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Abstract

Most RNN-based image captioning models receive supervi-
sion on the output words to mimic human captions. There-
fore, the hidden states can only receive noisy gradient sig-
nals via layers of back-propagation through time, leading
to less accurate generated captions. Consequently, we pro-
pose a novel framework, Hidden State Guidance (HSG), that
matches the hidden states in the caption decoder to those in
a teacher decoder trained on an easier task of autoencoding
the captions conditioned on the image. During training with
the REINFORCE algorithm, the conventional rewards are
sentence-based evaluation metrics equally distributed to each
generated word, no matter their relevance. HSG provides a
word-level reward that helps the model learn better hidden
representations. Experimental results demonstrate that HSG
clearly outperforms various state-of-the-art caption decoders
using either raw images, detected objects, or scene graph fea-
tures as inputs.

1 Introduction

In recent years, image captioning has been widely studied
in both the vision and NLP communities. Most recent re-
search (Xu et al. 2015; Donahue et al. 2015; Karpathy and
Fei-Fei 2015; Vinyals et al. 2015; Anderson et al. 2018;
Yao et al. 2018; Yang et al. 2018) trains an RNN-based de-
coder to learn the word probabilities conditioned on the pre-
vious hidden state and various visual features. These meth-
ods improve results by incorporating richer visual inputs
from object detection (Anderson et al. 2018) and relation-
ship detection (Yao et al. 2018; Yang et al. 2018).

By contrast, we focus on improving the hidden state rep-
resentation learned during training. Most current image cap-
tioners are trained using maximum log-likelihood or RE-
INFORCE with CIDEr (Vedantam, Lawrence Zitnick, and
Parikh 2015) or BLEU (Papineni et al. 2002) rewards, where
only the final word probabilities receive supervision. There-
fore, the hidden states can only access noisy training sig-
nals from layers of backpropagation through time. Espe-
cially when training using REINFORCE, rewards are de-
layed till the end and equally distributed to each word in
the caption, regardless of whether or not the words are de-
scriptive, making the training signals even noisier.
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A girl pitching a baseball with a mitt.

A girl wearing a hat and purple outfit.

A girl is waiting for a ball looking at a baseball.

A woman in blue baseball uniform swinging a glove.
A young girl grabs the suitcase ’s glove.

A window topped with pizzas with several toppings.

Lots of pizzas are on the window rack.

Baked trays with pizzas displayed in oven window.

Several pizzas displayed in different varieties in a restaurant.
A box covered in pizza and cheese with other pizzas.

Figure 1: Sample word-level rewards for generated captions.
A yellower background indicates the word receives more re-
ward when using REINFORCE.

We present a new framework, called Hidden State Guid-
ance (HSG), that treats the RNN caption decoder as a student
network (Romero et al. 2014) and directly guides its hidden-
state learning. However, this requires a teacher to provide
hidden state supervision. We use a caption autoencoder as
the teacher, giving it the same image as input. Its decoder
has the same architecture as the caption decoder, allowing
matching of the hidden states. Since the teacher has access to
all of the human captions and visual inputs, its hidden states
are expected to encode a richer representation that generates
better captions, and therefore, provides useful hidden state
supervision.

In order to align the initial states of the teacher and stu-
dent,! we insert a small state transformation network that
uses the visual features to estimate the initial state of the
teacher decoder. During testing, run-time only slightly in-
creases due to the light-weight state transformation network.

HSG plays a particularly helpful role when training using
REINFORCE since it also provides a word-level intermedi-
ate reward that highlights the important words. For exam-
ple, Figure 1 shows generated captions with the rewards in-
dicated by the words’ background intensity. These are gen-
erated using the model trained with maximum likelihood.
HSG recognizes descriptive words like “purple outfit” and
“glove,” and rewards them more than digressive words like

'The initial state of the teacher decoder is the output of the en-
coder and that of the original student decoder is often initialized to
ZEeros.



“waiting” and “swinging”.

Our general framework can be used in almost any RNN-
based image captioner. Experimental results show signifi-
cant improvements over three recent caption decoders, FC
(Rennie et al. 2017) using image features, Up-Down (Ander-
son et al. 2018) using object detection features, and SGAE
(Yang et al. 2018) using scene graph features.

2 Related Work
2.1 Image Captioning

Most recent image captioning models use RNNs (i.e. GRUs
(Cho et al. 2014), LSTMs (Hochreiter and Schmidhuber
1997)) as caption decoders (Donahue et al. 2015; Karpa-
thy and Fei-Fei 2015; Vinyals et al. 2015; Luo et al. 2018;
Liu et al. 2018). The output words’ probabilities at each step
are trained to maximize the human captions’ log-likelihood
or some end evaluation metric (e.g. CIDEr) directly using
REINFORCE.

However, less research provides hidden-state supervision.
Professor forcing (Lamb et al. 2016) trains the hidden states
of an RNN to be indistinguishable whether the network is
trained with its inputs clamped to a training sequence or
whether its inputs are self-generated. However, the profes-
sor hidden states do not necessarily carry richer information
to guide the student hidden states. Our image caption frame-
work uses richer hidden states from an easier task, which
generates the human captions given both the visual inputs
and all of its human captions, to advise the hidden states in
the student caption decoders.

2.2 Autoencoders

Autoencoders (Hinton and Salakhutdinov 2006) learn to
compress input data into dimension-reduced features using
an encoder and learn a decoder to reconstruct the original
input data from the the hidden state. For image captioning,
the most relevant research (Yang et al. 2018) uses an au-
toencoder to construct scene graphs using relations between
pairs of objects to represent the complex structure of both
image and sentence before generating the caption. In con-
trast, we utilize autoencoders to learn richer teacher hidden
states conditioned on both the image and human captions.
Finally, we train the student caption decoder to produce sim-
ilar hidden states without the human captions as input.

2.3 Teacher-Student Networks

The teacher-student method (Romero et al. 2014) transfers
knowledge from a shallower and wider teacher CNN to a
deeper and thinner student CNN by minimizing the diver-
gence between the two output probabilities. Kim and Rush
(2016) extend this method to train RNNs for machine trans-
lation. In our framework, instead of using the same training
data, we allow the teacher network (an autoencoder) access
to additional information (i.e. human captions), resulting in
aricher representation to advise the student caption decoder.

3 Approach

This section presents the details of HSG. We first present the
overall architecture in Sec. 3.1, then describe three student

caption decoders in Sec. 3.2 to illustrate that HSG can be ap-
plied to almost any RNN-based decoder. After that, we ex-
plain the teacher autoencoder in Sec. 3.3 and the state trans-
formation network to estimate the initial teacher hidden state
only from the visual inputs in Sec. 3.4.

3.1 Overview

The goal of HSG is to provide hidden state guidance to any
conventional RNN-based caption decoder, which we regard
as a student network, as shown in Figure 2. In order to col-
lect the guidance, we first train a teacher on an easier task
that uses images to help autoencode human captions, which
shares the same architecture as the student decoder. Then,
we utilize a state transformation network to estimate the
teacher decoder’s initial hidden states (t=0) using only the
visual input. These approximations are used to initialize the
student decoder’s hidden states so that it is capable of di-
rectly generating captions from images.

3.2 Student Caption Decoder

In this section, we briefly present three RNN-based student
caption decoders.

FC. This model (Vinyals et al. 2015) adopts a single layer
LSTM as the caption decoder. For the visual input features,
we first feed the full image to a deep CNN (i.e. ResNet-
101), and then average-pool the features from the final
convolutional layer, resulting in a 2048-d vector for each
image. The words are encoded using a trainable embedding
matrix. At each time step, the LSTM receives the previous
hidden states, generated words, and the visual features to
generate the current word. Please refer to (Vinyals et al.
2015) for details.

Up-Down. This model (Anderson et al. 2018) incorporates
object detection features into image captioning. The caption
decoder operates on features of detected objects extracted
using Faster RCNN (Ren et al. 2015) with a ResNet-101
(He et al. 2016) base network. It consists of a two-layer
LSTM, where the first LSTM learns to distinguish important
objects for generating the current word using an attention
mechanism, and the second LSTM encodes the sequential
information from the attended features to compute the
output word probabilities.

SGAE. This model (Yang et al. 2018) incorporates scene
graphs for both sentences and images into image caption-
ing. Specifically, they first encode a sentence scene graph to
reconstruct human captions and learn an additional memory
matrix. Then, they use visual scene graph features with the
learned memory to generate captions via a two-layer LSTM
with attention similar to Up-Down.

3.3 Teacher Autoencoder

Our teacher autoencoder is trained to generate captions us-
ing not only visual input features, but also the set of human
captions for the image. The teacher has two components:
(1) a caption encoder to learn the joint representation of
both the human captions and the visual inputs, and (2) a
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Figure 2: Our framework consists of two parts. First, we train a teacher autoencoder that compresses the captions using the
image as context. Second, the student decoder receives hidden state guidance from the teacher. Green captions present the

maximum-likelihood training process, where each word from the

human captions is fed to the network, and orange captions

presents the REINFORCE case, where the previous generated word is fed to the caption decoder. Blue dashed lines indicate the

hidden states loss.

decoder to generate captions from the output of the encoder
and the visual features.

Caption Encoder

Our caption encoder takes as input the image feature set V =
{v1, ..., Vi } consisting of K vectors for K detected objects,
C human captions Wy = {wy;, wf,,...,wf}, where T'
denotes the length of the captions and ¢ = 1,...,C are the
caption indices.

{} hi ¢
Caption LSTM
V/ —

o
Word LSTM

t

Word Embedding WeIIf

Figure 3: Overview of the caption encoder. The Word LSTM
is used to generate attention to identify the key words in each
caption, and the Caption LSTM generates the final caption
embedding. Blue arrows denote fc layers and yellow arrows
attention embedding.

Inspired by (Wu, Hu, and Mooney 2019), we use a two-
layer LSTM architecture to encode human captions as illus-
trated in Figure 3. The first-layer LSTM (called the Word
LSTM) sequentially encodes the words in a caption W; at
each time step as hf’tl.

e,l

e,l e 1 e,l
hiyy ey = = LSTM(W. I ¢, hi’y—q Ci,tfl) (D

where W, is the 300-d word embedding matrix, and II7 , is
the one-hot embedding for the word wy ;.

Then, we design a caption attention module A which uti-
lizes the image feature set V9, and he’ to generate the at-
tention weight on the current word in order to indicate its
importance. Specifically, the Word LSTM first encodes the
word embedding 117 ; in Eq. 1. Then we feed the outputs hf,’tl
and V to the attention module A® as shown in Eq. 2.

softmax(hf”t1 o f(v;))) 2

where the softmax function is over the K objects in visual
feature set V.

Next, the attended word representations w, in the caption
are used to produce the final caption representation in Eq. 4
via the Caption LSTM.

_ c c
We = mjax{ozi)ji }WEHM

c _
Qg =

3)
) 4)

where max denotes the element-wise max pooling over the
attention weights for the K objects in the image.

e,2

e2 e2 e,2
hi,t yCit = LSTM(wk, hi,t—17 Cit—1

Caption Decoder
Since the goal of the teacher caption decoder is to provide
hidden state guidance to the student decoder, we require



these two decoders to have the same architecture. However,
the differences between these two decoders lie in the initial
hidden states. The teacher decoder is initialized with the out-
puts from the encoder while the student caption decoder is
initialized with an estimated version as detailed in Sec. 3.4.

For the FC caption decoder, we use the max pooling of
the final hidden state from the second LSTM in the cap-
tion encoder as the initial state, i.e. hd = max.{h"7}.
Similarly, we max pool the final hidden states from both
layers to initialize the hidden state for the two LSTMs
in the Up-Down and SGAE caption decoders. Specifi-
cally, the teacher initial hidden state is computed as hd =
[maxc{hi’;}; maxc{hiﬁq ]. After initialization of the initial
states hg, the student decoder is trained to match the teacher
states h{ for each time step t.

3.4 State Transformation Network

The state transformation network uses the visual features to
estimate the initial teacher hidden states hd so that the stu-
dent caption decoder is capable of using the estimated hid-
den states to start a sentence purely from the visual inputs
alone. For efficiency, we simply use a two-layer fc network
for state transformation. For the FC decoder, we directly ap-
ply the two-layer networks to the visual feature vector to
estimate the initial hidden states hd = f(f(v)), where the
v is the 2,048-d features for the image. For the Up-Down
and the SGAE decoder, the first fc layer adapts the visual
features for each object and the second fc layer estimates the
hidden states using the sum of the first layer’s output over all
objects or nodes in the scene graph. Specifically the hidden

states are computed as hd = f(Zle f(vj))-

4 Training

Training involves pre-training the teacher autoencoder and
then training the student caption generator using maximum
likelihood or REINFORCE. We use 6, to denote the param-
eters in the autoencoder (z.e. the caption grounding encoder
and the teacher caption decoder), and 6, to denote the pa-
rameters in the state transformation network and the student
decoder. We use c to denote the entire caption, ¢; to denote
the ¢-th word in the caption, and c¢; to denote the first ¢
words in the caption. We omit the visual features v in all
of probabilities in this section for simplicity. We denote the
maximum likelihood loss using parameters 6 as £;;(9) de-
fined in Eq. 5:

T
Lu(0) = =Y log(p(cile<i—136)) ©)
t=1

4.1 Pretraining the Teacher Autoencoder

We pre-train the teacher autoencoder using cross-entropy
loss, minimizing £;(0,,) defined in Eq. 5. After pre-training,
the parameters 6,, are fixed.

Additionally, we pre-train the state transformation net-
work using L ;(6,), t = 0 as defined in Eq. 6 using L2 dis-
tance.

Ls(04) = ||B§ — b3 (6)

In particular, the generated captions from the student de-
coder are fed to the teacher autoencoder to compute the
teacher hidden states at each time (t) as shown in Fig 2. We
will omit “(0,)” from L, ;(0,) for simplicity.

4.2 Training the Student Decoder

We tested two different approaches to training the student
decoders using either maximum likelihood or REINFORCE
(with various evaluation metrics as rewards). The student
decoder is initialized with the teacher decoder’s parameters.

Maximum Likelihood Training

Maximum likelihood trains the student decoder to maximize
the word-level log-likelihood, where human captions are fed
into the decoder to compute the next word’s probability dis-
tribution. We use the joint loss in Eq. 7:

T
L=Lu(0g) + A La (7)
t=0

With human captions as input to the teacher autoencoder,
we compute its hidden state, which is needed to calculate
L ;. The X parameter controls the weights of the state loss.

REINFORCE

An alternative to log-likelihood maximization is to fine-
tune the model to directly maximize the expected evalu-
ation metric using REINFORCE. Negative rewards, such
as BLEU (Papineni et al. 2002) or CIDEr (Vedantam,
Lawrence Zitnick, and Parikh 2015), are minimized using
L = —Eevp,, [F(¢)] where 7(¢) = r(¢) — r(c*) denotes
the variance-reduced rewards (Rennie et al. 2017), ¢ de-
notes the sampled captions using the probabilities over the
vocabulary, and ¢* denotes greedily sampled captions us-
ing the word with the maximum probability. We will omit
“0,” from pg, for simplicity. The parameters in the stu-
dent caption decoder are updated using the policy gradients

Vo, L = —Eonp [f(é)vgg log p(é)} :

However, one remaining problem with this approach is
that the sentence-level reward 7(¢) is equally distributed
over each word in the sampled captions, no matter how rel-
evant the word is. Therefore, some desired words will not
get enough credit because of the presence of some unrelated
or inaccurate words in the sentence. To address this issue,
we propose to use our hidden state loss as an intermediate
reward to encourage the student decoder to produce hidden
states that match the hidden states of the high-performing
teacher decoder. We add a reward objective R that is the
accumulated expectation of the negative hidden state losses
over time (t) as shown in Eq. 8:

T
7% = - Z Eégtwp [Es,t} (8)
t=0

Therefore, the new policy gradients can be written as Eq.
9, and we provide detailed derivation in the supplementary



Maximum Likelihood REINFORCE (CIDEr)

Model B-4 M R-L C S B-4 M R-L C S

LSTM-A (Yao et al. 2017) 352 269 558 1088 20.0 || 355 273 56.8 1183 20.8
StackCap (Gu et al. 2018) 352 265 - 109.1 - 36.1 274 569 1204 209
FC (Vinyals et al. 2015) 329 250 540 954 179 | 328 25.0 542 1040 185
FC + HSG 332 255 539 961 183 | 339 259 548 1075 184
Up-Down (Anderson et al. 2018) | 36.0 27.0 563 113.1 204 || 363 275 56.8 1207 214
Up-Down + HSG 356 273 56.7 1139 20.6 | 374 28.0 57.7 124.0 21.5
SGAE %(Yang et al. 2018) 358 28.0 567 1140 209 || 37.8 282 582 1259 221
SGAE + HSG 359 281 569 1152 210 | 385 284 585 127.7 2138

Table 1: Automatic evaluation comparisons with various baseline caption decoders on the Karpathy test set. “HSG” denotes
trained with hidden state guidance, B-4, M, R-L, C and S are short hands for BLEU-4, METEOR, ROUGE-L, CIDEr and

SPICE. All captions are generated with beam search (beam size=5) except for SGAE decoders that use beam size = 2

materials.

Vo, L =V, (L+AR) =

T
Eop L;O (At

T
Lot = 7(2)) Vo, logp(éslé<s)

Reward Term

T

Z Veg ‘Cs,t

t=0

+ AEsp C)]

Punishing Term

It is worth noting that unlike the reward 7(¢), the hidden
state losses L, are differentiable in the parameters 6,
which is necessary to compute the policy gradients. Intu-
itively, Eq. 9 can be understood as simultaneously rewarding
the student caption decoder when it produces the hidden
states that match the teacher hidden states (the second
line), and punishing the hidden states that don’t match
(the third line). In practice, following (Rennie et al. 2017;
Luo et al. 2018), we sample 5 sentences (N=5) per image
to approximate the expectation.

Word-level Intermediate Rewards. HSG also provides a
word-level intermediate reward for more efficient learning.
To illustrate this, we differentiate the total loss £ with re-
spect to each output logit® s, at time 7. As shown in Eq. 10,
the reward 7(¢) has to be delayed until the end of the cap-
tion, but the output logits s are able to collect the rewards
for matching the hidden states with the teacher decoders’
from time 7.

V, L= (10)

T
Esp [(A ; Los— f(é)) (p(éT|6<T) - 16T)}

where the 1, denotes a vector with the dimension of the
vocabulary size where all elements except the ¢,-th are 0

>We use a smaller batch size than the original implementation,
leading to the performance drop (16 vs 100)
3The input to the softmax function

and the ¢--this 1.

Implementation Details

We train our model using the Adam optimizer (Kingma and
Ba 2015) with a batch size of 32 for training FC and Up-
Down decoders and 16 for training SGAE decoders on a
single 12G Titan V card. Following Luo et al. (2018), the
learning rate is initialized to Se-4 and decayed by a factor of
0.8 every five epochs. For the FC decoders, we use the av-
erage pooling of the last convolutional layer in the ResNet-
101 (He et al. 2016) pre-trained on ImageNet. For the Up-
Down decoders, following Anderson et al. (2018), we use at
most 100 object detection features for each image. We use a
Faster R-CNN head (Ren et al. 2015) in conjunction with a
ResNet-101 base network as our detection module. The de-
tection head is first pre-trained on Visual Genome (Krishna
et al. 2017). Both the FC and Up-Down decoders are im-
plemented in the same open source framework from Luo et
al.*. For SGAE decoders, we use the settings and code from
(Yang et al. 2018).> For captioning models, the dimension
of the LSTM hidden state, image feature embedding, atten-
tion embedding and word embedding are all set to 512. We
also use Glove vectors (Pennington, Socher, and Manning
2014) to initialize the word embedding matrix in the cap-
tion encoder. During training, we first pretrain the teacher
autoencoder using Eq. 5 for 20 epochs. After that, the stu-
dent caption decoder is initialized with parameters from the
teacher autoencoder, and trained using maximum likelihood
(i.e. Eq. 7) for 20 epochs. Finally, we fine-tune the student
decoder using REINFORCE (i.e. Eq. 9) for 30 epochs. Dur-
ing testing, we use beam search to sample captions using a
beam size of 5 when using FC and Up-Down decoders and
2 when using SGAE decoders.

5 Experimental Evaluation

In this section, we verify the effectiveness of HSG using
both standard automatic metrics and human evaluation.

*https://github.com/ruotianluo/
self-critical.pytorch
Shttps://github.com/yangxuntu/SGAE



REINFORCE REINFORCE + HSG
Model B4 M R-L C S B4 M R-L C S
Up-Down (B-4) | 37.5 269 570 111.0 203 || 385 273 576 1124 20.5
Up-Down (M) 314 287 56.1 105.0 22.0 | 33.0 29.5 572 1104 223
Up-Down (R-L) | 36.5 26.6 579 1142 198 || 369 272 587 1157 20.2
Up-Down (C) 36.3 275 56.8 1207 214 || 374 28.0 577 124.0 215

Table 2: Evaluation on Up-Down decoder’s performance on Karpathy test set with various evaluation metrics as rewards when
training using REINFORCE. B-4, M, R-L, C and S are short hands for BLEU-4, METEOR, ROUGE-L, CIDEr and SPICE.

5.1 Dataset

We use the MSCOCO 2015 dataset (Chen et al. 2015) for
image captioning. In particular, we use the Karpathy config-
uration that includes 110K images for training and 5K im-
ages each for validation and test. Each image has 5 human
caption annotations. Similar to Anderson et al. (2018), we
first convert all sentences to lower case, tokenizd on white
spaces, and filter words that occur less than 5 times.

5.2 Results on Image Captioning

Comparison with the Base Decoders. In Table 1, we
present the standard automatic evaluation for FC, Up-Down
and SGAE decoders trained using either Maximum Like-
lihood alone or using REINFORCE with CIDEr rewards
and compare them with the state-of-the-art image captioner.
Metrics included are BLEU-4 (Papineni et al. 2002), ME-
TEOR (Banerjee and Lavie 2005), ROUGE-L (Lin 2004),
CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015) and
SPICE (Anderson et al. 2016). The left part reports the re-
sults trained with maximum likelihood and the right part
shows the results using REINFORCE. We also include an
ensemble model, where each member is trained using RE-
INFORCE with a different random seed. We observe that
when training with maximum likelihood, our model outper-
forms both of the baseline decoders for all of the metrics,
except ROUGE-L when using FC, and BLEU-4 when us-
ing Up-Down, demonstrating the effectiveness of introduc-
ing our hidden state guidance. More importantly, we ob-
serve a significant improvement on the CIDEr scores over
all of the baseline models using REINFORCE (i.e. 107.5
v.s. 104.0 using FC Model, 124.0 v.s. 120.7 using FC Model
and 127.7 v.s. 125.9 using SGAE Model). We attribute the
improvements to both HSG and the word-level intermediate
rewards.

Teacher Autoencoder Performance In this section, we
report automatic evaluation results for FC, Up-Down and
SGAE teacher autoencoders. As shown in Table 3, all of the

Maximum Likelihood
B M R-L C S
FC 47.1 300 650 1374 239
Up-Down | 52.1 357 68.5 146.7 25.1
SGAE 576 355 686 1576 293

Table 3: Teacher autoencoder performance.

FC, Up-Down and SGAE teacher autoencoders are able to

achieve significantly better performance compared to the
corresponding student caption decoders, even when trained
with REINFORCE, indicating that the teacher hidden states
are able to provide suitable guidance.

Results on Various Metrics as Rewards In Table 2,
we report the results using Up-Down decoders with var-
ious evaluation metrics as the reward for REINFORCE.
Specifically, we initialize the REINFORCE training process
using the model trained with maximum likelihood with
and without hidden states guidance, and train for another
30 epochs with a batch size of 32. The left and right parts
of Table 2 report the performance on all of the automatic
evaluation metrics with and without HSG, respectively. We
observe that the models trained with HSG are consistently
able to better optimize the corresponding reward metrics.

REINFORCE (CIDEr)
B M R-L C S
A=00 |363 275 568 1207 214
A=0.05 | 374 28.0 57.7 1240 214
A=02 | 371 278 575 1235 215
A=10 |37.0 275 574 1232 213
A=20 |368 275 575 1229 21.0

Table 4: Results on Karpathy test set with various hidden
state loss weights .

Ablation Study on Hidden State Weight Table 4 shows
results when we vary the hidden state loss weight A from
0.0 to 2.0 using Up-Down decoders. Our model consistently
outperforms the baseline model (A = 0) on all evaluation
metrics when using CIDEr rewards. We also observe that
the CIDEr scores are fairly robust to the exact setting of \.

Human Evaluation We conducted an Amazon Mechani-
cal Turk (AMT) evaluation by asking human judges to di-
rectly compare captions from HSG and the baseline mod-
els. Following (Wu and Mooney 2018; Park et al. 2018;
Venugopalan et al. 2017), we use a ranking-based approach
with majority voting. In particular, we randomly chose
1,000 images and generated captions with and without HSG
trained with CIDEr rewards using Up-Down with a beam
size of 5. The two captions for each image were randomly



Up-Down: Asitting at a
table eating a sandwich.
(CIDEr: 0.152)

Up-Down: A church with a
large cathedral in front of a
building. (CIDEr: 0.884)

Up-Down: A couple of
people sitting on a boat.
(CIDEr:1.106)

Up-Down + HSG: A church
with a bunch of pew in front
of it. (CIDEr: 1.449)

Up-Down + HSG: A man Up-Down + HSG: Two little
holding a plate of food ona girls sitting on a boat in the
table. (CIDEr: 1.784) water. (CIDEr:3.115)

Up-Down: A fighter jet
flying in the blue sky.
(CIDEr:1.166)

Up-Down + HSG: A fighter
jet flying through a blue sky. food with meat and carrots
(CIDEr:1.686)

Up-Down: A flock of birds
sitting on top of a tree.
(CIDETr:0.028)

Up-Down: A plate of food
with meat and vegetables.
(CIDEr:1.132)

Up-Down + HSG: Aplate of Up-Down + HSG: A teddy
bear sitting on top of a

on a table.(CIDEr:1.522) tree.(CIDEr:1.256)

Figure 4: Sampled generated captions using Up-Down decoders with and without HSG. The captions are sampled using beam

search with a beam size of 5.

ordered and we asked workers to rank them in terms of de-
scriptiveness, allowing for ties. We test each image with two
captions with 3 different judges and the final rankings are
determined as follows. For each human judgement, we as-
sign +1 to the better caption, 0 if they are tied and —1 to the
worse one. Then, we compute the average scores for the two
captions to decide their final rankings. In Table 5, we report
the percentage of our captions that are better than, equivalent
to, or worse than the captions without HSG. We observe that
our captions are better more than 50% of the time and worse
less than 30%, indicating that HSG is effective at improving
captioning.

Worse
29.6%

| Better
Up-Down | 54.3 %

Equivalent
16.1 %

Table 5: Percentage of our captions that are better than,
equivalent to, or worse than those without HSG.

Figure 4 shows the qualitative comparison between some
sampled captions using the Up-Down student decoders
trained using CIDEr as rewards with or without hidden state
guidance. We empirically find that the captions generated
with HSG are able to capture more subtle visual concepts
and relationships between objects, resulting in more descrip-
tive captions.

Comparison with Professor Forcing In this section, we
compare our approach with Professor Forcing (Lamb et al.
2016). The professor decoder receives one of the human cap-
tions as input and shares parameters with the student de-
coder, which uses the generated previous word as input. We
use a single-layer GRU with 512 hidden units as the discrim-
inator.

Table 6 reports the performance of Up-Down decoder us-
ing maximum likehood and REINFORCE with CIDEr re-
wards. We observe obvious improvements over Professor
Forcing in both the maximum likelihood and REINFORCE
cases. Unlike Professor Forcing, our teacher has access to
more information (i.e. the initial hidden state that encodes
the set of human captions) than the student, and therefore

possesses a richer hidden state representation to guide the
student.

Maximum Likelihood
B M R-L C S
Professor | 35.8 27.0 56.1 1133 203
HSG 35,6 273 567 1139 20.6
REINFORCE (CIDEr)
B M R-L C S
Professor | 36.4 274 57.0 1209 214
HSG 374 28.0 577 1240 215

Table 6: Comparison with Professor Forcing using Up-
Down decoders on Karpathy test set.

6 Conclusion and Future Work

We have presented a novel image captioning framework
that uses an image-conditioned caption autoencoder. This
teacher autoencoder, which has the same architecture as the
original RNN-based decoder, is trained using an easier task
that learns to generate image captions with gold standard
human captions as inputs in addition to visual features. This
austoencoder is used to guide the hidden state representa-
tion learned by the student caption decoder. We integrated
this hidden state guidance into both maximum likelihood
and REINFORCE using three state-of-the-art image cap-
tioners. We observe that especially in the REINFORCE case,
the word-level hidden state guidance assigns an intermediate
reward that emphasizes the most relevant words. Extensive
experimental results demonstrate the effectiveness of our ap-
proach. In the future, we would like to explore metrics that
can measure and minimize the semantic difference between
the teacher and student hidden states better than L2, this
could potentially further improve the learned hidden-state
representation.
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