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Abstract

In the past few years, Multiagent Systems (MAS) has emerged as an active subfield of Artificial
Intelligence (Al). Because of the inherent complexity of MAS, there is much interest in using Machine
Learning (ML) techniques to help build multiagent systems. Roboticests a particularlgood domain
for studying MAS and Multiagent Learning. Our approach to using ML as a tool for buildioge®o
Server clients involves layering increasingly complex learned behaviors. In this article, we describe two
levels of learned behaviors. First, the clients learn a low-level individual skill that allows them to control
the ball effectively. Then, using this learned skill, they learn a higher-level skill that involves multiple
players. For both skills, we describe the learning method in detail and report on our extensive empirical
testing. We also verify empirically that the learned skills are applicable to game situations.

1 Introduction

In the past few years, Multiagent Systems (MAS) has emerged as an active subfield of Artificial Intelligence
(Al) [20]. Focussing on how Al agents’ behaviors can and do interact, MAS applies to a variety of
frameworks ranging from information agents to real robots. Because of the inherent complexity of MAS,
there is much interest in using Machine Learning (ML) techniques to help deal with this complexity [1, 26].

Robotic soccer is a particularly good domain for studying MAS. It has been gaining popularity in recent
years, with international competitions, namely RoboCup and MIROSOT, planned for the near future [22, 9].
Robotic soccer can be used as a standard testbed to evaluate different MAS techniques in a straightforward
manner: teams implemented with different techniques can play against each other.

The main goal of any testbed is to facilitate the trial and evaluation of ideas that have promise in the
real world. A wide variety of MAS issues can be studied in robotic soccer [20]. In this article, we focus on
the multiagent learning opportunities that arise in Nodasc8o Server [12]. The properties of simulated
robotic soccer that make it a good testbed for MAS include:
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as representing the official policies or endorsements, either expressed or implied, of the U. S. Government.



e Enough complexity to be realistic;
e Easy accessgility to researchers worldwide;

¢ Embodiment of most MAS issues, including [20];

Ability to support eactive or deliberative agents

Need for agents to model other agents

Need for agents to affect each other

Room for both cooperative and competitive agents

Possibility for stable or evolving agents

Need for resource management (stamina)
Need for social conventions

Opportunity for agents to fill different roles

— Support for communicating agents

— Opportunity to plan communicative acts

— Room for exploring commitment/decommitment strategies

e Straightforward evaluation;
e Good multiagent ML opportunities.

Our approach to using ML as a tool for building Soccer Server clients involves layering increasingly
complex learned behaviors. We call this approtjered learning Because of the complexity of the
domain, it is futile to try to learn intelligent behaviors straight from the primitives provided by the server.
Instead, we identified useful low-level skills that must be lealmefdremoving on to higher level strategies.

Using our own experience and insights to help the clients learn, we acted as human coaches do when they
teach young children how to play real soccer.

In this article, we describe two levels of learned behaviors. First, the clients learn a low-level individual
skill that allows them to control the ball effectively. Then, using this learned skill, they learn a higher-level,
more “social,” skill: one that involves multiple players. For both skills, we describe the learning method in
detail and report on our extensive empirical testing. Finally, we verify empirically that the learned skills are
applicable to a game-like situation.

Although several more layers are needed, the two learned behavior levels described below will allow us
to continue moving upward towards high-level strategy issues. Keeping in mind the many open research
issues in Multiagent Learning, we plan to use ML techniques at all stages to help the clients develop their
behaviors.

In Section 3, we describe our overall robotic soccer systems of which the strategic level is one part.
Section 3 presents some previous work that relates to this article. The RoboCup Soccer Server is described
in Section 4. Then, in the body of the paper, Sections 5— 7, we present two learned layers of behavior, verify
that they are useful in game situations, and discuss future work. Section 8 summarizes our layered learning
approach as presented in this article and concludes.



2 The Complete Robotic System

Though conducted in simulation, the work described in this article is intended to contribute to the high-level
reasoning aspect of our physical robotic system. The architecture of our system addresses the combination
of high-level and low-level reasoning by viewing the overall system as the conjunction of mini-robots, a
vision camera over-looking the playing field connected to a centralized interface computer, and several
clients as the minds of the mini-robot players. Figure 1 sketches the building blocks of the architecture.
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Figure 1. Our robotic soccer architecture as a distributed deliberative and reactive system.

Interface

Our architecture implements the overall robotic soccer system as a set of different platforms with
different processing features. The mini-robots perform the physical navigation actions, decode commands,
and can respond to positioning requests. Off-board computers perceive the environment through a vision
camera, perform the high-level decision making and send commands to the mini-robots. Communication
between the off-board computers and the robots in our current system is done by infrared radiation. The
complete system is fully autonomous consisting of the following processing cycle: (i) the vision system
perceives the dynamic environment, namely the positioning of the robots and the ball; (ii) the image is
processed and transferred to the host computer that makes the perception available to the client modules;
(iii) based on the perceived positioning of the agents and any other needed information about the state
of the game (e.g. winning, losing, attacking), each client uses its strategic knowledge to decide what to
do next; (iv) the client selects navigational commands to send to its corresponding robot agent; (v) these
commands are sent by the main computer to the robots through wireless communication (infrared radiation
in the current implementation) using the robot-specific action codes. Commands can be broadcast or sent
directly to individual agents. Commands include positioning requests and navigation primitives, such as
forward, backward, and turning moves at specific speeds. Each robot has a self identification binary code
that is used in the wireless communication.

Figure 2 showsthe architecture as a layered functional system. The protocols of communication between
the layers are specified in terms of the modular inputs and outputs at each level. It is the layered strategic
behaviors (Figure 2(b)) that we hope to enhance with the aid of the simulator client behaviors described in
this article.

3 Related Work

A ground-breaking system for Robotic Soccer, and the one that served as the inspiration for our work,
is the Dynamo System developed at the University of British Columbia [18]. This system was designed
to be capable of supporting several robots per team, but most work has been done in a 1 vs. 1 scenario.
Sahota used this system to introduce a decision making strategy wdieti’e deliberatiorwhich was

used to choose from among seven hard-wired behaviors [16]. Our system differs from the Dynamo system
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Layer Entity Input Output
Behavioral| Robots Commands | Actual Moves
Perceptual| Vision View of Field | Robots & Ball
Camera Coordinates
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Figure 2: (a) The functional layers of the architecture, and (b) the strategic level decomposition.

in several ways, most notably in that teams consist of several robots, thus necessitating the development
of cooperative behaviors. We also hope to do minimal hard-wiring, instead learning behaviors from the
bottom up.

The Robotic Soccer system being developed in Asada’s lab is very different from both the Dynamo
system and from our own [3, 25]. Asada’s robots are larger and are equipped with on-board sensing
capabilities. They have been used to develop some low-level behaviors such as shooting and avoiding as
well as a RL technique for combining behaviors [3, 25]. While the goals of this research are very similar to
our own, the approach is different. Asada has developed a sophisticated robot system with many advanced
capabilities, while we have chosen to focus on producing a simple, robust design that will enable us to
concentrate our efforts on learning low-level behaviors and high-level strategies. We believe that both
approaches are valuable for advancing the state of the art of robotic soccer research.

Although real robotic systems, such as those mentioned above and the many new ones being built for
robotic soccer tournaments [22, 9], are needed for studying certain robotic issues, it is often possible to
conduct research more efficiently in a well-designed simulator. Several researchers have previously used
simulated robotic soccer to study ML applications. Using the Dynasim soccer simulator [17, 16], Ford
et al. used a Reinforcement Learning (RL) approach with sensory predicates to learn to choose among
low-level behaviors [5]. Using a simulator based closely upon the Dynasim system, Stone and Veloso used
Memory-based Learning to allow a player to learn when to shoot and when to pass the ball [19]. They
then used Neural Networks to teach a player to shoot a moving ball into the goal [21]. In the RoboCup
Soccer Server Matsubar et al. used a Neural Network to allow a player to learn when to shoot and when
to pass [11] (as opposed to the Memory-based technique used by Stone and Veloso for a simlar task). The
work described in this article uses Neural Networks and Decision Trees to learn different behaviors in the
RoboCup Soccer Server.

A wide variety of MAS research is related to the layered learning approach espoused in this paper. Most
significantly, Mataric uses Brooks’ Subsumption Architecture [4] to build multiagent behaviors on top of a
set of learnedbasis behavior§l0]. Mataric’'s basis behaviors are chosen to be necessary and sufficient for
the learning task, while remaining as simple and robust as possible. Since Mataric’s robots were to learn
social behaviors such as flocking and foraging, they were equipped with basis behaviors such as the ability
to follow each other and the aity to wander without running into obstacles. While our approach makes



similar use of multiple behavior layers, we are more committed to using ML whenever possible in order to
study the interactions between learned behaviors at different levels.

One of the learned behaviors described in this article involves players that assume different roles.
Although the roles are fixed in the current implementation, the players will eventually need to change roles
as a match progresses. Tambe discusses a framework in which agents can take over the roles of other
teammates in a helicopter-combat domain [23]. In the learning context, Prasad et al. have created design
agents that can learn which role to fill [13]. We plan to combine role learning with dynamic role assumption
as we progress to higher levels of learned behaviors (see Section 7).

In addition to reasoning about roles of teammates, Tambe’s combat agents can also reason about the
roles that opponents are playing in team behaviors [24]. By recognizing an opponent’s action as a part of a
larger team action, an agent is able to more easily make sense of the individual opponent’s behavior with
the goal of being able to predict the opponent’s future actions. This work enhances previous work that aims
at having agents deduce other agents’ intentions through observation [8].

4 The Simulator

Extensive experimentation of the type described in this article is not feasible with physical robotic systems.
Consequently, to conduct meaningful research in simulation that might apply to the real world, a well-
designed simulator is needed. Though not directly based upon any single robotic system,3¢adais
Servel[12], pictured in Figure 3, captures enough real-world complexities to be an indispensable tool. This
simulator is realistic in many ways: (i) the players’ vision is limited; (ii) the players can communicate by
posting to a blackboard that is visible to all players; (iii) all players are controlled by separate processes;
(iv) each player has 10 teammates and 11 opponents; (v) each player has limited stamina; (vi) actions and
sensors are noisy; and (vii) play occurs in real time. The simulator, acting as a server, provides a domain
and supports users who wish to build their own agents (clients).

Figure 3: The Soccer Server system

Figure 4 illustrates the format of the communication between the server and a specific client. Since the
client’s vision is limited to 45 on either side, not all objects are visible at each sensory step. For example,
at the beginning of the trace in Figure 4, the client sees two teammates and one opponent (player brazil 1).
However after dashing once, itis no longer able to see the opponent. Similarly, after dashing a second time,



(flagpr t)

(see 124 ((goal r) 20.1 34) ((flag r t) 47.5 -4) ((fla gprt) 303 -24) (flag p r c) 10.1 -20)
((ball) 11 0) ((player usa 2) 21 19) ((player usa 3) 21 -11) ((player brazil 1) 17 35) ((line r) 40 -26))
**.> (dash 80)

(see 129 ((goal r) 16 43) ((flag r t) 42 -6) ((flag p r t) 25 -30) ((flag p r c) 5 -40) ((ball) 6 1)
((player usa 2) 16.3 24) ((player usa 3) 15.3 -17) ((line r) 32.8 -27))

*.> (turn 1)

**.> (dash 60)

(see 134 ((flag r t) 40 -9) ((flag p r t) 23.3 -35) ((ball) 3.7 2) ((player usa 2) 14.4 24)

((player usa 3) 13.3 -22) ((line r) 28.2 -30))

*.> (turn 2)

**.> (dash 30)

(hear 138 18 shoot the ball)

(see 139 ((flag r t) 38.1 -11) ((flag p r t) 22 -39) ((ball) 1.9 0) ((player usa 2) 12.8 27)
((player usa 3) 11.6 -27) ((line r) 25.5 -31))

**.> (say shooting now)

**.> (kick 53 51)

(hear 141 self shooting now)

(see 144 ((flag r t) 38.1 -11) ((flag p r t) 22 -39) ((ball) 8.1 42) ((player usa 2) 12.8 27)
((player usa 3) 11.6 -27) ((line r) 25.5 -31))

*.> (turn 42)

(see 149 ((goal r) 13.6 9) ((ball) 13.5 5 0) ((player usa 2) 12.8 -14) ((player brazil 1) 11 18)
((line r) 14 -73))

**.> (turn 5)

**.> (dash 81)

(hear 150 referee goal _|_1)

(hear 150 referee kick_off_r)

Figure 4: A trace of the simulator’s input and output to the client controlling player 1 (indicated “CLIENT"). The
player moves to the ball and then shoots it towards the goal. Commands from the player are indicated with “**-
preceding them. Dashes are followed by a power (they are always in the direction that the player is facing), turns are
followed by an angle, and kicks are followed by a power and an angle. Sensory information from the server comes
in the form of audial and visual strings. In both cases, the number after the type indicator (“hear” or “see”) indicates
the elapsed time in the match. Audial information then indicates whether it is the referee speaking or else from what
angle on the sound came. Visual information includes the distance followed by angle of the visible object.



it is no longer able to see the center of the penalty area: (flag p r ). After kicking the ball, when the client
turns to face the goal, the opponent comes back into view.

The method of communication is illustrated by the message from teammate number 2 that is heard at
time 144 (“shoot the ball”), and by the spoken response “shooting now.” Two messages from the referee,
indicating the successful goal and the subsequent restart, are also present at the end of the trace.

Both the sensors and the actions in the simulator are noisy. Notice that even though the player begins
by facing directly at the stationary ball (the ball's angle is 0) and dashes straight toward it, the ball does
not remain directly in front of the player. Before its next two dashes, the client turns to face the ball again.
Although not apparent from this trace, when players are far enough away, their uniform numbers, or even
their team, may not be visible.

The trace in Figure 4 begins at elapsed time 124 and continues through 150. Since each time increment
occurs in 0.1 second of real time, visual sensor information arrives twice a second, and the entire trace, from
the moment pictured in Figure 4 until the ball enters the goal, occurs in about 2.5 seconds. Thus, the action
in the simulator occurs in real time.

All of these simulator features combine to make it a very challenging and realistic environment in which
to conduct research. The lessons we learn in the simulator will help us greatly as we implementthe strategic
levels of our real robotic system.

5 Learning a Low-level Skill

Just as young soccer players must learn to control the ball before learning any complex strategies, Soccer
Server clients must also acquire low-level skills before exhibiting complex behaviors: the most sophisticated
understanding of how to act as part of ateam is useless without the ability to execugedhsary individual

tasks. Although general agents can be assumed to possess basic domain-independent skills such as moving
and sensing, there are always new skills to learn in a new domain. Acting as human coaches for our clients,
we identified a low-level skill that is needed in the Soccer Server. Isolating a situation that requires this
skill, we drilled the clients, providing the appropriate reinforcement, until they were able to learn to execute
this skill reliably.

The low-level skill we identified as being most essential to our Soccer Server clients waditiieab
intercept a moving ball. This skill is ubiquitous in all soccer-type frameworks as indicated by the fact that
we taught clients a similar skill in a different simulator [21]. Intercepting a moving ball is considerably
more difficult than moving to a stationary ball both because of the ball’'s unpredictable movement (due to
simulator noise) and because the client may need to turn and move in such a direction that it cannot see the
ball (see Figure 5).

Intercepting a moving ball is a task that arises very frequently in the Soccer Server. Unless the ball has
decelerated completely without a player collecting it, this skill is a prerequisite for any kicking action. In
particular, defenders must intercept shots and opponents’ passes, while players must frequently “intercept”
passes to them from teammates. In many of these situations, the ball is moving roughly in the direction of
the player that is trying to intercept it, the condition which causes the difficulty illustrated in Figure 5. The
ball can move past the player as it goes to where the ball used to be. This problem arises primarily because
the defender gets sensory information at discrete intervals (250 msec).

Faced with two possible methods for equipping our players with thigyetb intercept a moving ball—
empirical and analytical—we chose the empirical method for its appropriateness to our Machine Learning
paradigm. Rather than providing the clients with the ability to perform sophisticated geometric calculations,
we provided the clients with a large number of training examples and used a supervised learning technique:
Neural Networks (NNs).



Figure 5: If the defender moves directly towards Figure 6: At the beginning of each trial, the defender
the ball (left arrow), it will miss entirely. If the starts 4 units from the goal, while the ball and shooter
defender turns to move in the appropriate direc-  are placed nadomly between 20 and 30 units from the
tion (right arrow), it may no longer be able tosee  defender.

the ball.

The range of situations from which training examples were gathered is illustrated in FigureegchRor
training example, thehooterkicks the ball directly towards thaefendemith a fixed power. However, due
to the noise in the simulator, the ball does not always move directly at the defender: if the defender remains
still, the ball hits it only 35% of the time. Furthermore, if the defender keeps watching the ball and moving
directly towards it, it is only able to stop the ball 53% of the time.

The defender’s behavior during training is more complex than the shooter's. As we are using a
supervised learning technique, it must first gather training data by acting randomly and recording the results
of its actions. It does so as follows (BD = Ball's distance, BA = Ball's angle, TRum angle— the angle
to turnafterfacing the ball):

e While BD > 14, TURN(BA)

e When BD< 14, set TA = Random Angle between -45 and 45

Record BD, BA, previous BD, and TA

TURN(BA + TA)
e DASH()
e Record result (from coach)

Until the ball is within a given range, the defender simply watches and faces the ball. Then, once the ball is
in range, the defender turns a random angle (within a range) away from the ball and dashes. Of course the
defender misses most (76%) of the time, but after about 750 positive examples, it is able to learn to perform
much better (see below).



In order to automate the training process, a coach client is used. The coach ends a trial when the ball
gets past the defender or when it starts moving back towards the shooter. In the latter case, the trial is labeled
aSAVE In the former case, it is labeledZOAL if the ball is still between the goal posts an¥iéSSif it is
heading wide of the goal. Only saves are considered positive results and thus used for training. At the end
of the trial, the coach resets the positions of both players and the ball for another trial.

The goal of learning is to allow the defender to choose the appropriate turn angle (TA) based upon the
BD, BA, and previous BD. Thus, only the data from the saves during the training phase are useful (the
NN is learning a continuous, not a binary, output). In order to learn the TA, we chose to use a Neural
Network (NN). Other supervised learning techniques, such as memory-based learning, could also have
worked (see below). After a small amount of experimentation with different NN configurations, we settled
on a fully-connected net with 4 sigmoid hidden units and a learning rate &t Ihe weights connecting
the input and hidden layers used a linearly decreasing weight decay starting at .1%. We used a linear output
unit with no weight decay. We trained for 3000 epochs. This configuration proved to be satisfactory for our
task with no need for extensive tweaking of the network parameters.

In order to test the NN'’s performance, we ran 1000 trials with the defender using the output of the NN
to determine its turn angle. The behaviors of the shooter and the coach were the same as during training.
The results for NNs trained with different numbers of training examples are displayed in Figure 7. The
misses are not included in the results since those are the shots that are far enough wide that the defender
does not have much chance of even reaching the ball before it is past. The figure also records the percentage
of shotson-goal(Saves+Goals) that the defender saved. Reasonable performance is achieved with only 300
save examples, and examples beyond about 750 do not improve performance. The defender is able to save
almost all the shots despite the continual noise in the ball's movement.

Training Saves Results vs. Number of Training Examples
Examples| Saves(%) Goals(%) Goals+Saves(% R
100 57 33 63 80 F e 1
200 73 18 80 o Soale -1
300 81 13 86 :2 : Saves/On-goal
400 81 13 86 a0t
500 84 10 89 22
750 86 9 91 ol
1000 83 10 89 0 0 560 1600 15;002060 25;00 30‘0035‘0040‘0045‘00 5000
4773 84 9 90 Number of Training Examples

Figure 7: The defender’s performance when using NNs trained with different numbers of positive examples. The last
column of the table indicates the percentage of shots that were “on goal” that the defender saved.

In order to study the effect of noise in the ball's movement upon the defender’s performance, we varied
the amount of noise in the Soccer Server @@h# _rand parameter). Figure 8 shows the effect of varying
noise upon the defender when it uses the trained NN (trained with 750 examples) and when it moves straight
towards the ball. The default value of noise is .05, meaning that on every simulator step, the true position of
the ball is perturbed by a random amount between -.05 and .05 with uniform probability distribution over
the range. The “straight” behavior always sets TA=0, causing the defender to go directly towards where
it last saw the ball. Notice that with no ball noise, both the straight and learned behaviors are successful:
the ball and the defender move straight towards each other. As the noise in the ball’s motion increases, the
advantage to using the learned interception behavior becomes significant. The advantage of the NN can
also be seen with no noise if the shooter aims slightly wide (by 4 degrees) of the goal’s center. Then the
defender succeeds 99% of the time when using the NN, and only 10% of the time when moving straight



Saves
Noise Behavior| Saves(%) Goals(%) Goals+Saves(%
0 NN 100 0 100
Straight 100 0 100 1o ., Omgoal Save Percentage vs. Nojse
.05 NN 86 9 91 NN ——
Stralght 53 35 60 0 Straight
.06 NN 75 13 86 80 |
Straight 47 35 57 0l
.07 NN 68 14 83
Straight | 40 36 53 1 e,
.08 NN 59 16 78 50 ]
Straight 34 36 49 o
.09 NN 53 17 75 0 OO 00 QR the b motion ©° 0% O
Straight 32 33 50
A NN 49 18 73
Straight 28 32 47

Figure 8: The defender’s performance when using NNs and moving straight with different amounts of ball noise.

towards the ball.

It appears that the NN solution allows the defender to intercept a moving ball as well as can be hoped
for given the discrete sensory events and simulator noise. However, as mentioned above and particularly
because this problem may not be overly complex, there are other promising ways of approaching the
problem. For example, since we notice that the NN weighs one of the inputs much more heavily than the
other two, it appears that memory-based techniques would work quite well.

From a quick examination of the inputs and outputs of the trained NN, it appears that the NN focusses
primarily upon the Ball’s angle (BAJ. Consequently, we were curious to try a behavior that simply used a
lookup table mapping BA to the typical output of the NN for that BA. We identified such outputs for BA's
ranging from -7 to 7. Using this one dimensional lookup-table, the defender was able to perform almost as
well as when using the full NN (see Table 1). Although the lookup table was built with the aid of a NN, the
one-dimensional function could also be easily learned with memory-based methods.

We also were curious about how well the NN would compare to analytical methods. As a basis for
comparison, we used a behavior constructed by Mike Bowling, an undergraduate student in the project,
whose goal was to create the best possible analytic behavior. The resulting behavior computed the ball's
motion vector from its 2 previous positions and multiplied this vector by 3, thus predicting the ball’s position
two sensory steps (500 msec) into the future. The defender's TA was then the angle necessary to move
directly towards the end of the lengthened vector. Using this technique, the defender was also able to
perform almost as well as it did when using the NN (see Table 1).

In this section we verified that a supervised learning technique was useful for learning a low-level skill
that is needed by clients in the Soccer Server. Although there were other possible methods of attaining this
skill, the method we chose is at least as good as the other options. Furthermore, it is in keeping with our
goal of building up learning clients by layering learned behaviors on top of each other.

Y1t was similarly noticed in [2] that the ball's angle is more useful for learning than is the ball's distance.
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Defender
Behavior | Saves(%) Goals(%) Saves/(Goals+Saves) |(%)

NN 86 9 91
Lookup Table 83 8 91
Analytic 82 13 86

Table 1. The defender’s performance when using a NN, a one-dimensional lookup table, and an analytic method to
determine the TA.

6 Learning a Higher-level Decision

Once young soccer players have learned how to control the ball, they are ready to uselthéar start

learning how to make decisions on the field and playing as part of a team. Similarly, our clients can use
their learned ball-interception skill to exhibit a more complex behavior: passing. Passing requires action
by two different clients. Apassemust kick the ball towards theceiver who must collect the ball. Since

the receiver’s task is identical to that of the defender in the previous section, the clients can (and do) use the
same trained NN.

Although the execution of a pass in the open field is not difficult given the receiver’s ball-interception
skill, it becomes more complicated in the presence of defenders. If in the proper position, a defender
(also equipped with the same ball-interception skill) may be able to intercept the ball betaelies the
receiver. Thus, the passer is faced with the task of assessing the likelihood that a pass to a particular receiver
will succeed. For example, in Figure 9 the left-most teammate may be able to receive a pass, while the
two directly to the right are much less likely to be able to do so. The higher-level decision that our clients
learned was whether or not to pass to a given teammate.

Just as this behavior builds upon the interception skill, higher-level behaviors can be built upon this
knowledge of when a pass will succeed. Such knowledge can contribute to the decision of which player to
pass to or whether to pass, dribble, or shoot.

When deciding whether or not to make a pass, the passer has many possible features of the scenario at
its disposal. When many features are available, it can be very difficult to pick out the ones that are relevant
for building an analytical model. Rather than going through and filtering the attributes by hand, we chose
to use a learning method that is capable of determining for itself which attributes to use. In particular, we
used Decision Trees (DTs).

In order to gather the training data, we again defined a constrained situation and used a coach client
to monitor the trials. Since passing requires coordination of the passer and the receiver, each trial was
somewhat involved:

e The coach randomly placed the players (Figure 9).

e The passer announced its intention to pass (Figure 9).

e The receivers replied with their views of the field when ready to receive (Figure 10).

e The passer chose a receiver randomly during training, or with a DT during testing (Figure 11).
e The passer recorded a large number of attributes describing the trial (see below).

e The passer announced who it was passing to (Figure 12).

e The receiver and 4 defenders attempted to get theusatly the learned ball-interception skill

(Figure 13).
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I’'m Ready to
Receive... Here’s

My data: XXXxxx

I’'m Ready
To Pass...

S 3Receivers. w 4 Defenders. @
+2 other playersper team

1 Passer:

Figure 9: At the beginning of a trial, the passer isigure 10: When the receivers are facing the ball, they
placed behind the ball. 3 teammates amapponents tell the passer what the world looks like to them. The
are placed nadomly within the region indicated bypasser can use the transmitted data to help it assess
the dashed line, while 2 other players from each teéime likelihood thateach receiver would successfully
are placed nadomly on the field. In the followingreceive a pass. The data includes distances and angles
figures, the players involved in the play are enlargtadthe other players as well as some counts of players
for presentation purposes. When the passer sees thaitlitin given distances and angles.

has the ball, it announces its intention to pass. Its goal

is to assess the likelihood of a pass to a given teammate

succeeding.

e The coach classified the example as a SUCCESS if the receiver managed to pass the ball back toward
the passer; a FAILURE if one of the defenders cleared the ball to a side; or a MISS if the receiver and
the defenders failed to intercept the ball (Figure 13).

The key part of gathering training examples was the passer’s recording of the attributes describing the
trial. Rather than restricting the number of attributes, we capitalized on the DT’s ability to filter out the
irrelevant ones. Thus, we gathered a total of 174 attributes (in addition to the coach’s laleeljtidrial,
half each from the passer’s and the receiver’s perspective. The attributes from the receiver's perspective
were communicated to the passer before it had to decide which player to pass to. The attidiiutes—
continuous—available to the DT were:

e Distance and Angle to the receiver (2);

e Distance and Angle to other teammates (up to 9) sorted by angle from the receiver (18);

e Distance and Angle to opponents (up to 11) sorted by angle from the receiver (22);

e Counts of teammates, opponents, and players within given distances and angles of the receiver (45);
e Distance and Angle from receiver to teammates (up to 10) sorted by distance (20);

¢ Distance and Angle from receiver to opponents (up to 11) sorted by distance (22);

e Counts of teammates, opponents, and players within given distances and angles of the passer from
the receiver’s perspective (45);
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I’'m Passing
To Player 2

(' Sample Decision Tree Output |

—® Recelver 2 : Success with confidence 0.8
Receiver 3 : Failurewith confidence 0.6
Receiver 4 : Successwith confidence 0.3

Figure 11: During training, the passer chooses its reigure 12: After choosing its eceiver, the passer an-
ceiver randomly. During testing, it uses a DT to evalneunces its decision so that threceiver knows to ex-
ate the likelihood that a pass¢ach of the teammategpect the ball and the other teammates can move on to
would succeed. It passes to the most likely receiwaher behaviors. In our experiments, the non-receivers
(Receiver 2 in this case). remain stationary.

aanL—— |

Figure 13: Finally, the receiver records the result of the pass.

Whenever fewer than the maximum number of players were visible, the remaining attributes were marked
asunknown

The goal of learning is to use these attributes to predict whether a pass to the given receiver will lead
to a SUCCESS, a FAILURE, or a MISS. For training, we used standard off-the-shelf C4.5 code with all of
the default parameters [14]. We gathered a total of 5000 training examples, 51% of which were successes,
42% of which were failures, and 7% of which were misses.

Training on this data produced a pruned tree with 87 nodes giving 26% error on the training set. The
tree is shown in Figure 14. All of the attributes starting with “passer” are from the passer’s perspective.
Notice that these are used much more frequently than the attributes from the receiver’s perspective. Thus
the trained tree is comparably effective when the passer must decide without any input from the potential
receivers. The first node in the tree tests for the number of opponents within 6 degrees of the receiver from
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the passer’s perspective. If there are any, the tree predicts that the pass will fail. Otherwise, the tree moves

on to the second node which tests the angle of the first opponent. Since the passer sorts the opponents by
angle, this is thelosestopponent to the receiver in terms of angle from the passer’s perspective. If there

is no opponent within 13 degrees of the receiver, the tree predicts success. Otherwise it goes on to deeper
nodes in the tree.

In order to test the DT's performance we ran 5000 trials with the passer using the DT to choose the
receiver. All other behaviors were the same as during training. Since the DT returns a confidence estimate
in its classification, the passer can choose the best receiver candidate even if more than one is classified as
likely to be successful. If the tree predicts a failure for all three receivers, the one with the lowest confidence
reading can be selected. Notice that during testing, the pass#pass, while in a game situation the passer
would be given the option to dribble or shoot instead.

We compiled results sorted by the DT’s confidence in the success of the pass to the chosen receiver (see
Table 2). The largest number of passes were classified as successes with confidence between .7 and .8, with
another large portion classified as successes with confidence between .8 and .9. Overall, the success rate of
65% is much better than the 51% success rate obtained when a receiver was chosen randomly. However, this
result was obtained under a condition of forced passing: the passer was required to pass the ball during all
trials. Notice that if the passer wanted to be fairly sure of success, it could pass only when the DT predicted
success with confidence greater than .8. Theltiagu79% siccess rate approaches the limit imposed by
the success rate of the ball-interceptioillskVhen the testing is repeated with no defenders to intercept
the ball, the success rate is 86%.

Success Confidence:

Result Overall | .8-.9 7-8 .6-7

(Number) (5000) | (1050) (3485) (185
SUCCESS (%)| 65 79 63 58
FAILURE (%) 26 15 29 31
MISS (%) 8 5 8 10

Table 22 The results of 5000 trials during which the passer used the DT to choosecttiear. Overall results are

given as well as a breakdown by the passer’s confidence prior to the pass. The passer was forced to pass even if it
predicted failures for all 3 teammates. In that case, it passed to the teammate with the lowest likelihood of failure.
Results are given in percentages of the number of such cases (shown in parentheses).

With all the different attributes to choose from, it was not obvious how to construct an analytic heuristic
for the passer to use when choosing a receiver. However, we needed some comparison other than the
passer’'s random choice during training. A reasonable improvement over the random choice is to pass to the
closest teammate. For this reason, we compared the DT decision with the closest teammate heuristic.

Over 5000 trials, the closest teammate heuristic produced a success rate of 64%. Although this number
compares favorably with the overall DT success rate, it is significantly lower than the 79% success rate the
passer can achieve with the DT when given the option of not passing. Furthermore, the closest teammate
heuristic gives no way of estimating the likelihood that a pass will succeed. It simply postulates that given
a choice, the passer should pass to the closer teammate. Since the likelihood estimation is the true goal of
our learning in this section, there is a clear advantage to using the DT method. When deciding whether to
pass, dribble, or shoot, the knowledge of whether or not a given pass is likely to succeed will be extremely
useful.

In this section, we demonstrated that a higher-level decision could be built upon the low-level skill
learned in the previous section. Using a DT, our clients learned to judge the likelihood that a pass to a given
receiver would be successfully received. This judgement represented a second layer in our quest to build
intelligent S@cer Server clients by layered learning.
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C4.5 [release 8] decision tree interpreter Wed Jul 10 11:31:56 1996

Decision Tree:

passer opponents ang 6 > 0 : F (1266.0/251.3)

passer opponents angé <= 0 :

passer opponentl angle > 1 3 : S (1054.6/290.5)

passer opponentl angle <= 13 :

passer teammates ang6 <= 0 :

passer receiver distance <= 22 :

passer opponentl distance <= 20.9 :

| passer players dist8 angl2 <= 3 : S (162.0/72.9)

| passer players dist8 angl2 > 3 : F (15.0/5.8)

passer opponentl distance > 20.9 :

passer opponent2 distance <= 21.1 :

| passer opponents distl2 ang8 <= 1 :

| | passer teammates dist8 ang8 <= 1 :

| | | passer opponents distl2 ang4 <= 0 :

| | | | passer receiver distance <= 20.3 : S (52.2/8.6)
| | | passer opponents distl2 ang4 > O :

| | | | passer opponents dist4 angl2 <= 1 : S (60.5/20.0)
passer opponent2 distance > 21.1 :

| receiver teammates dist8 angl2 <= 1 : S (704.3/139.6)
passer receiver distance > 22 :

passer opponentl distance <= 23.1 :

passer opponents distl2 angl2 <= O :

| receiver players dist8 angl2 <= 1 : S (87.5/44.7)

passer opponents distl2 angl2 > O :

| passer opponents distl2 ang8 > 0 : F (191.0/63.0)

| passer opponents distl2 ang8 <= 0 :

| | passer opponents dist4 angl2 > 1: S (14.0/6.8)
| | passer opponents dist4 angl2 <= 1 :

| | | passer teammatel distance <= 19.5 : S (15.0/6.8)

| | | passer teammatel distance > 19. 5 : F (234.0/91.7)
passer opponentl distance > 23.1 :
passer opponents distl2 angl2 < =1:S (665.9/259.2)
passer opponents distl2 angl2 > 1 :
passer players dist4 angl2 < =1:F (11.0/5.6)
passer players dist4 angl2 > 1 :
passer opponents dist4 ang8 <= 0 : S (49.0/19.9)

|
| passer opponents dist4 ang8 > O :

| | passer opponent2 distance <= 23.1 : F (85.0/26.5)

| | passer opponent2 distance > 23.1 :

| | | passer opponents distl2 angl2 <= 2 :

| | | | receiver opponent3 angle <= 48 : F (9.6/2.2)

| | | | | receiver opponent3 angle > 48 : S (108.4/43.0)
passer teammates ang6 > 0 :

| passer teammates ang5 > 0 : F (21.0/7.0)

Figure 14: The trained decision tree. Some subtrees with fewer cases covered have been removed for purposes of
presentation. Attributes starting “passer” are from the passer’s perspective. Attributes starting “receiver” are from
the receiver’s perspective. For example, “receiver players digg82 is the number of players that theceiver sees

within a distance of 8 and angle of 12 from the passer.
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7 Scaling Up to Team-level Strategies

Once able to judge the likelihood that a pass will succeed, a real or simulated soccer player is ready to start
making decisions in game-like situations. When considering what to do with the ball, the player can pass to
a strategically positioned teammate, dribble, or shoot. To verify that the second level of learning could be
incorporated into game-like situations, we implemented a set play that uses the passing decision described
in the previous section.

As illustrated in Figure 15, a player starts with the ball in front of it and dribbles towards the opponent’s
goal. When it notices that there is an opponent in its path, it then decides to stop dribbling and considers its
options. Noticing that it is too far away to shoot and that dribbling forward is no longer an option, it decides
to pass. Thus, in accordance with the sequence laid out in the previous section, it announces its intention to
pass and gets responses from the two nearest players. It then uses the DT to decide which teammate is the
more likely to successfully receive the pass.

o Teammate o Defender

Figure 15: An illustration of the implemented set play. Players are emphasized for improved visibility. Every player
uses at least one of the learned skills described earlier in the article.

In Figure 15, the passer chooses the topmost receiver and passes the ball. The receiver and the adjacent
defender then both try to intercept the ball using the trained NN ball-interception skill. If the defender gets
the ball, it kicks it back towards the left goal and the play starts over. However, if the receiver gets the ball,
it immediately kicks the ball to its teammate on the wing. Since the winger is not covered, it can easily
collect the ball and begin dribbling towards the goal. Using the same behavior as its teammate that began
the set play, the winger notices defenders in its path and decides that it is not at a good angle to shoot. So
rather than shooting or dribbling, it uses the trained DT to choose one of the two nearby teammates to pass
to. If the chosen receiver is able to get to the ball before the defenders, it immediately shoots towards the
goal.

We ran this set play several times in order to verify that the learned behaviors are both robust and reliable.
Since the defenders are all equipped with the same ball-interception skill as the receivers, the defenders are
sometimes able to break up the play. However, the fact that the attacking team can sometimes successfully
string together three passes and a shot on goal when using the learned behaviors demonstrates that these
behaviors are appropriate for game-like situations. Furthermore, this implemented set play suggests a
number of possibilities for the next layer of learning.

In the set play described above, the player that starts with the ball dribbles until it sees an opponent
at a predetermined distance. This distance was chosen so as to allow the player to pass without the
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central opponent taking the ball. However, a more flexible and powerful approach would be to allow the
dribbling player to learn when to continue dribbling, when to pass, and when to shoot. With these three
possibilities as the action space and with appropriate predicates to discretize theataielr§plambda

and other reinforcement learning methods will be applicable. By keeping track of whether an opponent or

a teammate possesses the ball next, a player can propagate reinforcement values for each decision made
while it possesses the ball.

Another candidate for the next layer of learned behavior is on the part of the receivers. When it appears
that a teammate might be getting ready to pass (or when a teammate directly communicates that it is), a
player that might be able to receive the pass could learn to move into a betigorpo$n the current
implementation of the set play, as in the DT learning phase, the passer chooses a receiver from among
stationaryteammates. However, if the receivers are given the goal of being chosen as the receiver as often
as possible, they can learn a moving behavior that is built upon the learned passing DT. In effect, they will
learn to satisfy the preconditions of a successful pass.

Finally, the next level of learning could be the one that introduces adversarial issues. In addition
to learning to cooperate with teammates, players can learn to thwart the opponents. For example, the
counterpart to the receivers learning to move to receive a pass is to have the defenders learn to move so
as to prevent a pass. However, this defensive behavior could potentially become even more complex if
the defender is given the goal of actually intercepting a pass, rather than simply preventing it. Then the
defender’s optimal behavior would be to move to a position such that the ghgsesthat the pass will
succeed, yet such that the defendetiitable to intercept the ball.

Once adversarial behaviors are introduced, some additional issues must be considered. First, if the
adversaries are allowed to continually adjust to each other, they may evolve increasingly complex behaviors
with no net advantage to either side. This potential stumbling blodoimpetitive coevolutiohas been
identified and addressed by several researchers who work with genetic algorithms [6, 7, 15]. Second, since
a robotic soccer team must be able to play against many different opponents, often for only a single match,
it must be able to adapt quickly to opponent behaviors without permanently harming performance against
other opponents. We anticipate addressing these and other adversarial learning issues while continuing to
build our soccer playing agents.

As we move to higher-level behaviors, we will continue to consider a wide range of learning methods. In
addition to NNs and DTs, we are hoping to test TD-lambda and genetic type learning methods. Continuing
to build one learned layer at a time, we aim to eventually reach team-level strategies that consider the
perceived strategies of opponents.

8 Conclusion

This article describes our initial steps towards creating complategs&erver clients using ML techniques.
Starting with the ability to intercept a moving ball, we used a NNetach the client this low-level skill
which is a prerequisite for executing more complex behaviors. This individual skill is an example of the
most basic form of Multiagent Learning. Although the action is executed by a single agent, it only makes
sense in an environment in which other agents exist: without other agents to kick the ball, the client would
never have to intercept the ball head-on.

Building upon this individual behavior, we then used a DT to teach the client to evaluate the likelihood
that a pass to a particular teammate would succeed. This evaluation represents a more conventional form of
Multiagent Learning since several agents (both teammates and opponents) directly affect the passing action.

Finally, we implemented a set play involving several players and several uses of the learned behaviors.
This set play verified that the learned behaviors are useful in a game-like situation.
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We chose both the low-level skill and the higher-level decision because of their usefulness in building

up higher levels of behavior. Just as the ball-interception skill was used by many of the participants in the
passing behavior, the knowledge of whether or not a teammate is likely to be able to receive a pass will
be useful for clients when deciding whether to pass, dribble, or shoot. As we continue to layer learned
behaviors on top of each other, it will be interesting to study how the different learning methods interact with
each other. Keeping MAS, and particularly Magent Learning, as our research focus, we will continue
moving up to higher-level behaviors until we have created a complete team of Soccer Server clients with
learned behaviors. At the same time, we will continually apply methods that succeed in simulation to our
physical robotic system.
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