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Abstract

This paper describes GRADE, a statistical machine learning
system developed to support the work of the graduate admis-
sions committee at the University of Texas at Austin Depart-
ment of Computer Science (UTCS). In recent years, the num-
ber of applications to the UTCS PhD program has become too
large to manage with a traditional review process. GRADE
uses historical admissions data to predict how likely the com-
mittee is to admit each new applicant. It reports each pre-
diction as a score similar to those used by human reviewers,
and accompanies each by an explanation of what applicant
features most influenced its prediction. GRADE makes the
review process more efficient by enabling reviewers to spend
most of their time on applicants near the decision boundary
and by focusing their attention on parts of each applicant’s
file that matter the most. An evaluation over two seasons of
PhD admissions indicates that the system leads to dramatic
time savings, reducing the total time spent on reviews by at
least 74%.

1 Introduction
Graduate programs in fields such as computer science have
received increasing interest in recent years. While the num-
ber of applicants to such programs has grown two- to three-
fold (figure 1), the number of faculty available to review ap-
plications has remained constant or grown very slowly over
time. The result is that admissions committees face a pro-
hibitively large workload, making it difficult to review ap-
plications thoroughly.

This paper describes a system developed to support the
work of the graduate admissions committees in the Depart-
ment of Computer Science at the University of Texas at
Austin (UTCS). The system, named GRADE (for GRaduate
ADmissions Evaluator), uses statistical machine learning to
estimate the quality of new applicants based on past admis-
sions decisions. GRADE does not determine who is admitted
or rejected from the graduate program. Rather, its purpose
is to inform the admissions committee and make the pro-
cess of reviewing files more efficient. The heart of GRADE
is a probabilistic classifier that predicts how likely the com-
mittee is to admit each applicant based on the information
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Figure 1: Number of applicants to the UTCS PhD program
over time. Applicant pools have grown significantly in re-
cent years, putting a strain on admissions committees, who
have finite resources. (Data not available for some years.)

provided in his or her application file. For each new appli-
cant, the system estimates this probability, expresses it as a
numerical score similar to those used by human reviewers,
and generates human-readable information explaining what
factors most influenced its prediction.

While every application is still looked at by a human re-
viewer, GRADE makes the review process much more effi-
cient. This is for two reasons. First, GRADE reduces the total
number of full application reviews the committee must per-
form. Using the system’s predictions, reviewers can quickly
identify a large number of weak candidates who will likely
be rejected and a smaller number of exceptionally strong
candidates who will likely be admitted. These decisions can
be validated quickly, leaving the committee with more time
to carefully evaluate the remaining, borderline applicants.
Second, GRADE makes it easier to review an individual ap-
plicant’s file. The system generates an initial ranking for the
applicant pool, which makes it possible to review applicants
in descending order of quality and provides an appropriate
context for each new review. Its explanations also provide a
starting point for the human reviewer to identify strong and
weak attributes of each application, reducing the review time
further. The system was first tested alongside the regular re-
view process in the 2012 admissions season, and fully inte-
grated into the graduate admissions process in 2013. Com-
pared to previous years, GRADE reduced the number of full
reviews required per applicant by 71% and, by a conserva-
tive estimate, cut the total time spent reviewing files by at
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least 74%.
As a machine learning problem, GRADE frames graduate

admissions as probabilistic binary classification. For train-
ing data, the system reads an internal departmental database
of past admissions decisions, which contains an anonymized
version of each applicant’s file and a binary label indicat-
ing whether or not the person was admitted to the gradu-
ate program. Each student’s file is represented as a high-
dimensional feature vector that encodes the institutions pre-
viously attended, GPAs, test scores, letters of recommenda-
tion, area of research interest, and preferred faculty advisor.
Given the historical data, the goal is to predict the proba-
bility that the admissions committee will admit each new
applicant to the program.

Internally, GRADE is implemented with anL1-regularized
logistic regression model. The regularization acts as a
feature-selection mechanism in practice, producing a sparse
model that uses only a small subset of highly predictive fea-
tures. Upon inspection, the model focuses on much of same
information that human committee members use when re-
viewing applications. In particular, GRADE prefers appli-
cants with high GPAs and test scores, backgrounds from rep-
utable institutions, and recommendation letters that support
the applicant’s potential as a researcher. The feature weights
learned by the classifier are discussed with other results in
Section 5.

2 Related Work
The literature contains numerous studies that perform statis-
tical analyses on past admissions decisions, for example by
Bruggink and Gambhir (1996); however, very little work has
been done on systems that can predict admissions decisions
and assist in the review process. One exception is by Moore
(1998), who used decision tree induction to model admis-
sions to an MBA program. In that work, predictions were
made available to reviewers but otherwise had no role in the
admissions process. Additionally, that model was evaluated
on a much smaller dataset than GRADE and did not incorpo-
rate features for schools’ reputations, applicants’ letters of
recommendation, etc. In this sense, GRADE is a unique ef-
fort to incorporate machine learning into an admissions pro-
cess.

3 Graduate Admissions
To understand the impact of the prediction system, we first
give a high-level overview of the graduate admissions pro-
cess.

UTCS, like many other departments, accepts applications
for its graduate programs exclusively through an online sys-
tem. Students fill out a series of forms with their educational
history, test scores, research interests, and other information.
Upon submitting the online application, a student’s informa-
tion is stored in a departmental database. References listed
in the application are emailed and asked to submit letters of
recommendation through the same online system.

When the time window for accepting applications has
closed, faculty members use an internal web-based system
to review the pool of applicants. After reading each file, a

reviewer submits a real-valued score in the range 0-5 to rate
the quality of the applicant and enters a text comment ex-
plaining their score to other reviewers. The time required
for each full review varies with the reviewer’s style and ex-
perience, the quality and content of the application, and the
stage of the review process, but a typical full review takes
10-30 minutes. The committee typically performs multiple
review passes over the pool, and then admits or rejects each
applicant based on the scores and comments of the reviewers
who looked at his or her file. Although the primary criterion
for this decision is quality, it is modulated to a significant de-
gree by the current research opportunities in the department
(that is, the number of new students the faculty request to be
admitted in each research area).

Historically, the admissions committee has run a uniform
review process, assigning a minimum of two reviewers to
every file. Some candidates, particularly those that the com-
mittee was “on the fence” about, received up to five reviews.
This process originates from the early 1990s, when the de-
partment received approximately 200 PhD applications a
year. Incoming applicant pools have grown almost threefold
since that time and are expected to continue to grow in the
future (Figure 1). Thus, a uniform approach is no longer fea-
sible: with the current applicant pool sizes, it would require
about 1400 reviews and an estimated 700 hours of faculty
time. This volume of applicants presents a significant chal-
lenge to the admissions committee, which has a strong in-
centive to admit the best possible students but also has a
limited amount of time and resources.

In 2013, UTCS introduced a new, more efficient review
process using GRADE to scale admissions to large applicant
pools without sacrificing the quality of reviews. Instead of
performing multiple full reviews on every file, GRADE fo-
cuses the committee’s attention to the files of borderline ap-
plicants, where it is needed most. The GRADE system and
the new review process are described in detail in the follow-
ing section.

4 Method
GRADE consists of five main components. First, the sys-
tem reads applicants files’ from the departmental database
and performs preprocessing to standardize the data. Sec-
ond, the files are encoded as high-dimensional feature vec-
tors. Third, a logistic regression classifier is trained on the
feature-encoded historical data. Fourth, the classifier pre-
dicts the probability that each new applicant will be admitted
and generates information to report to the admissions com-
mittee. Fifth, this information is used to decide which files
should be reviewed fully and which can be checked quickly
to verify the model’s predictions. These steps are described
in detail in the following subsections.

4.1 Preprocessing
Most applicant data is stored within the UTCS database in
structured formats that are straightforward for the GRADE
system to interpret. However, two key pieces of information
– namely, the names of universities previously attended and
grade point averages – are stored in unstructured string for-
mats. These fields must be preprocessed to make their values



interpretable by the statistical model. Rather than editing the
data manually, automated techniques that require little or no
human intervention are used.

The first preprocessing task disambiguates the names of
universities listed in applicants’ educational histories. The
challenge is that applicants use a wide variety of strings to
refer to each institution. For example, some people might
say they attended The University of Texas at Austin, while
others would refer to the school as University of Texas,
Austin or UT Austin. In addition to such standard varia-
tions, a number of universities have undergone official name
changes and have different “old” and “new” names. For ex-
ample, in the recent past University of Missouri, Rolla was
renamed to Missouri University of Science and Technology.
Applicants may refer to such schools by the old or new
names, and both names should be recognized as the same
institution.

To disambiguate institutions, GRADE uses a web search
engine to map each name to the domain name of the school’s
website (for example, UT-Austin to utexas.edu), and then
uses the domain name as the identifier in all subsequent
modeling steps. To locate a school’s web address, the system
searches for the institution name with the Bing Web Search
API and looks for an educational domain name (*.edu,
*.ac.in, etc.) in the search results. If none is found but there
is a Wikipedia article in the results, the system looks for the
school’s web address in the article’s content. Failing that, the
institution name is mapped to a special identifier for an un-
known school. This approach works well and identifies all
but a small handful of institutions in the applicant database.

A second preprocessing step is necessary to disambiguate
grade point averages in some historical data. In years past,
GPAs were reported in unvalidated text fields in the on-
line application. While many applicants explicitly stated the
grading scale of their institution (for example, “3.8 / 4.0”,
“14.4 / 15”), others reported only a single, unscaled number
(“14.4”, “75”). In order to compare the grades of all appli-
cants, GRADE must determine the GPA scales for this lat-
ter group. For each unscaled GPA encountered, the system
first looks for another student from the same institution who
reported the school’s grading scale. Approximately 64% of
ambiguous GPAs can be resolved in this manner. In the re-
maining cases, the system assumes the scale is the one that
provides the closest upper bound to the reported GPA. For
example, “14.4” is assumed to mean “14.4 / 15” rather than
“14.4 / 100”. Note that this preprocessing step does not need
to be performed on new and recent data because the online
application has been updated to have separate input fields for
GPA and GPA scale.

4.2 Feature Encoding
GRADE encodes each application file as a high-dimensional
feature vector. The overall approach is to generate a large
number of features that represents a wide variety of informa-
tion about each file. Although some features may turn out to
be poor predictors for whether or not an applicant is admit-
ted, there is little harm in including them in the represen-
tation because the L1-regularized logistic regression clas-
sifier tends to assign zero weight to such features. This is

discussed further in Section 4.3.
Applicant data comes in the following three forms:

• numerical data, namely, test scores and GPAs;
• categorical data taking on a discrete set of values, such as

the student’s undergraduate institution, research area, and
preferred faculty advisor; and

• text data, namely, letters of recommendation and the ap-
plicant’s statement of purpose.

Each type of data requires a separate type of feature encod-
ing. Each encoding scheme is detailed in turn in the follow-
ing section. Except where otherwise indicated, all data are
encoded as binary vectors. For each piece of information, an
extra bit is reserved at the end of the feature vector to denote
when the value was not reported or not applicable. The ap-
plicant’s file as a whole is represented by concatenating the
feature encodings for each constituent part.

For the remainder of the text, we refer to the data in an
applicant’s file as his or her attributes. This is to distinguish
the data itself from the features that encode that information
in the classifier. In general, a single attribute may be repre-
sented by more than one feature.

Numerical Attributes The numerical attributes in the ap-
plication file include scores from the GRE General test (in
the quantitative, verbal, and analytical sections), the GRE
Computer Science subject test score, the student’s GPA at
his or her last undergraduate institution, and, when applica-
ble, the GPA at the last graduate institution.1 All test scores
and GPAs are converted to percentile ranks within the train-
ing set.

Instead of using the raw numerical values as features, the
values are quantized coarsely and encoded as binary strings.
The undergraduate and graduate GPAs are represented with
the following indicator features:
• Undergraduate GPA percentile < {20, 40, 60, 80},
≥ {20, 40, 60, 80}

• Graduate GPA percentile < {20, 40, 60, 80},
≥ {20, 40, 60, 80}

Note that these features are not mutually exclusive; for ex-
ample, a 42nd percentile undergraduate GPA would be en-
coded as 〈0011 1100 0〉. Likewise, the GRE scores are en-
coded as binary strings as follows:
• GRE quantitative percentile < {70, 80, 90},
≥ {70, 80, 90}

• GRE subject percentile < 80, ≥ 80
• GRE writing percentile < 50, ≥ 50
• GRE verbal percentile < 80, ≥ 80
Compared to using the raw numerical value, this encoding
has the benefit of introducing non-linearities into the fea-
ture representation, enabling the classifier to model complex
trends in the underlying value. For example, in practice, the

1Some international applicants to UTCS also submit TOEFL
scores. However, because the paper- and internet-based tests have
different grading scales, and TOEFL is not required of many appli-
cants, it was left out of the model altogether.



classifier learns that higher GRE quantitative scores make an
applicant more likely to be admitted, but that progressively
higher scores have lower marginal benefit. In other words, it
matters more than the score is “good enough” than that it is
the absolute highest among all applicants.

Categorical Attributes Categorical attributes are encoded
in two different ways depending on the number of possible
values the attribute can take. Those with a small number of
K possible values (roughly, K < 20) are encoded as sparse
1-of-K binary strings (a K-length string with a single 1 de-
noting the selected value). Attributes of this type include
the student’s highest degree attained (bachelor’s, master’s,
PhD), residency status, and research area of interest (11 pos-
sible sub-fields).

The remaining categorical attributes take on a larger num-
ber of possible values. This group includes the applicant’s
undergraduate and/or graduate institutions (714 unique val-
ues in 2009-2012) and the preferred faculty advisor (44
unique values). For these data, the 1-of-K representation is
impractical, as most features would be used too infrequently
in the training set to make any reliable inference about their
effect. Instead, we generate a single numerical feature for
each containing the historical log odds of being admitted
given the attribute value. The log odds representation is ap-
propriate because the logistic regression classifier used by
GRADE (see Section 4.3) can be thought of as a linear model
that predicts the log odds of admission. In practice, the log
odds features are among the most important features in the
model and are significant improvements over 1-of-K repre-
sentations for the past institutions and preferred faculty ad-
visors.

Log odds are estimated in a Bayesian manner with a sim-
ple beta-binomial model. For an attribute a taking on val-
ues v ∈ V , let n+

a=v and n−a=v be the number of applicants
with a = v that have historically been admitted and re-
jected, respectively, and let pa=v denote the (unobserved)
true proportion of applicants admitted. Assuming a prior
pa=v ∼ Beta(αa, βa), the proportion has posterior
pa=v | n+

a=v, n
−
a=v ∼ Beta(αa + n+

a=v, βa + n−a=v). (1)
The posterior mean, then, is

E [pa=v] =
αa + n+

a=v

αa + n+
a=v + βa + n−a=v

, (2)

and the mean posterior log odds are given by

E
[
log

pa=v

1− pa=v

]
= ψ(αa + n+

a=v)− ψ(βa + n−a=v), (3)

where ψ(·) denotes the digamma function, the derivative of
the log of the gamma function.

Note that for attribute values that do not appear in the
historical data, the estimate (3) reduces to the log odds
of the prior, while for values used frequently, the estimate
approaches the empirical log odds. (For large arguments,
ψ(x) ≈ log x.) The parameters αa and βa are set to induce
a weak prior with the mean set to the admission probabil-
ity given any rare value. For example, for the undergraduate
and graduate institutions, αa and βa are set so that the prior
mean is the empirical proportion of applicants admitted from
institutions with two or fewer total applicants.

School Reputation For the undergraduate and graduate
institutions, the log odds features (described above) serve as
a data-driven estimate of each school’s reputation or qual-
ity. These features are very useful in practice: unlike the hu-
man committee members that GRADE aspires to model, the
system has no external knowledge with which to judge the
quality of institutions.

To represent school quality more explicitly, the system is
also provided with reputation features that describe the ap-
plicant’s last undergraduate and (when applicable) graduate
institution. Reputation is represented as a binary string of
length three, with separate bits encoding whether the school
is considered elite, good, or other. These categories were
created by surveying UTCS faculty who were familiar with
the universities in various parts of the world. The elite and
good categories are defined by explicit lists; any school not
in the first two categories is considered other.

Combination Features In addition to the features listed
above, we generate combination features that allow interac-
tion effects between attributes to be modeled. For two at-
tributes x and y that are encoded as m- and n-length binary
strings, respectively, the encoding of combination x × y is
an (m · n)-length binary string, where each bit corresponds
to a pair of bits from x and y. The classifier is provided with
the following combination features:

• GRE Quantitative × GRE Verbal × Research Area
• GRE Quantitative × GRE Verbal × Undergraduate Rep-

utation
• Undergraduate Reputation × Research Area
• Undergraduate GPA × Undergraduate Reputation

Text Each applicant’s file contains two forms of text data:
a statement of purpose, in which the student describes his
or her background and research interests, and three or more
letters of recommendation. All documents are submitted
through the online application system in PDF format.

To generate features for the letters of recommendation,
we first extract the embedded text from each PDF file, stem
the words with the Porter stemmer (Van Rijsbergen, Robert-
son, and Porter 1980), and apply simple stop-word filtering.
The letters are then combined into a single bag of words per
applicant. Finally, Latent Semantic Analysis (LSA) (Deer-
wester et al. 1990) is applied to project each set of letters
into a 50-dimensional feature vector.

We ran a number of experiments using the same proce-
dure to generate features for the applicants’ statements of
purpose. However, in practice, these features were not dis-
criminative and did not improve the quality of GRADE’s pre-
dictions. As a result, we omit the statements of purpose and
use only the letters of recommendation.

Information Not Represented It is important to note that
some valuable information in an applicant’s file is not rep-
resented in the current feature encoding. Most importantly,
there are currently no features describing the applicant’s
publications, or any fellowships or awards that he or she
may have been received. In addition, the system has no fea-
tures representing the identities, titles, or scholarly reputa-



tions of the recommendation letter authors. Finally, there
are no features for the student’s undergraduate area of study.
(Although most applicants have a scientific background in
computer science or a related field, this is not uniformly
true.) We would like to use this information in the system but
currently have no reliable, automated method of extracting
it from the application files. Instead, reviewers are informed
that this information is missing from the model and are in-
structed to pay particular attention to these factors when re-
viewing.

4.3 Classifier
GRADE’s main task is to use historical data to infer how
likely new applicants are to be admitted to the graduate pro-
gram. This problem can be framed as one of probabilistic bi-
nary classification. The historical admissions decisions take
the form of labeled training examples {(xi, yi)}Ni=1, where
xi ∈ Rd is the feature vector encoding of the applicant’s
file, and yi ∈ {+1,−1} indicates whether the applicant was
admitted or rejected. Given the past decisions and new appli-
cants {xnew

i }
Ntest
i=1 , the goal is to predict p(yi = +1|xnew

i ), the
probability that the admissions committee will accept each
applicant xnew

i .
GRADE models the problem using L1-regularized logistic

regression. Under this model, the estimated probability of an
applicant being admitted takes the parametric form

p(yi = +1 | xi) =
1

1 + exp{−w>xi}
, (4)

where w ∈ Rd is vector of feature weights to be learned.
Classifier training consists of finding the weight vector w∗
that minimizes the regularized log loss of the labeled data,

w∗ = arg min
w∈Rd

L̂(X,y) (5)

L̂(X,y) =
N∑

i=1

`(xi, yi,w) + λ‖w‖1. (6)

The first term of the objective (6) measures how well the
probability estimates of the classifier fit the admissions de-
cisions in the training data. Here, `(xi, yi,w) = log(1 +
e−yiw

>xi) is log loss, or prediction error, on the ith train-
ing example. The second term of (6) is the L1 norm of the
weight vector times a scalar parameter λ ≥ 0. This regu-
larization term serves to pressure the classifier away from
“complex” models and towards ones that use small or zero
weights for some features. The λ parameter controls the
trade-off between the fit of the model to the training data and
the complexity of the resulting weight vector. In GRADE, the
value of λ is selected using 10-fold cross-validation.

In practice, the L1 regularization in logistic regression
acts as a robust feature-selection mechanism. In general, the
learned weight vector is sparse (that is, some feature weights
w∗j are set to zero) with larger λ values leading to greater
sparsity (Koh, Kim, and Boyd 2007). Zero weights corre-
spond to features in the input with low predictive power,
so that in effect the model uses only a subset of the most
discriminative features. This feature-selection mechanism

works well even when the number of non-predictive features
in the input is very large. This is because the sample com-
plexity of the learner – the number of training examples re-
quired to learn a near-optimal logistic regression classifier –
grows only logarithmically in the number of non-predictive
features (Ng 2004). In other words, there is little harm in
giving extra features to the L1-regularized logistic regres-
sion that turn out not to be of use. In contrast, other common
classification methods have sample complexities that grow
at least linearly in the number of non-predictive features, and
are expected to perform poorly in such settings.
L1 regularization has a significant impact in GRADE: the

trained classifier places non-zero weight on only 58 of the
427 dimensions of the feature space. Such sparsity has two
important benefits to our system. First, it reduces the clas-
sifier’s tendency to over-fit the training data and improves
the quality of predictions on new applicants. Second, be-
cause the learned model is parsimonious, it is easier to in-
terpret. One can quickly examine the non-zero elements of
the weight vector to see what information the classifier uses
to make its predictions. This is important as it makes it pos-
sible to check that the model is reasonable before using it to
score a set of applicants. Interpreting the model is also in-
teresting in its own right, giving insight into how committee
members evaluate applicants.

In addition to logistic regression, we experimented with
a number of other learning methods, including multi-layer
perceptrons and support vector machines (SVMs) with both
linear and non-linear kernels. Multi-layer perceptrons per-
formed worse than logistic regression and tended to over-fit
the training set, even with a small number of hidden units
and the use of early stopping. SVM performed nearly as
well as logistic regression. However, SVM’s feature weights
are in general dense, making the model difficult to interpret.
Overall, we chose to use L1-regularized logistic regression
due to its ability to produce sparse, interpretable models that
perform well in this domain. It is possible that variants of the
above methods that incorporate more sophisticated regular-
ization, such as sparse SVM (Tan, Wang, and Tsang 2010),
may perform better.

4.4 Model output
After training the logistic regression classifier on historical
data, GRADE is run on new applicants. First, the system pre-
dicts the probability that each new applicant will be admit-
ted. Second, these quantities are mapped to an estimated re-
viewer score for each file. Then, by performing sensitivity
analysis on the classifier, the system identifies the attributes
in each file that might stand out as being particularly strong
or weak to a human reviewer.

Score To estimate reviewer score, the probability output
by the classifier is mapped to a numerical score between 0
and 5. Human reviewers use scores to measure a candidate’s
quality in an absolute sense, not merely relative to the cur-
rent set of applicants; for example, a score of 5 is excep-
tionally rare and is only given to the very best applicants the
department has ever received. For this reason, GRADE com-



putes score as a function of the candidate’s percentile rank
within a global pool consisting of all past and present appli-
cants. The percentile ranks are converted to scores using the
following guidelines:

Percentile 100 96.8 78.8 49.5 28.4 0
Score 5.0 4.5 4.0 3.5 3.0 1.0

The system uses linear interpolation to achieve scores of
finer granularity so that, for example, a 98.4th percentile
applicant is given a score of 4.75. These guidelines are
derived from historical data. For consistency, they are
included in the instructions given to human reviewers.

Strongest/Weakest Attributes Human committee mem-
bers typically accompany their numerical scores with a text
comment that notes any particularly strong or weak parts
of the applicant’s file. For example, a reviewer might note,
“GRE scores are very impressive” or “letters of recommen-
dation are weak”. These comments serve to justify the re-
viewer’s score and point out salient pieces of information to
other reviewers. In GRADE, a variant of sensitivity analysis
(Saltelli et al. 2000) is used to automatically generate a de-
scription of each applicant’s strengths and weaknesses. This
information is reported in a text comment that appears with
the numerical score.

For a given applicant, a strong attribute is defined as one
that makes him or her significantly more likely to be ad-
mitted when compared to the average value held by others.
More formally, attribute strength is quantified as follows. Let
a = {a1, . . . ,aNtest} denote the attributes for each new ap-
plicant. Let ajk

i denote the attributes of the ith applicant with
the jth entry replaced with the corresponding value from ap-
plicant k. Finally, let f denote the feature function that maps
attributes into feature vectors, so that f(ai) = xnew

i . Then,
the strength of attribute aij is measured as

S(aij) = p(yi = +1|f(ai))−
Ntest∑
k=1

p(yi = +1|f(ajk
i ))

Ntest
.

The first term is the admission probability assigned by the
classifier to the applicant’s original file, while the sum in the
second term is the classifier’s average response when aij is
replaced with values of other applicants.

For each applicant, GRADE computes the strengths of all
attributes and outputs a string listing of the top two strongest
and weakest attributes along with their effect strengths.

4.5 New Admissions Process
The new review process, deployed in the 2013 PhD admis-
sion season, uses GRADE to focus the work of the admis-
sions committee. The system was first trained with the data
from the past four years (2009-2012, 1467 applications in
total) and was then used to evaluate each file in the new
pool of 588 applications. As described above, GRADE pre-
dicted the probability that the committee would admit the
applicant and estimated the numerical score that would be
given by human reviewers. In addition, the system generated
a human-readable list of perceived strengths and weaknesses
of each file. This information was uploaded to the online re-
view system where it was visible to the reviewers.

The files were then assigned to the reviewers based on
GRADE’s predictions. For each research area, the applicants
were ordered according to the model’s score. Those with
score above 4.4 (27 applications) were identified as likely
admits, those between 4.4 and 3.83 (148) as possible admits,
and those at or below 3.83 (413) as likely rejects. Each of
the nine committee members thus received a list of approxi-
mately three top applications, 16 midrange applications, and
46 bottom applications.

Importantly, committee members were only required to
perform a full review on the midrange applications. For the
top- and bottom-ranked files, the reviewers were instructed
to simply check the score of the statistical model. A check
included evaluating possibly useful information not avail-
able to the statistical model, including awards, publications,
unusual vita items, reputations of letter writers, unusual
home institutions, and letters whose text could not be au-
tomatically extracted. Such a check could be done quickly
in most cases, and if the reviewer agreed with the model’s
score, they did not need to enter a score. However, in cases
where the reviewer disagreed with the model, he or she was
asked to do a full review and enter their own score. In some
cases, such as when the reviewer was evaluating their own
student or an applicant outside of their expertise, the review-
ers asked other faculty to do a review instead, or in addition.

The applications were then re-sorted using the human
scores if there were any, and the model’s score if not. An ini-
tial admit/reject decision boundary was identified for each
area, based on the need for new students in each area (as
determined by surveying the faculty). A second round of
reviews was assigned for applications that were close to
the decision boundary, as well as for applications that were
somewhat further away from it where a reviewer disagreed
significantly with the model (that is, more than 0.2 points in
score). A total of 103 applications were thus assigned to the
second round, or an average of about 11 per reviewer.

Based on the results of second round, the applications
were once again re-sorted and the decision boundaries for
each area identified. Finally, in a meeting of the entire com-
mittee, these orderings and boundaries were discussed and
slightly adjusted to make the final decisions.

5 Evaluation
In 2012, the newly-developed GRADE system was tested
alongside the regular PhD application review process. Com-
mittee members did not see the system’s output when per-
forming their reviews, and the final decisions were made
based only on human scores. However, in the first pass over
the applicant pool, all files were only given one full review
instead of two as in previous years. If both GRADE and the
first reviewer agreed that the applicant should be rejected,
the file was not reviewed further. In all other cases, the re-
view process proceeded in the usual manner. Although the
primary goal was to evaluate how reliable GRADE’s predic-
tions were, this process reduced the number of required hu-
man reviews by 24%. Indeed, although UTCS received 17
more PhD applicants in 2012 than 2011, fewer total reviews
were actually required.
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Figure 2: Classification performance of GRADE in 2013. In
(a), precision and recall measure the system’s ability to iden-
tify applicants who were admitted, while (b) shows how well
it identifies rejected applicants. The latter shows the frac-
tion of applicants who would be correctly and incorrectly re-
jected at different decision boundaries (that is, the true neg-
ative rate vs. (1− recall)). In each plot, “random” shows the
performance of a classifier that admits a randomly-selected
subset of applicants. GRADE identifies ≈ 10% of admitted
applicants with perfect precision and ≈ 50% of rejected ap-
plicants with nearly no false rejections.

The remainder of this section focuses on the role of
GRADE in the 2013 season, when the system was fully de-
ployed into the review process. GRADE is evaluated in two
ways: by measuring the quality of its predictions, and by es-
timating the amount of faculty time it saved.

Classification Performance Of 588 PhD applicants in
2013, the admissions committee admitted 92 (15.6%) and
rejected 546 (84.4%). GRADE predicted the correct admis-
sions decision with 87.1% accuracy. Note that this result
alone is not very meaningful: due to the imbalance of the
classes in the test set, one could achieve 84.4% accuracy
just by rejecting all applicants. Rather than looking at ac-
curacy, the system is best understood by its precision-recall
characteristics.

Figure 2(a) shows the precision-recall curve for GRADE’s
2013 predictions. In terms of graduate admissions, preci-
sion and recall measure the system’s ability to identify ap-
plicants who will be admitted. As the top left corner of the
2(a) shows, GRADE is very good at finding a small num-
ber of high-quality applicants that the committee will admit.
However, precision quickly drops at larger recalls. This re-
flects that there are many mid-scoring applicants for which
the committee’s decision is difficult to predict.

In practice, GRADE is much better at identifying appli-
cants that the committee will reject. Figure 2(b) shows the
classifier’s true negative rate (specificity) versus false neg-

ative rate; these are the fractions of applicants that the sys-
tem would correctly and incorrectly reject at varying deci-
sion thresholds. The data indicate that GRADE can identify a
large proportion of the applicants who will be rejected while
maintaining a very low false negative rate. As detailed in
the following section, the system gives many of these appli-
cants scores that are sufficiently low that they need only be
checked once by a human reviewer.

Time Savings As mentioned in the introduction, integrat-
ing GRADE into the admissions process saves reviewers time
in two ways. Primarily, GRADE allows the committee to
quickly identify many applicants who will likely be rejected,
as well as a smaller number of applicants who will likely be
admitted. Secondarily, GRADE makes the reviewing itself
more efficient by ordering the files and by providing infor-
mation about the strong and weak attributes of each appli-
cant.

Figure 3 shows the number of reviews performed in 2011
and 2013 broken down by mean reviewer score. In 2011, the
committee (without GRADE) required 1125 total reviews to
evaluate 545 files, or an average of 2.06 per applicant. Us-
ing GRADE in 2013, only 362 full reviews were required
to evaluate 588 files. (In addition, 150 extra reviews were
performed by committee members who did not follow the
chair’s instructions; they were unnecessary and did not af-
fect the outcome.) Altogether, only 0.616 full reviews were
needed per applicant, constituting a 71% reduction from
2011. The primary reason for this drop is that a majority of
the files (362) could be evaluated with only a “check”; that
is, both GRADE and a human reviewer strongly agreed that
the applicant should be admitted or rejected. Note, however,
that the committee still performed many full reviews on the
mid-to-high scoring echelons of the applicant pool.

Committee members reported that the time required to
perform a full review ranged within 10-30 minutes, with an
average of about 20 minutes per file. This time is estimated
to be approximately 25% lower than in previous years due
to the information and initial ranking provided by GRADE.
Finally, the time required to check GRADE’s prediction on a
file was measured to be 1/5 of the time of a full review for re-
viewers well familiar with the model’s outputs. From these
numbers, the entire review process in 2013 was estimated
to require 145 hours of reviewer time, while the traditional
review process would have needed about 549 hours – a re-
duction of 74%.

Score Agreement Although GRADE is not trained to pre-
dict reviewer scores directly, the utility of the system does
depend on how well its scores match those given by ac-
tual reviewers. Figure 4 shows the human and model scores
given to applicants in the 2013 admissions cycle. In cases
where the reviewer agreed with the model during a “check”,
the reviewer’s score is considered to be equal to the model’s.

The results show that reviewers generally agree with
GRADE’s score a majority of the time. GRADE’s score was
within 0.2 of the human score on 40% of files, while humans
agreed with each other at this level 50.3% of the time. In
cases of disagreement, the system tends to underestimate the
applicant’s score. The largest deviations occur on files that
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Figure 3: Number and type of reviews needed to evaluate new PhD applicants (a) with the uniform process of 2011, and (b)
assisted by GRADE in 2013. In (b), note the large number of low-scoring applicants whose files were only “checked”. These are
students who were rejected after the first human reviewer agreed with the GRADE that the applicant was not competitive. As a
result of the system, fewer reviews were required, and the committee had more time to consider mid-to-high scoring applicants.
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Figure 4: Scores given to 2013 PhD applicants by human
reviewers versus those predicted by GRADE. Entries on the
diagonal indicate cases where the reviewer agreed with the
model’s assessment during a check. The reviewer and model
scores are often close. GRADE sometimes underestimates
the scores of applicants it considers to be of very low quality
(with a predicted score of 1-2). However, in many of these
cases, the system still correctly predicts that these applicants
will be rejected.

GRADE considers to be of very low quality (with scores be-
tween 1 and 2) that reviewers rate as mid-range (with scores
between 2 and 4). These cases may be due to the model lack-
ing information that is available to human reviewers: for ex-
ample, a student may have publications that are not repre-
sented in the system.

Learned Feature Weights The feature weights learned by
the logistic regression classifier indicate what information
GRADE uses to make its predictions. Out of 427 dimensions
of the feature space, the classifier assigned zero weight to all
but 58. Upon inspection, the features used by the classifier
correspond to information that human reviewers also use.
The following are some of the most predictive features in
the model:

• Undergraduate GPA. Higher values are better, and a B+
average or lower makes a student very unlikely to be ad-
mitted. (Graduate GPA, however, receives zero weight.)

• Institutions previously attended. The log odds of the
applicant’s last school is one of the model’s highest-
weighted features. Students with very high undergraduate
GPAs at elite universities also receive a boost from the
model.

• GRE quantitative score. Higher scores are better; < 80
percentile makes a student very unlikely to be admitted.

• GRE verbal score. A high verbal score (≥ 80 percentile)
is better, but only if the applicant also has a high quan-
titative score. (Otherwise, the verbal score appears to be
irrelevant.)

• Research area. Students applying to study machine learn-
ing or artificial intelligence/robotics are less likely to be
admitted. This is because UTCS receives many well-
qualified applicants in these areas.

• Letters of recommendation (LSA features). Experiments
indicate that letters containing terms such as “best”,
“award”, “research”, “PhD”, etc. are predictive of admis-
sion, while letters containing “good”, “class”, “program-
ming”, “technology”, etc. are predictive of rejection. In
part, this pattern reflects the faculty’s preference for stu-
dents with strong research potential over technical ability.
In contrast, as mentioned above, the statement of purpose
was deemed non-predictive by the model.

Another interesting finding is that the applicant’s gender,
ethnicity, and national origin receive zero weight when pro-
vided as features to the model. This result indicates that
UTCS admissions decisions are based on academic merit.

6 Discussion
Results from the 2013 admissions season demonstrate that
GRADE can predict which students will be admitted to or
rejected from the UTCS PhD program with reasonable accu-
racy and that the admission probabilities can be used to es-
timate of the scores of human reviewers. Most importantly,



GRADE’s predictions can be used to make the review pro-
cess much more efficient, while still allowing human review-
ers to be in charge of all admissions decisions.

Although GRADE works well as it is, its performance is
likely to improve over time. One reason is that the amount
of labeled data available to train the system will grow ev-
ery year as the admissions committee evaluates new pools
of PhD applicants. Future versions of the system may also
be able to utilize information on applicants’ publications,
awards, and fellowships, which would likely improve the
quality of predictions. Finally, other gains may be had by us-
ing more sophisticated techniques in some modeling steps,
for example by using probabilistic topic models instead of
LSA to analyze recommendation letters.

As GRADE improves, its role in the review process may
be expanded commensurately; for example, future commit-
tees should be able to assign a larger proportion of files to
be checked instead of given full reviews. However, because
the review process is inherently noisy, neither GRADE nor
any other system will ever be able to perfectly predict the
decisions of a human committee. Thus, GRADE’s role sup-
porting human reviewers is appropriate for the foreseeable
future.

7 Development & Maintenance
GRADE was developed by the first author with technical
assistance from UTCS staff over the 2011-2012 academic
year. Financial support was provided in the form of a two-
semester graduate research assistantship. The system can be
maintained and extended by a UTCS graduate student with
a part-time appointment. Operationally, the system requires
minimal human interaction to run, and can be used by UTCS
staff as part of their regular duties.

GRADE has minimal software and hardware dependen-
cies. It is implemented in Python with the pandas and scikit-
learn packages, which are open-source and freely available.
The system runs on ordinary desktop hardware, requiring
only a single CPU and ≈ 200 MB of memory and disk
space.

8 Conclusion
This paper describes GRADE, a system that uses statistical
machine learning to scale graduate admissions to large ap-
plicant pools where a traditional review process would be
infeasible. GRADE allows reviewers to identify very high-
and low-scoring applicants quickly and reduces the amount
of time required to review each application. While all ad-
mission decisions are ultimately made by human review-
ers, GRADE reduces the total time spent reviewing files by
at least 74% compared to a traditional review process, and
makes it possible to complete reviews with limited resources
without sacrificing quality.
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