Kejriwal is a graduate student in the Department of Computer
Science at the University of Texas at Austin, TX 78712, USA (e-mail:
mayankkejriwal@utexas.edu).

Risto Miikkulainen is Professor in the Department of Computer Science
at the University of Texas at Austin, TX 78712, USA (e-mail:
risto@cs.utexas.edu).

possibility of further improvement in the prediction
mechanism itself. Jimenez and Lin [6] proposed to use fast
perceptrons [7], instead of PHT. Compared to other artificial
neural networks that are able to fit high-dimensional non-
linear data, perceptrons are easier to understand and
implement, faster to train, and computationally economical.
In particular, they work well with linearly separable
branches, which cover a significant number of branches of
practical interests. Furthermore, perceptron-based predictors
can take advantage of longer histories than traditional
saturating counters. Thus, improvements in perceptron based
predictors have become an active area of research. For
example, more complicated mechanisms like expanded
branch histories, path histories, separate storage of weights,
and different training methods were introduced [8]-[12].

In this paper, several different approaches proposed in the
literature are combined to improve the prediction rates. In
particular, the effect of using different saturating numbers to
change threshold [10] and different ways to make use of
history of branch addresses to form path history [11] are
considered, along with the usage of expanded history [12],
and the scaling of branch histories by coefficients [12].
Although the previous works proposed the models and
methods of perceptron-based branch predictor in sufficient
detail, they did not address the issue of how different values
of the parameters or different choices of mechanism may
influence the prediction rates. Furthermore, to date this issue
has not been investigated empirically. This paper aims at
bridging this gap by using a wide range of both integer and
floating point benchmarks. The above techniques are
implemented into a Scaled Neural Predictor (SNP) [12], and
thoroughly evaluated and tested on a well-known open-
source simulator, SimpleScalar 3.0 [13]. Conclusions are
then drawn on recommended choices of each mechanism for
both floating point and integer tasks, in order to optimize the
performance of SNP. The paper shows that adopting the
recommendations can lead to significant improvements in
branch prediction rates.

SNP offers a crucial advantage over other digital neural
predictors in that many of the crucial components of the
SNP can be implemented using analog circuitry. Since
branch prediction is primarily hardware oriented, practical
branch predictors would have to be competitive in a
hardware implementation. A reasonable implementation and
the efficiency gains are discussed in detail in the original
SNP paper [12].

The remainder of the paper is organized as follows.
Section II briefly introduces the mechanism of perceptron-
based branch predictors and techniques for their
improvement. Section III presents the design and
implementation of predictors based on SimpleScalar [13];

Extended Scaled Neural Predictor for Improved Branch Prediction
Zihao Zhou, Mayank Kejriwal, and Risto Miikkulainen

D

In Proceedings of the International Joint Conference on Neural Networks 2013.

IEEE.

Section IV presents comparison between difference choices
of parameters as well as an analysis of the results on integer
and floating point benchmarks.

II. BACKGROUND ON NEURAL BRANCH
PREDICTORS

A perceptron is a vector of h + 1 small integer weights,
where h is the history length of the predictor. A branch
history is a list of 1 (taken) and -1 (not taken) of length h, in
reference to the most recent h branches. The first h weights,
called the correlation weights, are in one-to-one
correspondence to the h branches, understood as the
influence of the ith branch to the next prediction, and the last
weight is the bias. A table of n rows is used to store the
weights of n perceptrons, with each row containing the h + 1
weights of one perceptron. Given the branch program
counter (PC), the address is mapped to one row of the table
by a hash function, for example, modulo n, such that the
weights of the perceptron are dot-multiplied to the branch
history. The resulting value plus the bias is the predicted
value: if the value is no less than zero, the branch will be
taken, and not taken otherwise. This process is illustrated by
Fig. 1.

At any time when a misprediction is made, an update
procedure is triggered, changing the weights of the
perceptron. The bias will be decremented if the branch was
taken and incremented if it was not. Each correlation weight
is either increased or decreased, depending on whether the
corresponding value in the branch history is 1 or -1. As an
example, if the result of the branch prediction in Fig. 1
(taken) is incorrect, then the weight update once the true
result is known is triggered. As shown in Fig. 2, the same
branch will now be predicted as not taken, after this single
update.
 Recent works focus on improving the basic perceptron
predictors for better accuracy. Jimenez [11] suggested using
path and the history of branch addresses, and proposed a
path-based predictor, where weights are accessed as a
function of the PC and the path. The benefit is that the
predictor can correlate not only with the pattern history, but
also with the path history. Seznec [9] suggested that
breaking the weights into a number of independently
accessible tables rather than keeping them in a single table
with h columns correlates the branch history with perceptron
weights better. Renee, Jimenez and Burger [12] proposed
using coefficients to scale weights, the idea of which was
motivated by a practical observation that the more recent
branching behavior should have more influence on the
prediction in near future. They also suggested using
expanded history, which contains a history of 128 bits
repeatedly selected from a branch history of 40 bits. For
training perceptrons, Seznec [10] proposed an adaptive
threshold training algorithm in which weight update is
triggered not only when the prediction is incorrect, but also
when the perceptron output is less than a threshold.

Fig. 1 Dot product of weight vector of a perceptron and branch history
register. In this instance, the perceptron output is no less than 0, so the
branch is predicted taken.

Fig. 2 Adjusting weights by a misprediction. The components of the
weight vector that had positive influence are incremented while those that
had negative influence are decremented. As a result, the dot product now
evaluates to a negative value, so the branch is correctly predicted as not
taken now.

Even though the prediction is correct, this procedure aims
to achieve the balance of adjusting weights so that the
computed dot product, when making a prediction, is equal to
at least the threshold value. The threshold is adaptive in that it
is increased after a certain number of incorrect predictions
and decreased after a certain number of correct predictions.
Good accuracy was achieved when training algorithm was
thus invoked both after correct and incorrect predictions [10].
More details about the implementation of the adaptive
threshold algorithm are provided in the next section.

III. DESIGN AND IMPLEMENTATION
In this paper, the original scaled perceptron-based branch

predictor SNP [12] is implemented in SimpleScalar 3.0 [13].
The techniques discussed in Section II and incorporated in
the original SNP were implemented, including the update
procedure invoked on mispredictions, the adaptive threshold,
coefficient scaling of weights to give greater preference to
recent branches and usage of both the path and history of
branch addresses. The relative effects of each of these
techniques were then investigated to determine which of
these yield the most significant improvements, and under
what parameter settings.

SimpleScalar 3.0 is a system software infrastructure that is
widely deployed commercially and in academic research for
program performance analysis, detailed micro-architectural
modeling, and hardware-software co-verification [13].

Each perceptron in the implementation has 128 correlation
weights, stored in 16 tables, each having eight columns
containing eight weights ranging from -64 to 63. The first
table has 512 rows, because the most recent weights are the
most important, and all the others have 256 rows. Bias
weights are stored in a vector of length 2048. All correlation
weights in perceptron tables are initialized to be zeroes.
Seznec [10] showed that good performance was achieved
with bias weights initialized to be 2.14 × (expanded history
+ 1) + 20.58. Here, expanded history refers to the number of
the most recent branch addresses that are considered by the
predictor. The bias weights in this paper’s implementation
were initialized in accordance with the above expression,
with expanded history set to 128, for all experiments that
were conducted.

To index each table, branch PC is hashed to 11 bits. Eight
of the 11 bits are XORed with a fraction of the array A,
resulting in an eight or nine bit index for one of the 256 rows
(or 512 rows for the first table). The whole 11 bits are also
used to index one of 2048 bias weights. The indexed
correlation weight vector is dot multiplied with the expanded
history, and subsequently added to the indexed bias weight;
this final value then leads to the prediction.

As described in Section II, an adaptive threshold training
algorithm is used. The weights are updated not just on
mispredictions, but also if the calculated dot product is
below a threshold that changes dynamically as the program
executes. The change in threshold is controlled by a
saturating counter, which records the number of consecutive
correct or consecutive incorrect predictions. This counter
increments every time when a correct prediction is made and
decrements otherwise. Unlike correlation weight update, the
threshold is only changed once the magnitude of this counter
reaches a pre-set maximum value. The algorithm to trigger
modification of threshold is illustrated in Fig. 3. The pre-set
maximum value shown in this figure is set to 32.
Experiments are conducted in which different pre-set
maximum values are used to find the best frequency to
change the threshold and the results are discussed in Section
IV-A.

In the implementation discussed in this paper, expanded
path history is used. The addresses of recent branches are
hashed into 128 bits, forming the so-called path history,
stored in an array A[128]. The algorithm uses an eight bit
sliding window to obtain the vector A[0…7], A[8… 15],…,
A[120-127] by moving the sliding window 16 times on recent
branch histories. Only one bit of each branch address is
selected. The moving distance of the sliding window can be
one bit, two bits, four bits, or eight bits, thus allowing a choice
of different numbers of branch addresses to generate the path
array. The algorithm for generating eight bit long Ak for kth
table is illustrated in Fig. 4. The coefficient before k controls
the moving distance of the sliding window. If the
moving distance is one bit each time, then only the most
recent branch addresses are used.

Fig. 3 Changing threshold by saturating number

Fig. 4 Path selecting and hashing algorithm

However, if the moving distance is eight bits, then no
repeated history addresses are used and total of 128 different
branch addresses are taken into account. The influence of
different moving distances on prediction accuracy is
discussed in Section IV-B.

Another way to investigate the influence of path is to
consider different hashing schemes. A hash function aims to
select the most representative bits from the branch addresses
to predict a future branch, but some bits may be more
representative than others. For example, the third lowest bit
is much more representative than the second and first lowest
bit because the lowest two bits may never change if the
instructions are stored by word. Different hashing schemes
are evaluated: hashing the third and fourth lowest bits,
hashing the third lowest bit, or hashing the second lowest bit
from branch addresses into path, and their influences.
Results are shown and discussed in section IV-C.

Renee, Jimenez and Burger [12] proposed that the branch
history be stored in a global branch history register H using
40 bits, and then expanded into 128 bits by repeatedly
selecting bits from this register. They reported that expanded
history, hashing from the most recent 40 branches to 128
bits, leads to better prediction rates. The claim was evaluated
in this paper by comparing a 128 bit expanded history with a
128 bit ordinary history. The results are discussed in section
IV-D.

The more recent histories have a larger correlation with
current prediction. To emphasize the recent branch histories,
the recent histories were scaled to a larger value while
reducing the effect of old histories. To this end, each bit in

the expanded history has a coefficient to stress stronger
influence of more recent branches on future predictions. In
particular, Renee, Jimenez and Burger [12] obtained the
relationship between the coefficient and ith bit in expanded
history from experiments, which is 1/(0.1111+0.037i). In
their implementation, they placed an upper bound of one for
the coefficients, i.e. the coefficient is either 1 / (0.1111 +
0.037i), when the value is smaller than one, or one
otherwise. In this paper, experiments are conducted to
investigate the effect of scaling coefficients by assigning
coefficients without bound, assigning coefficients with an
upper bound of one, and not assigning any coefficients. The
results are discussed in Section IV-E.

It should be noted that in these experiments, the
traditional training-prediction paradigm of machine learning
is not used, in which the perceptron is first trained off-line
by a set of training samples until weights converge, and then
used for static prediction. Instead, an on-line training and
prediction approach is used, wherein the weight update
procedure is invoked every time the calculated dot product is
below the adaptive threshold, as detailed in Section II. This
is in contrast to a two-stage system, where the first stage
only involves training, and the second, testing or evaluation.
The branch predictor is therefore not static and can change
continuously during the program flow. Also, during the
training and prediction, an out-of-order simulator is
employed, which means that the CPU is allowed to pipeline
ahead of instructions. Hundred million instructions are used
for each round of testing.

IV. EXPERIMENTAL RESULTS
In this section, comparisons of prediction rates under

different configurations of the predictors are presented and
the influence of those parameters on prediction accuracy is
studied. All figures in this section have prediction accuracy
on the y-axis, scaled to a range between zero and one.
Prediction accuracy is defined as the ratio of the number of
successful predictions to the total number of predictions
made by the predictor.

A. Saturating Counter for Changing Threshold
Based on the algorithm in Fig. 3, saturating numbers for

the saturation counter are chosen to be 0 (basic training
method), 1, 16, 32, or 64. The third lowest bit of all 128
branch addresses is used to form path array A. Scaling
coefficients are also applied to branch histories. Both integer
benchmarks and floating point benchmarks are tested, as
shown in Fig. 5.

The results show that using a saturating number larger
than zero generally leads to better results for integer
benchmarks and for most floating point benchmarks. For
integer benchmarks, there is not a significant difference as
long as the saturating number takes a value larger than zero.

Fig. 5 Integer benchmark results (a) and floating point benchmark
results (b) results for different saturating numbers. In this figure, and
figures 6-9, the benchmarks are on the x-axis and prediction accuracy,
scaled to [0,1] is on the y-axis. In this figure, the bars for each benchmark
represent the accuracies for five different saturation values of the saturating
counter. The results show that a saturation value of 32 would be best overall
for maximizing branch prediction accuracy.

For floating point benchmarks, saturating number of 32
generally yields better results, according to the geomean
benchmark, indicating that for floating point benchmarks,
the threshold should be adapted at every 32 consecutive
correct or consecutive incorrect predictions. For general
prediction design therefore, setting the saturation value to 32
is recommended since this value would maximize prediction
accuracy on both integer and floating benchmarks, according
to these benchmark results.

B. Expanding Path History
As proposed in the previous section, the path array A is

employed to establish better correlation between branch
address history patterns and future predictions. It is
important to study the effects of different hashing schemes
on the branch addresses to generate path array A. In this
section, different moving distances are used, e.g. one bit,
two bits, four bits or eight bits, of sliding window to
generate path array A (this algorithm is shown in Fig. 4). A
smaller moving distance corresponds to repeatedly selecting
more recent branch addresses, while a larger moving
distance also takes branch addresses further in the past into
account. To complete the comparison, the prediction rate is
determined if the path array A is not used. The results are
illustrated in Fig. 6.

This result empirically confirms the proposal of Jimenez
[11] that taking address path patterns into account, along
with branch history patterns, leads to better prediction rates.
Using paths is always much better than not using paths.

Fig. 6 Integer benchmark results (a) and floating point benchmark
results (b) for generating array A at different moving distance. The bars
represent different values for d, the moving distance. For integer
benchmarks, maximum accuracy (on average) is achieved when d equals
two bits, and for floating point benchmarks, maximum accuracy (on
average) is achieved when d equals four bits.

However, the results also show that it is not necessarily the
case that the longer the actual branch history addresses that
are taken into account, the better the prediction rates will be.
For integer benchmarks, a moving distance of two bits yields
the best results, and for floating point, a moving distance of
four bits proves to be superior to the suggestion of Renee,
Jimenez and Burger [12], who use a moving distance of
eight bits along with 128 different branch addresses. This
result may be explained as follows: the most recent branches
are just enough for future predictions, and taking into
account recent branches from further into the past is not only
useless, but also may increase mispredictions in the future.
In conclusion, the recent branches have more positive
influence and should be emphasized more when making
future predictions.

C. Different Hashing Schemes
As mentioned earlier, when generating the path array A,

only one bit of each branch address is chosen, so it is crucial
to choose the most representative bit from each branch
address. Different low-order bits or their combinations from
branch addresses are used to form a path. In particular, the
third lowest bit, combination of the fourth and third lowest
bits, and second lowest bit, are used, as shown in Fig. 7.
 Testing results clearly indicate that some bits or bit
combinations are more representative than others: hashing
instructions are stored by word. Hashing the third lowest bit
is roughly similar to combining the third and fourth lowest
bits for integer benchmarks, but leads to a 2% improvement
for floating point benchmarks. Therefore, it is not

necessarily the case that the combination provides more
information than the single bit and the architectural cost of
such combinations could be non-trivial. For general design
therefore, hashing the third lowest bit is recommended.

D. Expanded Branch History vs. Ordinary History
The fourth experiment focused on using an expanded

branch history of 128 bits that repeatedly hash from a history
of the most recent 40 branches (i. e. the history of taken or
not taken of each branch), and compared it with an ordinary
history containing the results of most recent 128 branches.
The results are illustrated in Fig. 8.

The results show that the expanded history achieves
roughly the same accuracy as ordinary history for floating
point benchmarks, and slightly worse accuracy for integer
benchmarks. The expanded history, i.e. 40 bits hashing to
128 bits, forms a good approximation to a real history of 128
bits. In general design with sufficient budget, an ordinary
history of 128 bits is recommended, but in the case of
limited budget, expanded history can be a good
approximation.

Fig. 7 Integer benchmark results (a) and floating point benchmark
results (b) for different hashing schemes. The results show that hashing
the second lowest bit of each address is the worst option, while hashing the
third lowest bit offers nearly the same advantages as the combination of the
third and fourth lowest bits.

Fig. 8 Integer benchmark results (a) and floating point benchmark
results (b) for expanded history and ordinary history. The results show
that expanded history outperforms ordinary history for nearly all cases.

E. Scaling Coefficients
Three ways to assign scaling coefficients are considered:

(1) 1/(0.1111+0.037i), (2) 1/(0.1111+0.037i) with an upper
bound of one, and (3) no scaling where all coefficients are
assigned to one. The testing results are shown in Fig. 9. The
results confirm the suggestion of Renee, Jimenez and Burger
[12] that scaling places more emphasis on recent branches,
and thus, generally leading to better prediction rates. Non-
scaling is far worse than two other scaling methods.

However, placing an upper bound behaves slightly worse
than no upper bound: this result is intuitive because an upper
bound limits the expressiveness of “recent influence” of
branches. Therefore, for general design, placing no upper
bound on the coefficients is recommended.

V. CONCLUSION
The SNP had already been shown in prior work to achieve

state-of-the-art performance compared to other competitive
schemes. In this paper, its original design was implemented
in SimpleScalar 3.0, a powerful system software
infrastructure that is widely deployed for program
performance analysis and microarchitectural detailing. In
addition, several modifications to SNP were implemented
based on proposals in prior work. Extensive tests were
performed on a wide range of integer and floating point
benchmarks both with and without these modifications.
Based on these empirical data, recommendations were made
on how the original SNP could be further improved so that
branch prediction can be made more accurate.

Fig. 9 Integer benchmark results (a) and floating point benchmark
results (b) for different scaling coefficient schemes. The results show that
scaling outperforms non-scaling considerably. Not using an upper bound for
the scaling is better than using it, although such an upper bound is one of
the extensions proposed to the original SNP.

Benchmark results show that adopting these
recommendations can lead to significant improvements in
performance.

A range of further experiments were then performed to
verify the SNP’s design choices empirically on both integer
and floating point benchmarks and to suggest further
refinements for better accuracy. Although many of these
design choices are justified, better prediction rates can be
attained by modifying some of the originally proposed
parameters, and some of the modifications depend on
whether they are applied to integer or floating point
benchmarks. Overall, extended SNP proved to be a powerful
approach, and should result in a significant practical
application of neural networks in the future.

REFERENCES
[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative

Approach, 2nd edition. San Francisco: Morgan Kaufmann, 1996, pp.
380-383.

[2] T. Y. Yeh and Y. Patt, “Two-level adaptive branch prediction,” in
Proceedings of the 24th ACM/IEEE International Symposium on
Microarchitecture (MICRO’91), 1991.

[3] S. McFarling, “Combining branch predictors,” Digital Western
Research Laboratory, Tech. Rep. TN-36m, 1993.

[4] E. Sprangle, R. S. Chappell, M. Alsup and Y. Patt, “The Agree
predictor: A mechanism for reducing negative branch history
interference,” in Proceedings of the 24th International Symposium on
Computer Architecture (ISCA’97), 1997.

[5] A. N. Eden and T. Mudge, “The YAGS branch prediction scheme,” in
Proceedings of the 31st Annual ACM/IEEE International Symposium
on Microarchitecture, 1998.

[6] D. A. Jimenez and C. Lin, “Dynamic branch prediction with
perceptrons,” in Proceedings of the 7th International Symposium on
High Performance Computer Architecture (HPCA-7), 2001.

[7] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. New York: Spartan, 1962.

[8] A. Seznec, “Redundant history skewed perceptron predictors: Pushing
limits on global history branch predictors,” IRISA, Tech. Rep. 1554,
2003.

[9] A. Seznec, “Analysis of the o-geometric history length branch
predictor,” in Proceedings of the 32nd Annual International
Symposium on Computer Architecture (ISCA’05), 2005.

[10] A. Seznec, “A 256 kbits L-TAGE branch predictor,” in Journal of
Instruction-Level Parallelism (JILP) Special Issue: The second
Championship Branch Prediction Competition (CBP-2), vol. 9, 2007.

[11] D.A. Jimenez, “Fast path-based neural branch prediction,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-36), 2003.

[12] A. Renee, D.A. Jimenez, D. Burger, “Low-Power, High-Performance
Analog Neural Branch Prediction,” in Proceedings of the 41st Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO’08), 2008.

[13] T. M. Austin and D. Burger. The SimpleScalar Tool Set, Version 3.0,
1998.

