Volume title 1
The editors
(© 2007 Elsevier All rights reserved

Chapter 1

Knowledge Representation and
Classical Logic

Vladimir Lifschitz, Leora Morgenstern and David
Plaisted

1.1 Knowledge Representation and Classical Logic

Mathematical logicians had developed the art of formatjzileclarative knowledge long
before the advent of the computer age. But they were inttggimarily in formalizing
mathematics. Because of the important role of nonmatheaidhowledge in Al, their
emphasis was too narrow from the perspective of knowledgesentation, their formal
languages were not sufficiently expressive. On the othed harost logicians were not
concerned about the possibility of automated reasonimgn fihe perspective of knowl-
edge representation, they were often too generous in thieeclod syntactic constructs.
In spite of these differences, classical mathematicatlbgs exerted significant influence
on knowledge representation research, and it is apprefodiegin this handbook with a
discussion of the relationship between these fields.

The language of classical logic that is most widely used enttteory of knowledge
representation is the language of first-order (predicatendilas. These are the formulas
that John McCarthy proposed to use for representing deisiatenowledge in his advice
taker paper [176], and Alan Robinson proposed to prove aatioally using resolution
[236]. Propositional logic is, of course, the most impottsubset of first-order logic; re-
cent surge of interest in representing knowledge by proiposil formulas is related to the
creation of fast satisfiability solvers for propositionadjic (see Chapter 2). At the other
end of the spectrum we find higher-order languages of clalsisigic. Second-order for-
mulas are particularly important for the theory of knowledgpresentation, among other
reasons, because they are sufficiently expressive for dgfiransitive closure and related
concepts, and because they are used in the definition ohegeuption (see Section 6.4).

Now a few words about the logical languages thatrareconsidered “classical.” For-
mulas containing modal operators, such as operators exgneg knowledge and belief

2 1. Knowledge Representation and Classical Logic

(Chapter 15), are not classical. Languages with a classycghx but a nonclassical se-
mantics, such as intuitionistic logic and the superintmiistic logic of strong equivalence
(see Section 7.3.3), are not discussed in this chapterelloamonotonic logics (Chapters
6 and 19) are nonclassical as well.

This chapter contains an introduction to the syntax and s&osaof classical logic
and to natural deduction; a survey of automated theoremimgpa concise overview of
selected implementations and applications of theoremipgowand a brief discussion of
the suitability of classical logic for knowledge repres#itn, a debate as old as the field
itself.

1.2 Syntax, Semantics and Natural Deduction

Early versions of modern logical notation were introducetha end of the 19th century
in two short books. One was written by Gottlob Frege [90];ihtention was “to express
a content through written signs in a more precise and clegrthan it is possible to do
through words” [268, p. 2]. The second, by Giuseppe Peand][2dtroduces notation
in which “every proposition assumes the form and the pregishat equations have in
algebra” [268, p. 85]. Two other logicians who have contidolito the creation of first-
order logic are Charles Sanders Peirce and Alfred Tarski.

The description of the syntax of logical formulas in thistgmtis rather brief. A more
detailed discussion of syntactic questions can be founchiapr 2 of theHandbook of
Logic in Artificial Intelligence and Logic Programmirj@1], or in introductory sections of
any logic textbook.

1.2.1 Propositional Logic

Propositional logic was carved out of a more expressive &idanguage by Emil Post
[223].

Syntax and Semantics

A propositional signaturas a non-empty set of symbols calledoms (Some authors
say “vocabulary” instead of “signature,” and “variable’staad of “atom.”) Formulasof
a propositional signature are formed from atoms and the O-place connectivend T
using the unary connective and the binary connectives Vv, — and«. (Some authors
write & for A, O for —, and= for «.)*

The symbolsFALSE and TRUE are calledruth values An interpretationof a propo-
sitional signaturer (or anassignmentis a function fromo into {FALSE,TRUE}. The
semantics of propositional formulas defines which trutlugas assigned to a formula
by an interpretatiod. It refers to the following truth-valued functions, assded with the
propositional connectives:

z_ | ~(@)
FALSE || TRUE
TRUE || FALSE

INote thatL and T are not atoms, according to this definition. They do not bgkorthe signature, and the
semantics of propositional logic, defined below, treatsifirea special way.

1. Knowledge Representation and Classical Logic 3

e |y | Ay | V) | = (@) | < (@)
FALSE FALSE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE FALSE FALSE
TRUE TRUE TRUE TRUE TRUE TRUE

For any formulaF and any interpretatio, the truth value'! that isassignedo F by I
is defined recursively, as follows:

o forany atomrF’, F/ = I(F),

o |1 =FALSE, T! = TRUE,

o (-F)" =(F),

o (FoG)! =o(F!, G for every binary connective.

If the underlying signature is finite then the set of intetatiens is finite also, and the
values of '/ for all interpretationd can be represented by a finite table, calledtthiéh
tableof F'.

If £ = TRUE then we say that the interpretatidrsatisfiesF’, or is amodelof F
(symbolically,I = F).

A formula F' is atautologyif every interpretation satisfieS. Two formulas, or sets of
formulas, areequivalento each other if they are satisfied by the same interpretiors
clear thatF" is equivalent ta7 if and only if F' < G is a tautology.

A setl" of formulas issatisfiablaf there exists an interpretation satisfying all formulas
in I'. We say thaf® entailsa formulaF (symbolically,I" = F) if every interpretation
satisfyingl" satisfiesF.?

To represent knowledge by propositional formulas, we ch@propositional signa-
ture o such that interpretations ef correspond to states of the system that we want to
describe. Then any formula efrepresents a condition on states; a set of formulas can be
viewed as a knowledge base; if a formais entailed by a knowledge basethen the
condition expressed b¥ follows from the knowledge included ih.

Imagine, for instance, that Paul, Quentin and Robert shaoéfige. Let us agree to use
the atonmp to express that Paul is in the office, and similarfpr Quentin and- for Robert.
The knowledge basfp, ¢} entails neither nor —r. (The semantics of propositional logic
does not incorporate the closed world assumption, disdusslew in Section 6.2.4.) But
if we add to the knowledge base the formula

-pV =gV -, (1.2)

expressing that at least one person is away, then the formu(Robert is away) will be
entailed.

2Thus the relation symbdk is understood either as “satisfies” or as “entails” depegidim whether its first
operand is an interpretation or a set of formulas.

4 1. Knowledge Representation and Classical Logic

Explicit Definitions

Let I" be a set of formulas of a propositional signatdare To extendl’ by an explicit
definitionmeans to add te a new atomi, and to add td" a formula of the formi — F,
where[" is a formula of the signature. For instance, if

o={p,q,r}, T'={p,q},

as in the example above, then we can introduce an explicibitiefi that makesi an
abbreviation for the formula A » (“both Quentin and Robert are in”):

o ={p.qrd}, T'={p,q.d (qAr)}.

Adding an explicit definition to a knowledge bdsés, in a sense, a trivial modification.
For instance, there is a simple one-to-one correspondertaebn the set of models bf
and the set of models of such an extension: a model of the @adieset of formulas can be
turned into the corresponding modelloby restricting it too. It follows that the extended
set of formulas is satisfiable if and onlylifis satisfiable. It follows also that adding an
explicit definition produces a “conservative extensionfoanula that does not contain the
new atomd is entailed by the extended set of formulas if and only if gigailed byl".

It is not true, however, that the extended knowledge basgjisvalentto I". For in-
stance, in the example abo{jg ¢} does not entaif — (¢Ar), of course. This observation
is related to the difference between two ways to convert agsitional formula to con-
junctive normal form (that is, to turn it into a set of clausethe more obvious method
based on equivalent tranformations on the one hand, antifs@rocedure, reviewed in
Section 2.2 below, on the other. The latter can be thought afssequence of steps that add
explicit definitions to the current set of formulas, inteesged with equivalent transforma-
tions that make formulas smaller and turn them into clau$ssitin’s procedure is more
efficient, but it does not produce a CNF equivalent to the tifipumula; it only gives us a
conservative extension.

Natural Deduction in Propositional Logic

Natural deduction , invented by Gerhard Gentzen [97], fdimaa the process of introduc-
ing and discharging assumptions , common in informal magtea proofs.

In the natural deduction system for propositional systescdieed below, derivable
objects aresequent®f the formI" = F, whereF is a formula, and” is a finite set of
formulas (“F' under assumptionis”). For simplicity we only consider formulas that con-
tain neitherT nor <; these connectives can be viewed as abbreviations. It &iapally
convenient to write sets of assumptions as lists, and utadetsfor instanced,, A, = F
as shorthand fofA;, A} = F, andl’, A = F as shorthand fof U {A} = F.

The axiom schemas of this system are

F=F

and
= 'V -F.

The inference rules are shown in Figure 1.1. Most of the roéesbe can be divided into

1. Knowledge Representation and Classical Logic 5

'=F A= I'=sFANG T'=>FAG
W) T ASTFAG (AE) *T=F =G
I'=FvG T'=FVd IA{, Ay = H
NF=aGg '=F A=F—>G
(_>I)F2>F—>G (—F) A=G
ILF= 1 I'sF A= -F
-I) F==F7 (=E) A= 1
I'= 1
©) r=7F
I'=%
W) ra=7y

Figure 1.1: Inference rules of propositional logic

two groups—introduction rules (the left column) and eliation rules (the right column).
Each of the introduction rules tells us howderivea formula of some syntactic form. For
instance, the conjunction introduction rylel) shows that we can derive a conjunction if
we derive both conjunctive terms; the disjunction intraitarcrules(V 1) show that we can
derive a disjunction if we derive one of the disjunctive terriach of the elimination rules
tells us how we camsea formula of some syntactic form. For instance, the conjonct
elimination ruleg A E) show that a conjunction can be used to derive any of its catije
terms; the disjunction elimination rulég E') shows that a disjunction can be used to justify
reasoning by cases.

Besides introduction and elimination rules, the dedudiygem includes the contra-
diction rule(C) and the weakening rulg?).

In most inference rules, the set of assumptions in the ceimius simply the union
of the sets of assumptions of all the premises. The ri#eE), (—I) and(VE) are excep-
tions; when one of these rule is applied, some of the assongpfrom the premises are
“discharged.”

An example of a proof in this system is shown in Figure 1.2 sTgroof can be infor-
mally summarized as follows. Assume, ¢ — r andp V ¢q. We will prover by cases.
Case 1p. This contradicts the assumptiep, so that- follows. Case 2j. In view of the
assumptiory — r, r follows also. Consequently, from the assumptiepsandg — r we
have derivedp V q) — 7.

The deductive system described above is sound and completequent” = F'is
provable in it if and only if" = F'. The first proof of a completeness theorem for proposi-
tional logic (involving a different deductive system) isedio Post [223].

Meta-Level and Object-Level Proofs

When we want to establish that a formufas entailed by a knowledge baBethe straight-
forward approach is to use the definition of entailment, thaib reason about interpreta-

6 1. Knowledge Representation and Classical Logic

1. -p = -p — axiom.

2. q—r = q—r — axiom.

3. pVg = pVg — axiom.

4. p = p — axiom.

5. p,p = L — by (=E) from 4, 1.

6. p,p = T — by (C) from 5.

7. qg = q — axiom.

8. ¢Gq—r = T — by (—E) from 7, 2.
9. pVgq,pgq—T = T — by (VE) from 3, 6, 8.
10. -p,q—r = (pVq)—r —by(—I)from9.

Figure 1.2: A proof in propositional logic

tions of the underlying signature. For instance, to cheek the formulas-p andg — r
entail (p vV ¢) — r we can argue that no interpretation of the signafyrey, »} can satisfy
both—p andg — r unless it satisfiegp \V ¢) — r as well.

A sound deductive system provides an “object-level” aliixre to this meta-level ap-
proach. Once we proved the sequEnt- F' in the deductive system described above, we
have established th&tentailsF'. For instance, the claim that the formutag andg — r
entail (p vV q) — r is justified by Figure 1.2. As a matter of convenience, infafrsum-
maries, as in the example above, can be used instead of fprowk. Since the system is
not only sound but also complete, the object-level approaastablishing entailment is,
in principle, always applicable.

Object-level proofs can be used also to establish geneoglepties of entailment.

Consider, for instance, the following fact: for any formaifg, ..., F;,, the implications
F, — Fiiq (i =1,...,n— 1) entail i — F,,. We can justify it by saying that if we
assumer; then Fs, ..., F,, will consecutively follow using the given implications. By

saying this, we have outlined a method for constructing afobthe sequent
Fy —>F27...,Fn_1 — F,=F — F,

that consists ofi — 1 implication eliminations followed by an implication inlaction.

1.2.2 First-Order Logic
Syntax

In first-order logic, asignatureis a set of symbols of two kindsfunction constantand
predicate constarts-with a nonnegative integer, called thgty, assigned to each symbol.
Function constants of arity O are calletject constantspredicate constants of arity O are
calledpropositional constants

Object variablesare elements of some fixed infinite sequence of symbols, &aice
x,y,2,T1,Y1, 21, - - - - 1ermsof a signaturer are formed from object variables and from
function constants af. An atomic formuleof o is an expression of the forf(¢+, . .. , t,,)
ort; = to, whereP is a predicate constant of arity and each; is a term ofo.2 Formulas
are formed from atomic formulas using propositional coties and the quantifierg 3.

3Note that equality is not a predicate constant, accorditigisadefinition. Although syntactically it is similar

1. Knowledge Representation and Classical Logic 7

An occurrence of a variable in a formulaF’ is boundif it belongs to a subformula
of F that has the fornvuG or JuG; otherwise it isfree If at least one occurrence of
in F'is free then we say thatis afree variableof F'. Note that a formula can contain both
free and bound occurences of the same variable, as in

P(z) A JzQ(x). (1.2)
We can avoid such cases by renaming bound occurrences ablesi
P(z) A 3z1Q(21). (1.3)

Both formulas have the same meaninghas the property?, and there exists an object
with the propertyQ.

A closedformula, or asentenceis a formula without free variables. Thmiversal
closureof a formulaF’ is the sentencev, - - - v, F', wherevy, . . ., v, are the free variables
of F.

The result of thesubstitutionof a termt for a variablev in a formularF’ is the formula
obtained fromF" by simultaneously replacing each free occurrence b¥ t. When we
intend to consider substitutions forin a formula, it is convenient to denote this formula
by an expression liké'(v); then we can denote the result of substituting a tefor v in
this formula byF'(¢).

By 3w F'(v) (“there exists a unique such thatF'(v)") we denote the formula

FVw(F(w) < v =w),

wherew is the first variable that does not occurhifv).

Atermt is substitutabldor a variablev in a formulaF' if, for each variablev occurring
in ¢, no subformula o that has the fornvwG or 3wG contains an occurrence ofwvhich
is free in F". (Some authors say in this case thas free forz in F.) This condition is
important because when it is violated, the formula obtaimgdubstitutingt for v in F’
does not usually convey the intended meaning. For instahedprmuladz(f(z) = y)
expresses that belongs to the range of. If we substitute, say, the tergia, z) for y
in this formula then we will get the formuldz(f(z) = g(a, z)), which expresses that
g(a, z) belongs to the range gf—as one would expect. If, however, we substitute the
termg(a,) instead, the resuliz(f(z) = g(a,x)) will notexpress thag(a, z) belongs
to the range off. This is related to the fact that the tegrtu,) is not substitutable foyg
in 3x(f(x) = y); the occurrence of resulting from this substitution is “captured” by the
quantifier at the beginning of the formula. To express tf{at =) belongs to the range
of f, we should first rename in the formuladz(f(z) = y) using, say, the variable; .
The substitution will produce then the formda, (f(z1) = g(a, z)).

Semantics

An interpretation(or structuré of a signaturer consists of

e anon-empty seff|, called theuniverse(or domain of 17,

to binary predicate constants, it does not belong to theasiige, and the semantics of first-order logic, defined
below, treats equality in a special way.

8 1. Knowledge Representation and Classical Logic

for every object constantof o, an element! of |1],

for every function constant of o of arity n > 0, a functionf? from |1|™ to |I|,

for every propositional constarit of o, an elemenf! of {FALSE, TRUE},

for every predicate constarit of o of arity n > 0, a functionR! from |I|" to
{FALSE, TRUE}.

The semantics of first-order logic defines, for any senténemd any interpretatiof
of a signaturer, the truth valueF'! that is assigned t& by I. Note that the definition
does not apply to formulas with free variables. (Whethe{f (x) = y) is true or false, for
instance, is not completely determined by the universe grildfunction representing;
the answer depends also on the valugy afithin the universe.) For this reason, stating
correctly the clauses for quantifiers in the recursive dedimiof £/ is a little tricky. One
possibility is to extend the signatueeby “names” for all elements of the universe, as
follows.

Consider an interpretatioh of a signatures. For any elemen{ of its universe|I|,
select a new symbal*, called thenameof £. By o we denote the signature obtained
from o by adding all nameg* as object constants. The interpretatioran be extended to
the new signature’ by defining(¢*)! = ¢ forall € € |1].

For any term of the extended signature that does not contain variabkesyilvdefine
recursively the element of the universe that iassignedo ¢ by I. If ¢ is an object constant
thent! is part of the interpretatiof. For other termst! is defined by the equation

fltr, .. to)t = fLd, . th)

for all function constantg of arity n > 0.
Now we are ready to definB! for every sentencé& of the extended signatuee . For
any propositional constai®?, P’ is part of the interpretatioh. Otherwise, we define:

o R(ty,....tn)l =RI(t, ... th),
e 17 =FALSE, T/ = TRUE,

(~F)! = ~(F")

(F o G) = o(F!,GT) for every binary connective,

VwF(w)! = TRUEIf F(¢*)! = TRUEforall ¢ € |1,

e JwF(w)! = TRUEIf F(¢*)! = TRUE for somet € |I].

We say that an interpretatiahsatisfiesa sentence”, or is amodelof F', and write
I = F,if FI = TRUE. A sentencé" is logically valid if every interpretation satisfies.
Two sentences, or sets of sentences,e@rg@ivalentto each other if they are satisfied by
the same interpretations. A formula with free variablesaisl $0 belogically valid if its
universal closure is logically valid. Formul&andG that may contain free variables are
equivalento each other i’ <+ G is logically valid.

A setI of sentences isatisfiablef there exists an interpretation satisfying all sentences
inT. A setl” of sentencesntailsa formulaF’ (symbolically,l’ = F)) if every interpretation
satisfyingl" satisfies the universal closure Bf

1. Knowledge Representation and Classical Logic 9

Sorts

Representing knowledge in first-order languages can bea aftaplified by introducing
sorts, which requires that the definitions of the syntax @mlamtics above be generalized.

Besides function constants and predicate constants, a-smatgd signature includes
symbols calledsorts In addition to an arityh, we assign to every function constant and
every predicate constant asgument sorts, . . ., s,,; to every function constant we assign
also itsvalue sorts,, 1. For instance, in the situation calculus (Section 16.18 symbols
situationandactionare sortsgois a binary function symbol with the argument satsion
andsituation and the value sosituation

For every sort, we assume a separate infinite sequence of variables ofattaff$ie
recursive definition of a term assigns a sort to every terrorm¢ formulas are expressions
of the form P (¢4, ..., t,), where the sorts of the ternts, . . ., ¢,, are the argument sorts
of P, and also expressions = ¢, wheret; andt, are terms of the same sort.

An interpretation, in the many-sorted setting, includegpasate non-empty universe
|I]* for each sorts. Otherwise, extending the definition of the semantics toyrsorted
languages is straightforward.

A further extension of the syntax and semantics of first-ofolenulas allows one sort
to be a “subsort” of another. For instance, when we talk atfmiblocks world, it may
be convenient to treat the sdslock as a subsort of the soldcation Let b; andb, be
object constants of the sdstock let tablebe an object constant of the séwtation and
let on be a binary function constant with the argument sblgk andlocation Not only
on(by, table) will be counted as a term, but alsm(b;, b2), because the sort @k is a
subsort of the second argument sorbaf

Generally, a subsort relation is an order (reflexive, titargsand anti-symmetric rela-

tion) on the set of sorts. In the recursive definition of a tefit;,...,¢,) is a term if
the sort of each; is a subsort of the-th argument sort of . The condition on sorts in the
definition of atomic formula$ (¢4, . . ., t,,) is similar. An expressioty = t is considered

an atomic formula if the sorts @f andi, have a common supersort. In the definition of
an interpretation,/|** is required to be a subset [df*2 wheneves; is a subsort ofs.

In the rest of this chapter we often assume for simplicity tha underlying signature
is nonsorted.

Uniqueness of Names

To talk about Paul, Quentin and Robert from Section 1.2.1fins&order language, we
can introduce the signature consisting of the object cotsRaul, Quentin Robertand
the unary predicate constant and then use the atomic sentences

in(Paul), in(Quentin, in(Rober} (1.4)

instead of the atomg, ¢, r from the propositional representation.

However some interpretations of this signature are uriiruénd do not correspond
to any of the 8 interpretations of the propositional sigrafp, ¢,7}. Those are the in-
tepretations that map two, or even all three, object cotstanthe same element of the
universe. (The definition of an interpretation in first-artigyic does not require that be

10 1. Knowledge Representation and Classical Logic

different fromc for distinct object constants, ¢,.) We can express th&aul’, Quentirf
andRoberf are pairwise distinct by saying thasatisfies the “unique name conditions”

Paul £ Quentin Paul # Robert Quentin# Robert (1.5)

Generally, thaunique name assumptidor a signaturer is expressed by the formulas

NIRRTy ...yn(f(ajl,...,il?m) #* g(yl,---,yn)) (1.6)

for all pairs of distinct function constanys ¢, and

vxlxnylyn(f(wl,,xn):f(ylaayn)
— (.%'1 =y1 NNy :yn)) (17)

for all function constantg of arity > 0. These formulas entail # ¢, for any distinct
variable-free termsy, t,.

The set of equality axioms that was introduced by Keith C[&8§ and is often used in
the theory of logic programming includes, in addition td{land (1.7), the axioms# «,
wheret is a term containing: as a proper subterm.

Domain Closure

Consider the first-order counterpart of the propositionafiula (1.1), expressing that at
least one person is away:

=in(Paul) v —in(Quentin v —in(Rober}. (1.8)
The same idea can be also conveyed by the formula
Jz—in(z). (1.9)

But sentences (1.8) and (1.9) are not equivalent to each: dtfeeformer entails the latter,
but not the other way around. Indeed, the definition of arrjgmegation in first-order logic
does not require that every element of the universe be egiafér some object constant
Formula (1.9) interprets “at least one” as referring to aaiergroup that includeRaul,
QuentinandRobert and may also include others.

If we want to express that every element of the universe spoeds to one of the three
explicitly named persons then this can be done by the formula

Vz(x = PaulV = Quentinv z = Rober}. (1.10)

This “domain closure condition” entails the equivalencénm=n (1.8) and (1.9); more
generally, it entails the equivalences

VaF(x) < F(Paul) A F(Quentin A F(Rober},
J2F (z) « F(Paul) vV F(Quentin v F(Roben

for any formulaF'(z). These equivalences allow us to replace all quantifiers arbitrary
formula with mutiple conjunctions and disjunctions. Fenttmore, under the unique name
assumption (1.5) any equality between two object constzarishe equivalently replaced
by T or L, depending on whether the constants are equal to each dtieeresult of these
transformations is a propositional combination of the d@tosantences (1.4).

1. Knowledge Representation and Classical Logic 11

Generally, consider a signatusecontaining finitely many object constants .. ., ¢,
are no function constants of arity 0. Thedomain closure assumptidaor o is the formula

Ve(x=c1V--Va=cy). (1.11)

The interpretations of that satisfy both the unique name assumptipé ¢; (1 < i <
j < n) and the domain closure assumption (1.11) are essentildhtical to the interpre-
tations of the propositional signature that consists odtdmic sentences of other than
equalities. Any sentenck of o can be transformed into a formufd of this propositional
signature such that the unique name and domain closure pisamentailf” «— F. In
this sense, these assumptions turn first-order sentertoesbibreviations for propositional
formulas.

The domain closure assumption in the presence of functiostaat of arity> 0 is
discussed in Sections 1.2.2 and 1.2.3.

Reification

The first-order language introduced in Section 1.2.2 haslias for people, such as Paul
and Quentin, but not for places, such as their office. In thiss, people are “reified” in
that language, and places are not. To reify places, we cathadudto the signature as a
second sort, addfficeas an object constant of that sort, and turimto a binary predicate
constant with the argument sofiersonandplace In the modified language, the formula
in(Paul) will turn into in(Paul, office).

Reification makes the language more expressive. For instdnaving reified places,
we can say that every person has a unique location:

Vz3lp in(x, p). (1.12)

There is no way to express this idea in the language from@ett2.2.

As another example illustrating the idea of reification, pame two versions of the
situation calculus. We can express that blégkis clear in the initial situatiorn5, by
writing either

clear(by, So) (2.13)
or
Holdg(clear(by), So). (1.14)

In (1.13),clearis a binary predicate constant; in (1.1dlgaris a unary function constant.
Formula (1.14) is written in the version of the situationceéilis in which (relational) fluents
are reifiedfluentis the first argument sort of the predicate constéwitls The version of
the situation calculus introduced in Section 16.1 is theaexpressive version, with reified
fluents. Expression (1.13) is viewed there as shorthand fa4yj.

Explicit Definitions in First-Order Logic

Let I" be a set of sentences of a signatureTo extendl’ by anexplicit definition of a
predicate constanineans to add te a new predicate consta#ft of some arityn, and to
add toI' a sentence of the form

V’Ul"-vn(P(’Ul,...,Un)HF),

12 1. Knowledge Representation and Classical Logic

wherevy, ..., v, are distinct variables an#l is a formula of the signature. About the
effect of such an extension we can say the same as about gut effadding an explicit
definion to a set of propositional formulas (Section 1.2thgre is an obvious one-to-one
correspondence between the models of the original knowlbdge and the models of the
extended knowledge base.

With function constants, the situation is a little more cdemp To extend a sef of
sentences of a signatureéby anexplicit definition of a function constanteans to add te
a new function constant, and to add td" a sentence of the form

\V/U1~-~1)n’0(f(1)1,...,’0n):'UHF),

whereuvy, ..., v,,v are distinct variables an# is a formula of the signature such thai®
entails the sentence
Yoy - - vpdWWF.

The last assumption is essential: if it does not hold thennagdal function constant along
with the corresponding axiom would eliminate some of the et®dfI".

For instance, ifl" entails (1.12) then we can extefdby the explicit definition of the
function constantocation

Vap(locationz) = p < in(x, p)).

Natural Deduction with Quantifiers and Equality

The natural deduction system for first-order logic inclualéaxiom schemas and inference
rules shown in Section 1.2.1 and a few additional postul#tiest, we add the introduction
and elimination rules for quantifiers:

I'= F(v) I' = YoF(v)
D T = Vor() E) +=F@
wherev is not a free variable wheres substitutable
of any formula inl forvin F(v)

I'= F(¢) I'=J0F@Ww) AFv)=G
D v ==0F (o) (3E) A= G
wheret is substitutable whereis not a free variable
forvin F(v) of any formulainA, G

Second, postulates for equality are added: the axiom scbhgprassing its reflexivity
=t=t
and the inference rules for replacing equals by equals:

P'=sti=te A=F({1) T'=ti=t A:>F(t2)

(Rep) LA = Flta) T,A = F(t)

wheret; andt, are terms substitutable forin F(v).

1. Knowledge Representation and Classical Logic 13

1. (1.9) = (1.9 — axiom.

2. —-in(z) = -in(z) — axiom.

3. xr=P = x=P — axiom.

4. x = P,—in(z) = —in(P) — by Replfrom 3, 2.

5. x = P,-in(z) = -in(P)V -in(Q) — by (VI) from4.

6. xz=P-in(z) = (1.8) — by (VI) from 5.

7. r=0Q = =@ — axiom.

8. x=Q,-in(z) = —in(Q) — by Replfrom 7, 2.

9. x=Q,-in(z) = =in(P)V-in(Q) —by(VI)froms.
10. z=Q,-in(z) = (1.8) — by (VI) from 9.
11. r=PVa=Q = z=PVr=Q — axiom.
12. x=PVvz=Q,-in(z) = (1.8) — by (VE) from 11, 6, 10.
13. xr=R = =R — axiom.
14. x = R,-in(z) = -in(R) — by Replfrom 13, 2.
15. x=R,-in(z) = (1.8) — by (vI) from 14.
16. (1.10) = (1.10) — axiom.
17. (1.10) = z=PVvz=Q

Ve=R —by(VE)from 16.

18. (1.10),—in(z) = (1.8) — by (VE) from 17, 12, 15.
19. (1.9),(1.10) = (1.8) — by (3F) from 1, 18.

Figure 1.3: A proof in first-order logic

This formal system is sound and complete: for any finitelsef sentences and any
formula F', the sequent = F is provable if and only iT" = F. The completeness of (a
different formalization of) first-order logic was proved &pdel [102].

As in the propositional case (Section 1.2.1), the soundtiessem justifies establish-
ing entailment in first-order logic by an object-level argamh For instance, we can prove
the claim that (1.8) is entailed by (1.9) and (1.10) as foflotakex such that-in(x) and
consider the three cases corresponding to the disjunetimestof (1.10); in each case, one
of the disjunctive terms of (1.8) follows. This argument isiaformal summary of the
proof shown in Figure 1.3, with the naméaul, Quentin Robertreplaced byP, Q, R.

Since proofs in the deductive system described above caffdmively enumerated,
from the soundness and completeness of the system we caluderticat the set of log-
ically valid sentences is recursively enumerable. But itas recursive [57], even if the
underlying signature consists of a single binary predicatestant, and even if we disre-
gard formulas containing equality [137].

As discussed in Section 3.3.1, most descriptions logicsbeamiewed as decidable
fragments of first-order logic.

Limitations of First-Order Logic

The sentence
Vay(Q(x,y) < P(y,))

14 1. Knowledge Representation and Classical Logic

expresses thad is the inverse ofP. Does there exist a first-order sentence expressing
that@ is thetransitive closureof P? To be more precise, does there exist a sentéhak

the signaturg P, Q} such that an interpretatiahof this signature satisfieE if and only

if Q! is the transitive closure aP’?

The answer to this question is no. From the perspective ofviadge representation,
this is an essential limitation, because the concept ofitiga closure is the mathemati-
cal counterpart of the important commonsense idea of rddilhia As discussed in Sec-
tion 1.2.3 below, one way to overcome this limitation is totto second-order logic.

Another example illustrating the usefulness of seconaoiapic in knowledge repre-
sentation is related to the idea of domain closure (Sect@2). If the underlying signature
contains the object constants . . ., ¢, and no function constants of arity 0 then sen-
tence (1.11) expresses the domain closure assumptionteaprgtation/ satisfies (1.11)
if and only if

Il ={cf,...,cL}.
Consider now the signature consisting of the object cohstand the unary function con-
stantf. Does there exist a first-order sentence expressing theidaegure assumption
for this signature? To be precise, we would like to find a sereé’ such that an interpre-
tation I satisfiesF' if and only if

11| ={c", f(&)" f(F(). .)

There is no first-order sentence with this property.

Similarly, first-order languages do not allow us to statetét& foundational axiom
expressing that each situation is the result of performisgpopience of actions in the initial
situation ([231, Section 4.2.2]; see also Section 16.3velo

1.2.3 Second-Order Logic
Syntax and Semantics

In second-order logic, the definition of a signature remtirsame (Section 1.2.2). But its
syntax is richer, because, along with object variables,sgeme now an infinite sequence
of function variablesof arity n for eachn > 0, and an infinite sequence pfedicate
variablesof arity n for eachn > 0. Object variables are viewed as function variables of
arity 0.

Function variables can be used to form new terms in the sargeawdunction con-
stants. For instance, df is a unary function variable andis an object constant ther(c)
is a term. Predicate variables can be used to form atomiafiasin the same way as pred-
icate constants. In non-atomic formulas, function and igegd variables can be bound by
quantifiers in the same way as object variables. For instance

Vafdyve(y(z) = a(f(x)))

is a sentence expressing the possibility of composing aoyftmctions. (When we say
that a second-order formula is a sentence, we mean thataitrenices of all variables in
it are bound, including function and predicate variables.)

Note thata = (is not an atomic formula, because unary function variabtesat
terms. But this expression can be viewed as shorthand fdothmula

Vr(o(z) = B(x)).

1. Knowledge Representation and Classical Logic 15

Similarly, the expressiop = ¢, wherep andgq are unary predicate variables, can be viewed
as shorthand for

Va(p(z) < q(z)).
The condition € is the transitive closure aP” can be expressed by the second-order
sentence

Voy(Q(z,y) < Vq(F(q) — q(x,y))), (1.15)
whereF'(g) stands for

Veiyr (P(z1,y1) — g2, y1))
AVz1y121((q(z1, y1) A q(yr, 21)) — a1, 21))

(Q is the intersection of all transitive relations containiiy
The domain closure assumption for the signaturef } can be expressed by the sen-
tence

Vp(G(p) — Va p(z)), (1.16)

whereG(p) stands for
p(e) AV (p(z) — p(f()))
(any set that containsand is closed undef covers the whole universe).

The definition of an interpretation remains the same (Sedtig@.2). The semantics of
second-order logic defines, for each sentefi@nd each interpretatioh the correspond-
ing truth valueF!. In the clauses for quantifiers, whenever a quantifier binfisation
variable, names of arbitrary functions frgf™ to I are substituted for it; when a quantifier
binds a predicate variable, names of arbitrary functioomffI|" to {FALSE, TRUE} are
substituted.

Quantifiers binding a propositional variahjecan be always eliminated/pF'(p) is
equivalenttaF' (L) A F(T), and3pF(p) is equivalenttaF (L) v F(T). In the special case
when the underlying signature consists of propositionaktants, second-order formulas
(in prenex form) are known apiantified Boolean formulgsee Section 2.5.1). The equiv-
alences above allow us to rewrite any such formula in theasyaf propositional logic.
But a sentence containing predicate variables of arity may not be equivalent to any
first-order sentence; (1.15) and (1.16) are examples of ‘herld” cases.

Object-Level Proofs in Second-Order Logic

In this section we consider a deductive system for secoddrdogic that contains all
postulates from Sections 1.2.1 and 1.2.2; in r@t&8) and(31), if v is a function variable
of arity > 0 thent is assumed to be a function variable of the same arity, anitbsiynfor
predicate variables. In addition, we include two axiom sehg asserting the existence of
predicates and functions. One is the axiom schema of corapsi&n

= IpVur ... vn(p(v1,...,0,) <« F),

whereuy, ..., v, are distinct object variables, apds not free inF'. (Recall that— is not
allowed in sequents, but we treBt«— G as shorthand fofFF — G) A (G — F).) The
other is the axioms of choice

= Vo1 0 0p1 D(V1, oy Upg1) — FaVUT .U (P(V1, - O, (V1,0 UR)),

16 1. Knowledge Representation and Classical Logic

1 F = F — axiom.

2 F = px)—ply) — by (VE) from 1.

3 = IpVz(p(z) « x=2) — axiom (comprehension).

4 Vz(p(z) @ x =2) = Vz(p(z) &z =2) — axiom.

5 Vz(p(z) wx=2) = pl)—x==z — by (VE) from 4.

6 Vz(p(z) @ x=2) = z=1z— px) — by (AE) from 5.

7 = ==z — axiom.

8 Vz(p(z) = x=2) = pa) —by(— E)from?7, 6.

9. FVz(p(z) »z=2) = ply) — by (— E) from 8, 2.
10. Vz(p(z) mx=2) = ply) —oxz=y — by (VE) from 4.
11. Vz(p(z) mx=2) = ply) —z=y — by (AE) from 10.
12. FVz(p(z) max=2) = z=y —by(— FE)from9, 11.
13. F = z=y — by (3F) from 1, 12.
14. = F—oz=y — by (— I) from 13.

Figure 1.4: A proof in second-order logi€: stands fo'p(p(z) — p(y))
wherevy, ..., v,41 are distinct object variables.

This deductive system is sound but incomplete. Adding anypd@xioms or inference
rules would not make it complete, because the set of logivalld second-order sentences
is not recursively enumerable.

As in the case of first-order logic, the availability of a sdudeductive system allows
us to establish second-order entailment by object-leasaring. To illustrate this point,
consider the formula

Vp(p(z) — p(y)) — ==y,

which can be thought of as a formalization of ‘Leibniz’s mijle of equality”: two objects
are equal if they share the same properties. Its logicalliyalcan be justified as follows.
Assumevp(p(z) — p(y)), and takep to be the property of being equalto Clearlyz has
this property; consequentlyhas this property as well, that is,= y. This argumentis an
informal summary of the proof shown in Figure 1.4.

1.3 Automated Theorem Proving

Automated theorem proving is the study of techniques fogmmming computers to
search for proofs of formal assertions, either fully autboadly or with varying degrees
of human guidance. This area has potential applicationatdvare and software verifi-
cation, expert systems, planning, mathematics reseandre@ucation.

Given a setA of axioms and a logical consequenBe a theorem proving program
should, ideally, eventually construct a proof®ffrom A. If B is not a consequence df,
the program may run forever without coming to any definiteatesion. This is the best
one can hope for, in general, in many logics, and indeed éisrist not always possible.
In principle, theorem proving programs can be written justebumerating all possible
proofs and stopping when a proof of the desired statemeauisd, but this approach is so
inefficient as to be useless. Much more powerful methods baee developed.

1. Knowledge Representation and Classical Logic 17

History of Theorem Proving

Despite the potential advantages of machine theorem mypitimvas difficult initially to
obtain any kind of respectable performance from machinde@orem proving problems.
Some of the earliest automatic theorem proving methods, asithose of Gilmore [101],
Prawitz [224], and Davis and Putnam[70] were based on Hedsaheorem, which gives
an enumeration process for testing if a theorem of firsttolmtgc is true. Davis and Put-
nam used Skolem functions and conjunctive normal form esusnd generated elements
of the Herbrand universe exhaustively, while Prawitz shibWwew this enumeration could
be guided to only generate terms likely to be useful for tlefirbut did not use Skolem
functions or clause form. Later Davis[67] showed how toimeathis same idea in the
context of clause form and Skolem functions. However, ttaggeroaches turned out to be
too inefficient. Theresolutionapproach of Robinson [235, 236] was developed in about
1963, and led to a significant advance in first-order theoresagrs. This approach, like
that of Davis and Putnam[70], used clause form and Skoleratifums, but made use of
a unificationalgorithm to to find the terms most likely to lead to a proof.biRson also
used the resolution inference rule which in itself is allttisaneeded for theorem proving
in first-order logic. The theorem proving group at Argoni@ais took the lead in imple-
menting resolution theorem provers, with some initial ®sscon group theory problems
that had been intractable before. They were even able te solwme previously open prob-
lems using resolution theorem provers. For a discussioneoéarly history of mechanical
theorem proving, see [68].

About the same time, Maslov[173] developed iimerse methodvhich has been less
widely known than resolution in the West. This method wagioglly defined for clas-
sical first-order logic without function symbols and eqtyaland for formulas having a
quantifier prefix followed by a disjunction of conjunctionksatauses. Later the method
was extended to formulas with function symbols. This methad used not only for theo-
rem proving but also to show the decidability of some clas$ésst-order formulas. In the
inverse method, substitutions were originally represttagesets of equations, and there ap-
pears to have been some analogue of most general unifiersndthed was implemented
for classical first-order logic by 1968. The inverse metlsoidsed on forward reasoning to
derive a formula. In terms of implementation, it is compegitvith resolution, and in fact
can be simulated by resolution with the introduction of newdicate symbols to define
subformulas of the original formula. For a readable exjpmsivf the inverse method, see
[164]. For many extensions of the method, see [72].

In the West, the initial successes of resolution led to a nfsenthusiasm, as reso-
lution theorem provers were applied to question-answeapiafplems, situation calculus
problems, and many others. It was soon discovered thatutemohad serious inefficien-
cies, and a long series of refinements were developed to@tteravercome them. These
included the unit preference rule, the set of support gjyateyper-resolution, paramodula-
tion for equality, and a nearly innumerable list of othemefents. The initial enthusiasm
for resolution, and for automated deduction in generalnsgore off. This reaction led,
for example, to the development of specialized decisiorguaiares for proving theorems
in certain theories [196, 197] and the development of exgetems.

However, resolution and similar approaches continued tddseloped. Data struc-
tures were developed permitting the resolution operationet implemented much more
efficiently, which were eventually greatly refined[228] aghie Vampire prover[233]. One

18 1. Knowledge Representation and Classical Logic

of the first provers to employ such techniques was Sticketddg Technology Theorem
Prover [259]. Techniques for parallel implementations aivers were also eventually
considered [35]. Other strategies besides resolution dereloped, such as model elimi-
nation [167], which led eventually to logic programming dblog, the matings method
for higher-order logic [3], and Bibel's connection meth@®]. Though these methods are
not resolution based, they did preserve some of the key ptmoéresolution, namely, the
use of unification and the combination of unification witherénce in clause form first-
order logic. Two other techniques used to improve the peréorce of provers, especially
in competitions[260], arstrategy selectiorand strategy scheduling Strategy selection
means that different theorem proving strategies and diffiesettings of the coefficients
are used for different kinds of problems. Strategy scheduiieans that even for a given
kind of problem, many strategies are used, one after an@hem specified amount of time
is allotted to each one. Between the two of these approattiezs,is considerable freedom
for imposing an outer level of control on the theorem proweeailor its performance to a
given problem set.

Some other provers dealt with higher-order logic, such asT#®S prover of Andrews
and others [4, 5] and the interactive NgTHM and ACL2 provdr8oyer, Moore, and
Kaufmann [144, 143] for proofs by mathematical inductioadady, a variety of approaches
including formal methods and theorem proving seem to bepedeas part of the standard
Al tool kit.

Despite early difficulties, the power of theorem proversdémginued to increase. No-
table in this respect is Otter[183], which is widely distribd, and coded in C with very
efficient data structures. Prover9 is a more recent prové¥.dficCune in the same style,
and is a successor of Otter. The increasing speed of hardwaaralso significantly aided
theorem provers. An impetus was given to theorem provingareh by McCune’s so-
lution of the Robbins problem[182] by a first-order equatibtheorem prover derived
from Otter. The Robbins problem is a first-order theoremIving equality that had been
known to mathematicians for decades but which no one wastaldelve. McCune’s
prover was able to find a proof after about a week of computadany other proofs have
also been found by McCune’s group on various provers; seexample the web page
http://www.cs.unm.edu/"veroff MEDIAN_ALGEBRA/. Now substantial the-
orems in mathematics whose correctness is in doubt can bkaxdhby interactive theorem
provers [202].

First-order theorem provers vary in their user interfabes,most of them permit for-
mulas to be entered in clause form in a reasonable syntaxe $oovers also permit the
user to enter first-order formulas; these provers genguatlyide various ways of translat-
ing such formulas to clause form. Some provers require anbat user guidance, though
most such provers have higher-order features, while ottoseps are designed to be more
automatic. For automatic provers, there are often mangmdift flags that can be set to
guide the search. For example, typical first-order provéosvathe user to select from
among a number of inference strategies for first-order lagiwell as strategies for equal-
ity. For equality, it may be possible to specify a terminatardering to guide the appli-
cation of equations. Sometimes the user will select incetepdtrategies, hoping that the
desired proof will be found faster. It is also often possitoleset a size bound so that all
clauses or literals larger than a certain size are deletéadto@se one does not know in
advance what bound to choose, so some experimentationessey. Asliding priority
approach to setting the size bound automatically was predém [218]. It is sometimes

1. Knowledge Representation and Classical Logic 19

possible to assign various weights to various symbols otesmois or to variables to guide
the proof search. Modern provers generally have term imdg2P8] built in to speed up in-
ference, and also have some equality strategy involvingreaiparamodulation and rewrit-
ing. Many provers are based on resolution, but some are lmasetbdel elimination and
some are based on propositional approaches. Provers caraggeolauses rapidly; for ex-
ample Vampire[233] can often generate more than 40,008etper second. Most provers
rapidly fill up memory with generated clauses, so that if aopi® not found in a few min-
utes it will not be found at all. However, equational proafgdlve considerable simplifi-
cation and can sometimes run for a long time without exhagstiemory. For example,
the Robbins problem ran for 8 days on a SPARC 5 class UNIX coenmiith a size bound
of 70 and required about 30 megabytes of memory, genera8ifg8lequations, most of
which were deleted by simplification. Sometimes small peotd can run for a long time
without finding a proof, and sometimes problems with a huddnemore input clauses
can result in proofs fairly quickly. Generally, simple pleims will be proved by nearly
any complete strategy on a modern prover, but hard problesyseguire fine tuning. For
an overview of a list of problems and information about howlwarious provers per-
form on them, see the web sitevaivw.tptp.org , and for a sketch of some of the main
first-order provers in use today, sh#p://www.cs.miami.edu/"tptp/CASC/

as well as the journal articles devoted to the individual petitions such as [260, 261].
Current provers often do not have facilities for interagtivith other reasoning programs,
but work in this area is progressing.

In addition to developing first-order provers, there hasbgerk on other logics, too.
The simplest logic typically considered gopositional logi¢ in which there are only
predicate symbols (that is, Boolean variables) and logioahectives. Despite its simplic-
ity, propositional logic has surprisingly many applicatip such as in hardware verification
and constraint satisfaction problems. Propositional @rehave even found applicationsin
planning. The general validity (respectively, satisfidjlproblem of propositional logic
is NP-hard, which means that it does not in all likelihoodédnaw efficient general solution.
Nevertheless, there are propositional provers that apgisingly efficient, and becoming
increasingly more so; see Chapter 2 of this handbook foildeta

Binary decision diagrams[44] are a particular form of prsiional formulas for which
efficient provers exist. BDD’s are used in hardware verif@gtand initiated a tremendous
surge of interest by industry in formal verification techugg. Also, the Davis-Putnam-
Logemann-Loveland method [69] for propositional logic eakily used in industry for
hardware verification.

Another restricted logic for which efficient provers existhat of temporal logic, the
logic of time (see Chapter 12 of this handbook). This hasiegfibns to concurrency. The
model-checking approach of Clarke and others[49] has prowée particularly efficient
in this area, and has also stimulated considerable inteyaatustry.

Other logical systems for which provers have been develapedhe theory of equa-
tional systems, for which term-rewriting techniques leaddgmarkably efficient theorem
provers, mathematical induction, geometry theorem pagéonstraints (chapter 4 of this
handbok), higher-order logic, and set theory.

Not only proving theorems, but finding counter-exampleshuwitding models, is of
increasing importance. This permits one to detect when ardine is not provable, and
thus one need not waste time attempting to find a proof. Thisfisourse, an activity
which human mathematicians often engage in. These coargnples are typically finite

20 1. Knowledge Representation and Classical Logic

structures. For the so-calldiditely controllabletheories, running a theorem prover and a
counter-example (model) finder together yields a decisioegdure, which theoretically
can have practical applications to such theories. Modeirfaqtas recently been extended
to larger classes of theories [52].

Among the current applications of theorem provers one rhérdware verification
and program verification. For a more detailed survey, seexiellent report by Love-
land [169]. Among potential applications of theorem pravare planning problems, the
situation calculus, and problems involving knowledge aeligt.

There are a number of provers in prominence today, inclu@ittgr [183], the provers
of Boyer, Moore, and Kaufmann [144, 143], Andrew’s matingsver [3], the HOL prover
[103], Isabelle [210], Mizar [267], NuPrl [63], PVS [208]nd many more. Many of these
require substantial human guidance to find proofs. The Orsggi®m[247] is a higher
order logic proof development system that attempts to @maecsome of the shortcomings
of traditional first-order proof systems. In the past it hasdia natural deduction calculus
to develop proofs with human guidance, though the systemdaging.

Provers can be evaluated on a number of grounds. Ocenipletenessan they, in
principle, provide a proof of every true theorem? Anothealeation criterion is their per-
formance on specific examples; in this regard, the TPTP proiskt [262] is of particular
value. Finally, one can attempt to provide an analytic estimof the efficiency of a theo-
rem prover on classes of problems [219]. This gives a meaghih is to a large extent
independent of particular problems or machines. The HaokilbbAutomated Reasoning
[237] is a good source of information about many areas ofréragroving.

We next discuss resolution for the propositional calculug then some of the many
first-order theorem proving methods, with particular ditamnto resolution. We also con-
sider techniques for first-order logic with equality. Figalve briefly discuss some other
logics, and corresponding theorem proving techniques.

1.3.1 Resolution in the Propositional Calculus

The main problem for theorem proving purposes is given a fite, to determine whether
it is valid. SinceA is valid iff — A is unsatisfiable, it is possible to determine validity if one
can determine satisfiability. Many theorem provers tessfsability instead of validity.

The problem of determining whether a Boolean formdl& satisfiable is one of the
NP-complete problems. This means that the fastest algesitmnown require an amount
of time that is asymptotically exponential in the size4fAlso, it is not likely that faster
algorithms will be found, although no one can prove that heyot exist.

Despite this negative result, there is a wide variety of roé#tin use for testing if a for-
mula is satisfiable. One of the simplestristh tables For a formulad over{P,, Py, - -, P, },
this involves testing for each of t1# valuationsl over{P;, P, - - -, P, } whetherl | A.

In general, this will require time at least proportionatoto show thatd is valid, but may
detect satisfiability sooner.

Clause Form

Many of the other satisfiability checking algorithms depemdconversion of a formula
A to clause form This is defined as follows: Aatomis a proposition. Aliteral is an
atom or an atom preceded by a negation sign. The two litdtadsd—P are said to be

1. Knowledge Representation and Classical Logic 21

complementaryo each other. Alauseis a disjunction of literals. A formula is inlause
formif it is a conjunction of clauses. Thus the formula

(PV-R)A(-PVQV R)AN(-QV —R)

is in clause form. This is also known asnjunctive normal formWe represent clauses
by sets of literals and clause form formulas by sets of clsuse that the above formula
would be represented by the following set of sets:

{{P,~R},{-P,Q, R},{-Q,~R}}

A unit clausess a clause that contains only one literal. Tdmpty clausd } is understood
to representALSE.

It is straightforward to show that for every formufathere is an equivalent formula
in clause form. Furthermore, there are well-known algangHor converting any formula
A into such an equivalent formulB. These involve converting all connectivesAoV,
and -, pushing— to the bottom, and bringing to the top. Unfortunately, this process
of conversion can take exponential time and can increasketiggh of the formula by an
exponential amount.

The exponential increase in size in converting to clause ftan be avoided by adding
extra propositions representing subformulas of the gieeméila. For example, given the
formula

(PLAQ1)V (P2 AQa)V (PsAQ3) V-V (P, AQp)

a straightforward conversion to clause form cre&teslauses of length, for a formula
of length at least2™. However, by adding the new propositioRs which are defined as
P; A Q;, one obtains the new formula

(Rl\/Rg\/'-'\/Rn)/\((Pl/\Ql)<—>R1)/\-"/\((Pn/\Qn)<—>Rn).

When this formula is converted to clause form, a much sma#épof clauses results, and
the exponential size increase does not occur. The sameidqeehmorks for any Boolean
formula. This transformation is satisfiability preservibgt not equivalence preserving,
which is enough for theorem proving purposes.

Ground Resolution

Many first-order theorem provers are based on resolutiahtteare is a propositional ana-
logue of resolution calledround resolution which we now present as an introduction
to first-order resolution. Although resolution is reasdygaficient for first-order logic, it
turns out that ground resolution is generally much lessieffi¢than Davis and Putnam-like
procedures for propositional logic[70, 69], often reférte as DPLL procedures because
the original Davis and Putnam procedure had some ineffimenthese DPLL procedures
are specialized to clause form and explore the set of pessitdrpretations of a proposi-
tional formula by depth-first search and backtracking witme additional simplification
rules for unit clauses.

Ground resolution is a decision procedure for proposifiranulas in clause form. If
C; andC; are two clauses, antl, € C; andLy € Cy are complementary literals, then

(C1 —{L1}) U (C2 — {L2})

22 1. Knowledge Representation and Classical Logic

is called aresolvenbf C; andCsy, where the set difference of two setsandB is indicated

by A — B, thatis,{z : x € A,x ¢ B}. There may be more than one resolvent of two
clauses, or maybe none. It is straightforward to show thasalventD of two clauses™;
and(Cs is a logical consequence 6f; A Cs.

For example, ifCy is {—P,Q} andC; is {—Q, R}, then one can choodg, to be®
and L, to be—@Q. Then the resolvent i§s—P, R}. Note also thaR is a resolvent of Q}
and{—-Q, R}, and{} (the empty clause) is a resolvent{@} and{-Q}.

A resolution proofof a clauseC from a setS of clauses is a sequen€g, Cs, - - -, C,,
of clauses in which eact); is either a member of or a resolvent olC; and Cy, for
J, k less thani, andC,, is C. Such a proof is called a (resolutiorfutationif C,, is {}.
Resolution icomplete

Theorem 1.3.1 SupposeS is a set of propositional clauses. Théhis unsatisfiable iff
there exists a resolution refutation frofh

As an example, le$ be the set of clauses

{{Ph{-P.Q},{-Q}}

The following is a resolution refutation froi), listing with each resolvent the two clauses
that are resolved together:

1. P given

2. —P,Q given

3. Q given

4. Q 1,2,resolution

5 {} 3,4,resolution
(Here set braces are omitted, except for the empty claudgs)ig a resolution refutation
from S, so S is unsatisfiable.

Define R(S) to be Uy cocs resolventéC1, C2). DefineR'(S) to be R(S) and

R (S) to beR(S U R'(S)), fori > 1. Typical resolution theorem provers essentially
generate all of the resolution proofs frafh(with some improvements that will be dis-
cussed later), looking for a proof of the empty clause. Fdigmsuch provers generate
RY(S), R*(S), R*(S), and so on, until for somg R¥(S) = R“*(S), or the empty clause
is generated. In the former casg,is satisfiable. If the empty clause is generatgds
unsatisfiable.

Even though DPLL essentially constructs a resolution pnoafpositional resolution is
much less efficient than DPLL as a decision procedure fosfsadility of formulas in the
propositional calculus because the total number of resoisiperformed by a propositional
resolution prover in the search for a proof is typically mletger than for DPLL. Also,
Haken [110] showed that there are unsatisfiable Sei§ propositional clauses for which
the length of the shortest resolution refutation is expdiain the size (number of clauses)
in S. Despite these inefficiencies, we introduced propositiogsolution as a way to lead
up to first-order resolution, which has significant advaatagn order to extend resolution
to first-order logic, it is necessary to addificationto it.

1.3.2 First-order Proof Systems

We now discuss methods for partially deciding validity. $&eonstruct proofs of first-
order formulas, and a formula is valid iff it can be proven urtls a system. Thus there

1. Knowledge Representation and Classical Logic 23

arecompleteproof systems for first-order logic, and Godel’'s incomphetss theorem does
not apply to first-order logic. Since the set of proofs is dabte, one can partially decide
validity of a formulaA by enumerating the set of proofs, and stopping wheneveraf pro
of A is found. This already gives us a theorem prover, but pros@nstructed in this way
are typically very inefficient.

There are a number of classical proof systems for first-daige: Hilbert-style sys-
tems, Gentzen-style systems, natural deduction systeansrgic tableau systems, and
others [88]. Since these generally have not found much egiin to automated deduc-
tion, except for semantic tableau systems, they are notissed here. Typically they
specify inference rules of the form

A11A27"'1An
A

which means that if one has already derived the formdlasAs, - - -, A, then one can
also inferA. Using such rules, one builds up a proof as a sequence of fasmand if a
formula B appears in such a sequence, one has préved

We now discuss proof systems that have found applicationtin@ated deduction. In
the following sections, the letters g, h, ... will be used agunction symbolsa, b, c, ... as
individual constantsz, y, z and possibly other letters asdividual variables and= as
the equality symbol. Each function symbol hasaaity, which is a non-negative integer
telling how many arguments it takes.térmis either a variable, an individual constant, or
an expression of the forfi(t1, t2, ..., t,) wheref is a function symbol of arity: and the
t; are terms. The letters s, ¢, ... will denote terms.

Clause Form

Many first-order theorem provers convert a first-order fdarto clause formbefore at-
tempting to prove it. The beauty of clause form is that it nsattee syntax of first-order
logic, already quite simple, even simpler. Quantifiers anétted, and Boolean connectives
as well. One has in the end just sets of sets of literals. Itriazing that the expressive
power of first-order logic can be reduced to such a simple fdnnis simplicity also makes
clause form suitable for machine implementation of theopeavers. Not only that, but
the validity problem is also simplified in a theoretical sensne only needs to consider the
Herbrand interpretationsso the question of validity becomes easier to analyze.

Any first-order formulaAd can be transformed to a clause form formBlauch thatA
is satisfiable iffB is satisfiable. The translation is not validity preservi&mp in order to
show thatA is valid, one translatesA to clause formB and shows thaB is unsatisfiable.
For convenience, assume thats asentencethat is, it has no free variables.

The translation of a first-order sentenédo clause form has several steps:

e Push negationsin

Replace existentially quantified variables by Skolem figms

Move universal quantifiers to the front

Convert the matrix of the formula to conjunctive normal form

Remove universal quantifiers and Boolean connectives

24 1. Knowledge Representation and Classical Logic

This transformation will be presented as a set of rewritegulA rewrite ruleX — Y
means that a subformula of the fotkhis replaced by a subformula of the forth
The following rewrite rules push negations in.

(A~ B)— (A= B)A (B — A)
(A— B) — ((m4A) vV B)
-—A— A

-(AAB) — (—A) V (=B)

-(AV B) — (=A) A (—=B)

—VzA — Jz(—A)

—JdzA — Vz(—A)

After negations have been pushed in, we assume for simydtiicit variables in the formula
are renamed so that each variable appears in only one qaartifistential quantifiers are
then eliminated by replacing formulas of the foimA[z] by A[f(x1,---,x,)], where
x1,- -+, x, are all the universally quantified variables whose scopkudtes the formula
A, andf is a new function symbol (that does not already appear indhadla), called a
Skolem function

The following rules then move quantifiers to the front:

(VzA)V B — Vax
BV (VzA) — Vz
(VzA) NB — Vz
BA(VzA) — Vz

AV B)
BV A)
AAB)
B A A)

PLGPL L Ly

Next, the matrix is converted to conjunctive normal form bg following rules:

(AV(BAC)) — (AVB)AN(AVO)
(BAC)VA) — (BVA)A(CV A)

Finally, universal quantifiers are removed from the fronthef formula and a conjunctive
normal form formula of the form

(A1 VAV - VA)AN(BIVBaV---VBy)A---AN(C1VCaV--- V)
is replaced by the set of sets of literals
{{A15A27' T 7Ak}a{B17B27" '7Bm}7" '5{017027" 7Cn}}

This last formula is the clause form formula which is satlgfaff the original formulais.
As an example, consider the formula

First, negation is pushed past the existential quantifier:

Va(~(P(x) = VyQ(z,y)))

Next, negation is further pushed in, which involves repigei by its definition as follows:

Vz=((=P(x)) VVyQ(z,y))

1. Knowledge Representation and Classical Logic 25

Then—is moved in past:

Va((—=P(x)) A =VyQ(z,y))

Next the double negation is eliminated anés moved past the quantifier:
Vz(P(z) A 3y-Q(z,y))

Now, negations have been pushed in. Note that no variableaappn more than one
quantifier, so it is not necessary to rename variables. Nbgtexistential quantifier is
replaced by a Skolem function:

Va(P(x) A =Q(z, f(x)))

There are no quantifiers to move to the front. Eliminatingdh&ersal quantifier yields
the formula

P(x) A =Q(z, f(z))

The clause form is then

{P(@)}, {-Q(z, f(x))}}

Recall that ifB is the clause form aofl, thenB is satisfiable iffA is. As in propositional
calculus, the clause form translation can increase theofiadormula by an exponential
amount. This can be avoided as in the propositional calduustroducing new predicate
symbols for sub-formulas. Suppodes a formula with sub-formuld@, denoted byA[B].
Let x1, 2o, --,x, be the free variables i3. Let P be a new predicate symbol (that
does not appear id). ThenA[B] is transformed to the formuld[P(z1, z2, - -, zpn)] A
Vo Vg - - - Va, (P(x1, 22, - -, x,) < B). Thus the occurrence @ in A is replaced by
P(z1,x9,---,x,), and the equivalence d® with P(x1,x2,---,x,) iS added on to the
formula as well. This transformation can be applied to the femula in turn, and again
as many times as desired. The transformation is satisfiapieserving, which means that
the resulting formula is satisfiable iff the original formaul was.

Free variables in a clause are assumed to be universallytifigen Thus the clause
{=P(z),Q(f(x))} represents the formuta:(~P(x)VQ(f(x))). Aterm, literal, or clause
not containing any variables is said to g®und

A set of clauses represents the conjunction of the clauséseirset. Thus the set

{=P(2), Q(f(2))}, {=Q(y), R(g(y))}, {P(a)}, {~R(2)}} represents the formu(&z(~P(z)V
Q(f () A (Vy(=Q(y) vV R(g(y)))) A P(a) AVz=R(2).

Herbrand interpretations

There is a special kind of interpretation that turns out toslgmificant for mechanical
theorem proving. This is calledtderbrand interpretation Herbrand interpretations are
defined relative to a sét of clauses. The domaib of a Herbrand interpretatiohconsists

of the set of terms constructed from function and constamtt®)s of S, with an extra
constant symbol added # has no constant symbols. The constant and function symbols
are interpreted so that for any finite tetncomposed of these symbold, is the termt
itself, which is an element ab. Thus if S has a unary function symbgland a constant

26 1. Knowledge Representation and Classical Logic

symbolc, thenD = {¢, f(c), f(f(c)), f(f(f(c))),---} andc is interpreted so that! is
the element of D andf is interpreted so that! applied to the term yields the termy(c),
f1 applied to the terny (c) of D yields f(f(c)), and so on. Thus these interpretations are
quite syntactic in nature. There is no restriction, howgwehow a Herbrand interpretation
I may interpret the predicate symbols$f

The interest of Herbrand interpretations for theorem prgwiomes from the following
result:

Theorem 1.3.21f S is a set of clauses, the$iis satisfiable iff there is a Herbrand inter-
pretation! such that/ = S.

What this theorem means is that for purposes of testingfisdiiity of clause sets,
one only needs to consider Herbrand interpretations. Tiyiicitly leads to a mechanical
theorem proving procedure, which will be presented belokis procedure makes use of
substitutions

A substitutionis a mapping from variables to terms which is the identity drbat
finitely many variables. IfL is a literal anda is a substitution, the.« is the result of
replacing all variables id. by their image unden.. The application of substitutions to
terms, clauses, and sets of clauses is defined similarly.eXpeessionz1 — t1,z2 —
to, -+, x, — t,} denotes the substitution mapping the variabjeto the termt;, for
1<i<n.

For exampleP(z, f(x)){z — g(y)} = P(g(y), f(9(y)))-

If L is a literal and« is a substitution, ther.« is called aninstanceof L. Thus
P(g(y), f(g(y))) is an instance oP(x, f(x)). Similar terminology applies to clauses and
terms.

If S is a set of clauses, thenHerbrand sefor S is an unsatisfiable sét of ground
clauses such that for every claugen T there is a claus€’ in S such thatD is an instance
of C. If there is a Herbrand set fdf, thenS' is unsatisfiable.

For example, lef be the following clause set:

{P(a)}, {=P(x), P(f(x))}, {~P(f(f(a)))}}

For this set of clauses, the following is a Herbrand set:

{P(a)}, {=P(a), P(f(a)}, {=P(f(a), P(f(f(a))}, {=P(f(f(a)))}}

Theground instantiation probleris the following: Given a se$ of clauses, is there a
Herbrand set fo6?
The following result is known as Herbrand’s theorem, antbfe$ from theorem 1.3.2:

Theorem 1.3.3 A setS of clauses is unsatisfiable iff there is a HerbrandBdor S.

It follows from this result that a sef of clauses is unsatisfiable iff the ground instanti-
ation problem forS is solvable. Thus the problem of first-order validity hasrbesduced
to the ground instantiation problem. This is actually q@iteachievement, because the
ground instantiation problem deals only with syntactic @gpts such as replacing vari-
ables by terms, and with propositional unsatisfiabilityjehtis easily understood.

Herbrand’s theorem implies the completeness of the foligwheorem proving method:

1. Knowledge Representation and Classical Logic 27

Given a sefS of clauses, leC;, Cs, Cs, - - - be an enumeration of all of the ground in-
stances of clauses . This set of ground instances is countable, so it can be eratete
Consider the following procedufrover:

procedure Prover(S)
fori=1,2,3,--- do
if {C1,Cs,---C;} is unsatisfiablethen return “unsatisfiablefi
od
endProver

By Herbrand'’s theorem, it follows tha&rover(S) will eventually return “unsatisfiable”
iff S is unsatisfiable. This is therefore a primitive theorem prg\procedure. It is inter-
esting that some of the earliest attempts to mechanizegheproving [101] were based
on this idea. The problem with this approach is that it enatesrmany ground instances
that could never appear in a proof. However, the efficiengyropositional decision pro-
cedures is an attractive feature of this procedure, and yt Ioeapossible to modify it to
obtain an efficient theorem proving procedure. And in facangnof the theorem provers
in use today are based implicitly on this procedure, andetiyeon Herbrand'’s theorem.
The instance-basednhethods such as model evolution [24, 26], clause linking[,L&he
disconnection calculus[30, 252], and OSHL[220] are basdtlfdirectly on Herbrand’s
theorem. These methods attempt to apply DPLL-like appres{él9] to first-order theorem
proving. Ganzinger and Korovin [94] also study the progsrtif instance-based methods
and show how redundancy elimination and decidable fragsrafrfirst-order logic can be
incorporated into them. Korovin has continued this lineesfaarch with some later papers.

Unification and Resolution

Most mechanical theorem provers today are based on unificathich guides the instan-
tiation of clauses in an attempt to make the procedRrmer above more efficient. The
idea of unification is to find those instances which are in seemse the most general ones
that could appear in a proof. This avoids a lot of work thatiitssfrom the generation of
irrelevant instances bigrover.

In the following discussiore will refer to syntactic identity of terms, literals, et cede
A substitutiona is called aunifier of literals L andM if La = M. If such a substitution
exists, L and M are said to beinifiable A substitutiona is amost general unifieof L
andM if for any other unifierg of L and M, there is a substitutiofn such thatl.g = Lo~y
andM 3 = Mar.

It turns out that if two literald, andM are unifiable, then there is a most general unifier
of L and M, and such most general unifiers can be computed efficiently tmymber of
simple algorithms. The earliest in recent history was glvgiRobinson [236].

We present a simple unification algorithm on terms whichrsilsir to that presented
by Robinson. This algorithm is worst-case exponential tibpu often efficient in practice.
Algorithms that are more efficient (and even linear time)angé terms have been devised
since then[172, 209]. I andt are two terms and. is a most general unifier of andt,
thensa can be of size exponential in the sizessa@ndt, so constructinga is inherently
exponential unless the proper encoding of terms is usesletitails representing repeated
subterms only once. However, many symbolic computatiotesys still use Robinson’s
original algorithm.

28 1. Knowledge Representation and Classical Logic

procedureUnify (r, s);
[[return the most general unifier of termsands]]
if r is a variablethen
if r = s thenreturn{} else
(if » occursins then return fail else
return{r — s}) else
if s is a variablethen
(if s occursinr then return fail else
return{s — r}) else
if the top-level function symbols afands
differ or have different aritieghen return fail
else
suppose-is f(ry...r,) andsis f(s1...s,);
return(Unify _lists([ry ... 7], [s1 ... $n])
end Unify;

procedureUnify _lists([ry ... 7], [$1 - - - $n]);
if [y ...r,] is empty then return{}
else
0 — Unify (r1,t1);
if 6 = fail then return fail fi;
a «— Unify _lists([ra ... 7,]0, [s2 . . . $,]0)}
if « = fail then return fail fi;
return{f o o}
end Unify _lists;

For this last procedurd, o « is defined as the composition of the substitutiéremnd
«, defined byt(f o «) = (t0)a. Note that the composition of two substitutions is a
substitution. To extend the above algorithm to literaland M, returnfail if L and M
have different signs or predicate symbols. Suppbsand M both have the same sign
and predicate symbdP. Supposd. andM are P(ry,7a,--,ry,) @andP(s1, 82, -, $n),
respectively, or their negations. Then retuhnify _lists([r1 ...7,], [s1 ... s,]) as the most
general unifier of. and M.

As examples of unification, a most general unifier of the tefifas a) and f (b, y) is
{z — b,y — a}. The termsf(z,g(x)) and f(y,y) are not unifiable. A most general
unifier of f(x,y, g(y)) andf(z, h(z),w) is{z — z,y — h(z),w — g(h(z))}.

One can also define unifiers and most general unifiesetsbf terms. A substitution
« is said to be a unifier of a s¢ty, to,- -, t,} of terms ift;a = toav = t3a- - -. If such a
unifier « exists, this set of terms is said to be unifiable. It turns bat if {¢1, ¢, - -, ¢, }
is a set of terms and has a unifier, then it has a most genefaruaind this unifier can be
computed adnify (f(t1,t2, -, tn), f(te,ts, -+, tn,t1)) Wheref is a function symbol
of arity n. In a similar way, one can define most general unifiers of dditecals.

Finally, suppos&’; and(C; are two clauses and; and A, are non-empty subsets of
C, and Cy, respectively. Suppose for convenience that there are monom variables
betweenC; andCs,. Suppose the sétl. : L € A;} U {—L : L € A5} is unifiable, and let
« be its most general unifier. Define thesolveniof C; andCs on the subsetd; and A,

1. Knowledge Representation and Classical Logic 29

to be the clause
(Cl - Al)Oé U (CQ - Ag)Oz

A resolvent ofC; and Cs is defined to be a resolvent @f; and Cy on two such sets
A; and A, of literals. A; and A, are calledsubsets of resolutionlf C; and Cy have
common variables, it is assumed that the variables of onbeaset clauses are renamed
before resolving to insure that there are no common vasabldéere may be more than
one resolvent of two clauses, or there may not be any ressiatiall.

Most of the time,A; and A5 consist of single literals. This considerably simplifies
the definition, and most of our examples will be of this spec#se. 1fA; = {L} and
As = {M}, thenL andM are callediterals of resolution We call this kind of resolution
single literal resolution Often, one defines resolution in termsfattoring and single
literal resolution. IfC' is a clause and is a most general unifier of two distinct literals
of C, then(C4 is called afactor of C. Defining resolution in terms of factoring has some
advantages, though it increases the number of clauses ostestore.

Here are some examples. Supp6ses {P(a)} andCs is {—P(z), Q(f(x))}. Then
a resolvent of these two clauses on the lited(&) and—P(z) is {Q(f(a))}. Thisis
because the most general unifier of these two literafs is- a}, and applying this substi-
tutionto{Q(f(x))} yields the claus¢Q(f(a))}.

Suppose&’ is {—P(a,x)} andCs is { P(y,b)}. Then{} (the empty clause) is a resol-
vent of C; andC;, on the literals-P(a, z) andP(y, b).

Suppose&’; is {—P(z), Q(f(x))} andCs is {-Q(x), R(g(z))}. In this case, the vari-
ables ofC; are first renamed before resolving, to eliminate commoratdes, yielding
the clausg-Q(y), R(g(y))}. Then a resolvent of; andC> on the literalsQ(f(z)) and
~Q(y) is {~P(x), R(g(f(2)))}.

Suppos&; is {P(x), P(y)} andCs is {—=P(z), Q(f(z))}. Then aresolvent af’; and
Cy on the set P(x), P(y)} and{—P(2)} is {Q(f(2))}.

A resolution proofof a clauseC from a setS of clauses is a sequen€g, Cs, - - -, C,,
of clauses in whicl(,, is C and in which for alli, eitherC; is an element of' or there
exist integerg, k£ < ¢ such thatC; is a resolvent of”; andC;. Such a proof is called a
(resolution)refutationfrom S if C,, is {} (the empty clause).

A theorem proving method is said to bempletef it is able to prove any valid formula.
For unsatisfiability testing, a theorem proving method id smbe complete if it can derive
false or the empty clause, from any unsatisfiable set of clauseskhown that resolution
is complete:

Theorem 1.3.4 A setS of first-order clauses is unsatisfiable iff there is a resoltrefu-
tation from.sS.

Therefore one can use resolution to test unsatisfiabilitfaafse sets, and hence valid-
ity of first-order formulas. The advantage of resolutionrae Prover procedure above
is that resolution uses unification to choose instanceseotlduses that are more likely to
appear in a proof. So in order to show that a first-order foanuis valid, one can do the
following:

e Convert—A to clause formS

e Search for a proof of the empty clause frém

30 1. Knowledge Representation and Classical Logic

As an example of this procedure, resolution can be applistidav that the first-order
formula

Vaedy(P(z) — Q(z,y)) AVaVy3z(Q(x,y) — R(x,2)) — VaIz(P(x) — R(x, 2))

is valid. Here— represents logical implication, as usual. In the refutatl@pproach, one
negates this formula to obtain

—[Va3y(P(z) — Q(x,y)) AVaVy3z(Q(z,y) — R(x, 2)) — VoIz(P(x) — R(z,2))],

and shows that this formula is unsatisfiable. The procediuseation 1.3.1 for translating
formulas into clause form yields the following sgbf clauses:

{{ﬁP(x),Q(w,f(:v))},{ﬁQ(x,y),R(:v,g(x,y))},{P(a)},{ﬁR(a,z)}}.

The following is then a resolution refutation from this claset:

1. P(a) (input)
2.-P(2),Q(x, f(2)) (input)
3.Q(a, f(a)) (resolution, 1,2)
4. —|Q($,)aR Iag(xvy)) (inpUt)
5. R(a, g(a, f(a))) (3,4, resolution)
6. ~R(a,z) (input)
7.FALSE (5,6, resolution)

The designation “input” means that a clause isSin Sincefalse (the empty clause) has
been derived front by resolution, it follows thatS is unsatisfiable, and so the original
first-order formula is valid.

Even though resolution is much more efficient thanRhever procedure, it is still not
as efficient as one would like. In the early days of resolytesmumber of refinements
were added to resolution, mostly by the Argonne group, toeniknore efficient. These
were the set of support strategy, unit preference, hypstugon, subsumption and tau-
tology deletion, and demodulation. In addition, the Argemgmoup preferred using small
clauses when searching for resolution proofs. Also, theyleyed some very efficient data
structures for storing and accessing clauses. We will desonost of these refinements
now.

A clauseC is called atautologyif for some literalL, . € C and—L € C. Itis known
that if S is unsatisfiable, there is a refutation fraghthat does not contain any tautologies.
This means that tautologies can be deleted as soon as thggreeeated and need never be
included in resolution proofs.

In general, given a s&f of clauses, one searches for a refutation fi®tsy performing
a sequence of resolutions. To ensure completeness, thhsgwuld bdair, that is, if
clauses”; andC, have been generated already, and it is possible to resa@se ttlauses,
then this resolution must eventually be done. However, tderan which resolutions are
performed is nonetheless very flexible, and a good choidasnéspect can help the prover
alot. One good idea is to prefer resolutions of clauses tiearaall, that is, that have small
terms in them.

Another way to guide the choice of resolutions is based oswsuiption, as follows:
ClauseC is said tosubsumelauseD if there is a substitutio® such thatCO® C D.

1. Knowledge Representation and Classical Logic 31

For example, the clausg)(x)} subsumes the clauge-P(a), Q(a)}. C is said toprop-
erly subsuméD if C' subsumesD and the number of literals if' is less than or equal
to the number of literals iD. For example, the claude)(x), Q(y)} subsumegQ(a)},
but does not properly subsume it. It is known that clausepgny subsumed by other
clauses can be deleted when searching for resolution tigfusafrom S. It is possible
that these deleted clauses may still appear in the finalatdat but once a clausé is
generated that properly subsunigsit is never necessary to ugein any further resolu-
tions. Subsumption deletion can reduce the proof time treloesly, since long clauses
tend to be subsumed by short ones. Of course, if two clauseegy subsume each other,
one of them should be kept. The use of appropriate data stescf228, 232] can greatly
speed up the subsumption test, and indeed term indexingsttataures are essential for
an efficient theorem prover, both for quickly finding clausegesolve and for performing
the subsumption test. As an example[228], in a run of the \@qrover on the prob-
lem LCL-129-1.p from the TPTP library ofww.tptp.org , in 270 seconds 8,272,207
clauses were generated of which 5,203,928 were deletedigetheir weights were too
large, 3,060,226 were deleted because they were subsumeddting clausesf¢rward
subsumptio)) and only 8,053 clauses were retained.

This can all be combined to obtain a program for searchingdeolution proofs from
S, as follows:

procedure Resolve(sS)
R« S;
while false¢ R do
choose clauses;, C; € R fairly, preferring small clauses;
if no new pairg’y, C; exist then return “satisfiablefi;
R' — {D: Disaresolvent of’,, C> andD is not a tautology;
for D e R’ do
if no clause ink properly subsumeb
then R — {D} U {C € R : D does not properly subsunig} fi;
od
od
end Resolver

In order to make precise what a “small clause” is, one defjites, the symbol sizeof
clauseC, as follows:

lz]| = 1 forvariablest
[lel] 1 for constant symbols

[ftr - t)ll = T+t + -+ [[tn] fortermsf(ty, -+, ,)
|P(t1, - t)ll = 1+ |lt1l]| + -+ ||tn] for atomsP(ty,- - -, t,)
I=All = ||A] for atomsA
[{L1, L2, -+, Lu}ll = | Lall + -+ + || Lyl for clause L1, Lo, - - -, Ly, }

Small clauses, then, are those having a small symbol size.

Another technique used by the Argonne group isuhi preference strategylefined
as follows: Aunit clauseis a clause that contains exactly one literalusit resolutionis a
resolution of clause§'; andCs, where at least one @f; andC, is a unit clause. Thanit
preferencestrategy prefers unit resolutions, when searching for fsrotnit preference

32 1. Knowledge Representation and Classical Logic

has to be modified to permit non-unit resolutions to guaewtampleteness. Thus non-
unit resolutions are also performed, but not as early. Thepraference strategy helps
because unit resolutions reduce the number of literals lawse.

Refinements of Resolution

In an attempt to make resolution more efficient, many, mafigements were developed
in the early days of theorem proving. We present a few of theerd,mention a number of
others. For a discussion of resolution and its refinementsftzeorem proving in general,
see [54, 168, 46, 278, 88, 159]. Itis hard to know which refieetawill help on any given
example, but experience with a theorem prover can help ®aie a better idea of which
refinements to try. In general, none of these refinementsveeipmuch most of the time.

A literal is calledpositiveif it is an atom, that is, has no negation sign. A literal with a
negation sign is calledegative A clauseC is calledpositiveif all of the literals inC' are
positive.C' is callednegativeif all of the literals inC' are negative. A resolution @f;, and
C- is called positive if one of’; andCs is a positive clause. It is called negative if one of
C1 andCs is a negative clause. It turns out that positive resolusacoimplete, that is, if
is unsatisfiable, then there is a refutation fr6rim which all of the resolutions are positive.
This refinement of resolution is known &g deduction in the literature. Similarly, negative
resolution is complete. Hyper-resolution is essentiahiyaification of positive resolution
in which a series of positive resolvents is done all at oneebd precise, suppose that
is a clause having at least one negative literal 81dD-, - - -, D,, are positive clauses.
Supposé&’; is a resolvent o and D4, Cs is a resolvent of”; and D, -- -, andC,, is a
resolvent ofC,,_; and D,,. Suppose thaf’,, is a positive clause but none of the clauses
C; are positive, foi < n. ThenC,, is called ahyper-resolventf C and Dy, Dy, - -, D,,.
Thus the inference steps in hyper-resolution are sequerigassitive resolutions. In the
hyperresolution strategy, the inference engine looks tmraplete collectiorD; . .. D,, of
clauses to resolve with' and only performs the inference when the entire hyperréisolu
can be carried out. Hyper-resolution is sometimes useftdb&e it reduces the number of
intermediate results that must be stored in the prover.

Typically, when proving a theorem, there is a generalisef axioms and a particular
formula F' that one wishes to prove. So one wishes to show that the farshub F is
valid. In the refutational approach, this is done by shovtlreg -(A — F') is unsatisfi-
able. Now,~(A4 — F) is transformed toA A —F in the clause form translation. One then
obtains a seb4 of clauses fromA and a sefSr of clauses from~F'. The setS4 U Sr
is unsatisfiable iffA — F'is valid. One typically tries to show 4 U Sr unsatisfiable by
performing resolutions. Since one is attempting to préy@ne would expect that reso-
lutions involving the clauseSr are more likely to be useful, since resolutions involving
two clauses fronf 4 are essentially combining general axioms. Thus one woké<h
only perform resolutions involving clauses $ or clauses derived from them. This can
be achieved by theet of supporstrategy, if the sefr is properly chosen.

The set of support strategy restricts all resolutions tolver a clause in theet of
supportor a clause derived from it. To guarantee completeness ethef Support must
be chosen to include the set of clausé®f S such that/ (= C for some interpretation
1. SetsA of axioms typically have standard moddlsso that/ = A. Since translation
to clause form is satisfiability preserving, = S4 as well, wherel’ is obtained from
I by a suitable interpretation of Skolem functions. If the sesupport is chosen as the

1. Knowledge Representation and Classical Logic 33

clauses not satisfied by, then this set of support will be a subset of the$etabove and
inferences are restricted to those that are relevant toahteplar theorem. Of course, it
is not necessary to testifl= C for clauses”; if one knows that is satisfiable, one can
chooseSr as the set of support.

The semantic resolutiostrategy is like the set-of-support resolution, but reggithat
when two clause€’; and C, resolve, at least one of them must not be satisfied by a
specified interpretatioh. Some interpretations permit the tdst= C to be carried out;
this is possible, for example, If has a finite domain. Using such a semantic definition
of the set of support strategy further restricts the set sbjtde resolutions over the set of
support strategy while retaining completeness.

Other refinements of resolution include ordered resolutwinich orders the literals
of a clause, and requires that the subsets of resolutiondech maximal literal in their
respective clauses. Unit resolution requires all resohgtio be unit resolutions, and is not
complete. Input resolution requires all resolutions tolwe a clause frond, and this is
not complete, either. Unit resulting (UR) resolution iselignit resolution, but has larger
inference steps. This is also not complete, but works welbrisingly often. Locking
resolution attaches indices to literals, and uses theseder the literals in a clause and
decide which literals have to belong to the subsets of réisolu Ancestry-filter form
resolution imposes a kind of linear format on resolutiongiso These strategies are both
complete. Semantic resolution is compatible with some rimgeefinements, that is, the
two strategies together are still complete.

It is interesting that resolution is complete fogical consequence the following
sense: IfS is a set of clauses, ard is a clause such th& = C, that is,C is a logical
consequence d, then there is a clause derivable by resolution such that subsumes
C.

Another resolution refinement that is useful sometimespligting. If C is a clause and
C = Cy U Cy, whereC; andCy have no common variables, thénu {C} is unsatisfiable
iff SU{C1} is unsatisfiable andU{C5} is unsatisfiable. The effect of this is to reduce the
problem of testing unsatisfiability ¢f U {C'} to two simpler problems. A typical example
of such a clausé€’ is a ground clause with two or more literals.

There is a special class of clauses caltatn clausedor which specialized theorem
proving strategies are complete. Horn clauseis a clause that has at most one positive
literal. Such clauses have found tremendous applicatidogiic programming languages.
If S'is a set of Horn clauses, then unit resolution is completes Eput resolution.

Other Strategies

There are a number of other strategies which apply to Saif clauses, but do not use
resolution. One of the most notablenmdel eliminatiorf167], which constructshainsof
literals and has some similarities to the DPLL procedured®elimination also specifies
the order in which literals of a clause will “resolve away.hdre are also a number of
connection metho9, 162], which operate by constructing links between clementary
literals in different clauses, and creating structuregaiomg more than one clause linked
together. In addition, there are a numbeiraftance-basestrategies, which create a gét
of ground instances & and test’ for unsatisfiability using a DPLL-like procedure. Such
instance-based methods can be much more efficient tharutiesobn certain kinds of
clause sets, namely, those that are highly non-Horn but timwalve deep term structure.

34 1. Knowledge Representation and Classical Logic

Furthermore, there are a number of strategies that do nalaisse form at all. These
include the semantic tableau methods, which work backwesdsa formula and construct
a tree of possibilities; Andrews’ matings method, whichugable for higher order logic
and has obtained some impressive proofs automaticallyraladeduction methods; and
sequent style systems. Tableau systems have found sublstamlication in automated
deduction, and many of these are even adapted to formulésisecform; for a survey see
[109].

Evaluating strategies

In general, we feel that qualities that need to be considetesh evaluating a strategy are
not onlycompletenessut alsopropositional efficiencygoal-sensitivityanduse of seman-
tics. By propositional efficiency is meant the degree to whichdffieiency of the method
on propositional problems compares with DPLL; most striatedo poorly in this respect.
By goal-sensitivity is meant the degree to which the methernits one to concentrate on
inferences related to the particular clauses coming fraamtgation of the theorem (the
set Sy discussed above). When there are many, many input clausassensitivity is
crucial. By use of semantics is meant whether the methodatenddvantage of natural
semantics that may be provided with the problem statemeita search for a proof. An
early prover that did use semantics in this way was the gagmedver of Gelernter et
al [95]. Note that model elimination and set of support sgas are goal-sensitive but
apparently not propositionally efficient. Semantic reioluis goal-sensitive and can use
natural semantics, but is not propositionally efficienthei. Some instance-based strate-
gies are goal-sensitive and use natural semantics and@esitionally efficient, but may
have to resort to exhaustive enumeration of ground ternteadsof unification in order to
instantiate clauses. A further issue is to what extent warinethods permit the incorpora-
tion of efficient equality techniques, which varies a lotfrasnethod to method. Therefore
there are some interesting problems involved in combinggany of these desirable fea-
tures as possible. And for strategies involving extensivaén interaction, the criteria for
evaluation are considerably different.

1.3.3 Equality

When proving theorems involving equations, one obtainsyniraalevant terms. For ex-
ample, if one has the equationst 0 = z andx * 1 = z, and addition and multiplica-
tion are commutative and associative, then one obtains neams identical ta:, such as
1xx*1%1+0. For products of two or three variables or constants, thetdn becomes
much worse. It is imperative to find a way to get rid of all ofgskeequivalent terms. For
this purpose, specialized methods have been developeddberequality.

As examples of mathematical structures where such eqsatiose, for groups and
monoids the group operation is associative with an idendibd for abelian groups the
group operation is associative and commutative. Rings afikfalso have an associative
and commutative addition operator with an identity and heomultiplication operator
that is typically associative. For Boolean algebras, thétiplication operation is also
idempotent. For example, set union and intersection arecede, commutative, and
idempotent. Lattices have similar properties. Such eqoatind structures typically arise

1. Knowledge Representation and Classical Logic 35

when axiomatizing integers, reals, complex numbers, aedriand other mathematical
objects.

The most straightforward method of handling equality is $e @ general first-order
resolution theorem prover together with thguality axiomswhich are the following (as-
suming free variables are implicitly universally quantifie

r=2x
T=yYNy=z—x ==z
Il:yl/\xQZyQ/\/\In:yn_’f(xlxn):f(ylyn)
for all function symbolsf
T =y AT =Yoo N ANTp =Y AN P(21---20) = P(y1--Yn)
for all predicate symbol#®

Let Eq refer to this set of equality axioms. The approach of ugngexplicitly leads
to many inefficiencies, as noted above, although in someséas®rks reasonably well.
Another approach to equality is thmodification methoaf Brand[41, 20]. In this
approach, a se&f of clauses is transformed into another Sewith the following property:
S U Eq is unsatisfiable iffS’ U {z = z} is unsatisfiable. Thus this transformation avoids
the need for the equality axioms, except far = z}. This approach often works a little
better than usingq explicitly.

Contexts

In order to discuss other inference rules for equality, stermminology is needed. Aon-
textis a term with occurrences af in it. For example,f(J, g(a,0)) is a context. ALl
by itself is also a context. One can also have literals angselawith] in them, and they
are also called contexts. 4fis an integer, then an-contextis a term withn occurrences
of 0. If t is ann-context andn < n, thent[ty,...,t,,] represents with the leftmost
m occurrences of] replaced by the terms, ..., t,,, respectively. Thus for example
f(0,b,0) is a 2-context, and (4, b,0)[g(c)] is f(g(c),b,O). Also, f(O,b,0)[g(c)][al

is f(g(c),b,a). In general, ifr is ann-context andn < n and the terms; are O-contexts,
thenr(sy,...,s,] = r[si1][s2]...[sn]. However, f(O,b,0)[g(0)]is f(¢g(O),d,0), so
£(O,b6,0)[g(D)][a] is f(g(a),b,0). In general, ifr is ak-context fork > 1 ands is an
n-context forn > 1, thenr[s][t] = r[s[t]], by a simple argument (both replace the leftmost
Oinr[s] by t).

Termination Orderings on Terms

It is necessary to discuss partial orderings on terms inrdodexplain inference rules for
equality. Partial orderings give a precise definition of¢cbmplexity of a term, so that > ¢
means that the termis more complex thanin some sense, and replaciadpy ¢t makes a
clause simpler. A partial ordering is well-foundedf there are no infinite sequences
of elements such that; > x;; forall i > 0. A termination orderingon terms is a partial
ordering> which is well founded and satisfies thel invariance propertythat is, ifs > ¢
and® is a substitution ther® > t©, and also satisfies tlreplacement properfythat is,
s > t impliesr[s] > r[t] for all 1-contextsr.

36 1. Knowledge Representation and Classical Logic

Note that ifs > ¢ and> is a termination ordering, then all variablestiappear also
in s. For example, iff(x) > ¢g(x,y), then by full invariancef(z) > g(z, f(z)), and
by replacemeny(z, f(z)) > g(z, g(z, f(x))), et cetera, giving an infinite descending
sequence of terms.

The concept of anultisetis often useful to show termination. Informally, a multiget
a set in which an element can occur more than once. FormaityltisetsS is a function
from some underlying domai® to the non-negative integers. It is said to be finite if
{z : S(z) > 0} is finite. One writesz € S if S(x) > 0. S(x) is called themultiplicity of
x in S; this represents the number of timesppears irS. If S andT" are multisets then
SUT is defined by(SUT)(z) = S(z) + T (x) forall x. A partial ordering> on D can be
extended to a partial ordering on multisets in the following way: One writeés > T if
there is some multiséf such thatS = S’UV andT = T’UV andS’ is nonempty and for
all tin T’ there is ars in S’ such thats > ¢. This relation can be computed reasonably fast
by deleting common elements frashend?” as long as possible, then testing if the specified
relation betweel$” andT” holds. The idea is that a multiset becomes smaller if an eleme
is replaced by any number of smaller elements. Ti3yg, 4} > {2,2,2,2,1,4, 4} since3
has been replaced Ry2, 2, 2, 1. This operation can be repeated any number of times, still
yielding a smaller multiset; in fact, the relatips can be defined in this way as the smallest
transitive relation having this property [76]. One can shbat if > is well founded, so is
>. For a comparison with other definitions of multiset ordgrisee [133].

We now give some examples of termination orderings. The leishjxind of termina-
tion orderings are those that are based on size. Recall thas the symbol size (number
of symbol occurrences) of a tersn One can then define so thats > ¢ if for all © making
s© and¢© ground terms||sO|| > ||[t©]]. For examplef(z,y) > g(y) in this ordering,
but it is not true that.(z,a,b) > f(z,x) becauser could be replaced by a large term.
This termination ordering is computable;> ¢ iff ||s|| > ||¢|| and no variable occurs more
times int thans.

More powerful techniques are needed to get some more ititegdsrmination order-
ings. One of the most remarkable results in this area is ar¢he@f Dershowitz [76]
about simplification orderings, that gives a general teqphaifor showing that an ordering
is a termination ordering. Before his theorem, each orddrad to be shown well founded
separately, and this was often difficult. This theorem maisesof simplification orderings.

Definition 1.3.5 A partial ordering > on terms is asimplification orderingf it satisfies
the replacement property, that is, for 1-contexts > ¢ impliesr[s] > r[t], and has the
subterm propertythat is,s > ¢ if ¢ is a proper subterm of. Also, if there are function
symbolsf with variable arity, it is required thaf(...s...) > f(......) for all such .

Theorem 1.3.6 All simplification orderings are well founded.

Proof. Based on Kruskal’s tree theorem[152], which says that iniafigite sequence
t1,to,ts, ... Of terms, there are natural numbeéend; with i < j such that; is embedded
in ¢; in a certain sense. It turns out thattifis embedded irt; thent; > t; for any
simplification ordering>.

O

Therecursive path orderings one of the simplest simplification orderings. This or-
dering is defined in terms ofrecedencerdering on function symbols, which is a partial

1. Knowledge Representation and Classical Logic 37

ordering on the function symbols. One writés< g to indicate thalf is less thary in the
precedence relation on function symbols. The recursive atering will be presented as
a complete set of inference rules that may be used to congtrofs ofs > ¢. That s, if

s > t then there is a proof of this in the system. Also, by using ttierence rules back-
wards in a goal-directed manner, it is possible to consauetasonably efficient decision
procedure for statements of the fosm> ¢. Recall that if> is an ordering, thep> is the
extension of this ordering to multisets. The ordering wespng is somewhat weaker than
that usually given in the literature.

f=g {s1..8m} > {t1..tn}
f(Sl...Sm) > g(tl...tn)
S Z t

f(s1.0.8m) >t

true
s>s

f>9 f(Sl...Sm) >t;alli
f(Sl...Sm) > g(tltn)

For example, suppose> +. Then one can show thatx (y + 2) > zxy + x % z as
follows:

true true
y>y y>y
Yy+z>y Yy+z>z

{r,y+2 > A{z,y} {z,y+2p>{az}
zx(y+z)>zxy wx(y+z)>x*x2 *>+
zx(y+z)>x*xy+a*z

For some purposes, it is necessary to modify this orderintpabsubterms are con-
sidered lexicographically. In general ¥ is an ordering, then the lexicographic extension
> Of > to tuples is defined as follows:

s1 >t
(81...Sm) Slex (tl...tn)

s1 =11 (SQ...Sm) >lex (tQtn)
(81...Sm) Slex (tl...tn)

true
(81-+-8m) >iex ()

One can show that if- is well founded, then so is its extension., to bounded length
tuples. This lexicographic treatment of subterms is tha ioiethe lexicographic path or-
dering of Kamin and Levy[138]. This ordering is defined by tbibowing inference rules:

f=g (Sl...Sm) >lex (tl...tn) f(Sl...Sm) >y, all 3 > 2
f(Sl...Sm) > g(tltn)

38 1. Knowledge Representation and Classical Logic
S Z t
f(s1.0.8m) >t

true
s>s

f>g f(s1.0.8m) > t;alli
f(Sl...Sm) > g(tl...tn)

In the firstinference rule, itis not necessary to (st ...s,,) > t1 SINCE(S1...5m) >iea
(t1...tn) impliess; > t; hencef(s;...s;,) > t1. One can show that this ordering is a sim-
plification ordering for systems having fixed arity functisymbols. This ordering has the
useful property thaf (f(z,v), 2) >1es f(z, f(y, 2)); informally, the reason for this is that
the terms have the same size, but the first subfrmy) of f(f(x,y), z) is always larger
than the first subterm of f(z, f(y, 2)).

The first orderings that could be classified as recursive pathrings were those of
Plaisted[215, 214]. A large number of other similar ordgsilmave been developed since
the ones mentioned above, for example diependency paimethod[7] and its recent au-
tomatic versions [123, 100].

Paramodulation

Above, we saw that the equality axiofag can be used to prove theorems involving equal-
ity, and that Brand’s modification method is another apphnoat avoids the need for
the equality axioms. A better approach in most cases is tahesgaramodulation rule
[234, 199] defined as follows:

C[t],r = s V D, r andt are unifiablet is not a variable Unify (r,t) = 0
CO[sb) v Do

Here('t] is a clause containing a subtetiC' is a context, and is a non-variable term.
Also, C[sb] is the clauséCt])¢ with s6 replacing the specified occurencetéf Also,

r = s V D is another clause having a literal = s whose predicate is equality and
remaining literalsD, which can be empty. To understand this rule, considenthat sf is

an instance of = s, andré andtd are identical. IfD¢ is false, thend = sf must be true,
so it is possible to replacd in (C[t])6 by s if D@ is false. Thus®0[s6] v D@ is inferred.

It is assumed as usual that variable<ft] or in » = s vV D are renamed if necessary
to insure that these clauses have no common variables hefdi@ming paramodulation.
The clauset] is said to be paramodulat@do. It is also possible to paramodulate in the
other direction, that is, the equation= s can be used in either direction.

For example, the clauge(g(a)) v Q(b) is a paramodulant aP(f(x)) and (f(a) = g(a))

Vv @Q(b). Brand[41] showed that iEq is the set of equality axioms given above asids

a set of clauses, the$iU Eq is unsatisfiable iff there is a proof of the empty clause from
SU{a = x} using resolution and paramodulation as inference ruless;Traramodulation
allows us to dispense with all the equality axioms exeept x.

Some more recent proofs of the completeness of resolutidparamodulation [128]
show the completeness of restricted versions of paramtidiulahich considerably reduce
the search space. In particular, it is possible to restnistrule so that it is not performed
if s6 > r6, where> is a termination ordering fixed in advance. So if one has aa@ou

1. Knowledge Representation and Classical Logic 39

r = s, andr > s, then this equation can only be used to replace instancebyinstances
of s. If s > r, then this equation can only be used in the reverse direciitre effect

of this is to constrain paramodulation so that “big” terms eeplaced by “smaller” ones,
considerably improving its efficiency. It would be a disagteallow paramodulation to
replacer by z * 1, for example. Another complete refinement of ordered padaiadion

is that paramodulation only needs to be done into the “lagj@8 of an equation. If the
subtermt¢ of C[t] occurs in an equation = v orv = wu of C[t], andu > v, where

> is the termination ordering being used, then the paramddulaeed not be done if
the specified occurrence ofs in v. Some early versions of paramodulation required the
use of the functionally reflexive axioms of the forfxy, - - -, 2,) = f(a1, -, z,), but
this is now known not to be necessary. Wheris empty, paramodulation is similar to
“narrowing”, which has been much studied in the context gfdgrogramming and term
rewriting. Recently, a more refined approach to the compéte proof of resolution and
paramodulation has been found [17, 18] which permits greastrol over the equality
strategy. This approach also permits one to devise resalstrategies that have a greater
control over the order in which literals are resolved away.

Demodulation

Similar to paramodulation is the rewriting or “demodulatioule, which is essentially a
method of simplification.

Clt],r = s,r0 =t,70 > s0
Csb]

HereC1Jt] is a clause (s@ is a 1-context) containing a non-variable tetm = sis a
unit clause, and- is the termination ordering that is fixed in advance. It isuassd that
variables are renamed so th@f] andr = s have no common variables before this rule
is applied. The claus€[sd] is called ademodulanbf C[t] andr = s. Similarly, C[s0]
is a demodulant o€[t] ands = r, if r8 > sf. Thus an equation can be used in either
direction, if the ordering condition is satisfied.

As an example, given the equatien< 1 = z and assuming: x 1 > z and given a
clauseC|f(a) * 1] having a subterm of the forrfi(a) * 1, this clause can be simplified to
C[f(a)], replacing the occurrence ¢fa) = 1 in C by f(a).

To justify the demodulation rule, the instano® = s of the equation- = s can be
inferred because free variables are implicitly univeysallantified. This makes it possible
to replacerd in C by s, and vice versa. Butf is t, sot can be replaced byf.

Not only is the demodulant'[sf] inferred, but the original claus€|t] is typically
deleted. Thus, in contrast to resolution and paramodulatiemodulation replaces clauses
by simpler clauses. This can be a considerable aid in redubm number of generated
clauses. This also makes mechanical theorem proving do$eman reasoning.

The reason for specifying that is simpler than-6 is not only the intuitive desire to
simplify clauses, but also to ensure that demodulationiteataes. For example, there is
no termination ordering in whick « y > y * z, since then the clausex b = ¢ could
demodulate using the equatiorx y = y x z to b x a = ¢ and then taz « b = ¢ and so on
indefinitely. Such an ordering could not be a termination ordering, since it violates the
well-foundedness condition. However, for many terminatioderings>, « 1 > «x, and

40 1. Knowledge Representation and Classical Logic

thus the clauseB(z * 1) andx * 1 = x haveP(z) as a demodulant if some such ordering
is being used.

Resolution with ordered paramodulation and demodulasistill complete if paramod-
ulation and demodulation are done with respect to the samgification ordering during
the proof process[128]. Demodulation is essential in gacfor without it one can gener-
ate expressions likex 1 x 1 x 1 that clutter up the search space. Some complete refinements
of paramodulation also restrict which literals can be pardntated into, which must be the
“largest” literals in the clause in a sense. Such refinemar@gypically used with reso-
lution refinements that also restrict subsets of resolutiooontain “large” literals in a
clause. Another recent developmenbasic paramodulationwhich restricts the positions
in a term into which paramodulation can be done[19, 200F thfinement was used in
McCune’s proof of the Robbins problem [182].

1.3.4 Term Rewriting Systems

A beautiful theory oterm-rewriting systemisas been developed to handle proofs involving
equational systemghese are theorems of the forf = e whereE is a collection of
equations and is an equation. For such systems, term-rewriting techsigditen lead to
very efficient proofs. The Robbins problem was of this forar,édxample.

An equational systeris a set of equations. Often one is interested in knowing if an
equation follows logically from the given set. For examg®&en the equations + y =
y+z, (r+y)+z=2+(y+=z),and—(—(z+y) + —(z + —y)) = =, one might want to
know if the equation-(—z +y) + —(—z + —y) = z is alogical consequence. As another
example, one might want to know whethek y = y * = in a group in whichz? = e for
all z. Such systems are of interest in theorem proving, programgianguages, and other
areas. Common data structures like lists and stacks can b#alescribed by such sets
of equations. In addition, a functional program is esséintaset of equations, typically
with higher order functions, and the execution of a prograrhén a kind of equational
reasoning. In fact, some programming languages based mrrésvriting have been im-
plemented, and can execute several tens of millions of tesvper second [73]. Another
language based on rewriting is MAUDE [122]. Rewriting teicjues have also been used
to detect flaws in security protocols and prove propertiesich protocols[131]. Systems
for mechanising such proofs on a computer are becoming nmuterere powerful. The
Waldmeister system [93] is particularly effective for pfe@mvolving equations and rewrit-
ing. The area of rewriting was largely originated by the wofliKnuth and Bendix [148].
For a discussion of term-rewriting techniques, see [77782205, 263].

Syntax of equational systems

A termu is said to be aubtermof ¢ if wist¢ orif tis f(¢1,...,t,) andu is a subterm of

t; for somei. An equationis an expression of the form = t wheres and¢ are terms.

An equational systens a set of equations. We will generally consider only uresibrt

equational systems, for simplicity The letBmwill be used to refer to equational systems.
We give a set of inference rules for deriving consequencesjoétions.

t=1u

t0 = ud

1. Knowledge Representation and Classical Logic 41

t=u
u=t
t=u
Flot)=fou.)
t=u U=
t=v
true
t=t

The following result is due to Birkhoff [31]:

Theorem 1.3.7If E is a set of equations thefl = r = s iff » = s is derivable fromE
using these rules.

This result can be stated in an equivalent way. NamBly= r» = s iff there is a
finite sequence, us, ..., u, of terms such that is u; ands is u,, and for alli, u;11 is
obtained fromu; by replacing a subtermof «; by a termu, where the equation= w or
the equation: = t is an instance of an equation in

This gives a method for deriving logical consequences &f seequations. However,
it is inefficient. Therefore it is of interest to find restians of these inference rules that
are still capable of deriving all equational consequenéesaquational system. This is
the motivation for the theory of term-rewriting systems.

Term rewriting

The idea of a term rewriting system is to orient an equatioa s into a ruler — s
indicating that instances efmay be replaced by instancessobut not vice versa. Often
this is done in such a way as to replace terms by simpler teniere the definition of
what is simple may be fairly subtle. However, as a first appnaxion, smaller terms are
typically simpler. The equation + 0 = x then would typically be oriented into the rule
x40 — z. This reduces the generation of terms Ijke+0)+0)+0 which can appear in
proofs if no such directionality is applied. The study ofteewriting systems is concerned
with how to orient rules and what conditions guarantee tiarésulting systems have the
same computational power as the equational systems they ftam.

Terminology

In this section, variables s, t, u refer totermsand— is a relation over terms. Thus the
discussion is at a higher level than earlier.

A term-rewriting systen® is a set of rules of the form — s, wherer ands are
terms. It is common to require that any variable that appi@assnust also appear in It
is also common to require thats not a variable. Theewrite relation— is defined by
the following inference rules:

r—s p a substitution

rp — Sp

42 1. Knowledge Representation and Classical Logic

TS
true

ES
retr
T 8
r s

r—*s st

re*t

The notatiori-,. indicates derivability using these rules. Theubscript refers to “rewrit-
ing” (not to the termr). A setR of rules may be thought of as a set of logical axioms.
Writing s — tis in R, indicates that — ¢ is such an axiom. WritindR -, s — ¢
indicates thas — ¢ may refer to a rewrite relation not included in Oftens — g ¢
is used as an abbreviation f& -, s — t, and sometimes the subscriitis dropped.
Similarly, —% is defined in terms of derivability fronk. Note that the relation—7, is
the reflexive transitive closure ef— . Thusr —7 s if there is a sequenceg, ra, ..., 7y,
such that isr, r,, is s, andr; — g r; 41 for all i. Such a sequence is calledeavrite
sequencédrom r to s, or aderivationfrom r to s. Note thatr —7, r for all » and R.
A termr is reducibleif there is a terms such that- — s, otherwiser is irreducible. If
r —% s ands is irreducible thers is called anormal formof r.

For example, given the systeR= {z + 0 — z,0 + x — «z}, the term0 + (y + 0)
rewrites in two waysf + (y +0) — 04y and0+ (y+0) — y + 0. Applying rewriting
again, one obtaind+ (y +0) —* y. In this casey is a normal form of) 4 (y + 0), since
y cannot be further rewritten. Computationally, rewritinteam s proceeds by finding a
subtermt of s, called aredex such that is an instance of the left-hand side of some rule
in R, and replacing by the corresponding instance of the right-hand side of ke tFor
example0 + (y + 0) is an instance of the left-hand si@le+ = of the rule0 + ©+ — =.
The corresponding instance of the right-hand sia# this rule isy 4 0, so0 + (y + 0) is
replaced by + 0. This approach assumes that all variables on the right-bigiedappear
also on the left-hand side.

We now relate rewriting to equational theories. From thevabrales; « sif r — s
or s — r, and«<* is the reflexive transitive closure @f. Thusr <* s if there is
a sequences, ra, ..., r, Such thatry is r, r,, is s, andr; < r; 1 for all i. SupposeR

1. Knowledge Representation and Classical Logic 43

is a term rewriting systenfr; — s1,...,7, — s,}. Define R= to be the associated
equational systerfrry = s1,...,7, = s, }. Als0,t =g u is defined aR= | t = u, that
is, the equationn = w is a logical consequence of the associated equationalnsySthe
relation=p, is thus the smallest congruence relation generatef by algebraic terms.
The relation=rp, is defined semantically, and the relation-* is defined syntactically. It
is useful to find relationships between these two conceptsder to be able to compute
properties of=g and to find complete restrictions of the inference rules akiBff's
theorem. Note that by Birkhoff's theorenR= |= ¢ = w iff ¢t <% w. This is already
a connection between the two concepts. However, the fattéhaiting can go in both
directions in the derivation far —7 is a disadvantage. What we will show is thafif
has certain properties, some of them decidable, thep w iff any normal form oft is the
same as any normal form af This permits us to decide if=g u by rewritingt andu to
any normal form and checking if these are identical.

1.3.5 Confluence and termination properties

We now present some properties of term rewriting syst&@mgquivalently, these can be
thought of as properties of the rewrite relatier> . For termss andt, s | ¢t means that
there is a term; such thats —* v and¢t —* u. Also, s | ¢t means that there is a term
r such thatr —* s andr —* ¢. R is said to beconfluentf for all termss andt, s T ¢
impliess | t. The meaning of this is that any two rewrite sequences fronvengerm,
can always be “brought together.” Sometimes one is alsodsted inground confluence
R is said to be ground confluent if for all ground termsf » —* s andr —* ¢ then
s | t. Most research in term rewriting systems concentrates ofiunt systems.

A term rewriting systen® (alternatively, a rewrite relation—) has theChurch-Rosser
propertyif for all termss andt, s «* tiff s | t.

Theorem 1.3.8[198] A term rewriting systen® has the Church-Rosser property Hfis
confluent.

Sinces «* t iff s =g t, this theorem connects the equational theoryRofvith
rewriting. In order to decide i§ = t for confluentR it is only necessary to seedfandt
rewrite to a common term.

Two term rewriting systems are said to bquivalentif their associated equational
theories are equivalent (have the same logical consegsjence

Definition 1.3.9 A term rewriting system ierminating(strongly normalizing) if it has no
infinite rewrite sequences. Informally, this means thatréveriting process, applied to a
term, will eventually stop, no matter how the rewrite rules applied.

One desires all rewrite sequences to stop in order to guegdhat no matter how the
rewriting is done, it will eventually terminate. An exampdé a terminating system is
{9(z) — f(x), f(x) — z}. The first rule changess to f’s and so can only be applied
as many times as there agts. The second rule reduces the size and so it can only be
applied as many times as the size of a term. An example of @&maitating system is
{zx — f(z)}. It can be difficult to determine if a system is terminatindheTintuitive
idea is that a system terminates if each rule makes a termeiingome sense. However,
the definition of simplicity is not always related to size.c#n be that a term becomes

44 1. Knowledge Representation and Classical Logic

simpler even if it becomes larger. In fact, it is not even ipdlyt decidable whether a term
rewriting system is terminating [130]. Termination orceys are often used to prove that
term rewriting systems are terminating. Recall the definitf termination ordering from
section 1.3.3.

Theorem 1.3.10SupposeR is a term rewriting system and is a termination ordering
and for all rulesr — sin R, r > s. ThenR is terminating.

This result can be extended to quasi-orderings, which da¢iors that are reflexive
and transitive, but the above result should be enough toagividea of the proof methods
used. Many termination orderings are known; some will beudised in Section 1.3.5. The
orderings of interest are computable orderings, that is,decidable whether > s given
termsr ands.

Note that if R is terminating, it is always possible to find a normal form déem by
any rewrite sequence continued long enough. However tlzerée more than one normal
form. If R is terminating and confluent, there is exactly one normahféor every term.
This gives a decision procedure for the equational theargesfor terms- ands, r =g s
iff r <% s (by Birkhoff’s theorem) iffr | s (by confluence) iffr ands have the same
normal form (by termination). This gives us a directed foriiheeorem proving in such
an equational theory. A term rewriting system which is bettmtinating and confluent is
calledcanonical Some authors use the teoonvergenfor such systems [77]. Many such
systems are known. Systems that are not terminating maystglobally finite which
means that for every term there are finitely many termssuch thats —* ¢. For a
discussion of global finiteness, see [108].

We have indicated how termination is shown; more will be enéad in Section 1.3.5.
However, we haven’'t shown how to prove confluence. As stditégijooks like a difficult
property. However, it turns out that i® is terminating, confluence is decidable, from
Newman'’s lemma [198], given below. R is not terminating, there are some methods that
can still be used to prove confluence. This is interestingnéliough in that case one does
not get a decision procedure by rewriting to normal formgsiit allows some flexibility
in the rewriting procedure.

Definition 1.3.11 A term rewriting system i®cally confluent (weakly confluentf)for all
termsr, s, andt, if r — s andr — t thens | ¢.

Theorem 1.3.12 (Newman'’s lemmal)f R is locally confluent and terminating theR is
confluent.

It turns out that one can test wheth®ris locally confluent usingritical pairs [148],
so that local confluence is decidable for terminating systeffso, if R is not locally con-
fluent, it can sometimes be made so by computing criticabpsetween rewrite rules iR
and using these critical pairs to add new rewrite ruleR tontil the process stops. This pro-
cess is known asompletionand was introduced by Knuth and Bendix [148]. Completion
can also be seen as adding equations to a set of rewrite nl@sibred paramodulation
and demodulation, deleting new equations that are inssaoicexisting ones or that are
instances of: = x. These new equations are then oriented into rewrite ruldgtanpro-
cess continues. This process may terminate with a finiterdealdterm rewriting system

1. Knowledge Representation and Classical Logic 45

or it may continue forever. It may also fail by generating guation that cannot be ori-
ented into a rewrite rule. One can still usered rewritingon such equations so that they
function much as a term rewriting system [62]. When completioes not terminate, and
even if it fails, it is still possible to use a modified versiofthe completion procedure as
a semidecision procedure for the associated equatior@hthising the so-callednfailing
completion15, 16] which in the limit produces a ground confluent termnigng system.

In fact, Huet proved earlier[129] that if the original corafibn procedure does not fail, it
provides a semidecision procedure for the associatedieqabtheory.

Termination orderings

We give techniques to show that a term rewriting system mitexting. These all make use
of well founded partial orderings on terms having the proptrat if s — ¢ thens > ¢.

If such an ordering exists, then a rewriting system is teating since infinite reduction
sequences correspond to infinite descending sequencestd i@ the ordering. Recall
from section 1.3.3 that a termination ordering is a wellffded ordering that has the full
invariance and replacement properties.

The termination ordering based on size was discussed iiogeicB.3. Unfortunately,
this ordering is too weak to handle many interesting systamh as those containing the
rulex * (y+ z) — x*y + x * 2z, since the right hand side is bigger than the left-hand side
and has more occurrencesx0fThis ordering can be modified to weigh different symbols
differently; the definition of|s|| can be modified to be a weighted sum of the number of
occurrences of the symbols. The ordering of Knuth and Befidig] is more refined and
is able to show that systems containing the ule y) * = — z * (y * 2) terminate.

Another class of termination orderings are the polynomraledngs suggested by
Lankford [153, 154]. For these, each function and constpmt®l is interpreted as a
polynomial with integer coefficients and terms are ordergdhe functions associated
with them.

The recursive path ordering was discussed in section 1.B3rder to handle the
associativity rulgz = y) x 2 — x * (y * 2) it is necessary to modify the ordering so that
subterms are considered lexicographically. This lexiaphic treatment of subterms is
the idea of the lexicographic path ordering of Kamin and L[&88]. Using this ordering,
one can prove the termination of Ackermann’s function. ‘€hae also many orderings
intermediate between the recursive path ordering and timolgraphic path ordering; these
are known as orderings with “status.” The idea of statusasfthr some function symbols,
when f(s;...s,,,) and f(¢1...t,,) are compared, the subtermsandt, are compared using
the multiset ordering. For other function symbols, the subt are compared using the
lexicographic ordering. For other function symbols, theteums are compared using the
lexicographic ordering in reverse, that is, from right tfi;léhis is equivalent to reversing
the lists and then applying the lexicographic ordering. Gareshow that all such versions
of the orderings are simplification orderings, for functgymbols of bounded arity.

There are also many other orderings known that are simildrg@bove ones, such as
the recursive decomposition ordering [134] and othersséone surveys see [76, 251]. In
practiceguasi-orderingsre often used to prove termination. A relation is a quagdedng
if it is reflexive and transitive. A quasi-ordering is oftemitten as>. Thusz > « for all «,
and ifx > y andy > z thenx > z. Itis possible that > y andy > x even ifx andy are
distinct; then one writes ~ y indicating that such andy are in some sense “equivalent”

46 1. Knowledge Representation and Classical Logic

in the ordering. One writes > y if > y but noty > z, for a quasi-ordering-. The
relation > is called thestrict part of the quasi-ordering-. Note that the strict part of a
quasi-ordering is a partial ordering. The multiset extensif a quasi-ordering is defined
in a manner similar to the multiset extension of a partiakoirth [133, 76].

Definition 1.3.13 A quasi-ordering> on terms satisfies theplacement propertys mono-
tonic) if s > t implies f(...s...) > f(...t...). Note that it is possible to have> ¢ and

Flosi) m f(ot).

Definition 1.3.14 A quasi-ordering> is a quasi-simplification ordering f(...t...) > ¢
for all terms and iff (...¢...) > f(......) for all terms and all function symbol}§of variable
arity, and if the ordering satisfies the replacement propert

Definition 1.3.15 A quasi-ordering> satisfies theull invariance property(see section
1.3.5) ifs > t impliess®© > tO for all s, ¢, ©.

Theorem 1.3.16 (Dershowitz [75])For terms over a finite set of function symbols, all
quasi-simplification orderings have strict parts which arell founded.

Proof. Using Kruskal's tree theorem [152].

Theorem 1.3.17SupposeR is a term rewriting system ang is a quasi-simplification
ordering which satisfies the full invariance property. Sogpthat for all ruled — 7 in
R, > r. ThenR is terminating.

Actually, a version of the recursive path ordering adapteguasi-orderings is known
as the recursive path ordering in the literature. The idélasterms that are identical up
to permutation of arguments, are equivalent. There are d&auaf different orderings like
the recursive path ordering.

Some decidability results about termination are known. dneagal, it is undecidable
whether a systen® is terminating [130]; however, for ground systems, thasystems in
which left and right-hand sides of rules are ground termsjitgation is decidable [130].
For non-ground systems, termination of even one rule systeam been shown to be un-
decidable [64]. However, automatic tools hav been develdpat are very effective at
either proving a system to be terminating or showing that itot terminating, or finding
an orientation of a set of equations that is terminating [B33 149, 100]. In fact, one such
system [149] from [92] was able to find an automatic proof ofi@ation of a system for
which the termination proof was the main result of a couplpudilished papers.

A number of relationships between termination orderingslarge ordinals have been
found; this is only natural since any well-founded orderaagresponds to some ordinal.
It is interesting that the recursive path ordering and otirderings provide intuitive and
useful descriptions of large ordinals. For a discussiomhisf see [76] and [74].

There has also been some work on modular properties of tatimim for example, if
one knows thaf?; and R, terminate, what can be said about the terminatioRofJ Ry
under certain conditions? For a few examples of works albiggine, see [265, 266, 188].

1. Knowledge Representation and Classical Logic 47

1.3.6 Equational rewriting

There are two motivations for equational rewriting. Thetfissthat some rules are non-
terminating and cannot be used with a conventional termitiegrrsystem. One example
is the commutative axiom + y = y + x which is nonterminating no matter how it is
oriented into a rewrite rule. The second reason is that if@arator like+ is associative
and commutative then there are many equivalent ways toseptréerms like: + b+ c+d.
This imposes a burden in storage and time on a theorem proveno rewriting system.
Equational rewriting permits us to treat some axioms, dikey = y + x, in a special way,
avoiding problems with termination. It also permits us t@idvexplicitly representing
many equivalent forms of a term. The cost is a more complicageriting relation, more
difficult termination proofs, and a more complicated cortipleprocedure. Indeed, signif-
icant developments are still occurring in these areas téogit to deal with the problems
involved. In equational rewriting, some equations are eoted into rewrite rules? and
others are treated as equatidisTypically, rules that terminate are placedirand rules
for which termination is difficult are placed ifi, especially ifE' unification algorithms are
known.

The general idea is to considBrequivalence classes of terms instead of single terms.
The E-equivalence classes consist of terms that are provabbl eqderE. For example,
if E includes associative and commutative axioms-fgrthen the termga + b) + ¢,
a+ (b+c), c+ (b+ a), et cetera will all be in the samE-equivalence class. Recall that
s =g tif E | s =t, thatis,t can be obtained fromby replacing subterms usirfg. Note
that=g is an equivalence relation. Usually some representatidineofvhole equivalence
class is used; thus it is not necessary to store all the diiféerms in the class. Thisis a
considerable savings in storage and time for term rewr#imdjtheorem proving systems.

It is necessary to define a rewriting relation Brequivalence classes of terms. sIf
is a term, let|s| g be its E-equivalence class, that is, the set of terfrequivalent tos.
The simplest approach is to say tHaltz — [t]g if s — ¢. Retracting this back to
individual terms, one write8 — /i v if there are terms andt such thatu =g s and
v =g tands —p t. This systemR/FE is called aclass rewriting systemHowever,
R/ E rewriting turns out to be difficult to compute, since it reqas searching through all
termsE-equivalant tou. A computationally simpler idea is to say that— v if u has a
subterms such thats =g s’ ands’ — g t andwv is u with s replaced byt. In this case
one writes thatt — g g v. This systenR, E is called theextended rewrite systefor R
modulo E. Note that rules withE-equivalent left-hand sides need not be kept. Fhé’
rewrite relation only requires using the equational themryhe chosen redexinstead of
the whole term, to matchwith the left-hand side of some rule. SuElhmatching is often
(but not always, see [119]) easy enough computationally aken®, £ rewriting much
more efficient thank/E rewriting. Unfortunately— 5,5 has better logical properties
for decidingR U E equivalence. So the theory of equational rewriting is Iargencerned
with finding connections between these two rewriting refadi

Consider the systemB/F andR, E whereR is {a x b — d} and E consists of the
associative and commutative axioms forSupposes is (a * ¢) x b andt is ¢ x d. Then
s —g/p t SiNces is E-equivalent tac x (a * b). However, it is not true that —r g t
since there is no subterm sthat is F-equivalent taz x b. Suppose& is (b x a) x ¢. Then
s — g, g d * c sinceb x a is E-equivalent taz * b.

Note that if £ equivalence classes are nontrivial then it is impossililelfss rewriting

48 1. Knowledge Representation and Classical Logic

to be confluent in the traditional sense (since any ték@quivalent to a normal form will
also be a normal form of a term). So it is necessary to mod#éydéfinition to allowE-
equivalent normal forms. We want to capture the propertydteess rewriting is confluent
when considered as a rewrite relation on equivalence daskre preciselyR/F is
(class) confluenif for any termt, if ¢ —>}‘%/E u andt —>§/E v then there aref-

equivalentterms’ andv’ such that: —7%, v’ andv —% ; v'. Thisimplies thatz/E
is confluent and hence Church-Rosser, considered as ageelation onE-equivalence
classes. IfR/E is class confluent and terminating then a term may have maredhe
normal form, but all of them will bé-equivalent. Furthermore, iR/ E is class confluent
and terminating, then ani= U E equivalent terms can be reduceddcequivalent terms
by rewriting. Then arf’-equivalence procedure can be used to defide £ equivalence,
if there is one. Note thab-equivalent rules need not both be kept, for this method.

R is said to beChurch-Rosser modul@' if any two R= U E-equivalent terms can be
R, E rewritten toE-equivalent terms. This is not the same as sayingBydt is Church-
Rosser, considered as a rewrite systemfbaquivalence classes; in fact, it is a stronger
property. Note thak, E rewriting is a subset oR/ F rewriting, so if R/ E is terminating,
SoisR, E. If R/F is terminating andr is Church-Rosser modulB thenR, F rewriting is
also terminating an@®= U E-equality is decidable ifZ-equality is. Also, the computation-
ally simplerR, E rewriting can be used to decide the equational theory. But€iRosser
moduloE is not a local property; in fact it is undecidable in genefdlerefore one desires
decidable sufficient conditions for it. This is the conttiba of Jouannaud and Kirch-
ner [132], using confluence and “coherence”. The idea of @t is that there should be
some similarity in the way all elements of &kequivalence class rewrite. Their conditions
involve critical pairs between rules and equations &Rdnification procedures.

Another approach is to add new rules fbto obtain a logically equivalent system
R'/E; thatis,R= U E and R’= U FE have the same logical consequences (i.e., they are
equivalent), but?’, E rewriting is the same aB/F rewriting. Therefore it is possible to
use the computationally simpl&’, E rewriting to decide the equality theory &/ E. This
is done for associative-commutative operators by Peteaadritickel [212]. In this case,
confluence can be decided by methods simpler than those ahdaud and Kirchner.
Termination for equational rewriting systems is tricky tecitle; this will be discussed
later. Another topic is completion for equational rewrifjradding rules to convert an
equational rewriting system into a logically equivalentiaional rewriting system with
desired confluence properties. This is discussed by PetarsbStickel [212] and also by
Jouannaud and Kirchner [132]; for earlier work along thiglsee [155, 156].

AC rewriting

We now consider the special case of rewriting relative toatbsociative and commutative
axiomsE = {f(z,y) = f(y,2), f(f(z,y),2) = f(z, f(y, 2))} for a function symbolf.
Special efficient methods exist for this case. One idea isddify the term structure so
that R, E' rewriting can be used rather thdty E rewriting. This is done by oflattening
that is, a termf (s, f(s2, ..., f(sn—1,5n)..)), Where none of the; have f as a top-level
function symbol, is represented #és1, so, ..., s,). Heref is a vary-adic symbol, which
can take a variable number of arguments. Similaflfjf(s1, s2), s3) is represented as
f(s1,s2,s3). This represents all terms that are equivalent up to thecaga@ equation
f(f(z,y),2) = f(x, f(y,2)) by the same term. Also, terms that are equivalent up to

1. Knowledge Representation and Classical Logic 49

permutation of arguments gfare also considered as identical. This means that &ach
equivalence class is represented by a single term. Thisna¢sms that all members of a
given E-equivalence class have the same term structure, makifagrewriting seem more
of a possibility. Note however that the subterm structure i@en changed;(si, s2) is
a subterm off (f(s1, s2), s3) but there is no corresponding subtermf@§,, sz, s3). This
means thafk, E rewriting does not simulat&/E rewriting on the original system. For
example, consider the systelR§FE and R, E whereR is {a * b — d} and E consists
of the associative and commutative axiomsforSupposes is (a x b) * ¢ andt is d « c.
Thens — g/ t;in fact,s — g g t. However, if one flattens the terms, thebecomes
*(a, b, c) ands no longer rewrites to since the subterma * b has disappeared.

To overcome this, one ad@stensiongo rewrite rules to simulate their effect on flat-
tened terms. The extension of the rfilexb — d} is {x(z,a,b) — *(x,d)}, wherez is
a new variable. With this extended rui€a, b, c) rewrites tod x c¢. The general idea, then,
is to flatten terms, and exteritiby adding extensions of rewrite rules to it. Then, extended
rewriting on flattened terms using the extendeds equivalent to class rewriting on the
original R. Formally, suppose andt are terms and’ andt’ are their flattened forms.
SupposeR is a term rewriting system anfl’ is R with the extensions added. Suppdse
is associativity and commutativity. Then—rg /g t iff s’ —r/ g t'. The extended is
obtained by adding, for each rule of the foffitr1, ro, ..., 7,) — s wheref is associative
and commutative, an extended rule of the foftw, r1, 72, ..., 7,) — f(x, s), wherex is
a new variable. The original rule is also retained. This ideas not always work on other
equational theories, however. Note that some kind of aafeeicommutative matching
is needed for extended rewriting. This can be fairly expansiince there are so many
permutations to consider, but it is fairly straightforwémdmplement. Completion relative
to associativity and commutativity can be done with thedlagd representation; a method
for this is given in [212]. This method requires associatteenmutative unification (see
section 1.3.6).

Other sets of equations

The general topic of completion for other equational thepviias addressed by Jouannaud
and Kirchner in [132]. Earlier work along these lines was@bwg Lankford, as mentioned
above. Such completion procedures may Bsenification. Also, they may distinguish
rules with linear left-hand sides from other rules. (A testfinear if no variable appears
more than once.)

AC termination orderings

We now consider termination orderings for special equalitimeoriestl. The problem
is that E-equivalent terms are identified when doing equational itewgr, so that all -
equivalent terms have to be considered the same by the ogdefquational rewrit-
ing causes considerable problems for the recursive patfriogdiand similar orderings.
For example, consider the associative-commutative ezngti. One can represeri-
equivalence classes by flattened terms, as mentioned albtoxgever, applying the re-
cursive path ordering to such terms violates monotonicBupposex > + andx is
associative-commutative. Then (y + z) > x * y + x * z. By monotonicity, one should
haveu *x x (y+2) > ux (z*y+ x * z). In fact, this fails; the term on the right is larger in

50 1. Knowledge Representation and Classical Logic

the recursive path ordering. A number of attempts have besterto overcome this. The
first was the associative path ordering of Dershowitz, Hgidnsephson, and Plaisted[79],
developed by the last author. This ordering applied to fransed terms, in which big op-
erators likex were pushed inside small operators like The ordering was not originally
extended to non-ground terms, but it seems that it would boly fimple to do so using
the fact that a variable is smaller than any term properljaiomg it. A simpler approach
to extending this ordering to non-ground terms was givesr lay Plaisted [216], and then
further developed in Bachmair and Plaisted [13], but thiginees certain conditions on the
precedence. This work was generalized by Bachmair and Deih[14] using the idea
of “commutation” between two term rewriting systems. Lakapur [141] devised a fully
general associative termination ordering that applie®teground terms, but may be hard
to compute. Work in this area has continued since that tiB@[1Another issue is the
incorporation of status in such orderings, such as lefight, right-to-left, or multiset, for
various function symbolsE-termination orderings for other equational theories may b
even more complicated than for associativity and commuitgti

Congruence closure

Suppose one wants to determine whetBef= s = ¢ whereE is a set (conjunction) of
ground equations angandt¢ are ground terms. For example, one may want to decide
whether{ f°(c) = ¢, f3(c) = ¢} = f(c) = c. Thisis a case in which rewriting techniques
apply but another method is more efficient. The method iedathngruence closufd97];

for some efficient implementations and data structures &2 [The idea of congruence
closure is essentially to use equality axioms, but resii¢d terms that appear i, in-
cluding its subterms. For the above problem, the followma@ iderivation off (¢) = ¢,
identifying equations = v andv = u:

1. f5(c

¢ (given)

¢) = ¢ (given)

f(e) (2, using equality replacement)

f?(c) (3, using equality replacement)

¢) = ¢ (1,4, transitivity)

)
2. f3(c)
3. f(c)
4. f°(c)
5. f%(c)
6. f3(c) = f(c) (5, using equality replacement)
7. f(c) = ¢ (2,6, transitivity)

One can show that this approach is complete.

E-unification algorithms

When the set of axioms in a theorem to be proved includes & séequations, it is often
better to use specialized methods than general theorenmngréechniques. For exam-
ple, if the binary infix operatox is associative and commutative, many equivalent terms
xx(y*xz),y*(xxz),y*(zxx), et cetera may be generated. These cannot be eliminated by

1. Knowledge Representation and Classical Logic 51

rewriting since none is simpler than the others. Even tha @feusing unorderable equa-
tions as rewrite rules when the applied instance is orderalmin’t help. One approach to
this problem is to incorporate a genefalunification algorithm into the theorem prover.
Plotkin [221] first discussed this general concept and skdtgecompleteness in the con-
text of theorem proving. WithE unification built into a prover, only one representative
of eachE-equivalence class need be kept, significantly reducingntimber of formulas
retained. E-unification is also known as semantic unification, which rhaya misnomer
since no semantics (interpretation) is really involvede Bleneral idea is that i is a set

of equations, arE-unifier of two termss andt¢ is a substitutior® such thattl = s© =
tO, and a most generdl-unifier is anE-unifier that is as general as possible in a certain
technical sense relative to the thedty Many unification algorithms for various sets of
equations have been developed [246, 9]. For some thedrars, tnay be at most one most
generalE-unifier, and for others, there may be more than one, or eviamtaly many,
most generak-unifiers.

An important special case, already mentioned above in theegbof term-rewriting, is
associative-commutative (AC) unification. In this casdéwib terms are-unifiable, then
there are at most finitely many most genefalnifiers, and there are algorithms to find
them that are usually efficient in practice. The well-knoigoaithm of [258] essentially
involves solving Diophantine equations and finding a basisife set of solutions and find-
ing combinations of basis vectors in which all variables@mesent. This can sometimes
be very time consuming; the time to perform AC-unificatiom d& double exponential
in the sizes of the terms being unified[139]. Domenjoud [81dveed that the two terms
x4+ x+x+ xandy; + y2 + y3 + y4 have more than 34 billion different AC unifiers.
Perhaps AC unification algorithm is artificially adding cdeyty to theorem proving, or
perhaps the problem of theorem proving in the presence ofxd@res is really hard, and
the difficulty of the AC unification simply reveals that. Tleemay be ways of reducing
the work involved in AC unification. For example, one mighhsiler resource bounded
AC unification, that is, finding all unifiers within some sizeumd. This might reduce the
number of unifiers in cases where many of them are very largethfr idea is to con-
sider “optional variables,” that is, variables that may aymot be present. If is not
present in the produat x y then this product is equivalent {o This is essentially equiva-
lent to introducing a new identity operator, and greatlyuaas the number of AC unifiers.
This approach has been studied by Domenjoud[80]. This peni to represent a large
number of solutions compactly, but requires one to keegktohoptionality conditions.

Rule-based unification

Unification can be viewed as equation solving, and therasopart of theorem proving or
possibly logic programming. This approach to unificationnpiés conceptual simplicity
and also is convenient for theoretical investigations. &le, unifying two literals
P(s1, 82, ..., 8,) and P(ty, t2, ..., t,,) can be viewed as solving the set of equati¢ns =
t1, 82 = ta, ..., 8n, = t,, +. Unification can be expressed as a collection of rules ojperan
such sets of equations to either obtain a most general uaifegtect non-unifiability. For
example, one rule replaces an equatf¢n,, us, ..., u,) = f(v1,v2,...,v,) by the set of
equations{u; = v1,us = v, ..., uy, = v, }. Another rule detects non-unifiability if there
is an equation of the fornfi(...) = ¢(...) for distinct f andg. Another rule detects non-
unifiability if there is an equation of the formm = ¢ wheret is a term properly containing

52 1. Knowledge Representation and Classical Logic

xz. With a few more such rules, one can obtain a simple unifinagigorithm that will
terminate with a set of equations representing a most gemeifeer. For example, the set
of equations{z = f(a),y = g(f(a))} would represent the substitutidn: — f(a),y «—
g(f(a))}. This approach has also been extended'tonification for various equational
theoriesE. For a survey of this aproach, see [135].

1.3.7 Other logics

Up to now, we have considered theorem proving in generaldindr logic. However,
there are many more specialized logics for which more efftaieethods exist. Such log-
ics fix the domain of the interpretation, such as to the remistegers, and also the inter-
pretations of some of the symbols, such as “+” and “*". Exaaspbf theories considered
include Presburger arithmetic, the first-order theory ¢fired numbers with addition [206],
Euclidean and non-Euclidean geometry[279, 56], inegealinvolving real polynomials
(for which Tarski first gave a decision procedure)[53], grdequalities and inequalities,
for which congruence closure[197] is an efficient decisioocpdure, modal logic, tem-
poral logic, and many more specialized logics. Theoremipmpfor ground formulas of
first-order logic is also known astisfiability modulo theorie€SMT) in the literature. De-
scription logics [8], discussed in chapter 3 of this handhaoe sublanguages of first-order
logic, with extensions, that often have efficient decisioocedures and have applications
to the semantic web. Specialized logics are often built prtavers or logic programming
systems usingonstraintg34]. The idea of using constraints in theorem proving hanbe
around for some time [147]. Another specialized area is dfi@omputing polynomial
ideals, for which efficient methods have been developed [#8] approach to combin-
ing decision procedures was given in [196] and there has beetinued interest in the
combination of decision procedures since that time.

Higher-Order Logic

In addition to the logics mentioned above, there are moregéfogics to consider, includ-
ing higher-order logics. Such logics permit quantificatimer functions and predicates, as
well as variables. The HOL prover [103] uses higher-ordgidand permits users to give
considerable guidance in the search for a proof. Andrew$§ pfver is more automatic,
and has obtained some impressive proofs fully automagidattluding Cantor’s theorem
that the powerset of a set has more elements than the set. H&@Mver was greatly
aided by a breadth-first method of instantiating matingsidesd in [32]. In general,
higher-order logic often permits a more natural formulatid a theorem than first-order
logic, and shorter proofs, in addition to being more expvessBut of course the price
is that the theorem prover is more complicated; in particiiaher-order unification is
considerably more complex than first-order unification.

Mathematical Induction

Without going to a full higher-order logic, one can still ait a considerable increase in
power by adding mathematical induction to a first-order profhe mathematical induc-

1. Knowledge Representation and Classical Logic 53

tion schema is the following one:
VyllVa((z <y) — P(x))] — P(y)]
VyP(y)
Here< is a well-founded ordering. Specializing this to the usudkrsing on the integers,
one obtains the following Peano induction schema:
P(0),Vz(P(z) — P(z 4+ 1))
VaP(x)

With such inference rules, one can, for example, prove tthditian and multiplication are
associative and commutative, given their straightforvgefinitions. Both of these induc-
tion schemas are second-order, because the predidatenplicitly universally quantified.
The problem in using these schemas in an automatic theor@vergs in instantiating®.
Once this is done, the induction schema can often be provéicsbyprder techniques. One
way to adapt a first-order prover to perform mathematicalatidn, then, is simply to per-
mit a human to instantiat®. The problem of instantiating is similar to the problem of
finding loop invariants for program verification.

By instantiatingP is meant replacing®(y) in the above formula byi[y] for some
first-order formula4 containing the variablg. Equivalently, this means instantiatiftjto
the function\z.A[z]. When this is done, the first schema above becomes

Vy[[Va((z <y) — Alz])] — Afy]]
VyAly]

Note that the hypothesis and conclusion are now first-ordendilas. This instantiated
induction schema can then be given to a first-order provee Way to do this is to have
the prover prove the formuldy[[Vz((z < y) — A[z])] — Aly]], and then conclude
VyAly]. Another approach is to add the first-order form{Ng|[[Vz((z < y) — Alz])] —
Aly]]} — {VyA[y]} to the set of axioms. Both approaches are facilitated byguain
structure-preserving translation of these formulas tasgaform, in which the formula
Aly] is defined to be equivalent B(y) for a new predicate symbdat.

A number of semi-automatic techniques for finding such a fdav and choosing the
ordering< have been developed. One of them is the following: To proaeftr all finite
ground terms, A[t], first proveA|c] for all constant symbols, and then for each function
symbol f of arity n prove thatA[t;] A Afta] A -+ A Altn] — A[f (t1,t2, -+, tn)]. Thisis
known asstructural inductiorand is often reasonably effective.

A common case when an induction proof may be necessary is thiegorover is not
able to prove the formulaxz A[z], but the formulasA[t] are separately provable for all
ground terms. Analogously, it may not be possible to prove thatnaturalnumbefz) —
Alx]), but one may be able to provi0], A[1], A[2], - - - individually. In such a case, it is
reasonable to try to prowér A[z] by induction, instantiatind(x) in the above schema to
Alz]. However, this still does not specify which orderiago use. For this, it can be useful
to detect how long it takes to prove thgt] individually. For example, if the time to prove
Aln] for natural number. is proportional ton, then one may want to try the usual (size)
ordering on natural numbers. #f[n] is easy to prove for all evem but for oddn, the time
is proportional tae, then one may try to prove the even case directly withoutétidn and
the odd case by induction, using the usual ordering on nlaturabers.

54 1. Knowledge Representation and Classical Logic

The Boyer-Moore prover NgTHM [39, 37] has mathematical ictéhin techniques built
in, and many difficult proofs have been done on it, generaith wubstantial human guid-
ance. For example, correctness of AMD Athlon’s elementargtihg point operations,
and parts of IBM Power 5 and other processors have been poovied ACL2 [144, 143]
is a software system built on Common Lisp related to NqTHM thantended to be an
industrial strength version of NqTHM, mainly for the purpaosf software and hardware
verification. Boyer, Kaufmann, and Moore won the ACM Softer&ystem Award in 2005
for these provers. A number of other provers also have automesemi-automatic induc-
tion proof techniques. Rippling[48] is a technique oridinaeveloped for mathematical
induction but which also has applications to summing senmbsgeneral equational reason-
ing. Theground reducibilityproperty is also often used for induction proofs, and has ap-
plications to showing the completeness of algebraic spetifins[136]. A term iground
reducibleby a term rewriting syster® if all its ground instances are reducible Ry This
property was first shown decidable in [217], with anothelgpgpon after in [140]. It was
shown to be exponential time complete by Comon and JacqudéHr However, closely
related versions of this problem are undecidable. Recé@pur and Subramaniam[142]
described a class of inductive theorems for which validitdécidable, and this work was
extended by Giesl and Kapur [99]. Bundy has written an egoéBurvey of inductive the-
orem proving [47] and the same handbook also has a surveg agbttallednductionless
inductiontechnique, which is based on completion of term-rewritygjams [60]; see also
[98].

Set Theory

Since most of mathematics can be expressed in terms of seytlitds logical to develop
theorem proving methods that apply directly to theoremsesqed in set theory. Second-
order provers do this implicitly. First-order provers cam Uised for set theory as well;
Zermelo-Fraenkel set theory consists of an infinite set sf-brder axioms, and so one
again has the problem of instantiating the axiom schemakatatfirst-order prover can
be used. There is another version of set theory known as vamilen-Bernays-Godel set
theory [38] which is already expressed in first-order log@uite a bit of work has been
done on this version of set theory as applied to automateddiiet problems. Unfortu-
nately, this version of set theory is somewhat cumbersoma fauman or for a machine.
Still, some mathematicians have an interest in this appro@bere are also a number of
systems in which humans can construct proofs in set thewei, &s Mizar [267] and others
[27, 225]. In fact, there is an entire project (the QED projdevoted to to computer-aided
translation of mathematical proofs into completely forimed proofs[107].

It is interesting to note in this respect that many set theoopfs that are simple for a
human are very hard for resolution and other clause-baseddm provers. This includes
theorems about the associativity of union and intersecfimnexample. In this area, it
seems worthwhile to incorporate more of the simple definélaeplacement approach
used by humans into clause-based theorem provers.

As an example of the problem, suppose that it is desired teepitwatvz((x N z) =
x) from the axioms of set theory. A human would typically protéstby noting that
(xNz) = xisequivalenttd(x Nz) C x) A (z C (xNx)), then observe thal C B is
equivalenttovy((y € A) — (y € B)), and finally observe that € (z N) is equivalent
to (y € z) A (y € x). After applying all of these equivalences to the origin&dtem, a

1. Knowledge Representation and Classical Logic 55

human would observe that the result is a tautology, thusipgathe theorem.
But for a resolution theorem prover, the situation is notisgpte. The axioms needed
for this proof are

(z=y) =z Cy) Ay Ca)]
(xCy) = V2((z€2) = (2 €Y9))
(ze(@ny)) = [(zez)A (2 €y)

When these are all translated into clause form and Skoletae intuition of replacing a
formula by its definition gets lost in a mass of Skolem funtsicand a resolution prover has
a much harder time. This particular example may be easy énfoug resolution prover
to obtain, but other examples that are easy for a human guiedome very difficult for a
resolution theorem prover using the standard approach.

The problem is more general than set theory, and has to doheithdefinitions are
treated by resolution theorem provers. One possible methdédal with this problem is
to use “replacement rules” as described in [158]. This gavesnsiderable improvement
in efficiency on many problems of this kind. Andrews’ matimgsver has a method of
selectively instantiating definitions [33] that also hetpssuch problems in a higher-order
context. The U-rules of OSHL also help significantly[190].

1.4 Applications of Automated Theorem Provers

Among theorem proving applications, we can distinguisivieen those applications that
are truly automated, and those requiring some level of huimanvention; between KR
and non-KR applications; and between applications usiagsital first-order theorem
provers and those that do not. In the latter category falliegions using theorem proving
systems that do not support equality, or allow only res#ddanguages such as Horn clause
logic, or supply inferential procedures beyond those ddsitzal theorem proving.

These distinctions are not independent. In general, agtjgits requiring human inter-
vention have been only slightly used for KR; moreover, KRlegagions are more likely to
use a restricted language, or to use special-purpose imigrprocedures.

It should be noted that any theorem proving system that clwe sioe math problems
that form a substantial part of the TPTP (Thousands of Pnablor Theorem Provers)
testbed [262] must be a classical first-order theorem pritnagrsupports equality.

1.4.1 Applications Involving Human Intervention

Because theorem proving is in general intractable, the nitygjof applications of auto-
mated theorem provers require direction from human useesder to work. The inter-
vention required can be extensive, e.g., the user may béreedo supply lemmas to the
proofs on which the automated theorem prover is working.[8}the worst case, a user
may be required to supply every step of a proof to an autontaeatem prover; in this
case, the automated theorem prover is functioning simpéy@sof checker .

The need for human intervention has often limited the applitty of automated the-
orem provers to applications where reasoning can be dorneepfthat is, where the rea-
soner is not used as part of a real-time application. Evesngiilis restriction, automated
theorem provers have proved very valuable in a number of @@nancluding software
development and verification of software and hardware.

56 1. Knowledge Representation and Classical Logic

Software Development

An example of an application to software developmentis theghAion system, which
was developed by Stickel et al. [257] and uses the SNARK #raqgorover [256]. It
has been used by NASA to compose programs out of a library &THRAN-77 subrou-
tines. The user of Amphion, who does not have to have any iyl with either the-
orem proving or the library subroutines, gives a graphipakffication; this specification
is translated into a theorem of first-order logic; and SNARKvides a constructive proof
of this theorem. This constructive proof is then translated the application program in
FORTRAN-77.

The NORA/HAMMR system [87] similarly determines what sofivg components can
be reused during program development. Each software coempds associated with a
contractwritten in a formal language which captures the essentfdlssocomponent’s be-
havior. The system determines whether candidate comp®heme compatible contracts
and are thus potentially reusable; the proof of compatybidi carried out using an auto-
mated theorem prover, though with a fair amount of humanangd. Automated theorem
provers used for NORA/HAMMR include Setheo [163], Spas$[2776], and PROTEIN
[25], a theorem prover based on Mark Stickel's PTTP [253]255

In the area of algorithm design and program analysis andnigdtion, KIDS (Kestrel
Interactive Development System) [248] is a program deidvedystem that uses automated
theorem proving technology to facilitate the derivatiompodgrams from high-level pro-
gram specifications. The program specification is viewed gzah and rules of transfor-
mational developmentare viewed as axioms of the systemsydtem, guided by the user,
searches to find the appropriate transformational rulesagplication of which leads to
the final program. Both Amphion and KIDS require relativettld intervention from the
user once the initial specification is made; KIDS, for exampéquires active interaction
only for the algorithm design tactic.

Formal verification of both hardware and software has beeanticplarly fruitful appli-
cation of automated theorem provers. The need for verifinatf program correctness had
been noted as far back as the early 1960s by McCarthy [1774 subgested approaching
the problem by stating a theorem that a program had certapepties — and in particular,
computed certain functions — and then using an automatextdheprover to prove this
theorem. Verification of cryptographic protocols is anotiihgortant subfield of this area.

The field of hardware verification can be traced back to thegdexf the first hardware
description languages, e.g., ISP [28], and became actitheiid970s and 1980s, with the
advent of VLSI design. (See, e.g, [23].) It gained furthesrpinence after the discovery
in 1994 [111] of the Pentium FDIV bug, a bug in the floating gainit of Pentium pro-
cessors. It was caused by missing lookup table entries drtd lacorrect results for some
floating point division operators. The error was widespreal-publicized, and costly to
Intel, Pentium’s manufacturer, since it was obliged to offereplace all affected Pentium
processors.

General-purpose automated theorem provers that have beenanly used for hard-
ware and/or software verification include

e The Boyer-Moore theorem provers NqTHM and ACL2 [37, 146,]M&re inspired
by McCarthy'’s first papers on the topic of verifying prograorrectness. As men-
tioned in the previous section, these award winning theqreavers have been used
for many verification applications.

1. Knowledge Representation and Classical Logic 57

e The Isabelle theorem prover [210, 203] can handle highéerdogics and temporal
logics . Isabelle is thus especially well-suited in casesnatprogram specifications
are written in temporal or dynamic logic (as is frequently tase). It has also been
used for verification of cryptographic protocols [249], ehiare frequently writeen
in higher order and/or epistemic logics [50].

e OTTER has been used for a system that analyzes and detestksatin security
APIs (application programming interfaces) [280].

Special-purpose verification systems which build verifaratechniques on top of a
theorem prover include

e The PVS system [207] has been used by NASAs SPIDER (ScaRifneessor-
Independent Design for Enhanced Reliability) to verify BER protocols [213].

e The KIV (Karlsruhe Interactive Verifier) has been used foaage of software ver-
ification applications, including validation of knowledfased systems [85]. The
underlying approach is similar to that of the KIDS and Amphiwojects in that first,
the user is required to enter a specification; second, theisisatering a specifica-
tion of a modularized system, and the interactions betweemtodules; and third,
the user works with the system to construct a proof of valid¥ore interaction
between the user and the theorem prover seems to be requited case, perhaps
due to the increased complexity of the problem. KIV offersianber of techniques
to reduce the burden on the user, including reuse of proafstam generation of
counterexamples.

1.4.2 Non-Interactive KR Applications of Automated Theoren Provers

McCarthy argued [176] for an Al system consisting of a sebabms and an automated
theorem prover to reason with those axioms. The first implaaim®n of this vision came
in the late 1960s with Cordell Green’s question-answernjsesn QA3 and planning sys-
tem [105, 106], Given a set of facts and a question, Greeréstgpn-answering system
worked by resolving the (negated) question against thefdatts. Green’s planning sys-
tem used resolution theorem proving on a set of axioms reptieg facts about the world
in order to make simple inferences about moving blocks imgpka blocks-world domain.
Inthe late 1960s and early 1970s, SRI's Shakey project [2@&inpted to use the planning
system STRIPS [86] for robot motion planning; automate@tam proving was used to
determine applicability of operators and differences leetwstates [239]. The difficulties
posed by the intractability of theorem proving became evid€Shakey also faced other
problems, including dealing with noisy sensors and incatgknowledge. Moreover, the
Shakey project does not actually count as a non-interaapipdication of automated the-
orem proving, since people could obviously change Shaleaw#&onment while it acted.
Nonetheless, projects like these underscored the impmrtahdealing effectively with
theorem proving’s essential intractability.)

In fact, there are today many fewer non-interactive thagrattive applications of the-
orem proving, due to its computational complexity. Morepwen-interactive applications
will generally use carefully crafted heuristics that aiitotad and fine-tuned to a particular
domain or application. Without such heuristics, the theeproving program would not

58 1. Knowledge Representation and Classical Logic

be able to handle the huge number of clauses generatedlyFasainentioned above, non-
interactive applications often use ATPs that are not gétieearem provers with complete
proof procedures. This is because completeness and ggneftdn come at the price of
efficiency.

Some of the most successful non-interactive ATP applinatare based on two theo-
rem provers developed by Mark Stickel at SRI, PTTP [253, 2b6] SNARK [256]. PTTP
attempts to retain as much as possible the efficiency of §r@ee Section 1.4.4 below)
while it remedies the ways in which Prolog fails as a genptapose theorem prover,
namely, its unsound unification algorithm, its incompletargh strategy, and its incom-
plete inference system. PTTP was used in SRI's TACITUS gy$i4, 127], a message
understanding system for reports on equipment failurealngverations, and terrorist ac-
tivities. PTTP was used specifically to furnish minimal4calsductive explanations . Itis
frequently necessary to perform abduction — that is, totokkely explanation — when
processing text. For example, to understand the senterieeBodston office called,” one
must understand that the construct of metonymy (the useiofjescharacteristic to iden-
tify an entity of which it is an attribute) is being used, ahdttwhat is meant ia person
in the officecalled. Thus, to understand the sentence we must posit danatjpn of a
person being in the office and making that call.

There are usually many possible explanations that can bigeddsr any particular
phenomenon; thus, the problem arises of choosing the sitnptn-trivial explanation.
(One would not, for example, wish to posit an explanatiorststent with an office actually
being able to make a call.) TACITUS considers explanatidnhe form P(a), where
VzP(z) — Q(z) andQ(a) are in the theory, and chooses the explanation that has @linim
cost [254]. Every conjunct in the logical form of a senteregiven an assumability cost;
this cost is passed back to antecedents in the Horn clausmuBe of the way costs are
propagated, the cost may be partly dependent on the lengtie gfroofs of the literals in
the explanation.

PTTP was also used a central component of Stanford’s Logge& Subsumption Ar-
chitecture for robot control [1], which was used to progralcemad-200 robot to travel to
different rooms in a multi-story building. The system enyad a multi-layered architec-
ture; in each layer, PTTP was used to prove theorems fromitlea gxioms. Goals were
transmitted to layers below or to robot manipulators.

PTTP is fully automated; the user has no control over thechefar solutions. In par-
ticular, each rule is used in its original form and in its gapbsitive. In certain situations,
such as stating principles about substituting equalspreag with a contrapositive form
can lead to considerable inefficiency.

Stickel's successor theorem prover to PTTP, SNARK [256jegusers this control. It
is more closely patterned after Otter; difficult theorenes thre intractable for PTTP can
be handled by SNARK. It was used as the reasoning compone®Rts participation
in DARPA's High-Performance Knowledge Bases (HPKB) Projg8], which focused on
constructing large knowledge bases in the domain of crigisagment; and developing
question-answering systems for querying these knowledged SNARK was used pri-
marily in SRI's question-answering portion of that systeBNARK, in contrast to what
would have been possible with PTTP, allowed users to fine thi@&uestion-answering
system for HPKB, by crafting an ordering of predicates aradisks on which resolution
would be performed. This ordering could be modified as thenkedge base was altered.
Such strategies were necessary to get SNARK to work effdgtiyiven the large size of

1. Knowledge Representation and Classical Logic 59

the HPKB knowledge base.

For its use in the HPKB project, SNARK had to be extended talleatemporal rea-
soning .

SNARK has also been used for consistency checking of semaab ontologies [21].

Other general-purpose theorem provers have also beenarseattiral language appli-
cations, though on a smaller scale and for less mature apiplis. Otter has been used in
PENG (Processable English) [243], a controlled naturajlage used for writing precise
specifications. Specifications in PENG can be translatedinst-order logic; Otter is then
used to draw conclusions. As discussed in detail in ChaeB@s and Markert [36] have
used Vampire (as well as the Paradox model finder) to determirether a hypothesis is
entailed by some text.

The Cyc artificial intelligence project[161, 160, 174] ioéimer widespread application
of non-interactive automated theorem proving. The ultargdal of Cyc is the develop-
ment of a comprehensive, encyclopedic knowledge base offrmsense facts, along with
inference mechanisms for reasoning with that knowledge: €@ytains an ontology giv-
ing taxonomic information about commonsense concepts.edllsas assertions about the
concepts.

Cyc’s underlying language, CycL, allows expression of masiconstructs that go be-
yond first-order logic. Examples include:

e the concept of contexts [51]: one can state that somethitigiésin a particular
context as opposed to absolutely. (E.g.,, the statemenvémapires are afraid of
garlic is true in a mythological context, though not in ref.)

¢ higher-order concepts (E.g., one can state that if a relasioeflexive, symmetric,
and transitive, it is an equivalence relation.)

e exceptions (E.g., one can say that except for Taiwan, ath€d provinces are part
of the People’s Republic of China.)

The Cyc knowledge base is huge. Nevertheless, it has beeassifally used in real-
world applications, including HPKB. (Cyc currently has o@million assertions; at the
time of its use in HPKB, it had over a million assertions.) @tem proving in Cyc is
incomplete but efficient, partly due to various special psgmechanisms for reasoning
with its higher-order constructs. For example, Cyc's reasoncludes a special module
for solving disjointWith queries that traverses the taxonomies in the knowledge tbase
determine whether two classes have an empty intersection.

Ramachandran etal. [227, 226] compared the performancgxd (2asoner with stan-
dard theorem provers. First, most of ResearchCyc’s knaydéxhse was translated into
first-order logic. The translated sentences were then thade various theorem provers,
namely, Vampire, E [242], Spass, and Otter. The instahatiaf Vampire and Spass avail-
able to Ramachandran et al. didn’t have sufficient memorgaa lall assertions, neces-
sitating performing the comparison of Cyc with these theopgovers on just 10 percent
of ResearchCyc's knowledge base. On sample queries — Bapjés can't be doctors,”
“If the U.S. bombs Irag, someone is responsible,” —Cyc pdaeebe considerably more

4ResearchCyc [174] contains the knowledge base open to thii ffor research; certain portions of Cyc
itself are not open to the public. The knowledge base of Rek€gc contains over a million assertions.

60 1. Knowledge Representation and Classical Logic

efficient. For example, for the query about babies and dectoyc took 0.04 seconds to
answer the query, while Vampire took 847.6 seconds.

Ramachandran and his colleagues conjecture that the ysipaperformance partly
reflects the fact that Cyc’s reasoner and the standard tmeprevers have been designed
for different sets of problems. General automated theoreoueps have been designed
to perform deep inference on small sets of axioms. If onedaatkthe problems in the
TPTP database, they often have just a few dozen and rarefyrhake than a few hundred
axioms. Cyc's reasoner, on the other hand, has been desigpedorm relatively shallow
inference on large sets of axioms.

Itis also worth noting that the greatest disparity of infaretime between Cyc and the
other theorem provers occurred when Cyc was using a spaaiabpe reasoning module.
In that sense, of course, purists might argue that Cyc iseatyrdoing theorem proving
faster than standard ATPs; rather, it is doing somethingishfunctionally equivalent to
theorem proving while ATPs are doing theorem proving, arid doing that something
much faster.

1.4.3 Exploiting Structure

Knowledge bases for real-world applications and commosesesasoning often exhibit a
modular-like structure, containing multiple sets of fastth relatively little connection to
one another. For example, a knowledge base in the bankingidamght contain sets
of facts concerning loans, checking accounts, and invedtmstruments; moreover, these
sets of facts might have little overlap with one another.uchsa situation, reasoning would
primarily take place within a module, rather than betweerdofes. Reasoning between
modules would take place — for example, one might want tomeabout using automated
payments from a checking account to pay off installments doaa — but would be
limited. One would expect that a theorem prover that takesmtége of this modularity
would be more efficient: most of the time, it would be doingrskas in reduced spaces,
and it would produce fewer irrelevant resolvents.

A recent trend in automated reasoning focuses on explatingture of a knowledge
base to improve performance. This section presents a el@tedample of such an ap-
proach. Amir and Mcllraith [2] have studied the ways in whizlknowledge base can
be automatically partitioned into loosely coupled clustef domain knowledge, forming
a network of subtheories. The subtheories in the networkirked via the literals they
share in common. Inference is carried out within a subthabayliteral is inferred within
one subtheory that links to another subtheory, it may begubfsem the first to the second
subtheory.

Consider, from [2], the following theory specifying the Worgs of an espresso ma-
chine, and the preparation of espresso and tea: (Note thkg this example is proposi-
tional,the theory is first-order.)

(1) = okpumpV - onpumpv water

(2) = manfill v water

(3) = manfill V= onpump

(4) manfill v onpump

(5) — waterv— okboilerv—- onboilerv steam
(6) waterv— steam

1. Knowledge Representation and Classical Logic 61

(7) okboilerv— steam

(8) onboilerv— steam

(9) — steamv— cofeeV hotdrink
(10) coffeev teabag

(11) - steamv— teabagv hotdrink

Intuitively, this theory can be decomposed into three sedaties . The firstAl, contain-
ing axioms 1 through 4, regards water in the machine; it $igscihe relations between
manually filling the machine with water, having a working gurand having water in the
machine. The seconé2, containing axioms 5 through 8, regards getting steamtisp
fies the relations between having water, a working boiler ftbiler switch turned on, and
steam. The thirdA3, containing axioms 9 through 11, regards getting a hot ditrdpec-
ifies the relation between having steam, having coffee nupaiteabag, and having a hot
drink.

In this partitioning, the literalvaterlinks AlandA2,; the literalsteamlinks A2 andA3.
One can reason with logical partitions using forward messgaagsing of linking literals. If
one assertskpumpand performs resolution on the clause&afone obtainsvater. If one
assertokboilerandonboilerin A2, passesvaterfrom Alto A2, and performs resolution
in A2, one obtainsteam If one passesteamto A3 and performs resolution iA3, one
obtainshotdrink

In general, the complexity of this sort of reasoning depemdfie number of partitions,
the size of the partitions, the interconnectedness of ththeory graph, and the number of
literals linking subtheories. When patrtitioning the knedde base, one wants to minimize
these parameters to the extent possible. (Note that onestamiltaneously minimize all
parameters; as the number of partitions goes down, the &itdamst some of the partitions
goes up.)

Mcllraith et al. [170] did some empirical studies on largetpaf the Cyc database
used for HPKB, comparing the results of the SNARK theorenveravith and without
this partitioning strategy. SNARK plus (automaticallyrfsemed) partitioning performed
considerably better than SNARK with no strategy, thoughaswomparable to SNARK
plus set-of-support strategies. When partitioning waseglawith another strategy like
set-of-support, it outperformed combinations of stragsgvithout partitioning.

Clustering to improve reasoning performance has also beglored by Hayes et al.
[118]. In a similar spirit, there has been growing inter@siiodularization of ontologies
from the Description Logic and Semantic Web communitieg[229, 104]. Researchers
have been investigating how such modularization affea<fficiency of reasoning (i.e.,
performing subsumption and classification, and perforneimgsistency checks) over the
ontologies.

1.4.4 Prolog

In terms of its use in working applications, the logic pragraing paradigm [151] repre-
sents an important success in automated theorem provisigndin advantage is its effi-
ciency; this makes it suitable for real-world applicatiodfie most popular language for
logic programming is Prolog [42].

What makes Prolog work so efficiently is a combination of tha&tnicted form of first-
order logic used, and the particular resolution and sedreakegies that are implemented.

62 1. Knowledge Representation and Classical Logic

In the simplest case, a Prolog program consists of a set afl blauses; that is, either
atomic formulas or implications of the forfP, A P> A ...) — Py, where theP;’s are
all atomic formulas. This translates into having at most liteeal in the consequence of
any implication. The resolution strategy used is lineguinresolution, that is, for each
resolvent, one of the parents is either in the initial dasebar is an ancestor of the other
parent. The search strategy used is backward-chainingettsmner backchains from the
query or goal, against the sentences in the logic program.

The following are also true in the logic programming paradighere is a form of
negation that is interpreted as negation-as-failure : ithatot awill be taken to be true
if a cannot be proven; and the result of a logic program can deperttie ordering of
its clauses and subgoals. Prolog implementations proddiianal control mechanisms,
including the cut and fail operators; the result is that fewgrams in Prolog are pure
realizations of the declarative paradigm. Prolog also mageomplete mechanism for
unification, particularly of arithmetic expressions.

Prolog has been widely used in developing expert systerpgcesgly in Europe and
Japan, although languages such as Java and C++ have becoengapolar.

Examples of successful practical applications of logigpaonming include the HAPPS
system for model house configuration [84] and the Munich Retvisor [91], which cal-
culates the estimated fair rent for an apartment. (Thisagteer complex operation that can
take days to do by hand.) There has been special interest laghdecade on world-wide
web applications of logic programming (s€keory and Practice of Logic Programming
vol. 1, no. 3)

What are the drawbacks to Prolog? Why is there continuedastén the significantly
less efficient general theorem provers?

First, the restriction to Horn clause form is rather sevene may not be able to express
knowledge crucial for one’s application. An implication @de conclusion is a disjunction
is not expressible in Horn clause form. This means, for exantipat one cannot represent
arule like
If you are diagnosed with high-blood pressure, you will eithave to reduce your salt
intake or take medication
because that is most naturally represented as an implicaitb a disjunction in the con-
sequent.

Second, Prolog’s depth-first-search strategy is incoraplet

Third, because, in most current Prolog implementations résults of a Prolog pro-
gram depend crucially on the ordering of its clauses, andueit is difficult to predict
how the negation-as-failure mechanism will interact witte's knowledge base and goal
query, it may be difficult to predict a program’s output.

Fourth, since Prolog does not support inference with etyalicannot be used for
mathematical theorem proving.

There has been interest in the logic programming commumiggdressing limitations
or perceived drawbacks of Prolog. Disjunctive logic pragnaing [6] allows clauses with
a disjunction of literals in the consequent of a rule. Frame al. [89] discusses one
application of disjunctive logic programming, the implemtegtion of a clean-up procedure
prior to processing census data.

The fact that logic programs may have unclear or ambiguansstcs has concerned
researchers for decades. This has led to the developmemisafea set programming,
discussed in detail in Chapter 7, in which logic programsiaterpreted with the stable

1. Knowledge Representation and Classical Logic 63

model semantics . Answer set programming has been used for applications, includ-
ing question-answering, computational biology, and systelidation.

1.5 Suitability of Logic for Knowledge Representation

The central tenet of logicist A—that knowledge is best represented using formal logic—
has been debated as long as the field of knowledge repraearttas existed. Among
logicist Al's strong advocates are John McCarthy [176, 1&8trick Hayes [115, 117,
114], and Robert Moore [192], critics of the logicist appbédave included Yehoshua
Bar-Hillel [22], Marvin Minsky [191], Drew McDermott[186]and Rodney Brooks [43].
(McDermott can be counted in both the logicist and antidagicamps, having advocated
for and contributed to logicist Al [184, 187, 185] beforeilagfaith in the enterprise.)

The crux of the debate is simply this: Logicists believe ttiat-order logic, along
with its modifications, is a language particularly well gaitto capture reasoning, due
to its expressivity, its model-theoretic semantics, asdriferential power. Note [115]
that it is not a particular syntax for which logicists argiieis the notion of a formal,
declarative semantics and methods of inference that arertant. (See [96, 65, 240, 40]
for examples of how Al logicism is used.) Anti-logicists leasrgued that the program,
outside of textbook examples, is undesirable and infeasiib paraphrase McDermott
[186], You Don't Want To Do It, and You Can't Do It Anyway.

This handbook clearly approaches Al from a logicist poinviefv. It is nevertheless
worthwhile examining the debate in detail. For it has notsisted merely of an ongo-
ing sequence of arguments for and against a particular n&@seg@proach. Rather, the
arguments of the anti-logicists have proved quite benéfioiathe logicist agenda. The
critiques have often been recognized as valid within théclsgcommunity; researchers
have applied themselves to solving the underlying diffiealt and in the process have
frequently founded productive subfields of logicist Al, Buas nonmonotonic reasoning.
Examining the debate puts into context the research in leayd representation that is
discussed in this handbook.

1.5.1 Anti-logicist arguments and responses
In the nearly fifty years since McCarthy’s Advice Taker pafirst appeared [176], the crit-
icisms against the logicist approach have been remarké#ddtyes Most of the arguments
can be characterized under the following categories:

e Deductive reasoning isn’t enough

e Deductive reasoning is too expensive

e Writing down all the knowledge (the right way) is infeasible

e Other approaches do it better and/or cheaper

5The termlogicismgenerally refers to the school of thought that mathematioshe reduced to logic [277],
logiciststo the proponents of logicism. Within the artificial intgince community, however,lagicist refers to
a proponent of logicist Al, as defined in this section [264].

64 1. Knowledge Representation and Classical Logic

The argument: Deductive reasoning isn’'t enough

McCarthy’s original logicist proposal called for the fortization of a set of commonsense
facts in first-order logic, along with an automated theorewver to reason with those
facts. He gave as an example the reasoning task of planniggttto the airport. Mc-
Carthy argued that starting out from facts about first, liecedf oneself, one’s car, and the
airport; second, how these locations relate to one ancthied, the feasibility of certain
actions, such as walking and driving; fourth, the effects ictions had; and fifth, basic
planning constructs, one could deduce that to get to thejrpne should walk to one’s
car and drive the car to the airport. There were, all togefhst 15 axioms in this draft
formalization.
Bar-Hillel argued:

It sounds rather incredible that the machine could haveediat its conclusion—
which, in plain English, is “Walk from your desk to your car*by sound de-
duction! This conclusion surely could not possibly folloreiih the premise in
any serious sense. Might it not be occasionally cheapeilta taxi and have

it take you over to the airport? Couldn’t you decide to caryoeir flight or to

do a hundred other things?

The need for nonmonotonic reasoning:

In part, Bar-Hillel was alluding to the many exceptions tbatild exist in any realisti-
cally complex situation. Indeed, it soon became appareft tesearchers that exceptions
exist for even simple situations and facts. The classic @kais that of reasoning that a
bird can fly. Birds typically can fly, although there are exiaps, such as penguins and
birds whose wings are broken. If one wants to formalize arthebbird flying, one can’t
simply write

Va(Bird(z) — Flies(z)) (1.17)

because that would mean that all birds fly. That would be wrbegause it doesn’t take
penguins and broken-winged birds into account. One costeaud write

Vo (Bird(z) A =Penguin(z) A mBrokenwinged(x) — Flies(x)) (1.18)

which says that all birds fly, as long as they are not penguitsaken-winged, or better
yet, from the representational point of view, the followihgee formulas:

Va(Bird(z) A —2Ab(z) — Flies(z)) (1.19)
Vx(Penguin(x) — Ab(z)) (1.20)
Vax(Brokenwinged(z) — Ab(x)) (1.21)

which say that birds fly unless they’re abnormal, and thagpers and broken-winged
birds are abnormal.

A formula in the style of (1.18) is difficult to write, since emeeds to state all pos-
sible exceptions to bird flying in order to have a correct axidBut even aside from the
representational difficulties, there is a serious inféadproblem. If one only knows that
Tweety is a bird, one can’t use Axiom (1.18) in a deductiveofir®ne needs to know as

1. Knowledge Representation and Classical Logic 65

well that the second and third conjuncts on the left-hand sitthe implication are true:
that is, that Tweety isn't a penguin and isn’'t broken-wing8dmething stronger than de-
duction is needed here; something that permits jumpingd@tmclusion that Tweety flies
from the fact that Tweety is a bird and the absence of any kedgé that would contradict
this conclusion. This sort of default reasoning wouldrim®mmonotonién the set of ax-
ioms: adding further information (e.g., that Tweety is agugin) could mean that one has
to retract conclusions (that is, that Tweety flies).

The need for nonmonotonic reasoning was noted, as well, mshkyi[191]. At the
time Minsky wrote his critique, early work on nonmonototydiad already begun. Sev-
eral years later, most of the major formal approaches to mmotonic reasoning had al-
ready been mapped out [178, 230, 187]. This validated batHdbicist Al approach,
since it demonstrated that formal systems could be useddfauit reasoning, and the
anti-logicists, who had from the first argued that first-ordgic was too weak for many
reasoning tasks.

Nonmonotonicity and the anti-logicists

From the time they were first developed, nonmonotonic loge® seen as an essential
logicist tool. It was expected that default reasoning wddlp deal with many KR difficul-
ties, such as the frame problem, the problem of efficientigmeining which things remain
the same in a changing world. However, it turned out to bergingly difficult to develop
nonmonotonic theories that entailed the expected comalgsiTo solve the frame prob-
lem, for example, one needs to formalize ghréciple of inertia—that properties tend to
persist over time. However, a naive formalization of thimpiple along the lines of [179]
leads to themultiple extensiomproblem; a phenomenon in which the theory supports sev-
eral models, some of which are unintuitive. Hanks and Mclxétnil13] demonstrated a
particular example of this, the Yale shooting problem. Tiwegte up a simple nhonmono-
tonic theory containing some general facts about actidra (0ading a gun causes the gun
to be loaded, and that shooting a loaded gun at someone d¢hasewdividual to die), the
principle of inertia, and a particular narrative (that a geitoaded at one time, and shot
at an individual a short time after). The expected concludibat the individual will die,
did not hold. Instead, Hanks and McDermott got multiple asiens: the expected exten-
sion, in which the individual dies; and an unexpected extensn which the individual
survives, but the gun mysteriously becomes unloaded. Tfieullly is that the principle
of inertia can apply either to the gun remaining loaded oriidkvidual remaining alive.
Intuitively we expect the principle to be applied to the gemeining loaded; however,
there was nothing in Hank’s and McDermott's theory to enédiat.

The Yale shooting problem was not hard to handle: soluti@ymh appearing shortly
after the problem became known. (See [165, 166, 245] for smarlg solutions.) Nonethe-
less, the fact that nonmonotonic logics could lead to unetgokeconclusions for such sim-
ple problems was evidence to anti-logicists of the infalsitof logicist Al. Indeed, it led
McDermott to abandon logicist Al. Nonmonotonic logic wasestially useless, McDer-
mott argued [186], claiming that it required one to know vef@and what conclusions one
wanted to draw from a set of axioms, and to build that conolusito the premises.

In contrast, what logicist Al learned from the Yale shootprgblem was the impor-
tance of a good underlying representation. The difficultywlanks and McDermott's ax-
iomatization was not that it was written in a nonmonotongidoit was that it was devoid
of a concept of causation. The Yale shooting problem doeanss in an axiomatization

66 1. Knowledge Representation and Classical Logic

based on a sound theory of causation [250, 193, 244].

From today’s perspective, the Yale shooting scenario feerdtivial. Over the last ten
years, research related to the frame problem has concethtvatmore elaborate kinds of
action domains—those that include actions with indirefetat§, nondeterministic actions,
and interacting concurrently executed actions. Efficiemglementations of such advanced
forms of nonmonotonic reasoning have been used in serialusinal applications, such
as the design of a decision support system for the Spacd&S[uat].

The current state of research on nonmonotonic reasoningrenfitame problem is
described in Chapters 6, 7 an 16—20 of this Handbook.

The need for abduction and induction

Anti-logicists have pointed out that not all commonsenssoaing is deductive. Two
important examples of non-deductive reasoning avduction explaining the cause of
a phenomenon, andduction reasoning from specific instances of a class to the entire
class. Abduction, in particular, is important for both estd commonsense reasoning.
Diagnosis is a form of abduction; understanding naturajjleage requires abduction as
well [125].

Some philosophers of science [222, 120, 121] have suggdsié@bduction can be
grounded in deduction. The idea is to hypothesize or guessgglanation for a particular
phenomenon, and then try to justify this guess using dedlucA well-known example of
this approach is known as the deductive-nomological hygxish

McDermott [186] has argued against such attempts, poimtingvhat has been noted
by philosophers of science [241]: theapproach is overlyp#istic, can justify trivial expla-
nations, and can support multiple explanations withowgrirify a way of choosing among
candidates. But he was titling at a strawman. In fact, thellgpaat of logicist Al that
has focused on abduction has been considerably more Soptastin its approach. As
discussed in the previous section, Hobbs, Stickel, and®theve used theorem proving
technology to support abductive reasoning [254, 125],lmy to it by carefully examining
the structure of the generated proofs, and the particulatiesbin which the explanandum
occurs. There is a well-thought-out approach toward ctmgpamong multiple explana-
tions and toward filtering out trivial explanations.

There is also growing interest inductive logic programming195]. This field uses
machine learning techniques to construct a logic prograt émtails all the positive and
none of the negative examples of a given set of examples.

The argument: Deductive reasoning is too expensive

The decisive question [is] how a machine, even assumindlihawre somehow
countless millions of facts stored in its memory, will beats pick out those
facts which will serve as premises for its deduction.

— Yehoshua Bar-Hillel [22]

When McCarthy first presented his Advice Taker paper andHBiée}t made the above
remark, automated theorem proving technology was in itsnicy: resolution theorem
proving was still several years away from being inventedt &wen with relatively ad-
vanced theorem proving techniques, Bar-Hillel's point a&ams. General automated theo-
rem proving programs frequently cannot handle theoriels ggveral hundred axioms, let
alone several million.

1. Knowledge Representation and Classical Logic 67

This point has in fact shaped much of the Al logicist reseagbnda. The research
has progressed along several fronts,. There has been aeffogeto make general the-
orem proving more efficient (this is discussed at length iatiSe 1.3); special-purpose
reasoning techniques have been developed (e.g., by thegestlogic community [11]
as well as by Cyc (see Section 1.4.2) to determine subsumaiio disjointness of classes;
and logic programming techniques (for both Prolog (seei@ed&t4.4) and answer set pro-
gramming (see Chapter 7)) have been developed so thavedyagificient inferences can
be carried out under certain restricted assumptions. ThéEH#toject and Cyc demon-
strate that at least in some circumstances, inference csigaheven with massively large
knowledge bases.

The argument: Writing down all the knowledge (the right way) is infeasible

Just constructing a knowledge base is a major intellecessdarch problem
... The problem of finding suitable axioms—the problem oétistg the facts”

in terms of always-correct, logical, assumptions—is vencmharder than is
generally believed-Marvin Minsky [191]

The problem is in fact much greater than Minsky realizedhalgh it has taken Al
logicists a while to realize the severity of the underlyisgues. At the time that Minsky
wrote his paper, his critique on this point was not univdyssbpreciated by proponents of
Al logicism. The sense one gets from reading the papers di&gas [116, 117, 114 for
example, is one of confidence and optimism. Hayes decriepitheity of existing domain
formalizations, but at the time seemed to believe that trgdhe formalizations could be
done as long as enough people actually sat down to write tteenax He proposed, for
the subfield of naive physics that a committee be formed,tiebody of commonsense
knowledge about the physical world be divided into clustevigh clusters assigned to
different committee members, who would occasionally maebrder to integrate their
theories.

But there never was a concerted effort to formalize naivesyasy Although there
have been some attempts to formalize knowledge of varionsadw (see, e.g., [126],
and the proceedings of the various symposia on Logical Hiat@ns of Commonsense
Knowledge), most research in knowledge representatiomiresrat the meta-level. The
result, as Davis [66] has pointed out, is that at this poimtstructing a theory that can
reason correctly about simple tasks like staking plantgjarden is beyond our capability.

What makes it so difficult to write down the necessary knog< is not, certainly,
merely the writing down of millions of facts. The Cyc knowgmlbase, as discussed in
Section 1.4, has over 3 million assertions. But that knoggdolse is still missing the nec-
essary information to reason about staking plants in a gamtacking eggs into a bowl, or
many other challenge problems in commonsense reasoningnamdedge representation
[189]. Size alone will not solve the problem. That is why apémo use various web-based
technologies to gather vast amount of knowledge [175] agdeivant to this critique of the
logicist approach.

Rather, formalizing domains in logic is difficult for at ledlke following reasons:

6Although [114] was published in the 1980s, a preliminarysi@r was first written in the late 1970s.

68

1. Knowledge Representation and Classical Logic

First, it is difficult to become aware of all our implicit kndedge; that is, to make
this knowledge explicit, even in English or any other natlaagauge. The care-
ful examination of many domains or non-trivial commonsemsesoning problems
makes this point clear. For example, reasoning about howvuedher to organize
the giving of a surprise birthday present [194] involvessmrang about the factors
that cause a person to be surprised, how surprises can &, fioiint planning, coop-
eration, and the importance of correct timing. The knowtethyolved is complex
and needs to be carefully teased out of the mass of sociaqmigtthat unknowingly
govern our behavior.

Second, as Davis [66] has pointed out, there is some knowltdy is difficult to
express in any language. Davis gives the example of reagabiout a screw. Al-
though itis easy to see that a small bump in the surface idtathe functionality of
a screw much more than a small pit in the surface, it is hardposss the knowledge
needed to make this inference.

Third, there are some technical difficulties that preventfalization of certain types
of knowledge. For example, there is still no comprehendieaty of how agents
infer and reason about other agents’ ignorance (althoudy?| [i$ an excellent start
in this direction); this makes it difficult to axiomatize tistic theories of multi-agent
planning, which depend crucially on inferring what otheeatg do and do not know,
and how they make up for their ignorance.

Fourth, the construction of an ontology for a domain is a esagy but difficult
prerequisite to axiomatization. Deciding what basic cartds are necessary and
how to organize them is a tricky enterprise, which often nibesteworked when one
starts to write down axioms and finds that it is awkward to faline the necessary
knowledge.

Fifth, it is hard to integrate existing axiomatizations.vidagives as an example his
axiomatizations of string, and of cutting. There are vasitechnical difficulties—
mainly, assumptions that have been built into each domadmeatization—that pre-
vent a straightforward integration of the two axiomatiaas into a single theory that
could support simple inferences about cutting string. Titedlem of integration, in
simpler form, will also be familiar to anyone who has eveedrio integrate ontolo-
gies. Concepts do not always line up neatly; how one alt&setisoncepts in order
to allow subsumption is a challenging task.

There have nonetheless been many successes in writing dmmrddge correctly. The

best known are the theories of causation and temporal re@strat were developed in

part to deal with the frame and Yale shooting problems. Gshecessful axiomatizations,
including theories of knowlede and belief, multiple agemspatial reasoning, and physical
reasoning, are well illustrated in the domain theories is iandbook.

The argument: Other approaches do it better and/or cheaper

Anyone familiar with Al must realize that the study of knodtge representation—
at least as it applies to the “commonsense” knowledge reddor reading
typical text such as newspapers — is not going anywhere Tdss subfield

1. Knowledge Representation and Classical Logic 69

of Al has become notorious for the production of countless-mmnotonic
logics and almost as many logics of knowledge and belief, raontk of the
work shows any obvious application to actual knowledge-esgntation prob-
lems.— Eugene Charniak [55]

During the last fifteen years, statistical learning teche&have become increasingly
popular within Al, particularly for applications such astunal language processing for
which classic knowledge representation techniques had been considered essential.
For decades, for example, it had been assumed that muchrbackijdomain knowledge
would be needed in order to correctly parse sentences. E@mice, a sentence likehn
saw the girl with the toothbrusias two parses, one in which the prepositional phvage
the toothbrusimodifies the phraséohn sawand one in which it modifies the noun phrase
the girl. Background knowledge, however, eliminates the first paisee people do not
see with toothbrushes. (In contrast, both parses are plausr the sentencédohn saw the
girl with the telescope The difficulty with KR-based approaches is that it regsimegreat
deal of knowledge to properly process even small corporamtesnces.

Statistical learning techniques offers a different pagadfor many issues that arise in
processing language. One useful concept is thabtdbcation[171], in which a program
learns about commonly occurring collocated words and @staand subsequently uses
this knowledge in order to parse. This is particularly us&fuparsing and disambiguating
phonemes for voice recognition applications. A statistiearning program might learn,
for example, thatveapons of mass destructiane words that are collocated with a high
frequency. If this knowledge is then fed into a voice rectigniprogram, it could be used
to disambiguate between the womtsthandmass The words in the phraséfeapons of
math destructiorare collocated with a low frequency, so that interpretaienomes less
likely.

Programs using statistical learning techniques have bequwpular in text-retrieval
applications; in particular, they are used in systems tlaaetperformed well in recent
TREC competitions [269, 270, 271, 272, 273]. What is notableut systems using these
techniques is not that they outperform systems using cld&Ritechiques. Indeed, the
top perfomers among KR-based systems, statistical-legiindsed systems, and hybrid
systems have performed (at recent TREC conferences) at #imsame level. Rather,
statistical-learning systems stand out because they asidarably cheaper to build. There
is no need to painstakingly build tailor-made knowledgeelsdsr the purposes of under-
standing a small corpora of texts.

Nevertheless, it is unlikely that statistical-learningt®ms will ever obviate the need
for logicist Al in these applications. Statistical techmés can only go so far. They are
especially useful in domains in which language is higlynietd (e.g., newspaper texts,
the example cited by Charniak), and for applications in Wwhieep understanding is not re-
quired. But for many true Al applications, such as story ustdending and deep question-
answering applications, deep understanding is essential.

It is no coincidence that the rising popularity of statiatitechniques has coincided
with the rise of the textetrievalcompetitions (TREC) as opposed to the mesaagwerstanding
competitions (MUC). It is also worth noting that the sucéelgsarticipants in HPKB relied
heavily on classical logicist KR techniques.

In general, this pattern appears in other applicationgisBtal learning techniques do
well with low cost on relatively easy problems. However,chproblems remain resistant

70 1. Knowledge Representation and Classical Logic

to these techniques. For these problems, logicist-KRebastniques appear to work best.

This may likely mean that the most successful applicationthé future will make
use of both approaches. As with the other critiques disclabeve, the logicist research
agenda is once again being set and influenced by non-logmisbaches; ultimately, this
can only serve to strengthen the applicability of the |aliapproach and the success of
logicist-based applications.

Acknowledgments

The comments of Eyal Amir, Peter Andrews, Peter Baumgarraie Davis, Esra Erdem,
Joohyung Lee, Christopher Lynch, Bill McCune, Sheila Maith, J Moore, Maria Paola
Bonacina, J. Hsiang, H. Kirchner, M. Rusinowitch, and Gé&ffcliffe contributed to the
material in this chapter. The first author was partially supgd by the National Science
Foundation under Grant 11S-0412907.

Bibliography

[1] Eyal Amir and Pedrito Maynard-Reid. Logic-based subption architecture Ar-
tificial Intelligence 153(1-2):167-237, 2004.

[2] Eyal Amirand Sheila Mcllraith. Partition-based logicaasoning for first-order and
propositional theoriedAtrtificial Intelligence 162(1-2):49-88, 2005.

[31 P.B. Andrews. Theorem proving via general matingsurnal of the Association
for Computing Machinery28:193—-214, 1981.

[4] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nekn#rank Pfenning, and
Hongwei Xi. TPS: A theorem proving system for classical tyfpeory. Journal of
Automated Reasonin{6:321-353, 1996.

[5] Peter B. Andrews and Chad E. Brown. TPS: A hybrid automatieractive system
for developing proofsJournal of Applied Logic4:367—395, 2006.

[6] Chandrabose Aravindan, Jurgen Dix, and llkka Niemelialdp: A research project
on disjunctive logic programmingdl Commun.10(3-4):151-165, 1997.

[71 Thomas Arts and Jurgen Giesl. Termination of term rangitusing dependency
pairs. Theoretical Computer Scienc236(1-2):133-178, 2000.

[8] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, arid Patel-Schneidethe
Description Logic Handbook: Theory,Implementation, Aggitions Cambridge
University Press, Cambridge, UK, 2003.

[9] F. Baader and W. Snyder. Unification theory. In A. Robimsmd A. Voronkov,
editors,Handbook of Automated Reasonimplume I, chapter 8, pages 445-532.
Elsevier Science, 2001.

[10] Franz Baader, editoiCADE-19, 19th International Conference on Automated De-
duction volume 2741 ofLecture Notes in Computer Scienddiami Beach, FL,
USA, July 28 - August 2 2003. Springer.

[11] Franz Baader, Diego Calvanese, Deborah McGuinnessPater Patel-Schneider.
The Description Logic Handbookambridge University Press, 2003.

[12] Franz Baader and Tobias Nipkowerm Rewriting and All ThatCambridge Uni-
versity Press, Cambridge, England, 1998.

(13]

(14]

(15]

(16]

(17]
(18]
(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]
(29]

(30]

1. Knowledge Representation and Classical Logic 71

L. Bachmair and D. Plaisted. Termination orderings desociative-commutative
rewriting systemsJ. Symbolic Computatigri:329—-349, 1985.

Leo Bachmair and N. Dershowitz. Commutation, transfation, and termination.
In J.H.Siekmann, editoiRroceedings of the Eighth International Conference on
Automated Deductigmpages 5-20, 1986.

Leo Bachmair, N. Dershowitz, and J. Hsiang. Orderiraysefquational proofs. In
Proceedings of the Symposium on Logic in Computer Scipages 346—357, 1986.
Leo Bachmair, N. Dershowitz, and D. Plaisted. Completithout failure. In
Hassan Ait-Kaci and Maurice Nivat, editoResolution of Equations in Algebraic
Structures 2: Rewriting Techniqugsages 1-30, New York, 1989. Academic Press.
Leo Bachmair and Harald Ganzinger. Rewrite-based tiopue theorem proving
with selection and simplificationl. Log. Comput.4(3):217-247, 1994,

Leo Bachmair and Harald Ganzinger. Resolution theqresuing. In Robinson and
Voronkov [237], pages 19-99.

Leo Bachmair, Harald Ganzinger, Christopher Lynchd &vayne Snyder. Basic
paramodulationinformation and Computatiqii21(2):172-192, September 1995.
Leo Bachmair, Harald Ganzinger, and Andrei Voronkovimihation of equality
via transformation with ordering constraintsecture Notes in Computer Science
1421:175-190, 1998.

Kenneth Baclawski, Mieczyslaw M. Kokar, Richard J. diager, and Paul A.
Kogut. Consistency checking of semantic web ontologieslaimHorrocks and
James A. Hendler, editoriiternational Semantic Web Conferengelume 2342 of
Lecture Notes in Computer Scienpages 454-459. Springer, 2002.

Yehoshua Bar-Hillel, John McCarthy, and Oliver Selffe. Discussion of the paper:
Programs with common sense. In Vladimir Lifschitz, editemrmalizing Common
Sensgpages 17-20. Intellect, 1998.

Harry G. Barrow. Verify: A program for proving correass of digital hardware
designsArtif. Intell., 24(1-3):437-491, 1984.

Peter Baumgartner. FDPLL — A First-Order Davis-Putrlangeman-Loveland Pro-
cedure. In David McAllester, editoGADE-17 — The 17th International Conference
on Automated Deductigrolume 1831, pages 200-219. Springer, 2000.

Peter Baumgartner and Ulrich Furbach. PROTEIN: a PR@xth a theory exten-
sion INterface. IrProceedings of the Conference on Automated Deducii®®d.
Peter Baumgartner and Cesare Tinelli. The model eimiutalculus. In Franz
Baader, editorCADE-19: The 19th International Conference on Automated De
duction volume 2741 ofLecture Notes in Artificial Intelligencegpages 350-364.
Springer, 2003.

J. G. F. Belinfante. Computer proofs in Godel’s classotty with equational def-
initions for composite and crossJournal of Automated Reasoning2:311-339,
1999.

C. Gordon Bell and Allan NewellComputer Structures: Readings and Examples
McGraw Hill, 1971.

W. Bibel. Automated Theorem Proving/ieweg, Braunschweig/Wiesbaden, 1987.
Second edition.

Jean-Paul Billon. The disconnection method. In Pigedm Miglioli, Ugo Moscato,
Daniele Mundici, and Mario Ornaghi, editoRioceedings of TABLEAUX-9pages
110-126. Springer, 1996. Volume 1071 of LNAL.

72
[31]

(32]

(33]

(34]

(35]
(36]
(37]
(38]
(39]
[40]
[41]
[42]
(43]
[44]

[45]

[46]

[47]

(48]

[49]

1. Knowledge Representation and Classical Logic

G. Birkhoff. On the structure of abstract algebr&oc. Cambridge Philos. Sqc.
31:433-454,1935.

Matthew Bishop. A breadth-first strategy for matingreda In Harald Ganzinger,
editor, CADE-16: Proceedings of the 16th International Confereanédutomated
Deduction volume 1632 ofLNAI, pages 359-373, Trento, Italy, 1999. Springer-
Verlag.

Matthew Bishop and Peter B. Andrews. Selectively ings&ing definitions. In
Proceedings of the 15th International Conference on Auteth®eductionpages
365-380, 1998.

Alexander Bockmayr and V. Weispfenning. Solving nuioarconstraints. In Alan
Robinson and Andrei Voronkov, editonrdandbook of Automated Reasoningl-
ume 1, chapter 12, pages 751-842. Elsevier, Amsterdam,dtfeNands, January
2001.

Maria Paola Bonacina. On the reconstruction of proefistributed theorem prov-
ing: a modified clause-diffusion method. Symb. Compyt21(4):507-522, 1996.
Johan Bos and Katja Markert. Recognising textual émemt with logical inference.
In HLT/EMNLP. The Association for Computational Linguistics, 2005.

R. Boyer, M. Kaufmann, and J. Moore. The Boyer-Mooreotteen prover and its
interactive enhancemer@omputers and Mathematics with Applicatip#9(2):27—
62, 1995.

R. Boyer, E. Lusk, W. McCune, R. Overbeek, M. Stickelddn Wos. Set theory
in first-order logic: Clauses for Godel's axiom3ournal of Automated Reasoning
2:287-327,1986.

R. Boyer and J. MooreA Computational LogicAcademic Press, New York, 1979.
Ronald J. Brachman and Hector J. Levesdgirowledge Representation and Rea-
soning Morgan Kaufmann, 2004.

D. Brand. Proving theorems with the modification metha8IAM J. Comput.
4:412-430, 1975.

Ivan Bratko. Prolog Programming for Artificial IntelligenceAddison Wesley, 3rd
edition, 2000.

Rodney A. Brooks. Intelligence without representatioArtificial Intelligence
47(1-3):139-159, 1991.

R. Bryant. Symbolic boolean manipulation with ordebédary-decision diagrams.
ACM Computing Survey24(3):293-318, September 1992.

Bruno BuchbergerMultidimensional Systems Thepphapter Grobner Bases: An
Algorithmic Method in Polynomial Ideal Theory, pages 18322 Reidel, Bose,
N.K. Ed., 1985.

A. Bundy. The Computer Modelling of Mathematical ReasoniAgademic Press,
New York, 1983.

A. Bundy. The automation of proof by mathematical indoie. In A. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoninglume |, chapter 13,
pages 845-911. Elsevier Science, 2001.

A. Bundy, D. Basin, D. Hutter, and A. Irelan®ippling: Meta-Level Guidance for
Mathematical Reasoningolume 56 ofCambridge Tracts in Theoretical Computer
Science Cambridge University Press, 2005.

J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwangy®bolic model checking:
10%° states and beyondhformation and Computatigpages 142-170, June 1992.

1. Knowledge Representation and Classical Logic 73

[50] Michael Burrows, Martin Abadi, and Roger M. Needham.ti#entication: A prac-
tical study in belief and action. In Moshe Y. Vardi, editdARK pages 325-342.
Morgan Kaufmann, 1988.

[51] Sasa Buvac. Resolving lexical ambiguity using a forthabry of context. In Kees
van Deemter and Stanley Peters, edit@smantic Ambiguity and Underspecifica-
tion. Center for the Study of Language and Information, Stanfb®6.

[52] Ricardo Caferra, Alexander Leitsch, and NicholasiBelAutomated Model Build-
ing. Kluwer Academic Publishers, 2004.

[53] B. F. Caviness and J. R. (Eds.) Johnsdpuantifier Elimination and Cylindrical
Algebraic DecompositianSpringer-Verlag, New York, 1998.

[54] C.Changand R. Le&ymbolic Logic and Mechanical Theorem Providgademic
Press, New York, 1973.

[55] Eugene CharniakStatistical Language LearningVlIT Press, 1993.

[56] S.C. Chouand X. S. Gao. Automated reasoning in geomkgtr. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoninglume |, chapter 11,
pages 707-749. Elsevier Science, 2001.

[57] Alonzo Church. A note on the Entscheidungsprobldournal of Symbolic Logic
1:40-41, 1936. Correction, ibid., 101-102.

[58] Keith Clark. Negation as failure. In Herve Gallaire afatk Minker, editord.ogic
and Data Basepages 293—-322. Plenum Press, New York, 1978.

[59] Paul R. Cohen, Robert Schrag, Eric K. Jones, Adam Pdsbert Lin, Barbara
Starr, David Gunning, and Murray Burke. The darpa high-greneince knowledge
bases projectAl Magazing 19(4):25—-49, 1998.

[60] H. Comon. Inductionless induction. In A. Robinson and\Aronkov, editors,
Handbook of Automated Reasonjrglume |, chapter 14, pages 913-962. Elsevier
Science, 2001.

[61] Hubert Comon and Florent Jacquemard. Ground reditgibg EXPTIME-
complete. IrProc. 12th IEEE Symp. Logic in Computer Science (LICS'9@)sgv,
Poland, June—July 199pages 26—34. IEEE Comp. Soc. Press, 1997.

[62] Hubert Comon, Paliath Narendran, Robert Nieuwentarid, Michael Rusinowitch.
Deciding the confluence of ordered term rewrite systetA€&M Trans. Comput.
Logic, 4(1):33-55, 2003.

[63] R.L.Constable et almplementing Mathematics with the Nuprl Proof Development
SystemPrentice Hall, Englewood Cliffs, N.J., 1986.

[64] M. Dauchet. Simulation of turing machines by a leftdar rewrite rule. IrProceed-
ings of the 3rd International Conference on Rewriting Téghas and Applications
pages 109-120, 1989. Lecture Notes in Computer Science 355.

[65] Ernest Davis.Representations of Commonsense Knowleddgergan Kaufmann,
San Francisco, 1990.

[66] Ernest Davis. The naive physics perplést.Magazine 19(3):51-79, 1998.

[67] M. Davis. Eliminating the irrelevant from machanicabpfs. InProceedings Symp.
of Applied Math volume 15, pages 15-30, 1963.

[68] M. Davis. The prehistory and early history of automatdeduction. In J. Siekmann
and G. Wrightson, editorsAutomation of Reasoning. Bpringer-Verlag, Berlin,
1983.

[69] M. Davis, G. Logemann, and D. Loveland. A machine progr®r theorem-
proving. Communications of the ACN3:394-397, 1962.

74 1. Knowledge Representation and Classical Logic

[70] M. Davis and H. Putnam. A computing procedure for quation theoryJournal
of the Association for Computing Machine®201-215, 1960.

[71] Martin Davis. First order logic. In D.M. Gabbay, C.J. ¢tyer, and J.A. Robinson,
editors, The Handbook of Logic in Al and Logic Programmjnglume 1, pages
31-65. Oxford University Press, 1993.

[72] A. Degtyarev and A. Voronkov. The inverse method. In Aohbihson and
A. Voronkov, editors,Handbook of Automated Reasoninglume I, chapter 4,
pages 179-272. Elsevier Science, 2001.

[73] Eric Deplagne, Claude Kirchner, Helene Kirchner, §uhng Huy Nguyen. Proof
search and proof check for equational and inductive thesrémBaader [10], pages
297-316.

[74] N Dershowitz. On representing ordinals upyto Unpublished note, 1980.

[75] N. Dershowitz. Orderings for term-rewriting systemgheoretical Computer Sci-
ence 17:279-301, 1982.

[76] N. Dershowitz. Termination of rewritinglournal of Symbolic ComputatipB:69—
116, 1987.

[77] N. Dershowitz and J.-P. Jouannaud. Rewrite systemsl. f\an Leeuwen, editor,
Handbook of Theoretical Computer Scienderth-Holland, Amsterdam, 1990.

[78] N. Dershowitz and D.A. Plaisted. Rewriting. In A. Roban and A. Voronkov,
editors,Handbook of Automated Reasonimglume |, chapter 9, pages 535-610.
Elsevier Science, 2001.

[79] Nachum Dershowitz, J. Hsiang, N. Josephson, and Davidl&isted. Associative-
commutative rewriting. IfProceedings of the Eighth International Joint Conference
on Artificial Intelligence pages 940-944, August 1983.

[80] E. Domenjoud. AC-unification through order-sorted Axification. InProceed-
ings of the 4th International Conference on rewriting teicjugs and applications
Springer-Verlag, 1991. Lecture Notes in Computer Scieindeme 488.

[81] E. Domenjoud. Number of minimal unifiers of the equatiory + ... + oz, =ac
By1 + ... + By,. Journal of Automated Reasonirf$)39-44, 1992.

[82] P.J. Downey, R. Sethi, and R. Tarjan. Variations on thmmon subexpression
problem.Journal of the Assoc. of Comput. Mach7(4):758-771, 1980.

[83] Jorg Endrullis, Johannes Waldmann, and Hans ZantenadriMnterpretations for
proving termination of term rewriting. In Furbach and Shan®2], pages 574-588.

[84] RobertS. Engelmore. Knowledge-based systems in japa®i3.

[85] Dieter Fensel and Arno Schonegge. Specifying andyiedgfknowledge-based sys-
tems with kiv. In Jan Vanthienen and Frank van HarmelenpeslEUROVAV pages
107-116. Katholieke Universiteit Leuven, Belgium, 1997.

[86] Richard Fikes and Nils J. Nilsson. Strips: A new apptosz the application of
theorem proving to problem solvingdrtificial Intelligence 2(3—4):189-208, 1971.

[87] Bernd Fischer, Johann Schumann, and Gregor Sneltiegu€tion-based software
component retrieval. In Wolfgang Bibeland Peter H. Schneittitor, Automated
Deduction: A Basis for Applications, VolumeKduwer Academic, 1998.

[88] M. Fitting. First-Order Logic and Automated Theorem Provingpringer-Verlag,
New York, 1990.

[89] Enrico Franconi, Antonio Laureti Palma, Nicola Leon8jmona Perri, and
Francesco Scarcello. Census data repair: a challengifatign of disjunctive
logic programming. In Robert Nieuwenhuis and Andrei Voronkeditors,L PAR

1. Knowledge Representation and Classical Logic 75

volume 2250 of_ecture Notes in Computer Scienpages 561-578. Springer, 2001.

[90] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildatenfelsch-
prache des reinen Denkendalle, 1879. English translation: [268, pp. 1-82].

[91] Thom W. Fruhwirth and Slim Abdennadher. The munich radwisor: A success
for logic programming on the internetPLP, 1(3):303-319, 2001.

[92] Ulrich Furbach and Natarajan Shankar, editofsitomated Reasoning, Third In-
ternational Joint Conference, IJCAR 2006, Seattle, WA, UJ&#yust 17-20, 2006,
Proceedingsvolume 4130 ot ecture Notes in Computer Scien&pringer, 2006.

[93] Jean-Marie Gaillourdet, Thomas Hillenbrand, Bernathwer, and Hendrik Spies.
The new WALDMEISTER loop at work. In Baader [10], pages 317+3

[94] H. Ganzinger and K. Korovin. New directions in instaibn-based theorem prov-
ing. InProc. 18th IEEE Symposium on Logic in Computer Science§l08), pages
55—-64. IEEE Computer Society Press, 2003.

[95] H. Gelernter, J.R. Hansen, and D.W. Loveland. Empiegplorations of the geom-
etry theorem proving machine. In E. Feigenbaum and J. Feldetitors,Comput-
ers and Thoughtpages 153-167. McGraw-Hill, New York, 1963.

[96] Michael Genesereth and Nils J. Nilssobhogical Foundations of Artificial Intelli-
gence Morgan Kaufmann, San Mateo, California, 1987.

[97] Gerhard Gentzen. Untersuchungen uber das logischieBeh. Mathematische
Zeitschrift 39:176-210, 1935.

[98] G.Huetand J.M.Hullot. Proofs by induction in equatitheories with constructors.
Journal of Computer and System Sciences, 25:239-266, 1982.

[99] Jurgen Giesl and Deepak Kapur. Deciding inductivedigliof equations. In Baader
[10], pages 17-31.

[100] Jurgen Giesl, Peter Schneider-Kamp, and Rene ThiemAntomatic termination
proofs in the dependency pair framework. In Furbach and i6ird82], pages 281—
286.

[101] P. C. Gilmore. A proof method for quantification theolM Journal of Research
and Development:28-35, 1960.

[102] Kurt Godel. Die Vollstandigkeit fer Axiome des logieen Funktionenkalkuls.
Monatshefte fur Mathematik und Phys87:349-360, 1930. English translation:
[268, pp. 582-591].

[103] M.J. Gordon and T.F. Melham, editorkitroduction to HOL: A Theorem-Proving
Environment for Higher-Order LogicCambridge University Press, 1993.

[104] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, aditiya Kalyanpur. Automatic
partitioning of owl ontologies using -connections. In laorkbcks, Ulrike Sattler,
and Frank Wolter, editor§escription Logicsvolume 147 ofCEUR Workshop Pro-
ceedingsCEUR-WS.org, 2005.

[105] C. Cordell Green.The Applications of Theorem Proving to Question-Answering
SystemsGarland, New York, 1969.

[106] C. Cordell Green. Applicatoin of theorem proving t@plem solving. pages 219—
240, 1969.

[107] QED Group. The QED manifesto. In A. Bundy, editBrpceedings of the Twelfth
International Conference on Automated Deductipages 238—-251, New York,
1994. Springer-Verlag. Lecture Notes in Artificial Intgiince 814.

[108] J.V. Guttag, D. Kapur, and D. Musser. On proving unifoiermination and re-
stricted termination of rewriting systemSIAM J. Compuf.12:189-214, 1983.

76 1. Knowledge Representation and Classical Logic

[109] R. Hahnle. Tableaux and related methods. In A. Robiresal A. Voronkov, editors,
Handbook of Automated Reasoninglume I, chapter 3, pages 100-178. Elsevier
Science, 2001.

[110] A. Haken. The intractability of resolutiomheoretical Computer Sciencg9:297—
308, 1985.

[111] Tom R. Halfhill. An error in a lookup table created tidamous bug in intel’s latest
processorBYTE 1995. March 1995.

[112] Joseph Y. Halpern and Gerhard Lakemeyer. Multi-agety knowing. J. Log.
Comput, 11(1):41-70, 2001.

[113] Steve Hanks and Drew V. McDermott. Nonmonotonic logiel temporal projec-
tion. Artificial Intelligence 33(3):379-412, 1987.

[114] Patrick J. Hayes. Naive physics I: Ontology for ligslidn Jerry Hobbs and Robert
Moore, editorsFormal Theories of the Commonsense Woplages 71-107. Ablex,
Norwood, New Jersey, 1975.

[115] Patrick J. Hayes. In defence of logic. IICAI, pages 559-565, 1977.

[116] Patrick J. Hayes. The naive physics manifesto. In DibMichie, editor,Expert
Systems in the Microelectronic Agedinburgh University Press, 1979.

[117] Patrick J. Hayes. The second naive physics manifdstderry Hobbs and Robert
Moore, editorsfFormal Theories of the Commonsense Wopdges 1-36. Ablex,
Norwood, New Jersey, 1985.

[118] Patrick J. Hayes, Thomas C. Eskridge, Raul Saavedramas Reichherzer, Mala
Mehrotra, and Dmitri Bobrovnikoff. Collaborative knowlgel capture in ontologies.
In Peter Clark and Guus Schreiber, editétsCAP, pages 99-106. ACM, 2005.

[119] S. Heilbrunnerand S. Holldobler. The undecidabilityhe unification and matching
problem for canonical theorieécta Informatica24:157-171, 1987.

[120] Carl G. HempelAspects of Scientific Explanation and Other Essays in th&hi
ophy of ScienceFree Press, 1965.

[121] Carl G. Hempel and Paul Oppeneheim. Studies in theclofiexplanation. In
Carl G. Hempel, editorAspects of Scientific Explanation and Other Essays in
the Philosophy of Sciengcpages 245-295. Free Press, 1965. Also includes 1964
postscript. Originally published in Philosophy of Scient@48.

[122] Joe Hendrix, Jose Meseguer, and Hitoshi Ohsaki. Agefft completeness checker
for linear order-sorted specifications modulo axioms. Inbaeh and Shankar [92],
pages 151-155.

[123] Nao Hirokawa and Aart Middeldorp. Automating the degency pair method. In
Baader [10], pages 32—46.

[124] Jerry R. Hobbs. An overview of the tacitus proje€@omputational Linguistics
12(3), 1986.

[125] Jerry R. Hobbs, Douglas E. Appelt, John Bear, Davidradl, Megumi Kameyama,
Mark E. Stickel, and Mabry Tyson. Fastus: A cascaded fina&egransducer for
extracting information from natural-language te@oRR cmp-lg/9705013, 1997.
Earlier version available as SRI Technical Report 519.

[126] Jerry R. Hobbs and Robert C. Moof@armal Theories of the Commonsense World
Ablex, 1985.

[127] Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, &all A. Martin. Interpre-
tation as abductiorArtificial Intelligence 63(1-2):69—142, 1993.

[128] J. Hsiang and M Rusinowitch. Proving refutational gbeteness of theorem-

1. Knowledge Representation and Classical Logic 77

proving strategies: the transfinite semantic tree metldodssoc. Comput. Mach.
38(3):559-587, July 1991.

[129] G. Huet. A complete proof of correctness of the Knu#nBix completion algo-
rithm. J. Comput. Systems S&@3(1):11-21, 1981.

[130] G. Huet and D. Lankford. On the uniform halting problésn term rewriting sys-
tems. Technical Report Rapport Laboria 283, IRIA, Le ChgsReance, 1978.

[131] Florent Jacquemard, Michael Rusinowitch, and Latxégneron. Compiling and
verifying security protocols. IriLogic Programming and Automated Reasoning
pages 131-160, 2000.

[132] J.-P. Jouannaud and H. Kirchner. Completion of a seut#s modulo a set of
equationsSIAM J. Comput.15:1155-1194, November 1986.

[133] J.-P. Jouannaud and P Lescanne. On multiset orderimf@rmation Processing
Letters 15:57-63, 1982.

[134] J.-P. Jouannaud, P. Lescanne, and F. Reinig. Reeutsiomposition ordering. In
Proceedings of the Second IFIP Workshop on Formal Desoriptif Programming
Conceptspages 331-348. North-Holland, 1982.

[135] Jean-Pierre Jouannaud and Claude Kirchner. Solgjogteons in abstract algebras:
A rule-based survey of unification. In J.-L. Lassez and Gtkiio editors,Com-
putational Logic: Essays in Honor of Alan Robinsdf T Press, Cambridge, MA,
1991.

[136] Jean-Pierre Jouannaud and Emmanuel Kounalis. Adtopraofs by induction in
theories without constructorinf. Comput, 82(1):1-33, 1989.

[137] Laszlo Kalmar. Zuruckfuhrung des Entscheidungsfmmis auf den Fall von
Formeln mit einer einzigen, bindren, Funktionsvariabl€ompositio Mathemat-
ica, 4:137-144, 1936.

[138] S. Kamin and J.-J. Levy. Two generalizations of thaursive path ordering. Un-
published, February 1980.

[139] D. Kapur and P. Narendran. Double-exponential comifyl@f computing a com-
plete set of AC-unifiers. IRroceedings 7th IEEE Symposium on Logic in Computer
Sciencepages 11-21, Santa Cruz, California, 1992.

[140] D. Kapur, P. Narendran, and H. Zhang. On sufficient detepess and related
properties of term rewriting systemActa Informatica24:395-416, 1987.

[141] D. Kapur, G. Sivakumar, and H. Zhang. A new method fawvprg termination
of AC-rewrite systems. IiProc. of Tenth Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 183-Hecember 1990.
Springer Verlag LNCS 472.

[142] Deepak Kapur and Mahadevan Subramaniam. Extendicigide procedures with
induction schemes. In D. A. McAllester, edit@@ADE-17: Proceedings of the 17th
International Conference on Automated Deductieolume 1831, pages 324—345,
London, UK, 2000. Springer-Verlag.

[143] M. Kaufmann, P. Manolios, and J S. Moore, edito@mputer-Aided Reasoning:
ACL2 Case StudieKluwer Academic Press, Boston, MA., 2000.

[144] M. Kaufmann, P. Manolios, and J S. Moor€omputer-Aided Reasoning: An Ap-
proach Kluwer Academic Press, Boston, MA., 2000.

[145] Matt Kaufmann, Panagiotis Manolios, and J. Strotheoké.Computer-Aided Rea-
soning: ACL2 Case StudieKluwer Academic, 2000.

[146] Matt Kaufmann, Panagiotis Manolios, and J. Strotheoké.Computer-Aided Rea-

78 1. Knowledge Representation and Classical Logic

soning: An ApproachKluwer Academic, 2000.

[147] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduwxtiwith symbolic con-
straints.Revue Francaise d’Intelligence Artificie]lé(3):9 — 52, 1990.

[148] Donald E. Knuth and Peter B. Bendix. Simple word praiden universal algebras.
In J. Leech, editorComputational Problems in Abstract Algeb@ages 263—-297.
Pergamon Press, Oxford, 1970.

[149] Adam Koprowski and Hans Zantema. Automation of reiserpath ordering for
infinite labelled rewrite systems. In Furbach and Shank2}, jfages 332—-346.

[150] Konstantin Korovin and Andrei Voronkov. An AC-comfidé Knuth-Bendix order.
In Baader [10], pages 47-59.

[151] Robert A. KowalskiLogic for Problem SolvingNorth Holland, Amsterdam, 1980.

[152] J.B. Kruskal. Well-quasi-ordering, the tree theoyeand Vazsonyi's conjecture.
Transactions of the American Mathematical Soci®8,210—225, 1960.

[153] D. Lankford. Canonical algebraic simplification inmaputational logic. Technical
Report Memo ATP-25, Automatic Theorem Proving Project,udrsity of Texas,
Austin, Texas, 1975.

[154] D. Lankford. On proving term rewriting systems are Muwian. Technical Re-
port Memo MTP-3, Mathematics Department, Louisiana Teahivérsity, Ruston,
Louisiana, 1979.

[155] D. Lankford and A.M. Ballantyne. Decision problems $imple equational theories
with commutative-associative axioms: Complete sets of rnatative-associative
reductions. Technical Report Memo ATP-39, Department affdmatics and Com-
puter Science, University of Texas, Austin, TX, 1977.

[156] D.Lankford, G. Butler, and A. Ballantyne. A progressport on new decision algo-
rithms for finitely presented abelian groups.Aroceedings of the 7th International
Conference on Automated Deductipages 128-141, May 1984. Lecture Notes in
Computer Science volume 170.

[157] S.-J. Lee and D. Plaisted. Eliminating duplicationhathe hyper-linking strategy.
Journal of Automated Reasonir(1):25-42, 1992.

[158] S.-J.Lee and D. Plaisted. Use of replace rules in gragroving.Methods of Logic
in Computer Sciencd :217-240, 1994.

[159] Alexander LeitschThe Resolution CalculusSpringer-Verlag, Berlin, 1997. Texts
in Theoretical Computer Science.

[160] Douglas B. Lenat. Cyc: A large-scale investment inklgalge infrastructureCom-
munications of the ACIVB8(11):32—-38, 1995.

[161] Douglas B. Lenat and Ramanathan V. GuBailding Large Knowledge Based Sys-
tems: Representation and Inference in the Cyc Projéctdison Wesley, Reading,
Massachusetts, 1990.

[162] R. Letz and G. Stenz. Model elimination and connectalrleau procedures. In
A. Robinson and A. Voronkov, editoréjandbook of Automated Reasoningl-
ume Il, chapter 28, pages 2015-2114. Elsevier Science, 2001

[163] Reinhold Letz and Gernot Stenz. Model elimination andnection tableau proce-
dures. In Robinson and Voronkov [238], pages 2015-2114.

[164] V. Lifschitz. What is the inverse method? Autom. Reasons(1):1-23, 1989.

[165] Vladimir Lifschitz. Pointwise circumscription: Rmminary report. InAAAI, pages
406-410, 1986.

[166] Vladimir Lifschitz. Formal theories of action (predinary report). INJCAI, pages

1. Knowledge Representation and Classical Logic 79

966972, 1987.

[167] D. Loveland. A simplified format for the model elimit@ procedure.J. ACM
16:349-363, 1969.

[168] D. Loveland.Automated Theorem Proving: A Logical Basiorth-Holland, New
York, 1978.

[169] D.W. Loveland. Automated deduction: looking aheadl Magazing 20(1):77-98,
1999. Spring.

[170] Bill MacCartney, Sheila A. Mcllraith, Eyal Amir, andomas E. Uribe. Practical
partition-based theorem proving for large knowledge bhase$seorg Gottlob and
Toby Walsh, editordJCAI, pages 89-98. Morgan Kaufmann, 2003.

[171] Chris Manning and Hinrich Schutz&oundations of Statistical Natural Language
Processing MIT Press, 1999.

[172] A. Martelli and U. Montanari. An efficient unificatiorigorithm. Transactions on
Programming Languages and Systes(®):258-282, April 1982.

[173] S. Ju. Maslov. An inverse method of establishing dédllities in the classical
predicate calculusDokl. Akad. Nauk SSSR59:1420-1424, 1964. Reprinted in
SiekmannWrightson83a.

[174] Cynthia Matuszek, John Cabral, Michael J. Witbroakd 4. DeOliviera. An intro-
duction to the syntax and content of cyc. 2006.

[175] Cynthia Matuszek, Michael J. Witbrock, Robert C. Kathl John Cabral, David
Schneider, Purvesh Shah, and Douglas B. Lenat. Searchingpfomon sense:
Populating cyc from the web. In Manuela M. Veloso and Subb&@ambhampati,
editors,AAAI, pages 1430-1435. AAAI Press AAAI Press / The MIT Press, 2005

[176] John McCarthy. Programs with common sense.Ptaceedings of the Tedding-
ton Conference on the Mechanization of Thought Procegseges 75-91, London,
1959. Reproduced in [180].

[177] John McCarthy. A basis for a mathematical theory of patation. InComputer
Programming and Formal Systentdorth-Holland, 1963.

[178] John McCarthy. Circumscription: A form of non-monoto reasoning.Artificial
Intelligence 13(1-2):23-79, 1980.

[179] John McCarthy. Applications of circumscription torfi@alizing common sense
knowledge Atrtificial Intelligence 26(3):89-116, 1986.

[180] John McCarthy.Formalizing Common Sense: Papers by John McCarthiglex,
Norwood, NJ, 1990.

[181] John McCarthy and Patrick J. Hayes. Some philosoppicdlems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michieditors,Machine Intel-
ligence 4 pages 463-502. Edinburgh University Press, Edinburgs9.19

[182] W. W. McCune. Solution of the Robbins probledournal of Automated Reasoning
19(3):263-276, December 1997.

[183] William McCune and Larry Wos. Otter - the CADE-13 cortifien incarnationsJ.
Autom. Reason18(2):211-220, 1997.

[184] Drew V. McDermott. Tarskian semantics, or no notatiathout denotation!Cog-
nitive Sciencg2(3):27-282, 1978.

[185] Drew V. McDermott. A temporal logic for reasoning abquocesses and plans.
Cognitive Sciences:101-155, 1982.

[186] Drew V. McDermott. A critique of pure reaso8omputational Intelligence3:151—
160, 1987.

80 1. Knowledge Representation and Classical Logic

[187] Drew V. McDermott and Jon Doyle. Non-monotonic logicirtificial Intelligence
13(1-2):41-72, 1980.

[188] A. Middeldorp. Modular Properties of Term Rewriting SystenihD thesis, Vrije
Universiteit, Amsterdam, 1990.

[189] Rob Miller and Leora Morgenstern. The commonsensélpro page, 1997.
http://www-formal.stanford.edu/leora/commonsense.

[190] Swaha Miller and David A. Plaisted. Performance of QS problems requiring
definition expansion. In Reinhold Letz, edit@th International Workshop on First-
Order Theorem ProvingKoblenz, Germany, September 15-17 2005.

[191] Marvin Minsky. A framework for representing knowleglgin Patrick H. Winston,
editor, The Psychology of Computer VisidcGraw-Hill, 1975. Also available as
MIT-Al Lab Memo 306.

[192] Robert C. Moore. The role of logic in knowledge repragséion and commonsense
reasoning. IMAAAI pages 428-433, 1982.

[193] Leora Morgenstern. The problems with solutions to fitaene problem. In Ken-
neth M. Ford and Zenon W. Pylyshyn, editofithe Robot’'s Dilemma Revisited
Ablex, 1996.

[194] Leora Morgenstern. A first-order axiomatization oé tburprise birthday present
problem: Preliminary report. IRroceedings of the Seventh International Sympo-
sium on Logical Formalizations of Commonsense Reaso80(@p. Also published
as Dresden Technical Report ISSN 1430-211X.

[195] Stephen Muggleton and Luc De Raedt. Inductive logagpamming: Theory and
methods.J. Log. Program.19/20:629-679, 1994.

[196] Greg Nelson and Derek C. Oppen. Simplification by coafieg decision proce-
dures.ACM TOPLAS1(2):245-257, 1979.

[197] Greg Nelson and Derek C. Oppen. Fast decision proescased on congruence
closure.J. ACM, 27(2):356—364, 1980.

[198] M.H.A. Newman. On theories with a combinatorial defon of ‘equivalence’.
Annals of Mathematic#13(2):223-243, 1942.

[199] R. Nieuwenhuis and A. Rubio. Paramodulation-basezbridam proving. In
A. Robinson and A. Voronkov, editoréjandbook of Automated Reasoningl-
ume |, chapter 7, pages 371-443. Elsevier Science, 2001.

[200] Robert Nieuwenhuis and Albert Rubio. Theorem proviriifp ordering and equality
constrained clausegournal of Symbolic Computatiph9(4):321-351, 1995.

[201] Nils J. Nilsson. Shakey the robot. Technical Repo,&RI International, 1984.

[202] Tobias Nipkow, Gertrud Bauer, and Paula Schultz. fég& I: Tame graphs. In
Furbach and Shankar [92], pages 21-35.

[203] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzabelle/HOL: A Proof
Assistant for Higher-Order LogicSpringer Verlag, 2003.

[204] Monica Nogueira, Marcello Balduccini, Michael Getiy Richard Watson, and
Matthew Barry. An A-Prolog decision support system for thga& Shuttle. In
Proceedings of International Symposium on Practical AspetDeclarative Lan-
guages (PADL)pages 169-183, 2001.

[205] E. OhlebuschAdvanced Topics in Term Rewritin§pringer, New York, 2002.

[206] Derek C. Oppen. Elementary bounds for Presburgeh#wdtic. InSTOC '73:
Proceedings of the fifth annual ACM symposium on Theory opuating pages
34-37, New York, NY, USA, 1973. ACM Press.

1. Knowledge Representation and Classical Logic 81

[207] Sam Owre, John M. Rushby, and Natarajan Shankar. Pysotdtype verification
system. In Deepak Kapur, edit@ADE, volume 607 oL ecture Notes in Computer
Sciencepages 748-752. Springer, 1992.

[208] S. Owrie, J.M. Rushby, and N. Shankar. PVS: A prototygpefication system. In
D. Kapur, editorProceedings of the Eleventh Conference on Automated Dieduct
pages 748-752, June 1992. Lecture Notes in Artificial ligiefice 607.

[209] Mike Paterson and Mark N. Wegman. Linear unificatich.Comput. Syst. S¢i.
16(2):158-167, 1978.

[210] L.C. Paulson.lsabelle: A Generic Theorem ProveSpringer Verlag, New York,
1994. LNCS Volume 828.

[211] Giuseppe Peandirithmetices principia, nova methodo expositarin, 1889. En-
glish translation: [268, pp. 83-97].

[212] G.E. Peterson and M.E. Stickel. Complete sets of reains for some equational
theories.J. Assoc. Comput. Mact28(2):233-264, 1981.

[213] Lee Pike.Formal Verification of Time-Triggered Systen#hD thesis, Indiana Uni-
versity, 2005.

[214] D. Plaisted. A recursively defined ordering for praytermination of term rewriting
systems. technical report R-78-943, University of lllim@it Urbana-Champaign,
Urbana, IL, 1978.

[215] D. Plaisted. Well-founded orderings for proving témation of systems of rewrite
rules. technical report R-78-932, University of lllinoisldrbana-Champaign, Ur-
bana, IL, 1978.

[216] D. Plaisted. An associative path ordering.Proceedings of an NSF workshop on
the rewrite rule laboratorypages 123 — 136, April 1984.

[217] D. Plaisted. Semantic confluence tests and completiethods.Information and
Control, 65(2/3):182-215, 1985.

[218] D. Plaisted and S.-J. Lee. Inference by clause magchin Z. Ras and M. Ze-
mankova, editordntelligent Systems: State of the Art and Future Directjqragges
200-235. Ellis Horwood, West Sussex, 1990.

[219] D. Plaisted and Y. ZhuThe Efficiency of Theorem Proving Strategies: A Compara-
tive and Asymptotic Analysi¥ieweg, Wiesbaden, 1997.

[220] D. A. Plaisted and Y. Zhu. Ordered semantic hyper higkiJournal of Automated
Reasoning25(3):167-217, October 2000.

[221] G. Plotkin. Building-in equational theories. Machine Intelligencevolume 7,
pages 73-90. Edinburgh University Press, 1972.

[222] Karl Popper.The Logic of Scientific DiscoverjHutchinson, London, 1959.

[223] Emil Post. Introduction to a general theory of elenagptpropositions. American
Journal of Mathematics43:163-185, 1921. Reproduced in [268, pp. 264-283].

[224] D. Prawitz. An improved proof proceduréheorig 26:102—-139, 1960.

[225] Art Quaife. Automated deduction in von Neumann-Bemi&odel set theorylour-
nal of Automated Reasonin®.91-147,1992. (Q1).

[226] Deepak Ramachandran, Pace Reagan, and Keith Goolsts#yorderized research-
cyc: Expressivity and efficiency in a common-sense ontalogy

[227] Deepak Ramachandran, Pace Reagan, Keith Goolsbepelte Keefe, and Eyal
Amir. Inference-friendly translation of researchcyc taffiorder logic. 2005.

[228] I.V. Ramakrishnan, R. Sekar, and A. Voronkov. Termeixidg. In A. Robinson and
A. Voronkov, editorsHandbook of Automated Reasonjinglume 11, chapter 26,

82 1. Knowledge Representation and Classical Logic

pages 1853-1964. Elsevier Science, 2001.

[229] Alan L. Rector. Modularisation of domain ontologiesglemented in description
logics and related formalisms including owl. In John H. GamrBruce W. Porter,
and Yolanda Gil, editord-CAP, pages 121-128. ACM, 2003.

[230] Raymond Reiter. A logic for default reasoningtificial Intelligence 13(1-2):81—
132, 1980.

[231] Raymond Reiter.Knowledge in Action: Logical Foundations for Specifyingdan
Implementing Dynamical SystemMIT Press, 2001.

[232] A. Riazanov.mplementing an Efficient Theorem Prov&hD Thesis, The Univer-
sity of Manchester, Manchester, July 2003.

[233] A. Riazanov and A. Voronkov. The design and implemgoitaof vampire. Al
Communicationgl5:2-3:91-110, 2002.

[234] G. Robinson and L. Wos. Paramodulation and theorenvipg in first order theo-
ries with equality. InMachine Intelligence 4pages 135-150. Edinburgh University
Press, Edinburgh, Scotland, 1969.

[235] J. Robinson. Theorem proving on the computédournal of the Association for
Computing Machineryl0:163-174, 1963.

[236] J. Robinson. A machine-oriented logic based on theluéisn principle.Journal of
the Association for Computing Machinet?2:23-41, 1965.

[237] John Alan Robinson and Andrei Voronkov, editoksandbook of Automated Rea-
soning (in 2 volumes)Elsevier and MIT Press, 2001.

[238] John Alan Robinson and Andrei Voronkov, editoksandbook of Automated Rea-
soning (in 2 volumes)Elsevier and MIT Press, 2001.

[239] Johns F. Rulifson, Jan A. Derksen, and Richard J Wgktin Qa4: A procedural
calculus for intuitive reasoning. Technical Report 73, Adn@er, SRI International,
333 Ravenswood Ave., Menlo Park, CA 94025, Nov 1972.

[240] Stuart Russell and Peter Norvidtificial Intelligence: A Modern Approach, 2nd
edition Prentice Hall, 2003.

[241] Wesley C. Salmorrour Decades of Scientific Explanatidiniversity of Minnesota
Press, 1989.

[242] Stephan Schulz. E — a brainiac theorem provdrCommunications15(2):111—
126, 2002.

[243] Rolf Schwitter. English as a formal specification laage. INDEXA Workshops
pages 228-232. IEEE Computer Society, 2002.

[244] Murray Shanahan.Solving the Frame Problem MIT Press, Cambridge, Mas-
sachusetts, 1997.

[245] Yoav Shoham. Chronological ignorance: Time, nonntoniity, necessity and
causal theories. I1AAAI pages 389-393, 1986.

[246] J. Siekmann. Unification theoryJournal of Symbolic Computatipi:207-274,
1989.

[247] Jorg Siekmann, Christoph Benzmuller, and Serge AetexComputer supported
mathematics with OMEGAJournal of Applied Logic4(4):533-559, 2006.

[248] Douglas R. Smith. KIDS:a knowledge-based softwareetigpment system. In
Michael Lowry and Robert McCartney, editofsjtomating Software Desigpages
483-514. MIT Press, 1991.

[249] Christoph Sprenger, Michael Backes, David A. BasintgiB Pfitzmann, and
Michael Waidner. Cryptographically sound theorem provimgCSFW pages 153—

1. Knowledge Representation and Classical Logic 83

166. IEEE Computer Society, 2006.

[250] Lynn Andrea Stein and Leora Morgenstern. Motivatetibactheory: a formal the-
ory of causal reasoningrtificial Intelligence 71(1):1-42, 1994.

[251] J. Steinbach. Extensions and comparison of simpiifinarderings. IrProceedings
of the 3rd International Conference on rewriting techniga@éd applicationgpages
434-448, 1989. Lecture Notes in Computer Science, Vol. 355.

[252] G. Stenz and R. Letz. DCTP - a disconnection calculasriam prover. In R. Gore,
A. Leitsch, and T. Nipkow, editor®roc. of the International Joint Conference on
Automated Reasoningages 381-385. Springer, 2001. Number 2083 in Lecture
Notes in Artificial Intelligence.

[253] Mark E. Stickel. A prolog technology theorem provemplementation by an ex-
tended prolog compiledournal of Automated Reasoning(4):353—-380, 1988.

[254] Mark E. Stickel. A prolog-like inference system formaputing minimum-cost ab-
ductive explanation in natural-language interpretati@nnals of Mathematics and
Artificial Intelligence 4:89-106, 1991.

[255] Mark E. Stickel. A prolog technology theorem provenew exposition and imple-
mentation in prologTheoretical Computer Scienck04:109-128, 1992.

[256] Mark E. Stickel, Richard J. Waldinger, and Vinay K. @idéari. A guide to SNARK.
Technical report, SRI International, 2000.

[257] Mark E. Stickel, Richard J. Waldinger, Michael R. Lgwifhomas Pressburger, and
lan Underwood. Deductive composition of astronomicalwafe from subroutine
libraries. In Alan Bundy, editoiCADE, volume 814 ofLecture Notes in Computer
Sciencepages 341-355. Springer, 1994.

[258] M.E. Stickel. A unification algorithm for associatre®mmutative functionsJour-
nal of the Association for Computing Machine®g:423-434, 1981.

[259] M.E. Stickel. A prolog technology theorem prover: lieymentation by an extended
prolog compiler. InProceedings of the 8th International Conference on Autechat
Deduction pages 573-587, 1986.

[260] G. Sutcliffe. CASC-J3: The 3rd IJCAR ATP system conifji@t. In Ulrich Furbach
and Natarajan Shankar, editoPypc. of the International Joint Conference on Au-
tomated Reasoningages 572-3. Springer, 2006. Number 4130 in Lecture Notes
in Artificial Intelligence.

[261] G. Sutcliffe. The CADE-20 Automated Theorem Provingn@petition.Al Commu-
nications 19(2):173-181, 2006.

[262] C.B. Suttner and G. Sutcliffe. The TPTP problem ligr@FPTP v2.0.0). Tech-
nical Report AR-97-01, Institut fur Informatik, TechniselJniversitat Munchen,
Germany, 1997.

[263] Terese. Term Rewriting Systemsolume 55 ofCambridge Tracts in Theoretical
Computer ScienceCambridge University Press, 2003.

[264] Richmond Thomason. Logic and artificial intelligenteStanford Encyclopedia of
Philosophy Stanford University, 2003.

[265] Y. Toyama. On the Church-Rosser property for the diseen of term rewriting
systems.J. Assoc. Comput. MagiB4(1):128-143, January 1987.

[266] Y. Toyama, J.W. Klop, and H.-P. Barendregt. Termioafior the direct sum of left-
linear term rewriting systems. IRroceedings of the 3rd International Conference
on rewriting techniques and applicatiornsages 477—-491, 1989. Lecture Notes in
Computer Science, Vol. 355.

84 1. Knowledge Representation and Classical Logic

[267] A. Trybulec and H. Blair. Computer aided reasoninghwitizar. In R. Parikh,
editor,Logic of ProgramsSpringer Verlag, New York, 1985. LNCS 193.

[268] Jean van Heijenoort, editoFrom Frege to Godel: A source book in mathematical
logic, 1879-1931Harvard University Press, 1967.

[269] Ellen M. Voorhees and Lori P. Buckland, editofihe Eleventh Text Retrieval Con-
ference 2002.

[270] Ellen M. Voorhees and Lori P. Buckland, editofBhe Twelfth Text Retrieval Con-
ference 2003.

[271] Ellen M. Voorhees and Lori P. Buckland, editor§he Thirteenth Text Retrieval
Conference2004.

[272] Ellen M. Voorhees and Lori P. Buckland, editor¥he Fourteenth Text Retrieval
Conference2005.

[273] Ellen M. Voorhees and Lori P. Buckland, editoi$e Fifteenth Text Retrieval Con-
ference 2006.

[274] Yimin Wang, Peter Haase, and Jie Bao. A survey of foisnad for modular on-
tologies. InWorkshop on Semantic Web for Collaborative Knowledge Adipn,
2007.

[275] Christoph Weidenbach. Combining superpositiontssand splitting. In Robinson
and Voronkov [238], pages 1965-2013.

[276] Christoph Weidenbach, Uwe Brahm, Thomas Hillenbrdfitho Keen, Christian
Theobald, and Dalibor Topic. S pass version 2.0. In Andred¥&ov, editorCADE,
volume 2392 of_ecture Notes in Computer Scienpages 275-279. Springer, 2002.

[277] Alfred North Whitehead and Bertrand Russéttincipia Mathematica University
Press, 1957. Originally published 1910-1913.

[278] L. Wos, R. Overbeek, E. Lusk, and J. Boylautomated Reasoning: Introduction
and Applications Prentice Hall, Englewood Cliffs, N.J., 1984.

[279] Went-Tsun Wu. On the decision problem and the meclagioiz of theorem proving
in elementatry geometngcientia Sinica21:159-172, 1978.

[280] Paul Youn, Ben Adida, Mike Bon, Jolyon Clulow, Jonatthtéerzog, Amerson Lin,
Ronald L. Rivest, and Ross Anderson. Robbing the bank witiearem prover.
Technical Report 644, University of Cambridge Computerdrakory, August 2005.

