On the Semantics of Gringo

Amelia Harrison, Vladimir Lifschitz, and Fangkai Yang
University of Texas

Abstract

Input languages of answer set solvers are based on the mathematically simple concept of a stable model. But many useful constructs available in these languages, including local variables, conditional literals, and aggregates, cannot be easily explained in terms of stable models in the sense of the original definition of this concept and its straightforward generalizations. Manuals written by designers of answer set solvers usually explain such constructs using examples and informal comments that appeal to the user’s intuition, without references to any precise semantics. We propose to approach the problem of defining the semantics of GRINGO programs by translating them into the language of infinitary propositional formulas. This semantics allows us to study equivalent transformations of GRINGO programs using natural deduction in infinitary propositional logic.

1 Introduction

In this note, Gringo is the name of the input language of the grounder GRINGO,\(^1\) which is used as the front end in many answer set programming systems. Several releases of GRINGO have been made public, and more may be coming in the future; accordingly, we can distinguish between several “dialects” of the language Gringo. We concentrate here on Version 4, released in March of 2013. (It differs from Version 3, described in the User’s Guide dated October 4, 2010,\(^2\) in several ways, including the approach to aggregates—it is modified as proposed by the ASP Standardization Working Group.\(^3\))

The basis of Gringo is the language of logic programs with negation as failure, with the syntax and semantics defined in [Gelfond and Lifschitz, 1988]. Our goal

\(^1\)http://potassco.sourceforge.net/.
\(^2\)The User’s Guide can be downloaded from the Potassco website (Footnote 1). It is posted also at http://www.cs.utexas.edu/users/vl/teaching/lbai/clingo_guide.pdf.
\(^3\)https://www.mat.unical.it/aspcomp2013/ASPStandardization.
here is to extend that semantics to a larger subset of Gringo. Specifically, we would like to cover arithmetical functions and comparisons, conditions, and aggregates.\(^4\)

Our proposal is based on the informal and sometimes incomplete description of the language in the *User’s Guide*, on the discussion of ASP programming constructs in [Gebser et al., 2012], on experiments with GRINGO, and on the clarifications provided in response to our questions by its designers.

The proposed semantics uses a translation from Gringo into the language of infinitary propositional formulas—propositional formulas with infinitely long conjunctions and disjunctions. Including infinitary formulas is essential, as we will see, when conditions or aggregates use variables ranging over infinite sets (for instance, over integers). The definition of a stable model for infinitary propositional formulas, given in [Truszczynski, 2012], is a straightforward generalization of the stable model semantics of propositional theories from [Ferraris, 2005].

The process of converting Gringo programs into infinitary propositional formulas defined in this note uses substitutions to eliminate variables. This form of grounding is quite different, of course, from the process of intelligent instantiation implemented in GRINGO and other grounders. Mathematically, it is much simpler than intelligent instantiation; as a computational procedure, it is much less efficient, not to mention the fact that sometimes it produces infinite objects. Like grounding in the original definition of a stable model [Gelfond and Lifschitz, 1988], it is modular, in the sense that it applies to the program rule by rule, and it is applicable even if the program is not safe. From this perspective, GRINGO’s safety requirement is an implementation restriction.

Instead of infinitary propositional formulas, we could have used first-order formulas with generalized quantifiers.\(^5\) The advantage of propositional formulas as the target language is that properties of these formulas, and of their stable models, are better understood. We may be able to prove, for instance, that two Gringo programs have the same stable models by observing that the corresponding infinitary formulas are equivalent in one of the natural deduction systems discussed in [Harrison et al., 2013]. We give here several examples of reasoning about Gringo programs based on this idea.

Our description of the syntax of Gringo disregards some of the features re-

\(^4\)The subset of Gringo discussed in this note includes also constraints, disjunctive rules, and choice rules, treated along the lines of [Gelfond and Lifschitz, 1991] and [Ferraris and Lifschitz, 2005]. The first of these papers introduces also “classical” (or “strong”) negation—a useful feature that we do not include. (Extending our semantics of Gringo to programs with classical negation is straightforward, using the process of eliminating classical negation in favor of additional atoms described in [Gelfond and Lifschitz, 1991, Section 4].)

\(^5\)Stable models of formulas with generalized quantifiers are defined by Lee and Meng [2012a, 2012b, 2012c].
lated to representing programs as strings of ASCII characters, such as using :=
to separate the head from the body, using semicolons, rather than parentheses, to
indicate the boundaries of a conditional literal, and representing falsity (which we
denote here by ⊥) as \texttt{false}. Since the subset of Gringo discussed in this note
does not include assignments, we can disregard also the requirement that equality
be represented by two characters \texttt{==}.

2 Syntax

We begin with a signature σ in the sense of first-order logic that includes, among others,

(i) numerals—object constants representing all integers,

(ii) arithmetical functions—binary function constants $+$, $-$, \times,

(iii) comparisons—binary predicate constants $<$, $>$, \leq, \geq.

We will identify numerals with the corresponding elements of the set \mathbb{Z} of integers.
Object, function, and predicate symbols not listed under (i)–(iii) will be called
\textit{symbolic}. A term is \textit{arithmetical} if it does not contain symbolic object or func-
tion constants. A ground term is \textit{precomputed} if it does not contain arithmetical
functions.

We assume that in addition to the signature, a set of symbols called \textit{aggregate}
\textit{names} is specified, and that for each aggregate name α a function $\hat{\alpha}$ from sets of
tuples of precomputed terms to $\mathbb{Z} \cup \{\infty, -\infty\}$ is given—the function \textit{denoted}
by α.

\textbf{Examples.} The functions denoted by the aggregate names \textit{card}, \textit{max}, and \textit{sum}
are defined as follows. For any set T of tuples of precomputed terms,

\textbullet{} $\tilde{\text{card}}(T)$ is the cardinality of T if T is finite, and ∞ otherwise;

\textbullet{} $\tilde{\text{max}}(T)$ is the least upper bound of the set of the integers t_1 over all tuples
$(t_1, \ldots, t_m) \in T$ such that t_1 is an integer;

\textbullet{} $\tilde{\text{sum}}(T)$ is the sum of the integers t_1 over all tuples $(t_1, \ldots, t_m) \in T$ such
that t_1 is a positive integer if there are finitely many such tuples, and ∞
otherwise.\footnote{To allow negative numbers in this example, we would have to define summation for a set
that contains both infinitely many positive numbers and infinitely many negative numbers. For
instance, we can define the sum to be 0 in this case. Admittedly, this is somewhat unnatural.}
A literal is an expression of one of the forms

\[p(t_1, \ldots, t_k), \ t_1 = t_2, \ \text{not} \ p(t_1, \ldots, t_k), \ \text{not} \ (t_1 = t_2) \]

where \(p \) is a symbolic predicate constant of arity \(k \), and each \(t_i \) is a term, or

\[t_1 < t_2, \ \text{not} \ (t_1 < t_2) \]

where \(< \) is a comparison, and \(t_1, t_2 \) are arithmetical terms. A conditional literal is an expression of the form \(H : L \), where \(H \) is a literal or the symbol \(\bot \), and \(L \) is a list of literals, possibly empty. The members of \(L \) will be called conditions. If \(L \) is empty then we will drop the colon after \(H \), so that every literal can be viewed as a conditional literal.

Example. If available and person are unary predicate symbols then

\[\text{available}(X) : \text{person}(X) \]

and

\[\bot : (\text{person}(X), \text{not available}(X)) \]

are conditional literals.

An aggregate expression is an expression of the form

\[\alpha \{ \mathbf{t} : \mathbf{L} \} < s \]

where \(\alpha \) is an aggregate name, \(\mathbf{t} \) is a list of terms, \(\mathbf{L} \) is a list of literals, \(< \) is a comparison or the symbol \(= \), and \(s \) is an arithmetical term.

Example. If enroll is a unary predicate symbol and hours is a binary predicate symbol then

\[\text{sum}\{H, C : \text{enroll}(C), \text{hours}(H, C)\} = N \]

is an aggregate expression.

A rule is an expression of the form

\[H_1 | \cdots | H_m \leftarrow B_1, \ldots, B_n \] (1)

\((m, n \geq 0)\), where each \(H_i \) is a conditional literal, and each \(B_i \) is a conditional literal or an aggregate expression. A program is a set of rules.

If \(p \) is a symbolic predicate constant of arity \(k \), and \(\mathbf{t} \) is a \(k \)-tuple of terms, then

\[\{ p(\mathbf{t}) \} \leftarrow B_1, \ldots, B_n \]
is shorthand for
\[p(t) \mid \text{not } p(t) \leftarrow B_1, \ldots, B_n. \]

Example. For any positive integer \(n \),
\[
\{ p(i) \} \leftarrow p(X), p(Y), p(X+Y) \quad (i = 1, \ldots, n),
\]
is a program.

3 **Semantics**

We will define the semantics of Gringo using a syntactic transformation \(\tau \). It converts Gringo rules into infinitary propositional combinations of atoms of the form \(p(t) \), where \(p \) is a symbolic predicate constant, and \(t \) is a tuple of precomputed terms.\(^7\)

3.1 Semantics of Well-Formed Ground Literals

A term \(t \) is **well-formed** if it contains neither symbolic object constants nor symbolic function constants in the scope of arithmetical functions. For instance, all arithmetical terms and all precomputed terms are well-formed; \(c+2 \) is not well-formed. The definition of “well-formed” for literals, aggregate expressions, and so forth is the same.

For every well-formed ground term \(t \), by \([t]\) we denote the precomputed term obtained from \(t \) by evaluating all arithmetical functions, and similarly for tuples of terms. For instance, \([f(2+2)]\) is \(f(4) \).

The translation \(\tau L \) of a well-formed ground literal \(L \) is defined as follows:

- \(\tau p(t) \) is \(p([t]) \);
- \(\tau (t_1 \prec t_2) \), where \(\prec \) is the symbol = or a comparison, is \(\top \) if the relation \(\prec \) holds between \([t_1]\) and \([t_2]\), and \(\bot \) otherwise;
- \(\tau (\text{not } A) \) is \(\neg \tau A \).

For instance, \(\tau (\text{not } p(f(2+2))) \) is \(\neg p(f(4)) \), and \(\tau (2+2 = 4) \) is \(\top \).

Furthermore, \(\tau \bot \) stands for \(\bot \), and, for any list \(\mathbf{L} \) of ground literals, \(\tau \mathbf{L} \) is the conjunction of the formulas \(\tau L \) for all members \(L \) of \(\mathbf{L} \).

\(^7\)As in [Truszczynski, 2012], infinitary formulas are built from atoms and the falsity symbol \(\bot \) by forming (i) implications and (ii) conjunctions and disjunctions of arbitrary sets of formulas. We treat \(\neg F \) as shorthand for \(F \rightarrow \bot \), and \(\top \) stands for \(\bot \rightarrow \bot \).
3.2 Global Variables

About a variable we say that it is global

- in a conditional literal $H : L$, if it occurs in H but does not occur in L;
- in an aggregate expression $\alpha\{t : L\} < s$, if it occurs in the term s;
- in a rule (1), if it is global in at least one of the expressions H_i, B_i.

For instance, the head of the rule
\[\text{total hours}(N) \leftarrow \text{sum}\{H, C : \text{enroll}(C), \text{hours}(H, C)\} = N \]

is a literal with the global variable N, and its body is an aggregate expression with the global variable N. Consequently N is global in the rule as well.

A conditional literal, an aggregate expression, or a rule is closed if it has no global variables. An instance of a rule R is any well-formed closed rule that can be obtained from R by substituting precomputed terms for global variables. For instance,
\[\text{total hours}(6) \leftarrow \text{sum}\{H, C : \text{enroll}(C), \text{hours}(H, C)\} = 6 \]

is an instance of rule (3). It is clear that if a rule is not well-formed then it has no instances.

3.3 Semantics of Closed Conditional Literals

If t is a term, x is a tuple of distinct variables, and r is a tuple of terms of the same length as x, then the term obtained from t by substituting r for x will be denoted by t^x_r. Similar notation will be used for the result of substituting r for x in expressions of other kinds, such as literals and lists of literals.

The result of applying τ to a closed conditional literal $H : L$ is the conjunction of the formulas
\[\tau(L^x_r) \rightarrow \tau(H^x_r) \]

where x is the list of variables occurring in $H : L$, over all tuples r of precomputed terms of the same length as x such that both L^x_r and H^x_r are well-formed. For instance,
\[\tau(\text{available}(X) : \text{person}(X)) \]

is the conjunction of the formulas $\text{person}(r) \rightarrow \text{available}(r)$ over all precomputed terms r;
\[\tau(\bot : p(2 \times X)) \]
is the conjunction of the formulas \(-p(2 \times i)\) over all numerals \(i\).

When a conditional literal occurs in the head of a rule, we will translate it in a different way. By \(\tau_h(H : L)\) we denote the disjunction of the formulas

\[\tau(L_x^r) \land \tau(H_x^r) \]

where \(x\) and \(r\) are as above. For instance,

\[\tau_h(\text{available}(X) : \text{person}(X)) \]

is the disjunction of the formulas \(\text{person}(r) \land \text{available}(r)\) over all precomputed terms \(r\).

3.4 Semantics of Closed Aggregate Expressions

In this section, the semantics of ground aggregates proposed in [Ferraris, 2005, Section 4.1] is adapted to closed aggregate expressions.

Let \(E\) be a closed aggregate expression \(\alpha\{t : L\} \prec s\), and let \(x\) be the list of variables occurring in \(E\). A tuple \(r\) of precomputed terms of the same length as \(x\) is admissible (w.r.t. \(E\)) if both \(t^x_x r\) and \(L^x_x r\) are well-formed. About a set \(\Delta\) of admissible tuples we say that it justifies \(E\) if the relation \(\prec\) holds between \(\hat{\alpha}(\{t^x_x r : r \in \Delta\})\) and \([s]\).

For instance, consider the aggregate expression

\[\text{sum}\{H, C : \text{enroll}(C), \text{hours}(H, C)\} = 6. \] (4)

In this case, admissible tuples are arbitrary pairs of precomputed terms. The set \(\{(3, \text{cs101}), (3, \text{cs102})\}\) justifies (4), because

\[\sum_{(\text{c}, \text{cs101}) \in \{(3, \text{cs101}), (3, \text{cs102})\}} \text{enroll}(\text{c}) \land \text{hours}(\text{H}, \text{C}) = 3 + 3 = 6. \]

More generally, a set \(\Delta\) of pairs of precomputed terms justifies (4) whenever \(\Delta\) contains finitely many pairs \((h, c)\) in which \(h\) is a positive integer, and the sum of the integers \(h\) over all these pairs is 6.

We define \(\tau E\) as the conjunction of the implications

\[\bigwedge_{r \in \Delta} \tau(L_x^r) \rightarrow \bigvee_{r \in A \setminus \Delta} \tau(L_x^r) \] (5)

over all sets \(\Delta\) of admissible tuples that do not justify \(E\), where \(A\) is the set of all admissible tuples. For instance, if \(E\) is (4) then the conjunctive terms of \(\tau E\) are the formulas

\[\bigwedge_{(h, c) \in \Delta} (\text{enroll}(c) \land \text{hours}(h, c)) \rightarrow \bigvee_{(h, c) \notin \Delta} (\text{enroll}(c) \land \text{hours}(h, c)). \]

The conjunctive term corresponding to \(\{(3, \text{cs101})\}\) as \(\Delta\) says: if I am enrolled in CS101 for 3 hours then I am enrolled in at least one other course.
3.5 Semantics of Rules and Programs

For any rule R, τR stands for the conjunction of the formulas

$$\tau B_1 \land \cdots \land \tau B_n \rightarrow \tau_h H_1 \lor \cdots \lor \tau_h H_m$$

for all instances (1) of R. A stable model of a program Π is a stable model, in the sense of [Truszczynski, 2012], of the set consisting of the formulas τR for all rules R of Π.

Consider, for instance, the rules of program (2). If R is the rule $\{p(i)\}$ then τR is

$$p(i) \lor \neg p(i)$$

($i = 1, \ldots, n$). If R is the rule

$$\leftarrow p(X), p(Y), p(X+Y)$$

then the instances of R are rules of the form

$$\leftarrow p(i), p(j), p(i+j)$$

for all numerals i, j. (Substituting precomputed ground terms other than numerals would produce a rule that is not well formed.) Consequently τR is in this case the infinite conjunction

$$\bigwedge_{i, j, k \in \mathbb{Z}} \neg (p(i) \land p(j) \land p(k)).$$

(7)

The stable models of program (2) are the stable models of formulas (6), (7), that is, sets of the form $\{p(i) : i \in S\}$ for all sum-free subsets S of $\{1, \ldots, n\}$.

4 Reasoning about Gringo Programs

In this section we give examples of reasoning about Gringo programs on the basis of the semantics defined above. These examples use the results of [Harrison et al., 2013], and we assume here that the reader is familiar with that paper.

4.1 Simplifying a Rule from Example 3.7 of User’s Guide

The program in Example 3.7 of User’s Guide (see Footnote 2) contains the rule

$$\text{weekdays} \leftarrow \text{day}(X) : (\text{day}(X), \text{not weekend}(X)).$$

(8)

\footnote{To be precise, the syntax of conditional literals in User’s Guide is somewhat different—it corresponds to an earlier version of GRINGO.}
Replacing this rule with the fact \textit{weekdays} within any program will not affect the
set of stable models. Indeed, the result of applying translation τ to (8) is the
formula
\[\bigwedge_r (\text{day}(r) \land \neg \text{weekend}(r) \rightarrow \text{day}(r)) \rightarrow \text{weekdays}, \] (9)

where the conjunction extends over all precomputed terms r. The formula
\[\text{day}(r) \land \neg \text{weekend}(r) \rightarrow \text{day}(r) \]
is intuitionistically provable. By the replacement property of the basic system of
natural deduction from [Harrison et al., 2013], it follows that (9) is equivalent to
\textit{weekdays} in the basic system. By the main theorem of [Harrison et al., 2013], it
follows that replacing (9) with the atom \textit{weekdays} within any set of formulas does
not affect the set of stable models.

\section*{4.2 Simplifying the Sorting Rule}

The rule
\[
\text{order}(X,Y) \leftarrow p(X), p(Y), X < Y, \text{not } p(Z) : (p(Z), X < Z, Z < Y) \tag{10}
\]
can be used for sorting.\footnote{This rule was communicated to us by Roland Kaminski on October 21, 2012.} It can be replaced by either of the following two simpler
rules within any program without changing that program’s stable models.

\[
\text{order}(X,Y) \leftarrow p(X), p(Y), X < Y, \perp : (p(Z), X < Z, Z < Y) \tag{11}
\]

\[
\text{order}(X,Y) \leftarrow p(X), p(Y), X < Y, \text{not } p(Z) : (X < Z, Z < Y) \tag{12}
\]

Let’s prove this claim for rule (11). By the main theorem of [Harrison et al.,
2013] it is sufficient to show that the result of applying τ to (10) is equivalent in
the basic system to the result of applying τ to (11). The instances of (10) are the
rules
\[
\text{order}(i,j) \leftarrow p(i), p(j), i < j, \text{not } p(Z) : (p(Z), i < Z, Z < j),
\]

and the instances of (11) are the rules
\[
\text{order}(i,j) \leftarrow p(i), p(j), i < j, \perp : (p(Z), i < Z, Z < j)
\]

where i and j are arbitrary numerals. The result of applying τ to (10) is the
conjunction of the formulas
\[p(i) \land p(j) \land i < j \land \bigwedge_k (\neg p(k) \land i < k \land k < j \rightarrow p(k)) \rightarrow \text{order}(i,j) \tag{13} \]
for all numerals i, j. The result of applying τ to (11) is the conjunction of the formulas

$$p(i) \land p(j) \land i < j \land \bigwedge_k (\neg p(k) \land i < k \land k < j \rightarrow \bot) \rightarrow order(i, j).$$

(14)

By the replacement property of the basic system, it is sufficient to observe that

$$p(k) \land i < k \land k < j \rightarrow \neg p(k)$$

is intuitionistically equivalent to

$$p(k) \land i < k \land k < j \rightarrow \bot.$$

The proof for rule (12) is similar. Rule (11), like rule (10), is safe; rule (12) is not.

4.3 Eliminating Choice in Favor of Conditional Literals

Replacing the rule

$$\{p(X)\} \leftarrow q(X)$$

(15)

with

$$p(X) \leftarrow q(X), \bot : not \ p(X)$$

(16)

within any program will not affect the set of stable models. Indeed, the result of applying translation τ to (15) is

$$\bigwedge_r (q(r) \rightarrow p(r) \lor \neg p(r))$$

(17)

where the conjunction extends over all precomputed terms r, and the result of applying τ to (16) is

$$\bigwedge_r (q(r) \land \neg \neg p(r) \rightarrow p(r)).$$

(18)

The implication from (17) is equivalent to the implication from (18) in the extension of intuitionistic logic obtained by adding the axiom schema

$$\neg F \lor \neg \neg F,$$

and consequently in the extended system presented in [Harrison et al., 2013, Section 7]. By the replacement property of the extended system, it follows that (17) is equivalent to (18) in the extended system as well.
4.4 Eliminating a Trivial Aggregate Expression

The rule

\[p(Y) \leftarrow \text{card}\{X,Y : q(X,Y)\} \geq 1 \quad (19) \]

says, informally speaking, that we can conclude \(p(Y) \) once we established that there exists at least one \(X \) such that \(q(X,Y) \). Replacing this rule with

\[p(Y) \leftarrow q(X,Y) \quad (20) \]

within any program will not affect the set of stable models.

To prove this claim, we need to calculate the result of applying \(\tau \) to rule (19). The instances of (19) are the rules

\[p(t) \leftarrow \text{card}\{X,t : q(X,t)\} \geq 1 \quad (21) \]

for all precomputed terms \(t \). Consider the aggregate expression \(E \) in the body of (21). Any precomputed term \(r \) is admissible w.r.t. \(E \). A set \(\Delta \) of precomputed terms justifies \(E \) if

\[\hat{\text{card}}(\{(r,t) : r \in \Delta\}) \geq 1, \]

that is to say, if \(\Delta \) is non-empty. Consequently \(\tau E \) consists of only one implication (5), with the empty \(\Delta \). The antecedent of this implication is the empty conjunction \(\top \), and its consequent is the disjunction \(\bigvee_u q(u,t) \) over all precomputed terms \(u \). Then the result of applying \(\tau \) to (19) is

\[\bigwedge_t \left(\bigvee_u q(u,t) \rightarrow p(t) \right). \quad (22) \]

On the other hand, the result of applying \(\tau \) to (20) is

\[\bigwedge_{t,u} (q(u,t) \rightarrow p(t)). \]

This formula is equivalent to (22) in the basic system [Harrison et al., 2013, Example 2].

4.5 Replacing an Aggregate Expression with a Conditional Literal

Informally speaking, the rule

\[q \leftarrow \text{card}\{X : p(X)\} = 0 \quad (23) \]
says that we can conclude q once we have established that the cardinality of the set \(\{ X : p(X) \} \) is 0; the rule

\[q \leftarrow \bot : p(X) \]

(24)
says that we can conclude q once we have established that $p(X)$ does not hold for any X. We’ll prove that replacing (23) with (24) within any program will not affect the set of stable models. To this end, we’ll show that the results of applying τ to (23) and (24) are equivalent to each other in the extended system from [Harrison et al., 2013, Section 7].

First, we’ll need to calculate the result of applying τ to rule (23). Consider the aggregate expression E in the body of (23). Any precomputed term r is admissible w.r.t. E. A set Δ of precomputed terms justifies E if

\[\hat{\text{card}}(\{ r : r \in \Delta \}) = 0, \]

that is to say, if Δ is empty. Consequently τE is the conjunction of the implications

\[\bigwedge_{r \in \Delta} p(r) \rightarrow \bigvee_{r \in A \setminus \Delta} p(r) \]

(25)

for all non-empty subsets Δ of the set A of precomputed terms. The result of applying τ to (23) is

\[\left(\bigwedge_{\Delta \subseteq A} \left(\bigwedge_{r \in \Delta} p(r) \rightarrow \bigvee_{r \in A \setminus \Delta} p(r) \right) \right) \rightarrow q. \]

(26)

The result of applying τ to (24), on the other hand, is

\[\left(\bigwedge_{r \in A} \neg p(r) \right) \rightarrow q. \]

(27)

The fact that the antecedents of (26) and (27) are equivalent to each other in the extended system can be established by essentially the same argument as in [Harrison et al., 2013, Example 7]. By the replacement property of the extended system, it follows that (26) is equivalent to (27) in the extended system as well.

5 Conclusion

GRINGO User’s Guide and the monograph [Gebser et al., 2012] explain the meaning of many programming constructs using examples and informal comments that
appeal to the user’s intuition, without references to any precise semantics. In the absence of such a semantics, it is impossible to put the study of some important issues on a firm foundation. This includes the correctness of ASP programs, grounders, solvers, and optimization methods, and also the relationship between input languages of different solvers (for instance, the equivalence of the semantics of aggregate expressions in Gringo to their semantics in the ASP Core language and in the language proposed in [Gelfond, 2002] under the assumption that aggregates are used nonrecursively).

In this note we approached the problem of defining the semantics of Gringo by reducing Gringo programs to infinitary propositional formulas. We argued that this approach to semantics may allow us to study equivalent transformations of programs using natural deduction in infinitary propositional logic.

Acknowledgements

Many thanks to Roland Kaminski and Torsten Schaub for helping us understand the input language of GRINGO. Roland, Michael Gelfond, Yuliya Lierler, and Joohyung Lee provided valuable comments on drafts of this note.

References

\(^{10}\)http://www.cs.utexas.edu/users/vl/papers/etinf.pdf