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Abstract

Plan recognition is a form of abductive reasoning that in-
volves inferring plans that best explain sets of observed ac-
tions. Most existing approaches to plan recognition and other
abductive tasks employ either purely logical methods that do
not handle uncertainty, or purely probabilistic methods that
do not handle structured representations. To overcome these
limitations, this paper introduces an approach to abductive
reasoning using a first-order probabilistic logic, specifically
Markov Logic Networks (MLNs). It introduces several novel
techniques for making MLNs efficient and effective for ab-
duction. Experiments on three plan recognition datasets show
the benefit of our approach over existing methods.

Introduction
Abduction, inference to the best explanation, is a well-
studied problem with a wide variety of applications ranging
from plan and activity recognition to natural language un-
derstanding and diagnosis. Many existing solutions employ
a purely logical framework (Pople 1973; Kakas, Kowalski,
and Toni 1993) and hence, cannot judge the probability of al-
ternative explanations nor handle uncertainty in the requisite
knowledge or data. An alternative approach uses Bayesian
networks and computes the posterior probability of possible
explanations given the observations (Pearl 1988). Although
this approach naturally handles uncertainty, it is proposi-
tional in nature and unable to handle structured data.

The last decade has seen rapid growth in the area of Sta-
tistical Relational AI, which uses well-founded probabilis-
tic methods while maintaining the representational power of
first-order logic. One of the most widely used formalisms
is Markov Logic Networks (MLNs) (Domingos and Lowd
2009), which attaches real-valued weights to formulas in
first order logic in order to represent their certainty. MLNs
effectively use logic as a compact template for constructing
complex ground Markov networks. In this work, we adapt
MLNs to perform abduction, thereby incorporating the ad-
vantages of both logical and probabilistic approaches.

In MLNs, the probability of a possible world increases
with the total weight of the satisfied formulae. Since an
implication is satisfied whenever its consequent is true, an
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MLN is unable to abductively infer the antecedent of a rule
from its consequent. Kate and Mooney (2009) presented
the first attempt to enhance MLNs for abduction. How-
ever, their approach has serious inefficiencies that prevent
it from scaling beyond fairly simple problems. Building on
their framework, we propose a Hidden Cause (HC) model,
which simplifies the resulting network by introducing a hid-
den cause for each rule antecedent. However, the HC model
still leads to unnecessarily complex networks for many ab-
ductive problems. Therefore, we also propose a novel model
construction procedure based on abduction. The HC model
together with abductive model construction produces an ef-
fective MLN formulation that generally outperforms exist-
ing approaches on three plan-recognition datasets.

The remainder of the paper is organized as follows. First
we provide some background on abduction and Markov
logic. Next, we present our Hidden Cause model and abduc-
tive model construction procedure. Finally, we present an
experimental evaluation on three benchmark datasets, fol-
lowed by conclusions and future work.

Background
Abduction
In a logical framework, abduction is usually defined as fol-
lows (Pople 1973):

• Given: Background knowledgeB and observationsO,
both represented as sets of formulae in first-order logic,
whereO is typically restricted to a set of ground literals.

• Find: A hypothesisH, also a set of logical formulae, such
thatB ∪ H 6|= ⊥ andB ∪ H |= O.

Here |= means logical entailment and⊥ means false, i.e.
find a set of assumptions that is consistent with the back-
ground theory and explains the observations. There are gen-
erally many hypothesesH that explain a particular set of
observationsO. Following Occam’s Razor, the best hypoth-
esis is typically defined as the one that minimizes|H|. It is
also common to assume thatB is a set of Horn clauses and
thatH is a set of ground atoms. Given a set of observations
O1, O2, ....,On, the set of abductive proof trees is computed
by recursively backchaining on eachOi until every literal in
the proof is either proven or assumed. Logical abduction has
been applied to tasks such as plan recognition and diagnosis,
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e.g. Ng and Mooney(1992). The primary problem with the
logical approach is that it does not handle uncertainty.

Markov Logic Networks
Markov logic (Domingos and Lowd 2009) is a framework
for combining first-order logic and undirected probabilis-
tic graphical models (Markov networks). A traditional first-
order knowledge base can be seen as a set of hard constraints
on the set of possible worlds: if a world violates even one
formula, its probability is zero. In order to soften these con-
straints, Markov logic attaches a weight to each formula in
the knowledge base. A formula’s weight reflects how strong
a constraint it imposes on the set of possible worlds. For-
mally, an MLN is a set of pairs(Fi, wi), whereFi is a first-
order formula andwi is a real number. Ahard clausehas an
infinite weight and acts as a logical constraint; otherwise,it
is a soft clause. Given a set of constants, an MLN defines
a ground Markov network with a node in the network for
each ground atom and a feature for each ground clause. The
joint probability distribution over a set of boolean variables
X = (X1,X2...) corresponding to the nodes in the ground
Markov network (i.e. ground atoms) is defined as:

P (X = x) =
1

Z
exp(

∑

i

wini(x)) (1)

whereni(x) is the number of true groundings ofFi in x and
Z is a normalization term obtained by summingP (X = x)
over all values ofX.

An MLN can be viewed as a set of templates for con-
structing ground Markov networks. Different sets of con-
stants produce different Markov networks; however, there
are certain regularities in their structure and parametersde-
termined by the underlying first-order theory. MPE (most
probable explanation) inference finds the joint assignment
of values to unobserved nodes in the network that has maxi-
mum posterior probability given the values of a set of ob-
served nodes. Marginal inference finds the probability of
true assignment for each of unobserved nodes given the val-
ues of observed nodes. Standard inference techniques such
as belief propagation (MPE and marginal) or Gibbs sam-
pling (marginal) can be used. MLN weights can be learned
by maximizing the conditional log-likelihood of training
data supplied in the form of a database of true ground liter-
als. A number of efficient inference and learning algorithms
that exploit the structure of the network have also been pro-
posed. Domingos and Lowd (2009) provide details on these
and many other aspects of MLNs.

Markov Logic for Abduction
Traditional MLNs do not support logical abduction. Given
the ruleP ⇒ Q and the observation thatQ is true, we would
like to abduceP as a possible cause forQ. But once the
consequent (Q) is true, the clause is satisfied independent of
the value of the antecedent (P ) and hence, does not give any
information about the truth value of the antecedent.

In this section, we describe three ideas for extending
MLNs with abduction, each building on the previous ones.

First, we describe the Pairwise Constraint (PC) model pro-
posed by Kate and Mooney (2009). This is followed by the
Hidden Cause (HC) model which alleviates some of the inef-
ficiencies of the PC model. Finally, we present an abductive
model construction procedure that produces a simpler, more
effective ground Markov network.

There has been some recent work using MLNs for intent
recognition in the multi-agent setting of the game Capture
the Flag (Sadilek and Kautz 2010). The domain knowledge
is completely hand-crafted to predict the predicates of inter-
est. We take a different approach which only assumes the
existence of a knowledge-base capturing the causal struc-
ture of the domain. No explicit knowledge-engineering is
required to adapt planning knowledge for plan recognition.
This avoids costly human labor since, unlike the approach
taken by Sadilek and Kautz (2010), it allows the same
knowledge base to be used for both planningandplan recog-
nition. Directly comparing the two approaches is a direction
for future work.

Pairwise Constraint Model
Kate and Mooney (2009) presented the first attempt to ex-
tend MLNs with abduction, which we will call the Pair-
wise Constraint (PC) model. The key idea is to introduce
explicit reversals of the implications appearing in the orig-
inal knowledge base. Multiple possible explanations for
the same observation are supported by having a disjunc-
tion of the potential explanations in the reverse implica-
tion. “Explaining away” (Pearl 1988) (inferring one cause
eliminates the need for others) is achieved by introducing a
mutual-exclusivity constraint between every pair of possible
causes for an observation. Given the set of Horn clauses:
P1 ⇒ Q,P2 ⇒ Q, · · ·Pn ⇒ Q, a reverse implication:
Q ⇒ P1 ∨ P2 · · · ∨ Pn, and a set of mutual-exclusivity con-
straints:Q ⇒ ¬P1 ∨¬P2, · · ·Q ⇒ ¬Pn−1 ∨¬Pn for every
pair of explanations, are introduced. The weights on these
clauses control the strength of the abductive inference and
the typical number of alternate explanations, respectively.

For first-order Horn clauses, all variables not appearing in
the head of the clause become existentially quantified in the
reverse implication. Kate & Mooney (2009) give the details
of the conversion process. Here is a concrete example moti-
vated by one of our evaluation benchmarks, the emergency
response domain introduced by Blaylock & Allen (2005)
(by default variables are universally quantified):

hvy snow(loc) ∧ drive hzrd(loc) ⇒ blk rd(loc)
acdnt(loc) ∧ clr wrk(crew, loc) ⇒ blk rd(loc)

These rules give two explanations for a road being
blocked at a location: 1) there has been heavy snow result-
ing in hazardous driving conditions, and 2) there has been
an accident and the crew is clearing the wreck. Given the
observation that a road is blocked, we should be able to
abductively infer one of these causes as the explanation. The
final combined reverse implication and pairwise constraint
clauses are:

blk rd(loc) ⇒ (hvy snow(loc) ∧ drive hzrd(loc))∨
(∃crew acdnt(loc) ∧ clr wrk(crew, loc))

blk rd(loc) ⇒ ¬(hvy snow(loc) ∧ drive hzrd(loc))∨



¬(∃crew acdnt(loc) ∧ clr wrk(crew, loc))

The first rule introduces the two possible explanations and
the second rule constrains them to be mutually exclusive.

The PC model constructs an unnecessarily complex net-
work, in part because including multiple clause bodies in
the reverse implication makes it quite long. If there aren
possible causes for an observation and each of the corre-
sponding Horn clause hask literals in its body, then the
reverse implication hasO(nk) literals. This in turn results
in cliques of sizeO(nk) in the ground network. This sig-
nificantly increases computational complexity since proba-
bilistic inference isexponentialin the treewidth of the graph
which in turn is at least the size of the maximum clique
(Koller and Friedman 2009). The PC model also introduces
O(n2) pairwise constraints, which can result in a large num-
ber of ground clauses.

Hidden Cause Model
The Hidden Cause (HC) model fixes some of the ineffi-
ciencies of the PC model by introducing a hidden cause
node for each possible explanation. The joint constraints
can then be expressed in terms of these hidden causes,
thereby reducing the size of the reverse implication (and
hence, the corresponding clique size) toO(n). The need
for the pairwise constraints is eliminated by specifying a
low prior on all hidden causes. A low prior indicates that
in absence of any reason to be true, each of the hidden
causes is most likely to be false. Hence, in the presence of
an observation, inferring one cause obviates the need for the
others. We now describe the HC model more formally. We
first consider the propositional case for ease of explanation.
It is straightforwardly extended to first-order Horn clauses.
Consider, the following set of rules describing the possible
explanations for a propositionQ:.

Pi1 ∧ Pi2 ∧ · · · ∧ Piki
⇒ Q, ∀i, (1 ≤ i ≤ n)

For each rule we introduce a hidden causeCi and add
the following rules to the MLN:

• Pi1 ∧ Pi2 ∧ · · · ∧ Piki
⇔ Ci, ∀i, (1 ≤ i ≤ n)

• Ci ⇒ Q, ∀i, (1 ≤ i ≤ n)

• Q ⇒ C1 ∨ C2 · · ·Cn (reverse implication)

• true ⇒ Ci, ∀i, (1 ≤ i ≤ n) (negatively weighted)

The first set of rules are soft clauses with high positive
weights. This allows the antecedents to sometimes fail
to cause the consequent (and vice-versa). The next two
sets of rules are hard clauses (in effect, they implement a
deterministic-or function between the consequent and the
hidden causes). The last rule implements a low prior (by hav-
ing a negative MLN weight) on the hidden causes. These low
priors discourage inferring multiple hidden causes for the
same consequent (“explaining way”), and the strength of the
prior determines the degree to which multiple explanations
are allowed. Different sets of weights on the biconditionalin
the first set of rules implement different ways of combining
multiple explanations. For example, a noisy-or (Pearl 1988)
can be implemented by modeling the implication from an-
tecedents to the hidden cause as a soft constraint and the

reverse direction as a hard constraint. The weightwi for the
soft-constraint is set tolog[(1 − pfi

)/pfi
], wherepfi

is the
failure probability for causei. This formulation has some
similarity to Natarajanet al.’s (2010) implementation of
combining functions in Markov logic; however, their work
does not directly concern abduction or inferring causes from
observed effects. There has been prior work on automati-
cally detecting the hidden structure in a domain (e.g. (Davis
et al. 2007), (Kok and Domingos 2007)). In our case, we
can directly construct the requisite hidden predicates from
the existing clauses, thereby eliminating the need for such
explicit predicate invention. Whether such techniques could
automatically induce such hidden structure from data alone
is a potential direction for future work.

For first-order Horn clauses, variables present in the
antecedents but not in the consequent become existentially
quantified in the reverse implication, as in the PC model.
But unlike the PC model, the reverse implication expression
is much simpler as it only involves one predicate (the hidden
cause) for each rule implying the consequent. Revisiting
the blocked road example, we introduce two hidden causes
corresponding to the two rules:

hvy snow(loc) ∧ drive hzrd(loc) ⇔ rb C1(loc)
acdnt(loc) ∧ clr wrk(crew, loc) ⇔ rb C2(crew, loc)

Note that each hidden cause contains all variables present
in the antecedent of the rule. These hidden causes are
combined with the original consequent as follows:
rb C1(loc) ⇒ blk rd(loc)
rb C2(crew, loc) ⇒ blk rd(loc)
blk rd(loc) ⇒ rb C1(loc) ∨ ∃crew(rb C2(crew, loc))

In addition, there are unit clauses specifying low priors on
the hidden causes.

Figure 1 shows the ground network constructed by the
two models whenloc is bound toPlaza andcrew to
Tcrew. The PC model results in a fully connected graph
(maximum clique size is 5), whereas the HC model is much
sparser (maximum clique size is 3). Consequently, inference
in the HC model is significantly more efficient.

Algorithm 1 presents the pseudocode for constructing the
abductive MLN given a Horn-clause knowledge base. First
(lines 2 to 8), hidden causes are created for each possible
explanation of each consequent (line 5). A biconditional is
introduced between the hidden causes and the correspond-
ing antecedents (line 6). These are modeled as soft clauses
in the MLN. Each hidden cause is also linked to the cor-
responding consequent via a hard clause (line 7). The next
part (lines 9 to 24) combines the hidden causes for each of
the consequents into a single reverse implication. The rules
are partitioned according to the first-order predicate appear-
ing in the consequent (line 9). For each partition (line 10),
each possible instantiation of the consequent predicate ap-
pearing the underlying rules is considered (lines 11 to 13).
For instance, given the rule:h1(x, y) ⇒ q(y) and another:
h2(x, Const) ⇒ q(Const), we need to consider each of the
instantiationsq(x) andq(Const) separately. For each such
instantiationc (line 14), we consider the rules which could
result in the consequentc being true (line 15). Technically,
these are the rules whose consequents subsumec, i.e. there
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Figure 1: Ground networks for the two models for the road blocked example

exists a substitutionθi such thatc = C(ri)θi whereC(ri)
is the consequent of ruleri. These are the rules which could
possibly causec when bound by the substitutionθi. For each
such ruleri (line 17), substitutionθi is applied to the corre-
sponding hidden causeH(ri) (line 18). Then, the set of free
variables in the hidden cause (i.e. the variables not appear-
ing in c) is extracted (line 19). These variables are existen-
tially quantified in the reverse implication (next step). We
then introduce a reverse implication saying thatc implies at
least one of the consequents (amongst those that subsume
c) (line 21). This reverse implication is made a hard clause
and added to the MLN (line 22). Finally, a low prior is intro-
duced for each hidden cause (lines 25 to 27).

Abductive Model Construction
Abduction using Markov logic consists of the following 3
steps: 1) Generate the abductive MLN, 2) Construct the
ground Markov network (model construction), 3) Perform
learning/inference over the resulting ground network. The
standard MLN model construction process uses the set of
all possible ground atoms (the Herbrand base) and the set of
all possible ground clauses using these atoms. Using logi-
cal rules to construct a graphical model is generally referred
to asknowledge-based model construction(KBMC), origi-
nally proposed by Ngo and Haddawy (1997). In abduction,
where we are looking for explanations of a set of observa-
tions, the set of all possible ground atoms and clauses may
not be needed to explain the observations. Considering the
fully-grounded network leads to increased time and mem-
ory complexity of learning and inference. For instance, in
the road blocked example, if the observation of interest is
blk rd(Plaza), then we can ignore groundings where the
location is notPlaza.

We propose an alternative model-construction procedure
that uses logical abduction to determine the set ofrelevant
ground atoms. The procedure first constructs the set of ab-
ductive proof trees for the observations and then uses only
the ground atoms in these proofs instead of the full Herbrand
base. The ground Markov network is then constructed by
instantiating the formulae in the abductive MLN using this
reduced set of ground atoms. We refer to the set of ground
atoms (Markov network) thus constructed as the abductive
ground atoms (Markov network). First, given a set of Horn
rules and a set of observations, the rules for the abductive
MLN are constructed using the HC model. Next, the set of

most-specific abductive proof trees for the observations are
computed using the method of Stickel (1988). The atoms
in these proofs form the set of abductive ground atoms. For
each formula in the abductive MLN, the set of all ground for-
mulae whose atoms appear in the abductive ground atoms
are added to the ground Markov network. While handling
existentials, only those disjuncts which belong to the set of
abductive ground atoms are used. Learning and inference are
then performed over the resulting network.

In general, abductive model construction results in a
ground network that is substantially different (and usually
much simpler) than that constructed using the full Her-
brand base. It also differs from the network constructed
by starting KBMC from the query/observations (Domingos
and Lowd 2009) because of the use of the backward chain-
ing and unification during the abductive model construc-
tion. Consequently, the probabilistic inferences supported
by this model can be different from that of the traditional
MLN model. This also makes the abductive process differ-
ent from other pre-processing approaches such as Shavlik
and Natarajan (2009), or existing lifted inference techniques
such as Singla and Domingos (2008), both of which produce
a network that is probabilistically equivalent to the original.
As shown in our experiments, by focusing on the relevant
ground atoms, abductive model construction significantly
improves the performance of abductive MLNsboth in terms
of time and memory efficiency as well as predictive accu-
racy. Further, lifted inference could still be applied by con-
structing lifted network over the nodes/clauses present inthe
abductive network. We will refer to the Hidden Cause model
followed by abductive model construction as the HCAM
model.

Experiments

This section presents experiments comparing the three MLN
models and several existing plan-recognition systems. These
include Blaylock and Allen’s (2005) method that learnsn-
gram models to separately predict the plan schema (pred-
icate) and its arguments. This contrasts with the joint pre-
diction performed by MLNs. We also compare to AC-
CEL (Ng and Mooney 1992), a purely logic-based system,
and Bayesian Abductive Logic Programs (BALPs) (2010),
which combine Bayesian networks and logical abduction.



Algorithm 1 GenAbductiveMLN(KB )
inputs: KB , a Horn clause knowledge base
output: M, set of rules in the abductive MLN
1: M ← {}
2: for all r ∈ KB do
3: A(r) ← antecedent inr
4: C(r) ← consequent inr
5: H(r) ← hidden cause forr
6: M ← M ∪ {A(r) ⇔ H(r)}
7: M ← M ∪ {H(r) ⇒ C(r)}
8: end for
9: Part(KB ) ← partition ofKB into sets or rules with same

(first-order) predicate in the consequent
10: for all set of rulesR ∈ Part(KB ) do
11: LetR = {r1, r2, · · · rm}

12: C(R) ←

m
[

i=1

{C(ri)}

13: (C(R) is set of unique consequents appearing inR)
14: for all c ∈ C(R) do
15: Rc ← {ri ∈ R | ∃θi, c = C(ri)θi}
16: (Rc is set of rules whose consequents subsumec)
17: for all ri ∈ Rc do
18: Hθi

(ri) ← H(ri)θi

19: {vi1
, vi2

, · · · vik
} ← variables appearing in

Hθi
(ri) but not inc

20: end for

21: Ir(Rc) ← (c ⇒

m
_

i=1

∃vi1
, vi2

, · · · vik
Hθi

(ri))

22: M ← M ∪ {Ir(Rc)}
23: end for
24: end for
25: for all r ∈ KB do
26: M ← M ∪ {true ⇒ H(r) (negatively weighted)}
27: end for
28: return M

Datasets
Story Understanding Our first dataset was previously
used to evaluate abductive story understanding systems (Ng
and Mooney 1992; Charniak and Goldman 1991). In this
task, character’s higher-level plans must be inferred which
explain their observed actions described in a narrative text.
A logical representation of the literal meaning of the narra-
tive text is given for each example. An example of a narra-
tive text is: “Bill went to the liquor-store. He pointed a gun
at the owner.” The high-level plans in the knowledge base
include shopping, robbing, restaurant dining, traveling in a
vehicle, partying and jogging. Some narratives involve more
than a single plan. We used the knowledge-base initially
constructed for the ACCEL system (Ng and Mooney 1992).
The knowledge-base contains a total of 126 Horn rules. The
dataset contains 25 development and 25 test examples con-
taining an average of 12.6 literals each.

Monroe/Modified-Monroe We also used the Monroe
dataset, an artificially generated plan-recognition dataset in
the emergency response domain by Blaylock and Allen
(2005). This domain includes 10 top-level plans like setting
up a temporary shelter, clearing a road wreck, and providing
medical attention to victims. The task is to infer a single top

level plan based on a set of observed actions generated by a
hierarchical transition network(HTN) planner. We used the
logical clauses constructed by Raghavan and Mooney (2010)
encoding the knowledge in the HTN. The knowledge-base
contains a total of 153 Horn rules. We generated 1,000 plans
containing an average of 10.19 literals each.

Many rules in the Monroe domain contain multiple ex-
istentials in the reverse implications. This results in very
complex networks for both the PC and HC models, leading
to memory overflow and/or intractable inference. In order
to compare their approach with PC MLN’s, Raghavan and
Mooney (2010) created a slightly altered domain,Modified-
Monroe, designed to eliminate this problem. The resulting
dataset contains the same number of rules as the original
Monroe and 1,000 examples with an average of 10.56 ob-
servations.

Linux Linux is another plan recognition dataset created by
Blaylock and Allen (2005). Human users were asked to per-
form various tasks in the Linux operating system and their
commands were recorded. Given the sequence of individ-
ual commands, the task is to predict the correct top level
plan. The 19 top level plans include tasks such as moving
files based on their extension. Logical clauses were created
to encode the effects of the relevant Linux commands. The
knowledge-based contained a total of 50 Horn rules. There
are 457 examples with an average of 6.1 literals each.

Methodology
All MLN models were implemented using Alchemy (Kok et
al. 2010), an open source software package for learning and
inference in Markov logic. We used the logical-abduction
software developed by Raghavan and Mooney (2010) in our
abductive model construction. For the HC and HCAM mod-
els, noisy-or was used to combine multiple explanations.
Since the training data only provides supervision for top-
level plans but not for subgoals or hidden causes, learning
methods that support partially observed training data are
required. We used a version of the gradient-based voted-
perceptron algorithm (Singla and Domingos 2005) mod-
ified for partially observed data as discussed in Chapter
20 (Section 3.3.1) of Koller & Friedman (2009). Weights
were initialized using hand-tuning on development data.
Due to computational limitations, we were only able to learn
weights for the HCAM model. For Monroe, we performed
10-fold cross validation. Since training Alchemy on the full
training set was still intractable, we were able to train on at
most one partition (1/10 of the overall data). In each fold,
we trained on each one of the 9 training partitions sepa-
rately using a range of learning rates. Each model was val-
idated on the remaining training partitions, and the result
for the best training-partition/learning-rate combination was
picked. For Linux, we used 4-fold cross validation with a
similar methodology. Developing online learning methods
that allow scaling to larger training sets is an important di-
rection for future work. Huynh and Mooney (2011)) present
online weight-learning methods for MLNs, but they assume
fully observable data (no hidden variables). For Story Un-
derstanding, weights were learned on the development set.



Precision Recall F-measure
ACCEL-Sim 66.45 52.32 58.54
ACCEL-Coh 89.39 89.39 89.39
BALP 72.07 85.57 78.24
MLN-PC 67.31 68.10 67.70
MLN-HC 67.08 78.94 72.53
MLN-HCAM 69.13 75.32 72.10

Table 1: Results for Story Understanding

For the HC model, unit clause weights were hand-tuned on
development data and noisy-or parameters were set to 0.1.
The PC model’s weights were set manually as by Kate and
Mooney (2009).

To measure accuracy, we compared inferred plans to the
correct plans. Partial credit was given for predicting the cor-
rect plan predicate with only a subset of its correct argu-
ments. A point was rewarded for inferring the correct plan
predicate, then, given the correct predicate, an additional
point was rewarded for each correct argument. For exam-
ple, if the correct plan wasplan1(a1, a2) and the inferred
plan wasplan1(a1, a3), the score is66.67%.

Results and Discussion
Story Understanding We used exact MPE inference with
the cutting-plane method (Riedel 2008) to infer the set of
plans in this domain. Accuracy is measured usingpreci-
sion (the fraction of inferred plans that are correct),re-
call (the fraction of correct plans that are inferred) andF-
measure(the harmonic mean of precision and recall). We
compared all three MLN models and with ACCEL using two
explanation-selection metrics 1)Simplicity(Sim), which se-
lects the explanation with the fewest assumptions, and 2)
Coherence(Coh), which selects the explanation that max-
imally connects the input observations. We also compared
with BALPs.

Table 1 shows the results.1 The MLN-based models per-
form better than ACCEL-Sim. However, ACCEL-Coh gives
the best results. The coherence metric incorporates extra cri-
teria specific to story understanding. Incorporating this bias
into a probabilistic model is difficult since it concerns a
global graph-theoretic property of a complete explanation.
However, the coherence metric is specific to narrative inter-
pretation and not applicable to plan recognition in general.
MLN-HCAM and MLN-HC have similar accuracy and out-
perform both ACCEL-Sim and MLN-PC. Ground networks
for each example are relatively small, so abductive model
construction does not provide an advantage on this dataset.
BALP does somewhat better than MLN-HCAM.

Monroe and Linux These domains involve inferring a
single top level plan. Therefore, we computed the marginal
probability of each plan using MC-SAT (Poon and Domin-
gos 2006) and picked the most probable one. We were un-
able to get reasonable results for either the PC or HC models
on these datasets since the PC model exhausted memory and
the HC model resulted in intractable inference. HCAM was
the only MLN approach that scaled to these large datasets.

1Training time for the HCAM model was less than 10 minutes.

Monroe Linux
Blaylock 94.20 36.10
BALP 98.80 -
MLN-HCAM 97.30 38.94

Table 2: Schema Accuracy for Monroe and Linux

100% 75% 50% 25%
MLN-PC 79.13 36.83 17.46 06.91
MLN-HC 88.18 46.63 21.11 15.15

MLN-HCAM 94.80 66.05 34.15 15.88
BALP 91.80 56.70 25.25 09.25

Table 3: Modified-Monroe Results Varying Observability

We compare its performance with both Blaylock and Allen’s
system (Blaylock) and BALPs. Published results only allow
us to directly compare results forschema accuracy, i.e. the
percentage of plan predicates that are correctly predicted,
ignoring arguments.2 Results are shown in Table 2.3 MLN-
HCAM is more accurate than Blaylock on both datasets.
Published results for BALPs are only available for Monroe,
where is it marginally better than MLN-HCAM.

Modified-Monroe This domain is used to effectively
compare all three MLN methods on a large dataset that is
still tractable for the PC and HC models. Since weight learn-
ing was intractable for models other than HCAM, to provide
a fair comparison, we used weights that were hand-tuned
on disjoint data. Results for BALPs also used weights set
using a similar approach. MC-SAT was again used to com-
pute marginal probabilities. We also evaluate predictive ac-
curacy when only some fraction of the overall actions in
a plan are observed, since in many applications not all ac-
tions are available at prediction time. We present results for
several levels of observability, from100% (full observabil-
ity) to 25%, where fork% observability, only the firstk%
of the actions in the plan are available to the recognition
system. Table 3 shows the results on predictive accuracy.
They clearly demonstrate the continual improvement in per-
formance from the PC model, to the HC model, to the full
HCAM model. Also, MLN-HCAMs are more accurate than
BALPs at all levels of observability.

Inference Time Results Table 4 compares inference time
for the three MLN models on Story Understanding and
Modified-Monroe. Results are averaged over 25 examples
for Story Understanding and 1,000 examples for Modified-
Monroe. Similar to the accuracy results, there is a continual
improvement in efficiency as one moves from PC to HC to
HCAM.

Summary Overall, the results demonstrate that the hid-
den cause model combined with abductive model construc-
tion allow an MLN approach to effectively scale to com-
plex plan recognition problems, unlike the previously pro-

2Blaylock and Allen also report results on predicting arguments
but using a different methodology that prevents direct comparisons.

3Training MLN-HCAM on Monroe and Linux took on the order
of 3 days and 5 hrs, respectively.



Story Modified-Monroe
MLN-PC 2.93 252.13
MLN-HC 0.93 91.06
MLN-HCAM 0.25 2.27

Table 4: Average inference time in seconds

posed PC model. Also, MLN-HCAM outperforms a recent
plan recognition system (Blaylock) on two datasets specifi-
cally developed for its evaluation. Finally, it is competitive
with an alternative state-of-the-art approach, BALPs, which
is slightly more accurate on Story Understanding and Mon-
roe, but less accurate on Modified-Monroe.

Conclusions and Future Work
We have presented novel methods that enhance MLNs to
perform effective abductive reasoning, producing an ap-
proach that combines the advantages of probabilistic and
logical methods. The key ideas involve introducing a hid-
den predicate for each potential cause, followed by an ab-
ductive model construction procedure. Experiments on three
plan recognition datasets demonstrate the benefit of our ap-
proach over existing methods.

Directions for future work include experimenting on
a wider variety of domains, comparing to additional ap-
proaches, online learning of clause weights, and learning ab-
ductive rules from data.
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