
Bayesian Abductive Logic Programs

Sindhu Raghavan and Raymond Mooney
Department of Computer Science
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233, USA
{sindhu,mooney}@cs.utexas.edu

Abstract

In this paper, we introduce Bayesian Abductive Logic
Programs (BALPs), a new formalism that integrates
Bayesian Logic Programs (BLPs) and Abductive Logic
Programming (ALP) for abductive reasoning. Like
BLPs, BALPs also combine first-order logic and
Bayesian networks. However, unlike BLPs that use log-
ical deduction to construct Bayes nets, BALPs employ
logical abduction. As a result, BALPs are more suited
for solving problems like plan/activity recognition and
diagnosis that require abductive reasoning. First, we
present the necessary enhancements to BLPs in order
to support logical abduction. Next, we apply BALPs to
the task of plan recognition and demonstrate its efficacy
on two data sets. We also compare the performance of
BALPs with several existing approaches for abduction.

1 Introduction
Abduction is defined as the process of finding the best expla-
nation for a set of observations (Peirce 1958). It is widely
used in tasks such as activity recognition, plan recogni-
tion, and diagnosis, that require inferring cause from effect.
Most previous approaches to abductive reasoning have been
based on first-order logic and determine a small set of as-
sumptions sufficient to deduce the observations (Pople 1973;
Levesque 1989). Abductive Logic Programming (ALP)
(Kakas, Kowalski, and Toni 1993) is one of the popu-
lar frameworks for performing abductive reasoning in first-
order logic where the background theory is restricted to
Horn clauses. While these logic-based approaches handle
structured representations, they are unable to handle uncer-
tainty in the observations or background knowledge and are
incapable of estimating the likelihood of alternative explana-
tions. Another popular approach to abduction involves using
Bayesian networks to compute the posterior probability of
alternative explanations given the observations (Pearl 1988).
A major limitation of this approach is that it cannot handle
structured representations involving relations amongst mul-
tiple entities since Bayes nets are essentially propositional
in nature.

Recently, there has been a proliferation of new formalisms
for integrating first-order logic and probabilistic graphical

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

models to develop statistical relational models for knowl-
edge representation, inference, and learning (Getoor and
Taskar 2007). Of these formalisms, Markov Logic Networks
(MLNs) (Richardson and Domingos 2006), which combine
first-order logic and undirected graphical models (Markov
nets) have been used for abductive plan recognition by Kate
and Mooney (2009). Since MLNs employ deduction as the
logical inference mechanism, Kate and Mooney (2009) pro-
posed an approach to adapt MLNs for abductive reasoning.
Like MLNs, most SRL formalisms use deduction for logical
inference, and hence cannot be used effectively for reason-
ing requiring logical abduction.

In this paper, we propose Bayesian Abductive Logic Pro-
grams (BALPs), a new formalism that integrates Bayesian
Logic Programs (BLPs) (Kersting and De Raedt 2001;
2007) and Abductive Logic Programming. Like most SRL
formalisms, BLPs also use deduction for logical inference,
and hence cannot be used effectively for abductive reason-
ing. As a result, we enhance BLPs to support abductive rea-
soning by employing logical abduction instead of deduction.
Like BLPs, BALPs combine first-order logic and directed
graphical models (Bayesian networks). Like all SRL for-
malisms, BALPs also integrate the strengths of both first-
order logic and probabilistic graphical models, thus over-
coming the limitations of the approaches mentioned above.

First, we briefly review abduction and BLPs. Next, we
describe our enhancements to BLPs in order to support ab-
ductive reasoning. We then apply BALPs to the task of plan
recognition and demonstrate its efficacy on two data sets.
Finally, we present experimental comparison of BALPs with
several existing approaches for abduction and discuss the re-
sults.

2 Background
This section briefly reviews relevant prior research on ab-
duction and BLPs.

2.1 Abduction
Plan recognition, diagnosis, language interpretation and
many other tasks can be viewed as types of abductive rea-
soning (Charniak and McDermott 1985). In a logical frame-
work, abduction, is usually defined as follows (Pople 1973):
• Given: Background knowledge B and observations O,

both represented as sets of formulae in first-order logic,

In Proceedings of the AAAI-10 Workshop on Statistical Relational AI (Star-AI

10), pp. 82--87, Atlanta, GA, July 2010.

where O is typically restricted to a conjunction of ground
literals.

• Find: A hypothesisH , also a set of logical formulae, such
that B ∪H 6|= ⊥ and B ∪H |= O.

Here |= means logical entailment and ⊥ means false, i.e.
find a set of assumptions that is consistent with the back-
ground theory and explains the observations. There are gen-
erally many hypotheses H that explain a particular set of
observations O. The best hypothesis is typically selected
based on the size (simplicity) of H , following Occam’s Ra-
zor. Often the background knowledge B is restricted to a
set of Horn clauses and the hypothesis H is restricted to a
set of ground atoms, resulting in abductive logic program-
ming (Kakas, Kowalski, and Toni 1993). Several researchers
have applied logical abduction to tasks like plan recognition
and diagnosis, such as Ng and Mooney (1992). The primary
problem with the logical approach is that it does not handle
uncertainty.

Another popular approach to abduction employs Bayesian
networks (Pearl 1988), in which the background knowledge
and its uncertainty is encoded in a parameterized directed
graph. Then, given a set of observations, probabilistic infer-
ence is used to compute the posterior probability of alterna-
tive explanations. However, a major limitation of Bayesian
networks is that they are essentially propositional and cannot
handle structured representations.

Recently, Kate and Mooney (2009) proposed an approach
to adapt MLNs for abduction. Their approach requires
adding reverse implications for every rule in the knowledge
base to support logical abduction. Further, to support “ex-
plaining away”, they add mutual exclusivity constraints on
the transformed rules. Explaining away refers to the phe-
nomenon that evidence for one explanation decreases con-
fidence in alternative competing explanations (Pearl 1988).
However, the addition of these rules increases the size and
complexity of MLNs, resulting in a computationally inten-
sive problem. Furthermore, adding reverse implications to
the MLN frequently results in rules with multiple existential
variables, causing a combinatorial explosion in the construc-
tion of the ground Markov network.

2.2 Bayesian Logic Programs
Bayesian logic programs (BLPs) (Kersting and De Raedt
2001; 2007) can be considered as templates for constructing
directed graphical models (Bayes nets). Given a knowledge
base as a special kind of logic program, standard logical in-
ference (SLD resolution) is used to automatically construct
a Bayes net for a given problem. More specifically, given
a set of facts and a query, all possible Horn-clause proofs
of the query are constructed and used to build a Bayes net
for answering a specific query. Standard probabilistic infer-
ence techniques are then used to compute the most probable
answer.

More formally, a BLP consists of a set of Bayesian
clauses, definite clauses of the form A|A1, A2, A3,An,
where n ≥ 0 and A, A1, A2, A3,......,An are Bayesian pred-
icates (defined below). A is called the head of the clause
(head(c)) and (A1, A2, A3,....,An) is the body (body(c)).

When n = 0, a Bayesian clause is a fact. Each Bayesian
clause c is assumed to be universally quantified and range
restricted, i.e variables{head} ⊆ variables{body}, and
has an associated conditional probability distribution cpd(c)
= P(head(c)|body(c)).

A Bayesian predicate is a predicate with a finite domain,
and each ground literal for a Bayesian predicate represents
a random variable. Associated with each Bayesian predi-
cate is a combining rule such as noisy-or or noisy-and that
maps a finite set of cpds into a single cpd (Pearl 1988).
Let A be a Bayesian predicate defined by two Bayesian
clauses, A|A1, A2, A3,An and A|B1, B2, B3,Bn,
where cpd1 and cpd2 are their cpd’s. Let θ be a substi-
tution that satisfies both clauses. Then, in the constructed
Bayes net, directed edges are added from the nodes for each
Aiθ and Biθ to the node for Aθ. The combining rule for
A is used to construct a single cpd for Aθ from cpd1 and
cpd2. The probability of a joint assignment of truth values
to the final set of ground propositions is then defined in the
standard way for a Bayes net: P(X) =

∏
i P (Xi|Pa(Xi)),

where X = X1, X2, ..., Xn represents the set of random
variables in the network and Pa(Xi) represents the parents
of Xi. The cpds for Bayesian clauses can be learned us-
ing the methods described by Kersting and De Raedt (2007).
Once a ground network is constructed, standard probabilis-
tic inference methods can be used to answer various types of
queries (Koller and Friedman 2009).

3 Bayesian Abductive Logic Programs
We now describe our approach to adapt the BLP framework
to abductive reasoning. In the BLP framework, a Bayesian
clause specifies a directed relationship between its body and
head rather than simply a deductive one. The clauses in the
knowledge base are then used to specify the structure of a
Bayesian network and normal probabilistic inference can be
used to compute explanations based on the evidence. How-
ever, BLPs use deductive inference to construct the ground
Bayes net. This is insufficient for logically abductive tasks
like plan recognition since the known facts are insufficient to
support the derivation of deductive proof trees for the neces-
sary queries. Therefore, logical abduction must be used to
construct the proof trees needed to determine the structure
of the ground network. By allowing literals to be assumed
in order to complete a proof, alternative explanations for a
query can be derived. Therefore, we derive a complete set of
abductive proof trees for a query using the method originally
proposed by Stickel (1988).

Let O1, O2,, On be the set of observations. We recur-
sively compute abductive proofs for each observation literal
by backchaining on each Oi until every literal in the proof
is proven or assumed. A query literal is said to be assumed
if it cannot unify with the head of any rule in the knowl-
edge base. A literal is said to be proven if it unifies with
the head of some rule in the knowledge base. Since multiple
plans/actions could generate the same observation, an obser-
vation literal could unify with the head of multiple rules in
the knowledge base. For such a literal, we compute alter-
nate abductive proofs. The resulting abductive proof trees

are then used to build the structure of the ground Bayes net
using the standard approach for BLPs.

We now illustrate the process of computing abductive
proofs with an example. Consider the following Bayesian
logic program:
inst(G,going) | inst(B,shopping) , go-step(B,G)
goer(G,P) | inst(S,shopping) , go-step(S,G) , shopper(S,P)
and the set of ground literals representing the observations:
inst(go1,going), goer(go1,john1)
For each observation literal, we recursively backchain to
generate abductive proof trees. For example, when we
backchain on the literal inst(go1,going), we obtain the sub-
goals inst(B,shopping) and go-step(B,go1). These sub-
goals become assumptions since no observations or heads
of clauses unify with them. Since B is an existentially
quantified variable, we replace it with a Skolem con-
stant a1 to obtain the ground assumptions inst(a1,shopping)
and go-step(a1,go1). Similarly, when backchaining on
goer(go1,john1), we generate the subgoals inst(S,shopping),
go-step(S,go1), shopper(S,john1). Matching the first two
to existing assumptions, we ground these assumptions to
inst(a1,shopping), go-step(a1,go1), shopper(a1,john1). Af-
ter generating all abductive proofs for all observation liter-
als, we construct a Bayesian network. Figure 1 gives the
Bayesian network constructed for this simple example.

Figure 1: Bayesian network constructed for the given exam-
ple.

We used noisy-and and noisy-or models to specify the
cpds in the ground Bayesian network. Noisy-and is used to
specify the cpd for combining evidence from the conjuncts
in the body of a clause. It is also possible to explicitly spec-
ify the entries in the cpd for each clause or learn these param-
eters from the data. However, as the number of literals in the
body of the clause increases, the number of entries in the cpd
increases exponentially. It might not always be feasible to
specify or even learn these entries from the data. Hence, we
used the noisy-and model as it compactly encodes the cpd
with fewer parameters. We used the noisy-or model to spec-
ify the cpd for combining the disjunctive contributions from
different ground clauses with the same head. Noisy-or is a
standard approach for encoding a cpd to support “explaining
away”. Currently, we set the weights manually using a sim-
ple heuristic; however, given sufficient training data, they
could be learned using the methods described by Kersting
and De Raedt (2007).

Given the constructed Bayes net and a set of observa-
tions, we compute the best explanation using standard meth-

ods for computing the Most Probable Explanation (MPE)
(Pearl 1988), which assigns values to the unobserved nodes
in the network that maximize the posterior probability of
the joint assignment given the observations. In some do-
mains, it may be useful to compute several alternative ex-
planations. To support this, we compute the k-MPE (Nils-
son 1998), which constructs the top k explanations for a
Bayesian network given the set of observations. We used
Elvira, a Java based environment for probabilistic graphical
models (Elvira-Consortium 2002) to perform probabilistic
reasoning on Bayesian networks.

4 Experimental Evaluation
This section presents experiments that compared BALPs
with existing approaches on two plan-recognition data sets.

4.1 Datasets
Dataset 1: We used a dataset for plan recognition previ-
ously used to evaluate abductive systems 1 (Ng and Mooney
1992; Charniak and Goldman 1991). In this task, charac-
ter’s higher-level plans must be inferred in order to explain
their observed actions described in a narrative text. A logi-
cal representation of the literal meaning of the narrative text
is given for each example. An example of a narrative text
is: “Bill went to the liquor-store. He pointed a gun at the
owner.” The dataset consists of 25 development and 25 test
examples. The development data was constructed by Gold-
man (1990) and the testing data was later added by Ng and
Mooney (1992). Their logical representations which form
the observations to be explained contain an average of 12.6
literals per example.

The background knowledge-base was initially con-
structed for the ACCEL system (Ng and Mooney 1991) to
work with the 25 development examples. It was constructed
such that the high-level plans (like shopping and robbing)
together with appropriate role-fillers (such as someone be-
ing the shopper of a shopping plan or a robber of a robbing
plan) imply the input literals representing the observed ac-
tions (like going to a store and pointing a gun). The plans
in the knowledge base include shopping, robbing, restaurant
dining, traveling in a vehicle (bus, taxi or plane), partying
and jogging. Some narratives involve more than a single
plan.

Dataset 2: We also used the Monroe dataset, an artifi-
cially generated plan-recognition dataset in the emergency
response domain by Blaylock and Allen (2005a). This do-
main includes top level plans like setting up a temporary
shelter, clearing a road wreck, and providing medical atten-
tion to victims. The plan-recognition task involves inferring
a single top level plan based on a set of observed actions.
While the original dataset had 5,000 examples, we chose to
use the first 1,000 examples in our evaluation. Each example
instantiates one of 10 top-level general plans and consists of
a set of ground literals describing its execution. There are an
average of 10.19 observation literals per example. We also

1This data can be downloaded from http://www.cs.
utexas.edu/˜ml/accel.html

used a separate development set of 300 examples for tuning
the parameters of the different systems.

While we were able to experimentally evaluate the perfor-
mance of BALPs on the Monroe data and compare some of
our results to those of Blaylock and Allen (2005b), we were
unable to compare to the performance of Kate and Mooney’s
(2009) MLN approach on this data due to implementation is-
sues. Their approach resulted in an MLN with several rules
containing multiple existentially quantified variables. These
rules resulted in an exponential number of possible ground-
ings, eventually leading to a memory overflow. In order
to compare the performance of BALPs with this previous
MLN approach, we slightly modified the original Monroe
domain. We then used the system developed by Blaylock
and Allen (2005a) to generate another plan corpus. The re-
sulting dataset had 1,000 examples, with an average of 10.56
observations per example. We again created a separate de-
velopment set of 300 examples for tuning the parameters.
We refer to this as the “modified-Monroe” dataset.

The plan generation system uses the SHOP2 planner (Nau
et al. 2003). Since SHOP2 is a hierarchical transition net-
work (HTN) planner, the emergency response domain is
represented in the HTN format. We constructed a logi-
cal knowledge base representing the domain knowledge en-
coded in the HTN.

4.2 Methodology
For dataset 1, we compared the performance of BALPs with
that of the MLN approach by Kate and Mooney (2009) and
ACCEL (Ng and Mooney 1992), a purely logic-based sys-
tem. ACCEL uses a metric to guide its search for selecting
the best explanation. For the plan recognition task, it can
use two different metrics. The first is simplicity, which se-
lects the explanation of the smallest size, i.e. the one with
the fewest number of assumptions. The second is coher-
ence, which selects the explanation that maximally connects
the input observations. This second metric is specifically
geared towards the task of text interpretation to measure ex-
planatory coherence (Ng and Mooney 1990), i.e., how well
the input sentences are tied together in the final interpreta-
tion. Currently, this bias has not been incorporated in either
the BALP or MLN approach. For dataset 2, we compared
the performance of BALPs with that of the system devel-
oped by Blaylock and Allen (2005b) on the Monroe dataset.
We also compared the performance of BALPs with that of
the MLN approach on the modified-Monroe dataset.

For abductive MLNs, we used the method described by
Kate and Mooney (2009) to automatically add clauses to
the background knowledge base for dataset2 (modified-
Monroe). We used Alchemy, an open-source MLN soft-
ware package to perform probabilistic inference and learn-
ing.2 Alchemy requires specifying types for the arguments
of each predicate, these are used along with provided con-
stants of each type to ground the MLN into a Markov net-
work. We also specialized some predicates in the original
knowledge bases to improve the efficiency of the resulting
MLN. This extra knowledge engineering was required to

2http://alchemy.cs.washington.edu

make MLN inference tractable. We would like to note that
even though the original domain for dataset 2 was modified
to make it work with MLNs, there were still several reverse
implications in the MLN with multiple existentially quanti-
fied variables, which made the inference intractable. As a
result, we had to remove these reverse implications from the
MLN. However, we note that these rules are not essential
for inferring the high level plans. For dataset 1, we used the
MLN developed by Kate and Mooney (2009) without any
modification. For BALPs, we were able to use the original
knowledge bases constructed for the two datasets, and used
the method described in section 3 to perform plan recogni-
tion.

For the MLN-based system, we were unable to effec-
tively learn clause weights. For dataset 1, we found that
the 25 development examples were too few to learn use-
ful weights. Hence, we used the manually-tuned weights
of Kate and Mooney (2009) for dataset 1. For dataset
2 (modified-Monroe), it was intractable to run Alchemy’s
existing weight-learners, as the domain was quite large.
Hence, we manually set the weights based on preliminary
experiments on the development set. We put soft weights (1,
2 or 3) on the reverse implication clauses and hard weights
for all the mutual exclusivity clauses. In addition, we put
small negative weights (−1) on unit clauses for all predicates
to encode the prior probability that most facts are false a pri-
ori. For BALPs, we hand-tuned the parameters for the cpds
on the development set for both datasets. For the noisy-and
parameters, we treated all literals in the body of the clause
as having the same effect on the head, and set equal weights
(around .9). For the noisy-or parameters, we treated differ-
ent plans resulting in the same observation as equally likely
and set equal weights (around .9). However, to disambiguate
between conflicting plans, we set different priors for high
level plans. For both BALPs and abductive MLNs, we tried
to manually tune the weights/parameters to maximize per-
formance on the development set.

In dataset 1, the plan-recognition task involved computing
the set of literals that best explained the observations. We
used MPE inference (Pearl 1988) to compute the best expla-
nation for both BALPs and MLNs. However, for dataset
2, the task involved inferring a single top level plan that
best explained the observations. Hence, we computed the
marginal probabilities for the plan predicates and picked the
single plan with the highest marginal probability as the best
explanation for the observations.

The observation set for dataset 2 includes all actions ex-
ecuted to achieve the top level plan. In order to evalu-
ate performance for partially observed plans, we also per-
formed plan recognition given only subsets of the final ac-
tions. Specifically, we report results after observing the first
25%, 50%, 75%, and 100% of the executed actions. The ob-
served literals for dataset 1 are already incomplete and were
used as is.

We now describe the evaluation metrics. For dataset 1, we
compared the plans inferred by different systems with the
ground truth to compute precision and recall scores. Pre-
cision measures the fraction of the predicted plans that are
present in the ground truth, while recall measures the frac-

ACCEL-Coh ACCEL-Sim BALP MLN

Precision 89.39 66.45 72.07 67.31
Recall 89.39 52.32 85.57 68.10

F-measure 89.39 58.54 78.24 67.70

Table 1: Results for the different abductive systems on
dataset 1.“ACCEL-Coh” refers to the ACCEL with coher-
ence metric and “ACCEL-Sim” refers to ACCEL with sim-
plicity metric.

tion of the plans in the ground truth that are predicted. We
also computed the F-measure, the harmonic mean of preci-
sion and recall. For dataset 2, since both the inferred solution
and the ground truth have a single plan, we simply compared
the inferred plan with the correct plan to compute an accu-
racy score. When computing precision, recall, and accuracy,
partial credit was given for predicting the correct plan predi-
cate with only a subset of its correct arguments. A point was
rewarded for inferring the correct plan predicate, then, given
the correct predicate, an additional point was rewarded for
each correct argument. For example, if the correct plan was
plan1(a1, a2) and the inferred plan was plan1(a1, a3), the
accuracy score was 66.67%.

For dataset 1, Kate and Mooney (2009) compared the in-
ferred literals with those in the ground truth to compute pre-
cision and recall scores. However, the explanations gener-
ated by the MLN include additional facts implied by the
minimal explanation. To fairly compare the different sys-
tems, we constructed high level plans from the predicted and
true ground literals and then computed plan-level precision
and recall scores. As a result, the performance scores re-
ported for dataset 1 are not comparable to those reported by
Kate and Mooney (2009).

The experimental methodology employed by Blaylock
and Allen (2005b) was somewhat different, so we could not
compare our results on the Monroe data directly with theirs.
However, we were able to compare to their results using
their convergence score for plan schema recognition. In their
paper, the plan schema refers to the top level plan predicate
without considering its arguments, and convergence score
refers to the fraction of examples for which the plan schema
was correctly predicted when given all of the observations.

4.3 Results and Discussion
Table 1 shows the results for dataset 1. We found that BALPs
performed better than both ACCEL-Simplicity and the MLN
based system; however, ACCEL-Coherence out-performed
BALPs and the other systems. Since the coherence metric
incorporates extra criteria specific to interpreting narrative
text, this bias would need to be included in the probabilis-
tic models to make them more competitive with ACCEL-
Coherence. Further, the coherence metric is specific to nar-
rative interpretation and not applicable to plan recognition
in general.

Table 2 shows the results for BALPs and the MLN based
system on dataset 2 (modified-Monroe). BALPs consis-
tently outperform the MLN-based system on this dataset.
The difference in performance is small when there are fewer

Acc-100 Acc-75 Acc-50 Acc-25

BALP 91.80 56.70 25.25 9.25
MLN 79.13 36.83 17.46 6.91

Table 2: Results for BALP and MLN based systems on
dataset 2 (modified-Monroe). Acc-i is the acurracy when
given the first i% of the observations.

BALPs Blaylock and Allen
Convergence 98.80 94.2

Table 3: Convergence score for BALPs and the system de-
veloped by Blaylock and Allen on dataset 2 (Monroe).

observations (25%); however, with 100% observations, the
performance of BALPs is significantly better than that of ab-
ductive MLNs.

Table 3 shows the convergence score for BALPs and the
system developed by Blaylock and Allen (2005b) for instan-
tiated goal/plan recognition. BALPs outperform Blaylock
and Allen’s system on this metric. Note that while the con-
vergence score for BALPs is averaged across 1,000 exam-
ples, the convergence score reported by Blaylock and Allen
is averaged across 500 examples.

Overall, BALPs outperformed most existing approaches
on these datasets. Unlike the MLN based approach by Kate
and Mooney (2009), it is possible to use an existing knowl-
edge base without any modification to perform abductive
reasoning in BALPs. Unlike the statistical approach by
Blaylock and Allen (2005b), BALPs are capable of jointly
predicting the plan and its arguments simultaneously. Even
though Blaylock and Allen perform instantiated plan recog-
nition, it is actually done in two separate steps. The first
step predicts the plan schema and the second step predicts
the arguments given the schema. We believe that BALP’s
ability to perform joint instantiated goal/plan prediction has
led to its superior performance on the Monroe dataset. In all,
we found BALPs to be a promising approach for abductive
reasoning.

5 Related Work
Charniak and Goldman (1989; 1991) also developed an ap-
proach to automatically construct Bayesian networks for
plan recognition. Their work is similar to BALPs, but spe-
cial purpose procedures were used to construct the necessary
ground networks rather than using a general-purpose prob-
abilistic predicate logic like MLNs and BLP/BALPs. As
discussed above, Blaylock and Allen (2003; 2004; 2005b)
train special-purpose n-gram models to perform separate
plan-schema and plan-argument prediction, compared to the
joint prediction supported by a probabilistic predicate logic.
Abductive reasoning has also been applied to the problem
of modeling inhibition in metabolic networks (Tamaddoni-
Nezhad et al. 2006; Chen, Muggleton, and Santos 2008).
Further, Chen et. al (2008) extend stochastic logic programs
(Muggleton 2003) to incorporate abductive reasoning. Like
BALPs, abductive SLPs are based on possible world seman-
tics. On the other hand, Sato (1995) has developed a pro-

gramming language based on distribution semantics called
PRISM, which is capable of performing abductive reason-
ing. It would be interesting to compare the performance of
these approaches with that of BALPs on the plan recognition
task.

6 Future Work and Conclusions
This paper has introduced BALPs, a new SRL formal-
ism that integrates Bayesian Logic Programs and Abductive
Logic Programming. Empirical evaluations on two different
plan recognition datasets demonstrated that BALPs outper-
form most existing approaches on these domains.

In the future, we plan to explore learning the BALP pa-
rameters (i.e. cpds) automatically from training data. Since
BALPs currently only handle discrete-valued domains, we
would also like to extend them to handle continuous vari-
ables. We are also exploring alternative approaches to per-
forming logical abductive reasoning using MLNs in addi-
tion to Kate and Mooney’s (2009) approach employed in
the results presented here. As shown by Richardson and
Domingos (2006), any BLP can be modeled by a semanti-
cally equivalent MLN. Given our success with BALPs for
plan recognition, we are developing an alternative MLN
formulation that more closely models the BALP approach.
Preliminary results on this alternative MLN formulation for
the modified Monroe data are competitive with our current
BALP results.

Acknowledgments
This research was funded by MURI ARO grant W911NF-
08-1-0242. Experiments were run on the Mastodon Cluster,
provided by NSF Grant EIA-0303609.

References
Blaylock, N., and Allen, J. 2003. Corpus-based, statistical goal
recognition. In IJCAI-03, 1303–1308.
Blaylock, N., and Allen, J. F. 2004. Statistical goal parameter
recognition. In ICAPS-04, 297–305.
Blaylock, N., and Allen, J. 2005a. Generating artificial corpora for
plan recognition. In UM-05. Springer.
Blaylock, N., and Allen, J. 2005b. Recognizing instantiated goals
using statistical methods. In in: G. Kaminka (Ed.), Workshop on
MOO-05, 79–86.
Charniak, E., and Goldman, R. P. 1989. A semantics for probabilis-
tic quantifier-free first-order languages, with particular application
to story understanding. In IJCAI-89.
Charniak, E., and Goldman, R. 1991. A probabilistic model of
plan recognition. In AAAI-91, 160–165.
Charniak, E., and McDermott, D. 1985. Introduction to Artificial
Intelligence. Reading, MA: ADDISON.
Chen, J.; Muggleton, S.; and Santos, J. 2008. Learning probabilis-
tic logic models from probabilistic examples. Machine Learning
73(1):55–85.
Elvira-Consortium. 2002. Elvira: An environment for probabilistic
graphical models. In Proceedings of the Workshop on Probabilistic
Graphical Models.
Getoor, L., and Taskar, B., eds. 2007. Introduction to Statistical
Relational Learning. Cambridge, MA: MITP.

Goldman, R. P. 1990. A Probabilistic Approach to Language
Understanding. Ph.D. Dissertation, Dept. of Computer Science,
Brown University, RI. Technical Report CS-90-34.
Kakas, A. C.; Kowalski, R. A.; and Toni, F. 1993. Abductive logic
programming. Journal of Logic and Computation 2(6):719–770.
Kate, R. J., and Mooney, R. J. 2009. Probabilistic abduction using
Markov logic networks. In IJCAI-09 Workshop on Plan, Activity,
and Intent Recognition.
Kersting, K., and De Raedt, L. 2001. Towards combining inductive
logic programming with Bayesian networks. In ILP-01, 118–131.
Kersting, K., and De Raedt, L. 2007. Bayesian logic programming:
Theory and tool. In Getoor, L., and Taskar, B., eds., An Introduc-
tion to Statistical Relational Learning. Cambridge, MA: MITP.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press.
Levesque, H. J. 1989. A knowledge-level account of abduction. In
IJCAI-89, 1061–1067.
Muggleton, S. 2003. Learning structure and parameters of stochas-
tic logic programs. In ILP-02, 198–206.
Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and
Yaman, F. 2003. Shop2: An HTN planning system. Journal of
Artificial Intelligence Research 20:379–404.
Ng, H. T., and Mooney, R. J. 1990. The role of coherence in
abductive explanation. In AAAI-90, 337–442.
Ng, H. T., and Mooney, R. J. 1991. An efficient first-order Horn-
clause abduction system based on the ATMS. In AAAI-91, 494–
499.
Ng, H. T., and Mooney, R. J. 1992. Abductive plan recognition
and diagnosis: A comprehensive empirical evaluation. In KR-92,
499–508.
Nilsson, D. 1998. An efficient algorithm for finding the M most
probable configurations in probabilistic expert systems. Statistics
and Computing 8:159–173.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. CA: MKP.
Peirce, C. S. 1958. Collected Papers of Charles Sanders Peirce.
Cambridge, Mass.: MITP.
Pople, H. E. 1973. On the mechanization of abductive logic. In
IJCAI-73, 147–152.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning 62:107–136.
Sato, T. 1995. A statistical learning method for logic programs
with distribution semantics. In ICLP-95, 715–729. MIT Press.
Stickel, M. E. 1988. A Prolog-like inference system for comput-
ing minimum-cost abductive explanations in natural-language in-
terpretation. Technical Report Tech. Note 451, SRI International,
CA.
Tamaddoni-Nezhad, A.; Chaleil, R.; Kakas, A.; and Muggleton, S.
2006. Application of abductive ILP to learning metabolic network
inhibition from temporal data. Machine Learning 64(1-3):209–
230.

