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Abstract

We introduce the Spherical Admixture Model (SAM), a Bayesian topic model
over arbitrary `2 normalized data. SAM models documents as points on a high-
dimensional spherical manifold, and is capable of representing negative word-
topic correlations and word presence/absence, unlike models with multinomial
document likelihood, such as LDA. In this paper, we evaluate SAM as a topic
browser, focusing on its ability to model “negative” topic features, and also as a
dimensionality reduction method, using topic proportions as features for difficult
classification tasks in natural language processing and computer vision.

1 Introduction

Unsupervised admixture, or topic models, such as Latent Dirichlet Allocation (LDA) [3] build com-
pact descriptions of document collections in terms of a small set of semantically coherent topics.
This paper introduces the Spherical Admixture Model (SAM), a topic models that represent doc-
uments using distributions on the unit hypersphere [8], modeling both word frequency and word
presence/absence. Specifically, we derive a variant of LDA, replacing the multinomial document
likelihood with the von Mises-Fisher (vMF) distribution, which has been found to often model
sparse data such as text more accurately [2, 1].

SAM offers several major benefits over LDA: documents can be represented as arbitrary unit vectors;
document-topic similarity is measured in terms of weighted cosine distance in the generative model;
and, by exploiting the entire support of the von Mises-Fisher distribution, topics can model negative
correlations between words within each topic.

2 The Spherical Admixture Model

2.1 Mixtures of von Mises-Fisher Distributions

The vMF distribution has its support on Sd−1, the (d− 1)-dimensional unit hypersphere embedded
in Rd. Its density is f(x; µ, κ) = cd(κ) exp

(
κµ>x

)
, where µ is the mean direction with ||µ|| = 1,

κ ≥ 0 is the concentration parameter, cd(κ) = κd/2−1

(2π)d/2Id/2−1(κ)
, and Ir(·) is the modified Bessel

function of the first kind and order r [8].

Motivated by the success of cosine distance in information retrieval, Banerjee et al. introduce the
mixture of von Mises-Fisher distributions (movMF) [2], which treats each normalized document tf
or tf-idf vector as drawn from a vMF distribution centered on a one topic mean. Although movMF
outperforms mixture models with multinomial likelihood in several clustering benchmarks [2], the
single-topic mixture-model assumption is too restrictive for document modeling.
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Figure 1: Word frequency correlations learned by SAM on the NIPS corpus. (+) shows the highest
weighted words and (-) shows lowest weighted within each topic. Unlike LDA, SAM is able to
represent words that are anti-correlated with the topic, rather than just unrelated.

2.2 SAM Definition

SAM is a Bayesian admixture model that operates on normalized vectors on S|V |−1. It is not therefore
possible to define the admixture in terms of topic indicators for individual words in each document,
as is done by LDA. SAM instead uses a weighted directional average to achieve the same goal. Rep-
resenting the T topics as columns of matrix φ and βd as a column vector, the weighted directional
average is written as: φ̄d

def= Avg(φ,βd) = φβd

‖φβd‖
. The generative model for SAM is given by

µt|κ0 ∼ vMF(m, κ0), t ∈ T, (topic means)
φt|µt, ξ ∼ vMF(µt, ξ), t ∈ T, (topics)
βd|α ∼ Dirichlet(α), d ∈ D, (topic proportions)
φ̄d|φ,βd = Avg(φ,βd), d ∈ D, (spherical average)
vd|φ̄d, κ ∼ vMF

(
φ̄d, κ

)
, d ∈ D, (documents)
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where µ is the corpus mean direction, ξ controls the concentration of topics around µ, the elements
of βd are the mixing proportions for document d, φt is the mean of topic t, and vd is the observed
vector for document d.

Each topic φt is vector on the unit hypersphere S|V |−1. Negative entries in a topic mean vector
reduce the frequency of corresponding words in the resulting mean. This expressive power does
not exist in admixture models with multinomial likelihood, and the empirical results in Section 3
demonstrate that this flexibility captures useful structure in real data.

2.3 Variational Approximation

We employ a variational mean-field method to perform approximate inference on SAM [7]. The
posterior is approximated as the factored distribution q(φ|µ̃, ξ)q(β|α̃)q(µ|m̃, κ0) and the factors
are assumed to have the parametric forms q(φt) = vMF(φt|µ̃, ξ), q(βd) = Dir(βd|α̃), and q(µt) =
vMF(µt|m̃t, κ0). Here, µ̃, m̃, and α̃ are the free variational parameters. Given this factorization, it
can be shown that a lower bound on the log likelihood is given by the expression

L(µ̃, α̃, m̃) = Eq[log p(v,φ,β,µ)]− Eq[log q(φ,β,µ; α̃, φ̃, m̃)] (1)
= Eq[log p(v|φ,β)] + Eq[log p(φ|µ, ξ)] + Eq[log p(β)] + Eq[log p(µ)]
−Eq[log q(φ|µ̃, ξ)]− Eq[log q(β|α̃)]− Eq[log q(µ|m̃, κ0)]

In the variational EM procedure, we use gradient ascent to update the variational topic means µ̃
and per-document topic proportions α̃d. For convenience, we define α̃d,0 =

∑k
j=1 α̃d,j and ρd =

Eq[Avg(φ, βd)]>vd, where d ∈ {1 . . . D} ranges over the documents. Taking gradients of eq. (1)
with respect to the variational parameters, we have

dL

dα̃d,i
= κ

(
d

dα̃d,i
ρd

)
+ Ψ′(α̃d,0)(α̃d,0 − α0)−Ψ′(α̃d,i)(α̃d,i − αi)

∇µ̃t
L = AV (ξ)AV (κ0)ξm̃t + κ

D∑
d=1

∇µ̃t
(ρd)

2



Model Accuracy (%)
different similar same

Bag-of-words 75.1 ± 3.2 68.7 ± 2.1 57.2 ± 2.6
LDA 75.1 ± 2.4 67.5 ± 1.3 52.2 ± 5.7
movMF 65.3 ± 0.8 62.0 ± 3.2 49.1 ± 0.4
MH SAM [S] 80.9 ± 1.1 69.5 ± 1.3 62.2 ± 1.6
VEM SAM [S+] 72.0 ± 1.3 69.6 ± 0.9 62.2 ± 0.5
VEM SAM [S] 80.2 ± 1.0 72.4 ± 0.9 65.5 ± 0.4
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Figure 2: (left) Classification performance and standard deviations on the three news-20 tasks. SAM
topic proportions make better features, particularly in more difficult domains. SAM is implemented
using both adaptive rejection sampling (MH) and variational EM (VEM). (left) Confusion matrices
for each feature set (bag-of-words, LDA, and VEM SAM) and task.

AD(c) denotes the mean resultant length of a vMF distribution of dimensionD with concentration c.
This quantity can be approximated stably in high dimension using the approach of Abramowitz and
Stegum, cf. [5]. Because ρd itself does not have a simple closed form, we use the approximations

E[Avg(φ, βd)] ≈ E[φβd] E
[√

β>φ>φβ

]−1

≈ E[φβd] E[β>φ>φβ]−1/2 (2)

Closed-form expressions for these expectations can be derived from well-known properties of the
Dirichlet and vMF distributions.

3 Experiments

SAM’s performance is evaluated empirically on Usenet post and natural scene image classification.
Four models are compared: (i) LDA1; (ii) movMF, the mixture of von-Mises Fisher clustering al-
gorithm with soft assignments [2]; (iii) SAM [S], SAM with topic means in S|V |−1; and (iv) SAM
[S+], SAM with topics and spherical combinations restricted to the positive orthant of the unit hyper-
sphere, ablating the ability to model negative correlations between word and topics. In all models
we use only term-frequency information (counts for LDA and normalized counts for SAM), despite
SAM’s ability to handle e.g., tf-idf vectors.

Quantitative evaluation measures common in clustering, such as normalized mutual information [1],
are inappropriate in topic modeling because inferred topics do not necessarily correspond to pure
partitions of the document collection. Furthermore, SAM and LDA cannot be compared directly in
terms of perplexity, as they inhabit fundamentally different base measures. Instead, we focus our
evaluation on qualitative corpus exploration (highest weighted positive and negative features in the
NIPS corpus; figure 1) and classifier accuracy, comparing topic proportion features derived from
SAM and LDA to standard bag-of-words features [3].

3.1 CMU 20 Newsgroups

This section evaluates using the learned topic proportions β as features for classification in the CMU
news-20 data set. Each post is treated as a document and labeled with its group. Following Banerjee
and Basu [1], three subsets, with posts on different, similar, and the same subject, are used.

Figure 2 summarizes the results. SAM finds better features than the other models, and more mean-
ingful distinctions between finer-grained topics (20% reduction in relative error for different; 27.8%
reduction for same). The differences between SAM [S+] and SAM [S] highlight the utility of allow-
ing topics to encode negative correlations between terms and topics, and the differences between
SAM [S] and LDA suggest that generative models based on vMF distributions are a better match for
text than multinomial models.
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Model Accuracy (%) different similar outdoor indoor all

LDA 79.3 ± 1.7 68.5 ± 2.5 60.9 ± 2.9 43.6 ± 2.8 43.4 ± 1.9
SAM [S] 85 ± 3.5 74.4 ± 2.1 68.4 ± 1.4 50.2 ± 2.2 50.3 ± 1.8

Figure 3: Classification accuracy for 13-scene with |V | = 200.

3.2 13 Natural Scene Categories

We divide the image recognition task of [6] into separate 4-class problems: 13-scene-different, 13-
scene-similar, 13-scene-outdoor, and 13-scene-indoor, ordered by their classification difficulty.
We follow Fei-Fei and Perona’s preprocessing steps, representing each image with counts of its
visual words. Note that this task differs fundamentally from the textual tasks in terms of sparsity:
most visual words tend to occur in most scenes. Thus the comparative results obtained in this domain
can be considered an ablation of SAM’s ability to model the lack of features.

Using 200 visual words, we find that SAM outperforms LDA across all scene recognition tasks (Table
3.2); 10% of the data is used for training a Logistic Regression classifier. As more training data is
used, the performance of LDA and SAM converge.

4 Discussion

SAM opens up a new class of admixture models based on spherical distributions. Unlike previous
spherical mixtures, SAM is a fully Bayesian admixture model that allows multiple component vMFs
to explain different aspects of the data; unlike previous admixture models, SAM uses directional
distributions that are parameterized by cosine distance and is therefore capable of modeling negative
correlations between features as well as word absence/presence.

Using classification performance for evaluation, SAM was found to produce more relevant topic fea-
tures than the movMF spherical mixture model and LDA, particularly on data where fine-grained
topic distinctions are important. Two properties of SAM—its use of directional distributions, and
ability to model negative correlations—were found to contribute to its performance. It is an impor-
tant step in improving generative topic models.
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