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Abstract SME applications. _
Transfer learning concerns applying knowledge learned in We recently proposed a value-function-based approach to
one task (the source) to improve learning another relatdd ta transfer in reinforcement learning and demonstrated its ef

(the target). In this paper, we use structure mapping, a psy-  fectiveness (Taylor, Stone, & Liu, 2005). This approactsuse
chological and computational theory about analogy making, g transfer functional to transform the learned state-actio

to find mappings between the source and target tasks and thus  y|ye function from the source task to a state-action value
construct the transfer functional automatically. Our stinge function for the target task. However the transfer function
mapping algorithm is a specialized and optimized version of is handcoded, based on a handcoded mapping of states and

the structure mapping engine and uses heuristic searchdto fin .
the best maximal mapping. The algorithm takes as input the actions between the source and the target tasks. As an app-

source and target task specifications represented asatjvalit plication of the optimized SME for QDBNs, we generate
dynamic Bayes networks, which do not need probability in- the mapping of states and actions and thus the transfer func-

formation. We apply this method to the Keepaway task from tional automatically, using domain knowledge represented
RoboCup simulated soccer and compare the result from au- as QDBNSs.

tomated transfer to that from handcoded transfer. Prior work considering transfer using DBN models
. (Guestriret al,, 2003a; Mausam & Weld, 2003) assumes that
Introduction the source task is a planning problem represented as DBNs

Transfer learning concerns applying knowledge learned in (thus with probabilities). We only requre a weaker model
one task (the source) to improve learning another related and consider source tasks that are reinforcement learning
task (the target). Human learning greatly benefits from problems. o ] ]

transfer. Feasible transfer often benefits from knowledge =~ The main contribution of this paper is to use structure
about the structures of the tasks. Such knowledge helps mapping to find similarities between the source and target
identifying similarities among tasks and suggests where to tasks based on domain knowledge about these tasks, in the
transfer from and what to transfer. In this paper, we dis- form of QDBNs in particular, and to automatically construct
cuss how such knowledge helps transfer in reinforcement mappings of state variables and actions for transfer.
learning (RL) by using structure mapping to find similastie P

Structure mapping is a psychological theory about analogy Value-Function-Based Tr an,Sfer

and similarities (Gentner, 1983) and the structure mapping We recently developed the value-function-based transfer
engine (SME) is the algorithmic implementation of the the- Methodology for transfer in reinforcement learning (Taylo
ory (Falkenhainer, Forbus, & Gentner, 1989). SME takes as Stone, & Liu, 2005). The methodology can transform the
input a source and a target representated symbollically and State-action value function of the source task to the target
outputs a similarity score and a mapping between source task with different state and action spaces, despite tte fac
entities and target entities. To apply structure mapping to that value functions are tightly coupled to the state and ac-
transfer in RL, we need a symbolic representation of the RL tion spaces by definition. We analyze this approach and pro-
tasks, namely, the state space, the action space, and the dyPOSe & refined framework for value-function-based transfer
namics (how actions change states). To this end, we adopt aWe start by reviewing some concepts and assumptions of
qualitative version of dynamic Bayes networks (DBNs). Dy- temporal-difference reforcement learning (Sutton & Barto
namic Bayes networks are shown to be an effective represen-1998). Reinforcement learning problems are often formu-
tation for MDP-based probabilistic planning and reinforce  lated as Markov decision processes (MDPs) with unknown
ment learning (Boutilier, Dean, & Hanks, 1999; Guestrin Parameters. The system of interest has a set of states of the
et al, 2003b: Kearns & Koller, 1999: Sallans & Hinton, environmentS, and a set of actions the agent can take,
2004). Although the probabilities in DBNs are probably too When the agent takes actione A in states € 5, the sys-
problem-specific to be relevent for transfer, the dependen- t€m transitions into state € S with probability P(s |S/, a),

cies represented as links are useful information. The guali and the agent receives finite real-valued rewdeda, s’) as

tive DBN (QDBN) representation thus ignores probabilities @ function of the transition. In reinforcement learninglpro
but uses different types of links for different types of depe  lems, the agent typically knows and 4, and can sense its
dencies. In this paper, we specialize and optimize SME to current states, but does not know’ norr.

work with QDBNs efficiently using heuristic search to find A policy = : S — A is a mapping from states to ac-
the best maximal mapping, since QDBNs typically involve tions. A temporal-difference reinforcement learning noeth

at least an order of magnitude more entities than previous 9radually improves a policy until it is optimal, based on
the agent’s experience. Value-function-based reinfosrgm

Copyright © 2006, American Association for Artificial Intelli- learning methods implicitly maintain the current policy in
gence (www.aaai.org). All rights reserved. the form of a state-action value function, og-dunction. A



g-functiong : S x A — R maps from state-action pairs to
real numbers. The valugs, a) indicates how good it is to
take actiona in states. The g-function implicitly defines

a policy 77 such thatr?(s) = arg max,c 4 q(s,a). More
precisely, the value(s, a) estimates the expected total (dis-
counted or undiscounted) reward if the agent takes action
in states then follows the implicit policy. The reinforcement
learning agent improves the current policy by updating the
g-function.

Consider the source task with statesnd actionsd and
the target task with states and actionsA, where- distin-
guishes the source from the target. The value-functioedbas
transfer method (Taylor, Stone, & Liu, 2005) can deal with
the general cass # S and/orA # A by using a transfer
functional p that maps the-function of the source prob-
lem, g, to ag-function of the target probleng,= p(q), pro-

technical result of the paper is that we can find the mappings
px andp 4 automatically using structure mapping given task
models represented as QDBNSs.

Qualitative Dynamic Bayes Networ ks

We consider problems whose state spaces have a represen-
tation with a finite number of variables and whose action
spaces consist of a finite number of classes of actions (al-
though each class can have an infinite number of actions or
be a continuous action space). In such problems, a state
is a tuple of valuess = (z1,...,2), Wherez; € X;

forj = 1,...,m, and X; are sets of values of the vari-
ables. An action often affects only a small number of vari-
ables, and the values of other variables remain unchanged
or change following a default dynamics not affected by the
action. For example, for an office robot whose responsi-

vided that the rewards in both problems have related mean- bilities include delivering mail and coffee, the variabtes

ings. The transfer functional is defined based on corre-

its position, whether it has the mail and/or coffee, to whom

spondences of states and actions in the source and target© deliver, and its power level. Moving around changes its

tasks, with the intuition that corresponding state-actiains
have values similar to each other. The transfer functipnal
is specific to the source-target problems pair and specific to
the representation gffunctions. As demonstrated by (Tay-
lor, Stone, & Liu, 2005), the functional can be handcoded

position and power level but not what it has nor to whom
to deliver, and picking up mail does not change its posi-
tion. Dynamic Bayes networks (Dean & Kanazawa, 1989;
Boutilier, Dean, & Hanks, 1999) capture such phenomena
by using a two-tiered Bayes network to represent an action,

based on human understanding of the prob|ems and the rep-Where the first tier nodes indicate values of variables at the

resentation.
When the handcoded transfer functional is not read-

current time step (before the action is executed) and the sec
ond tier nodes indicate values of variables at the next time

ily available, especially for cross-domain transfer where step (after the action is executed). Links in the network in-
straightfoward correspondences of states and actionstdo no dicate dependencies among the values of variables. A link
exist, it is desirable to construct the functional autocsty is diachronic if each node belongs to different tiers and syn
based on know|edge about the tasks. This paper introducesCthﬂlC if both nodes are in the same tier. The transition

one approach to doing so by using (1) source and target task Probabilities,P(s’|s, ), if known, are represented as con-
models represented as qualitative DBNs and (2) a structure ditional probability tables. For reinforcement learningip-

mapping procedure specialized and optimized for QDBNSs.

lems, the probabilities are unknown. However, the graph-

To do this, we assume that the state has a representationical structure of the network captures important qualitati

based on a vector of state variables (or variables for short)
that is,s = (x1,...,z.,). Theg-functions are represented
using variables, that ig(s,a) = g(x1, ..., Zm,a). Inthis

way, correspondences of states are reduced to corresponDBNs as an enhancement
dences of variables. For the purpose of transfer, we define t0 the underlying graphical
correspondences of variables and actions between theesourc Structure of DBNs by assign-

and target tasks to be a mappipg from target task vari-
ables to source task variables and a mappindrom tar-

get task actions to source task actions. They are mappingsin any convenient way to
from the target task to the source task since the target task capture important qualitative =~ @ @

is typically more difficult and has more variables and ac-
tions, and thus one entity (variable or action) in the source
task may correspond to several entities in the target task.
The transfer functional then is fully specified by mappings
px andp4, as well as a representation-related mapping
that transforms values of thefunctions at the representa-
tion level based omwx andp4. In fact, the work from
(Taylor, Stone, & Liu, 2005) follows this two-step model
of p: we first specify the mappingsx andp, which are
the same for the transfer problem, and then specify differ-
ent representation-specific mappings for different regres
tations we used, such as CMACs, RBFs, and neural net-
works.

We therefore assume that the representations gfor

properties of the problem, and can often be determined using
domain knowledge (Kearns & Koller, 1999).

We define qualitative cument  Next

Node Types
 Continuous

O Discrete

- - Link Types
ing types to nodes and links. | e
These types can be defined @~ D Decrease
i : ----+ Functional
. <...e No-change

(jifferences of the no_des andFigure 1. An example quali-
links, for example, to indicate i4tive DBN

whether a node has continu-

ous (the robot’s power level) or discrete values (to whom to
deliver), or to indicate types of dependencies such as no-
change, increasing/descreasing, deterministic (funatjo
changes. The QDBN representation is similar to qualitative
probabilisitic networks (Wellman, 1990) or causal netveork
(Pearl, 2000) in this aspect. An example QDBN is shown
in Figure 1 along with its node and link types, where the
next time step nodes are denoted with a prime. Generic
links simply indicate dependency. We also use generic links
when their types of dependency are unknown. A node can
also be generic for the same reason. A descrease link exists

functions are given for the source and target tasks and the only between nodes for the same variable at different time

representation-specific mappinpg; is known. The main

steps to indicate that the value decreases. A functional lin
indicates that the value of a node is a function of the values



of its parents. For example, there exists a functfosuch not only specify the missing parts of the orginal SME but
thatC’ = f(B’,C, D’). Ano-change link indicate a special  also optimizes existing steps for QDBNs. We therefore refer
dependency between nodes for the same variable such thatto it as the SME-QDBN method.

the value does not change. Note that with a slight abuse of Step 1: Generate Local Matches Entities in QDBNs are
notation, we useY; to denote (1) the variable, (2) the set yjariaples, actions, and links. We allow only variables to

oflvalues of the variable, and (3) nodes in QDBNS; (and match variables, actions to match actions, and links tolmatc
Xj) corresponding to the variable. Its meaning should be |inks. We also require that an entity can only match an en-
evident by context. tity of the same type or of the generic type. For example, a

A qualitative model of a reinforcement learning problem  decrease link can match another decrease link or a generic
consists of a set of QDBNSs, one for each action (or each Jink, but not a no-change link. In addition, a diachronidlin
class of actions). Actions can also have types like nodes matches only diachronic links and a synchronic link matches
and links. Since we ignore (or are ignorant of) probabgitie  only synchronic links. Note that a node is not considered an
this model is the same for all problems with the same set of entity for matching since it is only a replication of a vailiab

variables and with actions of the same type. It is often not we generate all possible pairwise local matches.
unreasonable to assume that we have the domain knowledge 1,0 |ocal mapsM, = (Ei, E\) and My = (E», Es)

to specify QDBNSs for the tasks at hand. are consistent ift 2, = E») < (E: = E»). In other words,
i SME enforces a 1-1 mapping of entities of the source and
) Structure Mapping for QDBNs _ target tasks. The set of inconsistent local matches, or the
With knowledge about the source and the target tasks in the conflict set, of a local match/, denoted ad/.Conflicts is
form of QDBNS, finding their similarities will help spec-  calculated after all local matches are generated.

ify px andp,, the mappings of variables and actions, for - gien 2: Generate Initial Global Mappings  Initial global
transfer. We do this using structure mapping. According mappings are formed based on relations that entities partic
to the structure mapping theory (Gentner, 1983), an analogy ipate in for their respective tasks. Since relations areress
should be based on a system of relations that hold in both tial for structure mapping, this step encodes constraiota f
the source and the target tasks. Entities are mapped basedhese domain-specific relations, in addition to the 1-1 con-
on their roles in these relations, instead of based on theirs  straints from step 1. For QDBNS, the central relation is that
face similarity such as names. The structure mapping engine & link belongs to an action and connects a pair of variables
(SME) is a general procedure for making analogies (Falken- (Which may be the same but at different time steps). Each
hainer, Forbus, & Gentner, 1989) and leaves several compo- INitial global mapping thus consists of a link match, an ac-

nents to be specified in particular applications. A (global) tion match, and one or two variable matches. For example, if

local matches. A local match/ — <E E) is a pair with a link A — B’ belongs to actio and A, B are variables in
oo . ' L the target task such that the diachronic lihk— B’ belongs
source entityly and a target entityr, a global mapping is

- . to actiona, then an initial global mapping is
a set of consistent (to be explained shortly) local matches, Ca e, a . . )
and a maximal global mapping is a global mapping where G= {(A — B, A= B),(A,A),(B,B),(a, a)},
no more local maiches can be added. The SME procedureyhere we annotate the links with actions. Such rela-
starts with local matches and gradually merges consistent jona| constraints will rule out global mappings such as
local matches into maximal global mappings. Each global S 4 e a g . h
mapping is assigned a score and we seek a maximal global {<A_>B A= D), (a, a1_>} w _ereal;éa. _ _
mapping with the highest score. The high-level steps of  For a global mapping=, its set of inconsistent local

SME are shown in Algorithm 1. matches, or local conflict set, is
Algorithm 1 Structure Mapping Engine G.IConflicts= | _J M.Conflicts
MeG
1: generate local matches and calculate the conflict set fdrleaal match; L . .
2: generate initial global mappings based on immediate oelatbf local matches; The set of a", initial gIObaI mappmgs IS denOted%s For
3: selectively merge global mappings with common structures; later convenience, we defll’@.V, G-A,_ andG.L to be
4: search for a maximal global mapping with the highest scoseguonly global the subset ofz that contains only variable matches, ac-

mappings resulting from Step 3;

tion matches, and link matches, respectively. Since they ar
The SME procedure specifies in detail how to check con- still global mappings, the notation such@s/.IConflictsis

sistency and merge global mappings, but does not specify well-defined. Since- is a 1-1 mapping, we can use the no-

how to form local matches and initial global mappings, nor - tationsG(E) to denote the matched target entity fand

how to calculate similarity scores. The original SME also G~1(E) to denote the matched source entityff
generates all possible maximal global mappings and then

evalutes them in step 4. This approach does not work for Step 3: Selectively M erge Some Global Mappings Con-
QDBNSs since QDBNSs typically consist of many more enti-  sistent global mappings can be merged into larger global
ties than representations used in previous SME application mappings, which indicate more similarities than smaller
and thus generating all mappings results in combinatorial ©nes. Two global mappings; andG; are consistent iff
explosion. We next present a specialized and optimized ver-  (G1 N Gs.IConflicts = @) A (G1.IConflictsN G = @).
sion of SME for task models represented as QDBNSs. Itdoes The merged global mapping is simply = G; U G5 and

its local conflict set isG.IConflicts = G,.IConflicts U

We slightly altered the description of SME to better suit our Gs./Conflicts.

presentation, but did not change how it works. We can form maximal global mappings directly usihg



A direct approach requires trying a factorial number of com-
binations, a prohibitive procedure. A more tractable way is

to use a guided search process in the space of all global map-

pings. However, the initial global mappings are too small
and do not have much information about their potential for
forming large global maps. Therefore the search essentiall
starts at random. To give the search a better starting po-
sition, we perform preliminary merges of the initial global
mappings as follows.

First, for all global mappingé&' € G, we calculate

G.Commons=
{G"€Go|G' #G,GNG + @, consistent(G, G }.
The setG.Commonscontains all consistent global map-

pings that share structures with. We also calculate the
global conflict set folG as

G.gConflicts= {G" € Go | ~consistent(G, G") }.
Based on this information, we use the recursive merge algo-
rithm shown in Algorithm 2.

Algorithm 2 Selectively merge initial global mappings

1l G — @
2: forall G € Go do
3: G1 < BasicMergeRecursive (G, G.Commons G );

G’ = BasicMergeRecursive(G, C, G)

if C = & then

return Checkedlnsert(G, G);
for all G’ € C do

G « BasicMergeRecursive (G U G’, (C \ {G}) \ G'gConlflicts G);
return G;
The merge starts with initial global mappings and uses
consistent global mappings in thelommonssets as can-
didates.BasicMergeRecursive does the main work. The
parametec is the set of candidates to be merged with
andg is used to collect all merged global mappings. We
record the result when no more global mapping can be

1:
2:
3:
4.
5:

merged, and recurse otherwise using a reduced candidate

set. CheckedlInsert is a modified insertion procedure that
avoids having two global mappings such that one contains

or equals to the other. The merge generates another set of

global mapping¥; .

Step 4: Search for Best Maximal Global Mapping We
start with the set of global mappings to find the maximal
global mapping with the highest similarity score, where a
higher score indicates greater similarity. The originalESM
strategy of generating all maximal global mappings is in-
tractable since the time complexity is factorial in the nemb
of global mappings ij;. We instead use a depth-first heur-
sitic search method to cope with the complexity. We first
describe how to calculate the similarity scores. Suppase th
the target task hasy variablesXy, X,..., X,, andn ac-
tionsay,as,...,a,. LetG,, be the restriction ofy onto
actiona; such that all members @f,,, are relevent ta;:

Ga, =GV U{(s,0 S 0) €GL|a=a},
wheree indicates “don’t care” values. We refer e, as an
action mapping since it concerns only one action in the targe
domain (also one action in the source domain). &Ggtbe
an action mapping and Iét, x, be the restriction of+, to
nodeX; such that all members @, x, are outgoing links
from nodeX; in the QDBN ofa (thus a set of diachronic
links):

Gax, =

J

{(.,Xi.> GG.L‘X:Xj}.

Similarly, IetGa,XJ/_ be the restriction of7,, to nodeX’ (thus

a set of synchronic links):
Gaxr = {(.7X’ LARps G.L‘X = X,}.
We refer toG, x; andGa,XJ/_ as node mappings. We define
the score of a global mapping as the sum of the scores of all
valid node mappings, and the score of a node mapping as the
ratio of the number of matched links to the number of total
links in the source and target QDBN while counting matched
links only once. Formally, lefz, be an action mapping @
andG, x be a node mapping @f,, and letO(X, a) denote
the set of outgoing links from nod& in the QDBN ofa.
We have
score(G) = Y, score(Glai))
score(Ga) = >_7L, (score(Ga[X;]) + score(G.[X;']))

1 ifOGY(X), G (a) =0(X,a) =2
score(Ga,x) x|

0(Ga* (X),G7(a))| + [0(X, a)| — |Ga,x|
The score of a node mapping is between zero and one. The
score is one if the source and target nodes match completely,
and the score is zero if no links are matched at all. The
score should satisfy an intuitive property of monotonicity
that is, if G C G’, thenscore(G) < score(G’). Note
thatif G C G’ thenG,, C G, foralli =1,...,n, and
if Go € G, thenG, x; C G;,Xj forallj = 1,...,m.
Therefore, to show that the property holds, it is sufficient
to show that it holds for node mappings. The number of
matched links cannot be greater than the number of outgoing
links of the corresponding nodes in the source or the target
tasks, that is,

|Ga.x| < [0(G(X),G'(a))] and|Ga,x| < |O(X, a)|.

Since forz,y > 0 with max(z,y) > 0, and forz, 2’ satis-
fying 0 < z < 2’ < min(z, y), it holds that

z z z

T+y—z  x+y—2 T x+y—2z"
the monotonicity property holds for node mappings, and
thus for global mappings.

To find the maximal global mapping with the best score,
we perform heuristic search in the space of all possible
global mappings. Since the search objective is maximimatio
and there are more choices earlier than later (since merging
reduces the possible number of global mappings to merge),
we choose to use a depth-first search strategy. Assume that
we can also calculate an upper bound of the score of a global
mapping. The search records the best score encountered
and uses the upper bounds to prune: if the upper bound is
lower than the current best score, we do not need to consider
further merging. The search procedure is shown in Algo-
rithm 3, wherescore™ is the upper bound of the score.

Algorithm 3 Depth-first search

1: return DfsRecursive(&, G1, 0);
best = DfsRecursive(G, C, bes}

L if C = @ then
if score(G) > bestthen
best— score(G);
recordG as the best maximal global mapping;
return bestScore
I foral G’ € Cdo
if score™ (G U G’) > bestthen
best«— DfsRecursive(G U G’, (C \ {G’}) \ G’.Conflicts, bes;
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Now we define the upper bound of the score of a global
mapping. First note that once the mapping of an action is
fixed, merging another global mapping cannot change this
mapping. Similarly merging does not change the mapping
of a variable either. Therefore for an existing node map-
ping G, x, the inverse mappings§—!(a) andG, ! (X) do
not change. The upper bound of a global mapping can again
be calculated by summing up the upper bounds of all node
mappings. Since the numbers of outgoing links are fixed
for the source and target nodes, the upper bound of an ex-
isting node mapping+, x is reached by considering all un-
matched outgoing links matched, except for two cases: (1) if
an outgoing link does not have a match to any outgoing link
in the other domain such that the match is consistent with the
global mapping and (2) if the numbers of remaining outgo-
ing links (not counting matched and inconsistent ones) are
different and such we can only use the smaller number. The

upperbounds for unmatched variables and actions are calcu-

lated similarly.

Constructing p Automatically
We now can find the mappingsy and p4 automatically

source variableX, if X does not appear i6/. Therefore,
we can put the automatically constructeg and p, to-
gether with the representation mappjngto form the trans-
fer functionalp. This approach is semi-automatic singg
is still specified by hand.

Application to Keepaway

Now we apply
this approach to the
Keepaway domain
and compare the auto-
matically  constructed
transfer functional
pauto 10 the handcoded
transfer functionappang
From (Taylor, Stone, &
Liu, 2005), Keepaway
is a subtask of RoboCup Figure 2: Variables for Keepaway
soccer and a publicly
available benchmark for reinforcement learning (Stone
et al, 2006), in which one team afyx keepers must try
to keep possession of the ball within a small rectangular

LCK\K;

LCK\Ty

given task models represented as QDBNSs. In fact, the SME- region, while another team afr takers try to take the
QDBN method does almost that, except that some target ac- ball away or force the ball out of the region. The keepers
tions and variables are not mapped due to the 1-1 constraintlearn how to keep the ball and the takers follow a fixed

of structure mapping. We fill this gap also using structure strategy. The transfer problem of focus is to transfer from
mapping. Since actions play a central role in reinforcement 3,5 Keepawa¥to 4v3 Keepaway.

learning tasks, we first consider. Suppose that the SME- For our purpose of exposition, we focus on the actions and
QDBN method produces a gﬁ)bal mappiag but & does variables of Keepaway. Further details on Keepaway can
not contain a mapping for a target actionWe findp.4(a), be found in (Stonet al, 2006) and the references therein.
the corresponding source action, using the score for an ac- The keeper with the ball, referred to &5, can choose from
tion mapping. For source actianand target actio, the Hold or Passk to teammates ;. There are 3 actions for 3v2
mapping for variables ofz, G.V, induces a mapping of  Keepaway and 4 for 4v3. The variables are distances and

links in a anda as follows: two links are mapped together if  angles based on the positions of the players and the center
they can form a local match (with consistent types) and their of the playing regiorCC' (see Figure 2):

head and tail nodes (variables) are mapped togeth@rlin o d(K;,C)fori=1,...,nk andd(Ty,C)forj =1,... nr;

This mapping of links together wite.V' forms an induced dK ’ K f ._2’ ' dd l{ T f ._71 o
action mapping, denoted &,;). Notice that if(a, a) € G, o d(Ey, Ki)fori=2, ..., nx andd(K, Ty)forj =1,...,ne;
thenG, (s = G,. We thus define o d(K:,T) =minj=i,...np d(Ksi, Ty) for i =2, ni; and

-----

o /K;KN\T = minj:L____ynT ZKZ‘K1TJ' fori = 2,... S, NK,

71 .
pa(a) = G (a), @ appears i, whereZ indicates angles rangin@°, 180°]. There are 13
arg max SCor €Gaja), Otherwise variables for 3v2 Keepaway and 19 for 4v3.

We specify QDBNs based on knowledge about soccer, the
takers’ strategy, and the behavior of other keepers’ ndt wit
the ball. Two of the closest take?§ andT, always move
toward the ball, and the remaining takers, if any, try to kloc
open pass lanes. Therefore Af, doesHold, K; does not
move,T; andT; will move towardskK directly, other keep-
ers try to stay open to a pass frdiii, and other takers move
to block pass lanes; and i, doesPassk, K, will move to-
wards the ball to receive if{; will not move until someone
blocks the pass land;; andT> now move towardd<;, di-
rectly, and the remaining players move to get open (keepers)
or to block pass (takers).

Let G be the global mapping “enhanced” py and induced
mapping of links.G is in fact not consistent under the 1-1
requirement of SME, but we can imagine the source task
has a shadow action (and QDBN) for each additional ap-
pearance of a source actionGh and then the 1-1 constraint

Is restored. Aftep, is defined, the case fary is defined
similarly. Since additional variables are more likely asso
ated with additional actions, we take into account all targe
actions when definingx. Unlike actions, a variable affects
all QDBNs of a task. We consider one QDBN at a time.

For source variabléX and target variableX, the induced

mapping Of_ links is the same as that fo[ actions ywth the ad- Unfortunately, we found that the current set of variables is
ditional variable match{X, X) added toG.V. LetG, v x; not convenient for specifying the QDBNS, since (1) the set
be the induced node mapping. We now can define the score of variables is not complete as they cannot completely de-

of mapping targetvariabl 0 source varable based on  (S/TING player posiion and (2) changes n posiions dause
pa _ We choose to add in some additional variables for the pur-
Z SCordG, %), pose of specifying QDBNSs only. These variables are (also

a€cA

see Figure 2)

where the definition of the score for a node mappingremains e £CKK;fori=2,...,nx and{CK,T;forj=1,...,nr;

the same. We then defingy (X) to be the maximizing mnd 2 takers. Similarly for 4v3.



o /K;K Tjfori=2,...,nxgandj =1,...,nr;and

e d(K;,T;)fori=2,...,nxgandj =1,...,nr,

where £ indicates directed angles ranging°,360°).
The players’ positions are completely specified mod-
ulo rotation aroundC and the set of variableX =
{d(K1,C),d(K1, K;), L{CK 1 K;,d(K1,T;), {CK T}

withi =2 ... . ng andj = 1, ..., np, IS complete. We
can useX instead of the original set of variables in learning
algorithms. We however decide not to do that in favor of
comparing directly with the handcoded transfer functipnal
which is defined for the original variables. Therefore, the
additional variables are hidden to the learning algorithm

and only the original ones are observable to the learning

agent. SinceX is complete, the original variables can be
determined usin&X based on elementary geometry.

Now we specify
QDBNs for Hold @G-
and Passk. First ...
considerHold. K; = e
does not move and
thus d(K,C) is
unchanged.T; and Hold
T, go toward K, )
direcﬂy, therefore Figure3: QDBNSs for 2vl Keepaway
£CK,Ty; and L{CK;T, do not change and(K,,7;) and
d(K;,Ty) decrease. The remaining players’ moves are

based on their relative positions and we also encode change

in the related variables in the QDBN. We omit the details
due to space limits. FdPassk, we consider the next time
step to be the point of time shortly after the ball is kicked.
Therefore, K; does not move after the pass &K, C)
is unchanged K; moves toward the ball to receive it, and
thus LC'K, K}, does not change but(K, K}) decrease.
T, andT> move towardsK; and thereforel( K, T7) and
d(Ky,T>) decreases. The remaining players move in the
same way as in the caseldbld and we encode them in the
QDBN the same way. For illustration purposes, Figure 3
shows interesting parts of the QDBNs in 2vl Keepaway
(dashed ovals indicate hidden variables), while the full
QDBNSs are too complex to be included.

We perform SME-QDBN on various sizes of Keepaway

up to 4v3 starting from 2v1. We consider distances and an-

gles as different and we also distinguish observable and hid

den variables. Thus we have four types of variables and only
variables of the same type match. We also have five types

of links: no-change, decrease, functional, minimum, and
generic. We show the similarity scores from SME-QDBN

in Table 1. To compare results for different target tasks, we

normalize the scores to be(il 1] by dividing them by2mn,
wherem is the number of variables andis the number of

Table 1: Similarity scores for Keepaway
[Sourcd| #var [ #link || 2v1]2v2]3v2]3v3[4v3|

2vl || 11(7) 26,26 1.00{0.63]0.26/0.17|0.09
2v2 || 16(9) 42,46 0.92/1.00/0.38(0.24{0.13
3v2 |(|25(13) 77,81,81 ||0.87|0.75/1.00/0.69|0.36
3v3 |[|32(15)| 124,124,124 ||0.76/0.69/0.88/1.00(0.51
4v3 ||43(19)|178,178,178,1780.74/0.67|0.79/0.88| 1.00,

the result containing observable variables is exactlydiness

as the handcoded one from (Taylor, Stone, & Liu, 2005). For

this reason, further experiments with Keepaway are not nec-
essary since the successful transfer results from thelg app

directly.

Conclusion

In this paper, we propose to use structure mapping to study
transfer in reinforcement learning. This is possible sinte
portant information about the domain can be captured using
qualitative DBNs. Structure mapping can then find similar-
ities based on QDBNSs and then mappings of state variables
and actions between the source and target tasks. Therefore
we can automate the construction of the transfer functional
for value-function-based transfer in reinforcement léagn
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