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ABSTRACT

In several agent-oriented scenarios in the real world, an au-
tonomous agent that is situated in an unknown environment
must learn through a process of trial and error to take ac-
tions that result in long-term benefit. Reinforcement Learn-
ing (or sequential decision making) is a paradigm well-suited
to this requirement. Value function-based methods and pol-
icy search methods are contrasting approaches to solve re-
inforcement learning tasks. While both classes of methods
benefit from independent theoretical analyses, these often
fail to extend to the practical situations in which the meth-
ods are deployed. We conduct an empirical study to examine
the strengths and weaknesses of these approaches by intro-
ducing a suite of test domains that can be varied for problem
size, stochasticity, function approximation, and partial ob-
servability. Our results indicate clear patterns in the domain
characteristics for which each class of methods excels. We
investigate whether their strengths can be combined, and
develop an approach to achieve that purpose. The effective-
ness of this approach is also demonstrated on the challeng-
ing benchmark task of robot soccer Keepaway. We highlight
several lines of inquiry that emanate from this study.

Categories and Subject Descriptors

I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

General Terms

Algorithms, Experimentation.

Keywords

Reinforcement learning, Temporal difference learning, Pol-
icy search, Function approximation.

1. INTRODUCTION
Reinforcement Learning (or sequential decision making

from experience) is a very suitable method for autonomous
agents to improve their long-term gains as they repeatedly
carry out sensing, decision and action while situated in an
unknown environment. Reinforcement learning tasks are
commonly formulated as Markov Decision Problems (MDPs).

Cite as: An Empirical Analysis of Value Function-Based and Pol-
icy Search Reinforcement Learning, Shivaram Kalyanakrishnan and Peter
Stone, Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and
Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-
XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The solution of MDPs has benefited immensely from strong
a theoretical framework that has been developed over the
years. The cornerstone of this framework is the value func-
tion [2] of the MDP, which encapsulates long-term utilities
of decisions. A control policy is induced by the value func-
tion; indeed, this approach can guarantee convergence to the
optimal policy for finite MDPs [22].

Tasks that occur in the real world invariably involve large,
often continuous state spaces that necessitate the use of
function approximation. Although certain learning algo-
rithms that employ function approximation provably con-
verge, their resulting performance depends on the accuracy
of the approximation, and therefore is not necessarily opti-
mal [9]. Another inevitable handicap to learning in realistic
applications is imperfection in the detection of state due to
partial observability or sensor noise. Coping with partial
observability has merited considerable attention in the lit-
erature [4, 10], but is yet to scale to complex tasks with
continuous state spaces.

In contrast with value function-based methods, Policy
search methods for sequential decision making reason di-
rectly about parameters that maximize long-term returns,
rather than inferring them from a value function. In general,
policy search methods may completely bypass the learning
of value functions and remain oblivious to the Markovian
property of the underlying task. Whereas doing so amounts
to ignoring potentially useful state transition information, it
can also avoid the pitfalls introduced therein by poor func-
tion approximation and partial observability. A variety of
policy search algorithms exist in the literature [6, 15], in-
cluding some that achieve convergence to local optima in
the space of policy parameters [1, 3, 7].

Despite the limitations imposed by inaccurate approxima-
tion schemes and partial observability, value function-based
approaches have recorded numerous successes on tasks as
diverse as autonomic resource allocation [21], elevator con-
trol [5], and robot soccer [16]. Likewise, policy search meth-
ods have been shown to be effective on challenging applica-
tions such as quadrupedal locomotion [8] and helicopter con-
trol [11]. While much can be understood from the theoretical
roots of the algorithms employed in all these cases, complex-
ities inherent in their deployed tasks invariably negate the
validity of the theoretical analyses. Thus, given a specific
problem instance, practitioners are faced with the practi-
cal decision of which algorithm to apply. In this paper, we
present the results of an empirical study seeking to inform
that decision.

As a first step, we define a concrete scope for comparing



sequential decision making algorithms (Section 2). We pro-
ceed to construct a class of MDPs with parameters that can
be systematically varied to model different degrees of prob-
lem size, stochasticity, precision of function approximation,
and partial observability (Section 3). We report the results
of our discriminative study in Section 4.1. These results
lead us to investigate whether value function-based and pol-
icy search methods can be combined (Section 4.2), which
we further test on a more challenging task (Section 4.3). In
Section 5, we present several ways to extend this study. We
discuss related work in Section 6 and conclude in Section 7.

2. LEARNING FRAMEWORK
A Markov Decision Problem M = (S, A, R, T, γ) com-

prises a set of states S and a set of actions A available from
each state. A reward function R : S × A × S → R assigns
numerical rewards to transitions, which are generated based
on a stochastic transition function T : S × A × S → [0, 1].
A (deterministic) policy π : S → A specifies an action a to
take from a given state s; associated with π is its action value
function Qπ : S × A → R, which satisfies, ∀s ∈ S, ∀a ∈ A:

Q
π(s, a) =

X

s′∈S

T (s, a, s
′)[R(s, a, s

′) + γQ
π(s′, π(s′))],

where γ ∈ [0, 1) discounts the long-term reward.1 In rein-
forcement learning tasks, R and T are not specified, but can
be sampled. The objective is to learn an optimal policy π∗,
which satisfies Qπ∗

(s, π∗(s)) = maxπ Qπ(s, π(s)), ∀s ∈ S.

Although π∗ and Qπ∗

= Q∗ can be learned exactly for fi-
nite S and A [22], problems with large, possibly continuous
state spaces dictate the adoption of approximate architec-
tures. In such cases, value function-based (VF) methods

commonly approximate Q∗ through Q̂ : S × A → R, given
by

Q̂(s, a) = ρ(φ(s, a),wVF), ∀s ∈ S,∀a ∈ A.

Here, Q̂ is expressed as some function ρ acting on a vector
of features φ representing the agents’ state-action space. ρ

is parameterized by a vector wVF. In general, VF meth-
ods start with some initial wV F , which they progressively
refine based on experience. We adopt Sarsa(0) [14] as a
representative VF method for our experiments. Sarsa(0) is
an on-policy method under which experience gathered along
the trajectory s, a, r, s′, a′, . . . leads to the following update
(if minimizing the squared error):

wV F,t+1 = wV F,t + αt · ∇wρ(φ(s, a),wVF) ·

{r + γρ(φ(s′, a′),wV F,t) − ρ(φ(s, a),wV F,t)}.

The learning rate αt > 0 is usually annealed over time.
Although our implementation of Sarsa(0) does not meet all
the conditions necessary for provable convergence [12], we
find that in our experiments, Sarsa(0) typically leads to op-
timality in situations where optimality is indeed achievable
(see Section 4).

Whereas VF methods derive the control policy πV F from
the learned Q̂, policy search (PS) methods directly search
for parameters wPS to maximize the value of the policy πPS .

1As a matter of convenience, we use the action value func-
tion Qπ in our exposition instead of the more commonly
used value function V π : S → R, given by V π(s) =
Qπ(s, π(s)), ∀s ∈ S. The value of the policy π is given by
V (π) =

P

s∈S D(s)V π(s), where D : S → [0, 1] is the distri-
bution of start states. Also, we note that it is common to
set γ = 1 in episodic MDPs.

In general, PS methods can update a policy every time an
action is taken from some state, and the reward and next
state become available. In this paper, however, we only
consider the limiting case in which policy updates are made
solely based on the long-term reward accrued by a policy.
This makes policy updates less sensitive to imperfections in
the state representation when compared to a bootstrapping
VF method such as Sarsa(0). In principle, VF methods
too can make updates on the basis of long-term rewards;
for example, Sarsa(λ) with λ > 0 does so through the use of
eligibility traces [10]. In Section 5, we consider incorporating
such methods in our study as part of future work.

The PS method we use in our experiments is the cross-
entropy method [6], a general optimization technique under
which a population of candidate solutions is sampled from
a parameterized distribution; based on the fitness of each
sample (in this case an estimate of the value of the policy),
the parameters of the distribution are recomputed to gen-
erate fitter samples. Like Sarsa, the cross entropy method
too enjoys successes on challenging reinforcement learning
tasks [18].

In order to conduct a fair comparison between the meth-
ods, we enforce that both VF and PS employ the same rep-
resentation for their policies, given by:

πV F (s) = argmax
a∈A

ρ(φ(s, a),wV F ), and

πPS(s) = argmax
a∈A

ρ(φ(s, a),wPS).

In effect, this restriction facilitates a direct comparison
between the converged values of wV F and wPS , which are
reached through very different routes. Under VF, ρ approx-
imates the action value function, and is updated on-line us-
ing transition information. Thus, VF is likely to converge
more quickly than PS, under which policy updates are only
made after enough transitions are available to estimate the
value of the policy (In PS, ρ provides action preferences,
which do not have any particular semantics.). Yet, as Bax-
ter and Bartlett [1] illustrate, the convergence of VF can
be sub-optimal even in simple 2-state MDPs. In principle,
PS methods may possibly locate choices of w that may not
approximate Q∗ well, but still induce π∗. The next section
develops experimental apparatus to examine this possibility.

3. A PARAMETERIZED CLASS OF MDPS
Seeking to identify trends in the performance of VF and

PS methods as the substrate problem is varied, we con-
struct a class of MDPs indexed by parameter settings that
can be systematically varied. To facilitate extensive testing,
it is desirable that these MDPs be time efficient to solve,
while retaining enough richness to discriminate between so-
lutions. Additionally, if optimal solutions to the MDPs can
be computed from their specifications, the performance of
the learning methods being tested on them can be bench-
marked quantitatively.

The class of MDPs we design to meet these criteria consist
of simple square grids, each consisting of a discrete number
of states. The size of the state space is s2 − 1, where s, the
side of the square, serves as a parameter to be varied. Each
episode begins with the agent placed in a start state cho-
sen uniformly randomly from among the set of non-terminal
states, as depicted in Figure 1(a). The agent can take either
of two actions from each state: North (N) and East (E).
On taking N (E), the agent moves north (east) with proba-
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Figure 1: (a) MDP example with s = 7. (b) Rewards obtained at “next states” of transitions. (c) Optimal
policy when p = 0.1. (d) Optimal action values from each state. (e) Subset of cells with RBFs (χ = 0.25) (f) ρ

constructed with these features for some w, and (g) Resulting policy. (h) ρ corresponding to optimal policy.

bility p and it moves east (north) with probability 1−p. The
variable p, which controls the stochasticity in the transitions,
is also treated as a parameter of the MDP. We notice that
irrespective of the value of p, the agent always moves either
north or east on each transition before reaching a terminal
state; consequently, episodes last at most 2s − 3 steps.

Through the course of each episode, the agent accrues re-
wards at the states it visits. Each MDP is initialized with
a fixed set of rewards drawn uniformly from [0, 1], as il-
lustrated in Figure 1(b). Figures 1(c) and 1(d) show the
optimal actions to take (along with their values) for this re-
ward structure (assuming p = 0.1), obtained using dynamic
programming. Needless to mention, it is also quite straight-
forward in this case to learn the optimal policy based on
experience, for example by using a table of action values up-
dated through Q-learning. Yet, the objective of our study
is to investigate situations where table-based approaches
do not apply and approximate schemes must be employed.
Hence, we limit the agents’ perceptual information to a
vector of nf features, each corresponding to the activation
of a radial basis function (RBF) centered at some fixed
non-terminal cell in the grid. The centers of the RBFs
are chosen at random; in Figure 1(e), 9 such centers are
shown. ρ is implemented as a separate linear combination
of the same features for each action a; the policy becomes
π(s, a) = argmaxa∈A ρ(φ(s, a),w) = argmaxa∈A wT

a φ(s, a),
where wa are the coefficients for action a.

Although the state space is discrete, the choice of radial

basis functions (with standard deviation equal to the width
of a grid cell) as features promotes generalization to nearby
cells devoid of bases. Figures 1(f) and 1(g) depict instances
of ρ and π obtained from an 18-dimensional weight vector al-
locating one weight to each combination of RBF and action.
Figure 1(h) shows an example in which every non-terminal
state contains an RBF (thus, nf = (s− 1)2), and the vector
of parameters w∗ is optimal, leading to a representation ρ

corresponding to the optimal policy. In order to model
a gradual decay in the accuracy of the representation, we
set χ =

nf

(s−1)2
as a parameter in our experiments. In Fig-

ure 1(e), nf = 9, s = 7, and thus χ = 0.25.
In order to study the effect of partial observability in this

domain, we add noise uniformly generated from [−σ, σ] to
each component of the feature vector φ(s, a) visible to the
agent. Setting σ > 0 invalidates the assumption of complete
observability of the underlying state, effectively rendering
the environment non-Markovian. σ serves as the fourth and
final parameter in our study.

The design choices described in this section are the result
of a process of trial and error directed towards constructing
a suite of instances that allow us to study trends in learn-
ing algorithms, rather than constructing instances that are
challenging in themselves for learning. Of the parameters
we choose, s and p are both attributes of the underlying
MDP. χ is usually construed as a property of the learning
algorithm, exhibiting the shortcomings of imprecise features
and representations. The state noise σ may also owe to inex-



act representation, and typically includes the physical lim-
itations of the agents’ sensors. It exceeds the scope of this
paper to develop more precise models of the state noise; yet
our simplifying assumption that it is uniformly distributed
allows us to vary noise levels in a controlled manner. In
principle, s, p, χ and σ along with a random seed fix an
MDP in the class. By averaging over multiple runs with
different random seeds, we estimate the mean performance
achieved by learning methods as a function of s, p, χ and σ.
The next section reports the results of experiments applying
the VF and PS methods identified in Section 2 to the class
of MDPs described in this section.

4. EMPIRICAL EVALUATION
For our experiments, we choose algorithm-specific con-

stants for Sarsa(0) and the cross entropy method that work
well over a broad range of settings in our test suite. We use
an ǫ-greedy policy while learning under Sarsa(0), initializing
ǫ to 0.1 at the beginning of training, and decaying it as a
harmonic sequence every 50, 000 episodes. Incidentally, the
same initial value and annealing schedule also work well for
the learning rate α. Under the cross entropy method, we
maintain a population of 100 policies derived from parame-
ter vectors drawn from a Gaussian distribution starting with
zero mean and a variance of 1.0 along each dimension. Each
policy is evaluated for 2000 episodes, after which the sam-
ple mean and variance of the best 5 fix the distribution for
the subsequent iteration. In our experiments, we run each
learning method for a total of 106 episodes.

We fix a set of values for the MDP parameters to model a
broad range of situations agents encounter in practice. The
size of the underlying state space is reflected by the parame-
ter s, which we draw from {4, 7, 10, 13, 16}. The action noise
p is varied likewise from 0 to 0.4, in increments of 0.1. We
find it informative to gather more data points varying the
function approximation parameter χ; correspondingly, we
pick 10 equally spaced points, drawn from {0.1, 0.2, . . . , 1.0}.
With the state noise parameter σ, we notice a ceiling effect
beyond a value of 0.4, so we limit our samples to the set
{0, 0.1, 0.2, 0.3, 0.4}. In aggregate, these choices for the in-
dividual parameters lead to a total of 5× 5× 10× 5 = 1250
settings. Under each such setting, we run 25 independent tri-
als of Sarsa(0) (VF) and cross entropy (PS). Figure 2 shows
corresponding learning curves for 12 such settings that fa-
cilitate comparisons across changes in each parameter. The
policy value is normalized to fit in the interval [0, 1] by scal-
ing it with respect to the optimal and least optimal values:
for our class of MDPs, both values are well-defined. Pre-
dominantly, standard errors tend to be less than 0.01 for
all the curves beyond 20,000 episodes of training; we do not
list them explicitly. In Section 4.2 we consider VF+PS, a
scheme to integrate VF and PS methods, which is also in-
cluded in Figure 2.

4.1 Initial Results
The most striking observation from Figure 2 is the dis-

parity in the learning rates of VF and PS. In most cases,
VF plateaus within a few thousands of episodes, while PS
takes orders of magnitude longer. This phenomenon affirms
the intuition that by explicitly accounting for state transi-
tions, VF methods are more sample efficient. We could pos-
sibly make PS quicker by reducing the number of episodes
over which each policy is evaluated (currently 2000), but

we notice that doing so significantly reduces its asymptotic
performance. Indeed, a gradual decline in learning speed is
apparent for PS as s is varied from 4 to 16 (Figures 2(a),
2(b) and 2(c)). The action noise p increases from 0 to 0.4
in in Figures 2(b), 2(d) and 2(e), while other parameters
remain constant. At p = 0.4, the learning speed of VF is
slower compared to lower values of p, yet the asymptotic
performance is still near-optimal. Indeed, the MDPs from
Figures 2(a) through 2(e) can all be solved exactly (since
χ = 1 and σ = 0), as hinted by the performance of VF in
our experiments.

The sequence of examples in Figures 2(f) through 2(i) con-
trast with the earlier examples: they alter χ, which controls
function approximation, in steps from 0.1 to 1.0. While this
affects the asymptotic performance of PS minimally, a dra-
matic decline is observed in the case of VF with small χ

values. Indeed, at χ = 0.1 and χ = 0.3, VF converges to no-
ticeably poorer policies than PS. The ability of PS to achieve
good performance even under such impoverished represen-
tations makes it a promising candidate in a large number
of real-world domains where feature engineering is deficient.
We posit that like Baxter and Bartlett’s example [1], many
of the cases with χ < 1.0 allow for the representation of
high-reward policies, but only admit poor approximations
of the action value function.

The performance of VF and PS under increasing values
of state noise σ is shown in Figures 2(i) through 2(k). As
with decreasing χ, VF methods show a sharp fall in perfor-
mance as σ is increased. PS methods too suffer a fall in per-
formance, albeit more gradually. In the extreme case with
χ = 0.1, σ = 0.4 (Figure 2(l)), both methods fare poorly,
which is possibly due to the inability of the representation
employed to accommodate perceptual aliasing. Although
principled approaches may be followed to cope with partial
observability [4, 10], we leave an extension to such a scenario
for future work.

4.2 Synthesizing VF and PS Methods
The main inferences we draw from our experiments are

that VF methods display superior sample complexity and
asymptotic performance under conditions that favor their
provable convergence, while PS is more resilient to depar-
tures from such an ideal. All these are desirable properties
for learning algorithms deployed in practical situations. In
an effort to investigate whether the strengths of VF and
PS methods can be integrated into an algorithm that enjoys
such properties, we devise a simple scheme. Since we observe
that VF algorithms tend to converge quickly, we hypothesize
that these early converged values can serve as good starting
points for PS, which could then proceed to improve upon
the initialization.

Since in our experiments, VF and PS are constrained to
share a common representation, a straightforward method
to initialize PS with a policy learned using VF is to assign
wPS,init = wV F,converged. Although such a scheme does
not apply generally across VF and PS algorithms that dif-
fer in their representations and assumptions, we conjecture
that its resulting performance can still offer insights about
synthesizing the merits of VF and PS methods. We conduct
experiments on the same suite of MDPs with VF+PS, which
combines VF and PS as described above. In these experi-
ments, VF is conducted for 10,000 episodes, followed by a
transfer and subsequent switch to PS. Thus, at the switch,
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Figure 2: 12 different parameter settings, each abbreviated as (s, p, χ, σ). Each graph shows curves for VF,
PS, VF+PS (see Section 4.2) and Random methods. Each curve is an average of 25 independent runs. At
each reported point, the learned policy is executed for 10,000 episodes with learning switched off. Note the
break in the x axis at 10,000 episodes, beyond which a log scale is adopted.

the mean of the Gaussian distribution initializing the cross
entropy method is set to wV F ; we set the variance along
each dimension to a value of 0.25. VF+PS is compared
with VF and PS in Figure 2. In the cases where χ = 1 and
σ = 0 (Figures 2(a) through 2(e)), VF+PS performs on par
with VF or falls slightly short in its final performance, likely
due to the sampling error of PS introduced by stochastic-
ity. Thus, VF+PS preserves the superior sample efficiency
inherited from VS. At the same time, it does not suffer an
equal drop in performance when χ is reduced (Figures 2(f)
through 2(h)). While all methods show significant losses in
asymptotic performance as σ is increased, VF and VF+PS
do perform relatively better than VF (Figures 2(j) through
2(l)). This suggests that VF+PS displays the resilience of
PS when χ < 1 and σ > 0.

To facilitate locating patterns in the performance of VF,
PS, and VF+PS over our entire suite of test MDPs, we iden-
tify the winner for each MDP after given amounts of training
time. The results are depicted graphically in Figure 3. Sev-
eral trends become apparent from this visualization. Un-
der most parameter settings, VF and VF+PS prevail up
to 100,000 episodes of training (Figures 3(a) through 3(e)),
which we also confirm from Figure 2. Beyond this point,

VF+PS continues to remain effective, while the performance
of VF begins to fall. Indeed, VF is predominantly outper-
formed by VF+PS and PS for intermediate values of σ (0.1
to 0.3); at σ = 0.4, a ceiling effect starts manifesting as all
methods show deterioration. For σ = 0, VF only seems to
enjoy an advantage for values of χ greater than 0.5, rein-
forcing our earlier observation that VF suffers more from
deficient function approximation than PS. In Figure 3, no
dramatic trends are visible within any given setting as the
problem size (s) and stochasticity (p) are varied; we posit
that these parameters primarily play an important role very
early in training.

From Figure 3, we also notice that VF+PS derives the
strengths of VF and PS in the parameter space suited to
either method. Indeed, VF+PS outperforms VF and PS in-
dividually if we average across all the parameter settings for
a given number of training episodes. The fact that VF+PS
achieves higher asymptotic performance than PS under sev-
eral settings suggests that the initial VF phase leads it start-
ing points for PS that are better than random. Another way
to interpret this phenomenon is that PS is able to refine the
solutions found by VF. Such robustness evinces the poten-
tial of VF+PS to apply as a general purpose solution to a
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Figure 3: 15 scatter plots, each corresponding to some number of training episodes e and some value of σ,
abbreviated (e, σ). Within each plot, points are indexed by values of χ, s, and p, as shown in the key. For each
value of (e, σ, χ, s, p), an algorithm among VF, PS, and VF+PS is shown as the winner if its performance
exceeds the others’ at level of significance 0.01. Settings for which comparisons are not statistically significant
are omitted. For each value of e, the table shows the fraction over the 1250 MDPs that each method wins.

vast number of realistic problems. This inference is derived
from experiments on synthetic problems; we proceed to ver-
ify its validity on a significantly more complex and popular
reinforcement learning benchmark.

4.3 Results from a Complex Benchmark Task
The task we consider for further experiments is Keep-

away [16], a challenging benchmark problem for multiagent
reinforcement learning. Keepaway is a subtask of soccer in
which a team of 3 keepers has to keep possession of the ball
away from the opposing team of takers inside a small rect-
angular region (Figure 4). The continuous state space is
represented through 13 features involving distances and an-
gles among the players, and the keeper with the ball has 3
actions: holding the ball or passing to either teammate. The
keepers get rewarded based on the time elapsed between ac-
tions, which amounts to maximizing the episode duration.
Players have noisy sensors and actuators.

Unlike with our synthetic MDPs, a linear representation is
not sufficient for representing competent Keepaway policies,
and nor is it clear if optimality is achievable. Our policy is
represented through three 13-20-1 neural networks, comput-
ing activations for each action. We run Sarsa(0) (VF) with
constant values of ǫ = 0.01 and α = 0.0001. We choose pa-
rameters for the cross entropy methods (PS) such that they
maximize the performance after 40,000 episodes of training.
We maintain a population of 20 solutions, each evaluated
for 125 episodes. The initial Gaussian distribution used for
generating the weights of the neural net is N(0, 1)903 (each
neural net has 301 weights, including biases). After each
generation (2500 episodes), the 5 neural networks register-
ing the highest performance are used to determine the mean
and variance for the subsequent iteration. Under VF+PS,
we transfer the weights of the neural networks after 15,000
episodes of training (and set each variance to 1). Figure 4
shows that on Keepaway too VF+PS dominates both VF
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Figure 4: On left, a snapshot from a Keepaway
game. On right, learning curves for VF, PS,
VF+PS, and Random policies. Each curve is an
average of at least 14 independent runs. At each re-
ported point, the learned policy is executed for 500
episodes with learning switched off.

and PS beyond 20,000 episodes of training (p < 0.01). This
result serves as an existence proof of the successful combi-
nation of VF and PS methods on a complex, realistic task,
affirming a similar observation inferred from the suite of syn-
thetic test domains.

5. OTHER RELEVANT COMPARISONS
The underlying motivation for this study is that the theo-

retical proofs of convergence, both of VF and PS methods [6,
12] fail to provide adequate bounds for the performance of
the converged solution in the presence of function approxi-
mation and partial observability. Yet these two factors affect
nearly every sequential decision making task encountered in
practice. Thus, it is left to empirical devices to identify pat-
terns in the interplay between these factors and algorithms
for sequential decision making.

The experiments conducted in our study take a step in
this direction by focusing on test instances that highlight
such trends. Nevertheless, the specific algorithms we have
considered in this study do not represent the entire spectrum
of VF and PS methods (and combinations thereof) that can
be applied to decision making; rather, they represent the
very ends of that spectrum. Sarsa(0) bootstraps learning
updates assuming that given the representation, transitions
obey the Markov property. The cross entropy method only
uses the aggregate reward accumulated by a policy in evalu-
ating it, and completely ignores individual state transitions.
Our results illuminate the divergent properties of these con-
trasting approaches, while showing that their strengths can
be combined. These results provide the incentive for a closer
examination of the other methods that make up the spec-
trum. Here we describe three relevant classes of methods,
which we plan to include in future extensions of this study.

• Actor-Critic Methods [3, 17] decouple the processes
of policy evaluation (performed by the critic) and pol-
icy improvement (performed by the actor). Thus, the
actor and critic can maintain separate data structures
for learning; in particular, the actor can directly up-
date the parameters of a policy (as in PS) while the
critic estimates state values (as in VF). This separation
can potentially reduce the variance in the policy evalu-
ation step and lead to quicker convergence when com-
pared to our implementation of PS. Actor-critic meth-
ods have been shown to be effective in practice [13].

• Policy Gradient Methods [1, 7] assume that the
control policy is differentiable with respect to the pol-

icy parameters (which rules out the use of the“argmax”
operator, used by both VF and PS in this study), and
perform gradient descent updates to maximize long-
term returns. While they do not learn the value func-
tion explicitly, they still make updates to the policy
based on intermediate state transitions. Careful ex-
perimentation is necessary to determine whether this
makes them more susceptible to deficient function ap-
proximation and partial observability than our PS im-
plementation, which ignores intermediate state transi-
tions.

• Eligibility Traces serve as a means to overcome par-
tial observability in VF methods such as Sarsa. Loch
and Singh [10] demonstrate their effectiveness in doing
so on a number of discrete MDPs. Yet Stone et al. [16]
report that eligibility traces do not have a significant
impact when Sarsa is applied to Keepaway, which also
has partial observability. Thus it becomes interesting
to gauge the effect of the eligibility trace parameter λ

under different values of the parameter σ used in our
experiments to vary partial observability.

6. RELATED WORK
A number of applications from game-playing and robotic

control have benefited from both VF and PS solutions; of
work which has focused on comparing these methods, the
most relevant to our approach is that of Taylor et al. [19].
Their test domain is also Keepaway, on which they com-
pare Sarsa and NEAT [15], a PS method. As we notice in
our experiments, they too observe that Sarsa degrades faster
than NEAT when state noise is added. Additionally, they
observe the opposite trend when action noise is added. We
conjecture that this phenomenon is not significant in our
experiments due to the relatively large number of evalua-
tion runs for PS. Their analysis is based on 3 representative
settings from a complex domain, while we adopt the alter-
native approach of conducting extensive experiments (with
1250 settings) on a much simpler class of domains. For com-
paring VF and PS on an equal footing, we enforce that they
share a common representation. However, in the comparison
performed by Taylor et al. [19], VF uses a tile-coding func-
tion approximation scheme, while NEAT uses an evolved
neural network representation. Consequently, the absolute
performances achieved by our VF and PS implementations
are not readily comparable with theirs.

Our evidence that VF and PS methods may be combined
successfully also finds support in the literature. White-
son and Stone [23] consider performing value function-based
learning during evaluations conducted by policy search; their
algorithm, NEAT+Q improves the asymptotic performance
of both VF and PS on the Mountain Car and job scheduling
tasks. While we initialize PS using a policy learned from VF,
Tesauro et al. initialize VF itself with a hand-coded policy.
This benefits the early phase of training, as demonstrated on
a complex resource allocation task. In the impressive appli-
cation of reinforcement learning for helicopter control [11],
a transition model is learned. Although no explicit value
function is derived, the transition model is used to simu-
late experiences for PEGASUS, a PS method. The success
of these diverse methods on specific applications align with
our results obtained from a broad suite of experiments.

In our implementation of VF+PS, both on the suite of
MDPs and on Keepaway, we manually fix the number of



episodes after which to switch from VF to PS. This “transfer
point” is chosen to coincide roughly with the time that VF
begins to plateau. Likely, picking it before VF plateaus will
initialize the PS phase with a less optimal policy; at the same
time, delaying it past the time VF has “converged” might
waste samples. Devising automatic means to determine the
optimal “transfer point” becomes an avenue for future work.
Indeed, Taylor and Stone [20] face a similar situation while
performing behavior transfer between tasks.

7. CONCLUSION
VF and PS methods are contrasting approaches to solve

reinforcement learning problems, which model realistic sce-
narios of autonomous agents seeking long-term gains in their
interaction with an unknown environment. Both VF and
PS methods rest on solid theoretical foundations, but these
fail to provide performance guarantees when the agent has
to cope with deficient function approximation and partial
observability. We design an extensive experimental setup
intended to tease apart the characteristics of VF and PS
methods under such practical settings. Our experiments il-
lustrate that VF methods enjoy superior sample complexity
and asymptotic performance when provided precise func-
tion approximators and complete state information. Yet, PS
methods display greater resilience to inadequate function ap-
proximation and noisy state information. We demonstrate
that the desirable qualities of both methods can be com-
bined effectively. The resulting method, VF+PS, is shown
to achieve the best performance on a broad range of test
settings and also on the challenging Keepaway task. The
inferences drawn from our study encourage the further pur-
suit of research to integrate VF and PS methods. Promising
areas of focus as next steps in this line of research have been
identified throughout the paper.
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