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Chapter 1

Knowledge Representation and
Classical Logic

Vladimir Lifschitz, Leora Morgenstern and David
Plaisted

1.1 Knowledge Representation and Classical Logic

Mathematical logicians had developed the art of formalizing declarative knowledge long
before the advent of the computer age. But they were interested primarily in formalizing
mathematics. Because of the important role of nonmathematical knowledge in AI, their
emphasis was too narrow from the perspective of knowledge representation, their formal
languages were not sufficiently expressive. On the other hand, most logicians were not
concerned about the possibility of automated reasoning; from the perspective of knowl-
edge representation, they were often too generous in the choice of syntactic constructs.
In spite of these differences, classical mathematical logic has exerted significant influence
on knowledge representation research, and it is appropriate to begin this handbook with a
discussion of the relationship between these fields.

The language of classical logic that is most widely used in the theory of knowledge
representation is the language of first-order (predicate) formulas. These are the formulas
that John McCarthy proposed to use for representing declarative knowledge in his advice
taker paper [176], and Alan Robinson proposed to prove automatically using resolution
[236]. Propositional logic is, of course, the most important subset of first-order logic; re-
cent surge of interest in representing knowledge by propositional formulas is related to the
creation of fast satisfiability solvers for propositional logic (see Chapter 2). At the other
end of the spectrum we find higher-order languages of classical logic. Second-order for-
mulas are particularly important for the theory of knowledge representation, among other
reasons, because they are sufficiently expressive for defining transitive closure and related
concepts, and because they are used in the definition of circumscription (see Section 6.4).

Now a few words about the logical languages that arenot considered “classical.” For-
mulas containing modal operators, such as operators representing knowledge and belief
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(Chapter 15), are not classical. Languages with a classicalsyntax but a nonclassical se-
mantics, such as intuitionistic logic and the superintuitionistic logic of strong equivalence
(see Section 7.3.3), are not discussed in this chapter either. Nonmonotonic logics (Chapters
6 and 19) are nonclassical as well.

This chapter contains an introduction to the syntax and semantics of classical logic
and to natural deduction; a survey of automated theorem proving; a concise overview of
selected implementations and applications of theorem proving; and a brief discussion of
the suitability of classical logic for knowledge representation, a debate as old as the field
itself.

1.2 Syntax, Semantics and Natural Deduction

Early versions of modern logical notation were introduced at the end of the 19th century
in two short books. One was written by Gottlob Frege [90]; hisintention was “to express
a content through written signs in a more precise and clear way than it is possible to do
through words” [268, p. 2]. The second, by Giuseppe Peano [211], introduces notation
in which “every proposition assumes the form and the precision that equations have in
algebra” [268, p. 85]. Two other logicians who have contributed to the creation of first-
order logic are Charles Sanders Peirce and Alfred Tarski.

The description of the syntax of logical formulas in this section is rather brief. A more
detailed discussion of syntactic questions can be found in Chapter 2 of theHandbook of
Logic in Artificial Intelligence and Logic Programming[71], or in introductory sections of
any logic textbook.

1.2.1 Propositional Logic

Propositional logic was carved out of a more expressive formal language by Emil Post
[223].

Syntax and Semantics

A propositional signatureis a non-empty set of symbols calledatoms. (Some authors
say “vocabulary” instead of “signature,” and “variable” instead of “atom.”)Formulasof
a propositional signatureσ are formed from atoms and the 0-place connectives⊥ and⊤
using the unary connective¬ and the binary connectives∧, ∨,→ and↔. (Some authors
write & for ∧,⊃ for→, and≡ for↔.)1

The symbolsFALSE andTRUE are calledtruth values. An interpretationof a propo-
sitional signatureσ (or an assignment) is a function fromσ into {FALSE,TRUE}. The
semantics of propositional formulas defines which truth value is assigned to a formulaF
by an interpretationI. It refers to the following truth-valued functions, associated with the
propositional connectives:

x ¬(x)

FALSE TRUE

TRUE FALSE

1Note that⊥ and⊤ are not atoms, according to this definition. They do not belong to the signature, and the
semantics of propositional logic, defined below, treats them in a special way.
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x y ∧(x, y) ∨(x, y) → (x, y) ↔ (x, y)

FALSE FALSE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE FALSE

TRUE TRUE TRUE TRUE TRUE TRUE

For any formulaF and any interpretationI, the truth valueF I that isassignedto F by I
is defined recursively, as follows:

• for any atomF , F I = I(F ),

• ⊥I = FALSE,⊤I = TRUE,

• (¬F )I = ¬(F I),

• (F ⊙G)I = ⊙(F I , GI) for every binary connective⊙.

If the underlying signature is finite then the set of interpretations is finite also, and the
values ofF I for all interpretationsI can be represented by a finite table, called thetruth
tableof F .

If F I = TRUE then we say that the interpretationI satisfiesF , or is amodelof F
(symbolically,I |= F ).

A formulaF is a tautologyif every interpretation satisfiesF . Two formulas, or sets of
formulas, areequivalentto each other if they are satisfied by the same interpretations. It is
clear thatF is equivalent toG if and only if F ↔ G is a tautology.

A setΓ of formulas issatisfiableif there exists an interpretation satisfying all formulas
in Γ. We say thatΓ entailsa formulaF (symbolically,Γ |= F ) if every interpretation
satisfyingΓ satisfiesF .2

To represent knowledge by propositional formulas, we choose a propositional signa-
ture σ such that interpretations ofσ correspond to states of the system that we want to
describe. Then any formula ofσ represents a condition on states; a set of formulas can be
viewed as a knowledge base; if a formulaF is entailed by a knowledge baseΓ then the
condition expressed byF follows from the knowledge included inΓ.

Imagine, for instance, that Paul, Quentin and Robert share an office. Let us agree to use
the atomp to express that Paul is in the office, and similarlyq for Quentin andr for Robert.
The knowledge base{p, q} entails neitherr nor¬r. (The semantics of propositional logic
does not incorporate the closed world assumption, discussed below in Section 6.2.4.) But
if we add to the knowledge base the formula

¬p ∨ ¬q ∨ ¬r, (1.1)

expressing that at least one person is away, then the formula¬r (Robert is away) will be
entailed.

2Thus the relation symbol|= is understood either as “satisfies” or as “entails” depending on whether its first
operand is an interpretation or a set of formulas.
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Explicit Definitions

Let Γ be a set of formulas of a propositional signatureσ. To extendΓ by an explicit
definitionmeans to add toσ a new atomd, and to add toΓ a formula of the formd ↔ F ,
whereF is a formula of the signatureσ. For instance, if

σ = {p, q, r}, Γ = {p, q},

as in the example above, then we can introduce an explicit definition that makesd an
abbreviation for the formulaq ∧ r (“both Quentin and Robert are in”):

σ′ = {p, q, r, d}, Γ′ = {p, q, d↔ (q ∧ r)}.

Adding an explicit definition to a knowledge baseΓ is, in a sense, a trivial modification.
For instance, there is a simple one-to-one correspondence between the set of models ofΓ
and the set of models of such an extension: a model of the extended set of formulas can be
turned into the corresponding model ofΓ by restricting it toσ. It follows that the extended
set of formulas is satisfiable if and only ifΓ is satisfiable. It follows also that adding an
explicit definition produces a “conservative extension”: aformula that does not contain the
new atomd is entailed by the extended set of formulas if and only if it isentailed byΓ.

It is not true, however, that the extended knowledge base isequivalentto Γ. For in-
stance, in the example above{p, q} does not entaild↔ (q∧r), of course. This observation
is related to the difference between two ways to convert a propositional formula to con-
junctive normal form (that is, to turn it into a set of clauses): the more obvious method
based on equivalent tranformations on the one hand, and Tseitin’s procedure, reviewed in
Section 2.2 below, on the other. The latter can be thought of as a sequence of steps that add
explicit definitions to the current set of formulas, interspersed with equivalent transforma-
tions that make formulas smaller and turn them into clauses.Tseitin’s procedure is more
efficient, but it does not produce a CNF equivalent to the input formula; it only gives us a
conservative extension.

Natural Deduction in Propositional Logic

Natural deduction , invented by Gerhard Gentzen [97], formalizes the process of introduc-
ing and discharging assumptions , common in informal mathematical proofs.

In the natural deduction system for propositional system described below, derivable
objects aresequentsof the formΓ ⇒ F , whereF is a formula, andΓ is a finite set of
formulas (“F under assumptionsΓ”). For simplicity we only consider formulas that con-
tain neither⊤ nor↔; these connectives can be viewed as abbreviations. It is notationally
convenient to write sets of assumptions as lists, and understand, for instance,A1, A2 ⇒ F
as shorthand for{A1, A2} ⇒ F , andΓ, A⇒ F as shorthand forΓ ∪ {A} ⇒ F .

The axiom schemas of this system are

F ⇒ F

and
⇒ F ∨ ¬F.

The inference rules are shown in Figure 1.1. Most of the rulescan be can be divided into
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(∧I) Γ⇒ F ∆⇒ G
Γ, ∆⇒ F ∧G (∧E) Γ⇒ F ∧G

Γ⇒ F
Γ⇒ F ∧G

Γ⇒ G

(∨I) Γ⇒ F
Γ⇒ F ∨G

Γ⇒ G
Γ⇒ F ∨G (∨E)

Γ⇒ F ∨G ∆1, F ⇒ H ∆2, G⇒ H
Γ, ∆1, ∆2 ⇒ H

(→I)
Γ, F ⇒ G

Γ⇒ F → G (→E) Γ⇒ F ∆⇒ F → G
Γ, ∆⇒ G

(¬I) Γ, F ⇒ ⊥
Γ⇒ ¬F (¬E) Γ⇒ F ∆⇒ ¬F

Γ, ∆⇒ ⊥

(C) Γ⇒ ⊥
Γ⇒ F

(W ) Γ⇒ Σ
Γ, ∆⇒ Σ

Figure 1.1: Inference rules of propositional logic

two groups—introduction rules (the left column) and elimination rules (the right column).
Each of the introduction rules tells us how toderivea formula of some syntactic form. For
instance, the conjunction introduction rule(∧I) shows that we can derive a conjunction if
we derive both conjunctive terms; the disjunction introduction rules(∨I) show that we can
derive a disjunction if we derive one of the disjunctive terms. Each of the elimination rules
tells us how we canusea formula of some syntactic form. For instance, the conjunction
elimination rules(∧E) show that a conjunction can be used to derive any of its conjunctive
terms; the disjunction elimination rules(∨E) shows that a disjunction can be used to justify
reasoning by cases.

Besides introduction and elimination rules, the deductivesystem includes the contra-
diction rule(C) and the weakening rule(W ).

In most inference rules, the set of assumptions in the conclusion is simply the union
of the sets of assumptions of all the premises. The rules(→I), (¬I) and(∨E) are excep-
tions; when one of these rule is applied, some of the assumptions from the premises are
“discharged.”

An example of a proof in this system is shown in Figure 1.2. This proof can be infor-
mally summarized as follows. Assume¬p, q → r andp ∨ q. We will prover by cases.
Case 1:p. This contradicts the assumption¬p, so thatr follows. Case 2:q. In view of the
assumptionq → r, r follows also. Consequently, from the assumptions¬p andq → r we
have derived(p ∨ q)→ r.

The deductive system described above is sound and complete:a sequentΓ ⇒ F is
provable in it if and only ifΓ |= F . The first proof of a completeness theorem for proposi-
tional logic (involving a different deductive system) is due to Post [223].

Meta-Level and Object-Level Proofs

When we want to establish that a formulaF is entailed by a knowledge baseΓ, the straight-
forward approach is to use the definition of entailment, thatis, to reason about interpreta-
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1. ¬p ⇒ ¬p — axiom.
2. q → r ⇒ q → r — axiom.
3. p ∨ q ⇒ p ∨ q — axiom.
4. p ⇒ p — axiom.
5. p,¬p ⇒ ⊥ — by (¬E) from 4, 1.
6. p,¬p ⇒ r — by (C) from 5.
7. q ⇒ q — axiom.
8. q, q → r ⇒ r — by (→E) from 7, 2.
9. p ∨ q,¬p, q → r ⇒ r — by (∨E) from 3, 6, 8.

10. ¬p, q → r ⇒ (p ∨ q)→ r — by (→I) from 9.

Figure 1.2: A proof in propositional logic

tions of the underlying signature. For instance, to check that the formulas¬p andq → r
entail(p ∨ q)→ r we can argue that no interpretation of the signature{p, q, r} can satisfy
both¬p andq → r unless it satisfies(p ∨ q)→ r as well.

A sound deductive system provides an “object-level” alternative to this meta-level ap-
proach. Once we proved the sequentΓ⇒ F in the deductive system described above, we
have established thatΓ entailsF . For instance, the claim that the formulas¬p andq → r
entail (p ∨ q) → r is justified by Figure 1.2. As a matter of convenience, informal sum-
maries, as in the example above, can be used instead of formalproofs. Since the system is
not only sound but also complete, the object-level approachto establishing entailment is,
in principle, always applicable.

Object-level proofs can be used also to establish general properties of entailment.
Consider, for instance, the following fact: for any formulas F1, . . . , Fn, the implications
Fi → Fi+1 (i = 1, . . . , n − 1) entailF1 → Fn. We can justify it by saying that if we
assumeF1 thenF2, . . . , Fn will consecutively follow using the given implications. By
saying this, we have outlined a method for constructing a proof of the sequent

F1 → F2, . . . , Fn−1 → Fn ⇒ F1 → Fn

that consists ofn− 1 implication eliminations followed by an implication introduction.

1.2.2 First-Order Logic

Syntax

In first-order logic, asignatureis a set of symbols of two kinds—function constantsand
predicate constants—with a nonnegative integer, called thearity, assigned to each symbol.
Function constants of arity 0 are calledobject constants; predicate constants of arity 0 are
calledpropositional constants.

Object variablesare elements of some fixed infinite sequence of symbols, for instance
x, y, z, x1, y1, z1, . . . . Termsof a signatureσ are formed from object variables and from
function constants ofσ. An atomic formulaof σ is an expression of the formP (t1, . . . , tn)
or t1 = t2, whereP is a predicate constant of arityn, and eachti is a term ofσ.3 Formulas
are formed from atomic formulas using propositional connectives and the quantifiers∀, ∃.

3Note that equality is not a predicate constant, according tothis definition. Although syntactically it is similar



1. Knowledge Representation and Classical Logic 7

An occurrence of a variablev in a formulaF is boundif it belongs to a subformula
of F that has the form∀vG or ∃vG; otherwise it isfree. If at least one occurrence ofv
in F is free then we say thatv is afree variableof F . Note that a formula can contain both
free and bound occurences of the same variable, as in

P (x) ∧ ∃xQ(x). (1.2)

We can avoid such cases by renaming bound occurrences of variables:

P (x) ∧ ∃x1Q(x1). (1.3)

Both formulas have the same meaning:x has the propertyP , and there exists an object
with the propertyQ.

A closedformula, or asentence, is a formula without free variables. Theuniversal
closureof a formulaF is the sentence∀v1 · · · vnF , wherev1, . . . , vn are the free variables
of F .

The result of thesubstitutionof a termt for a variablev in a formulaF is the formula
obtained fromF by simultaneously replacing each free occurrence ofv by t. When we
intend to consider substitutions forv in a formula, it is convenient to denote this formula
by an expression likeF (v); then we can denote the result of substituting a termt for v in
this formula byF (t).

By ∃!vF (v) (“there exists a uniquev such thatF (v)”) we denote the formula

∃v∀w(F (w)↔ v = w),

wherew is the first variable that does not occur inF (v).
A termt is substitutablefor a variablev in a formulaF if, for each variablew occurring

in t, no subformula ofF that has the form∀wG or∃wG contains an occurrence ofv which
is free inF . (Some authors say in this case thatt is free forx in F .) This condition is
important because when it is violated, the formula obtainedby substitutingt for v in F
does not usually convey the intended meaning. For instance,the formula∃x(f(x) = y)
expresses thaty belongs to the range off . If we substitute, say, the termg(a, z) for y
in this formula then we will get the formula∃x(f(x) = g(a, z)), which expresses that
g(a, z) belongs to the range off—as one would expect. If, however, we substitute the
termg(a, x) instead, the result∃x(f(x) = g(a, x)) will not express thatg(a, x) belongs
to the range off . This is related to the fact that the termg(a, x) is not substitutable fory
in ∃x(f(x) = y); the occurrence ofx resulting from this substitution is “captured” by the
quantifier at the beginning of the formula. To express thatg(a, x) belongs to the range
of f , we should first renamex in the formula∃x(f(x) = y) using, say, the variablex1.
The substitution will produce then the formula∃x1(f(x1) = g(a, x)).

Semantics

An interpretation(or structure) of a signatureσ consists of

• a non-empty set|I|, called theuniverse(or domain) of I,

to binary predicate constants, it does not belong to the signature, and the semantics of first-order logic, defined
below, treats equality in a special way.
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• for every object constantc of σ, an elementcI of |I|,

• for every function constantf of σ of arity n > 0, a functionf I from |I|n to |I|,

• for every propositional constantP of σ, an elementP I of {FALSE, TRUE},

• for every predicate constantR of σ of arity n > 0, a functionRI from |I|n to
{FALSE, TRUE}.

The semantics of first-order logic defines, for any sentenceF and any interpretationI
of a signatureσ, the truth valueF I that is assigned toF by I. Note that the definition
does not apply to formulas with free variables. (Whether∃x(f(x) = y) is true or false, for
instance, is not completely determined by the universe and by the function representingf ;
the answer depends also on the value ofy within the universe.) For this reason, stating
correctly the clauses for quantifiers in the recursive definition of F I is a little tricky. One
possibility is to extend the signatureσ by “names” for all elements of the universe, as
follows.

Consider an interpretationI of a signatureσ. For any elementξ of its universe|I|,
select a new symbolξ∗, called thenameof ξ. By σI we denote the signature obtained
from σ by adding all namesξ∗ as object constants. The interpretationI can be extended to
the new signatureσI by defining(ξ∗)I = ξ for all ξ ∈ |I|.

For any termt of the extended signature that does not contain variables, we will define
recursively the elementtI of the universe that isassignedto t by I. If t is an object constant
thentI is part of the interpretationI. For other terms,tI is defined by the equation

f(t1, . . . , tn)I = f I(tI1, . . . , t
I
n)

for all function constantsf of arity n > 0.
Now we are ready to defineF I for every sentenceF of the extended signatureσI . For

any propositional constantP , P I is part of the interpretationI. Otherwise, we define:

• R(t1, . . . , tn)I = RI(tI1, . . . , t
I
n),

• ⊥I = FALSE,⊤I = TRUE,

• (¬F )I = ¬(F I),

• (F ⊙G)I = ⊙(F I , GI) for every binary connective⊙,

• ∀wF (w)I = TRUE if F (ξ∗)I = TRUE for all ξ ∈ |I|,

• ∃wF (w)I = TRUE if F (ξ∗)I = TRUE for someξ ∈ |I|.

We say that an interpretationI satisfiesa sentenceF , or is amodelof F , and write
I |= F , if F I = TRUE. A sentenceF is logically valid if every interpretation satisfiesF .
Two sentences, or sets of sentences, areequivalentto each other if they are satisfied by
the same interpretations. A formula with free variables is said to belogically valid if its
universal closure is logically valid. FormulasF andG that may contain free variables are
equivalentto each other ifF ↔ G is logically valid.

A setΓ of sentences issatisfiableif there exists an interpretation satisfying all sentences
in Γ. A setΓ of sentencesentailsa formulaF (symbolically,Γ |= F ) if every interpretation
satisfyingΓ satisfies the universal closure ofF .



1. Knowledge Representation and Classical Logic 9

Sorts

Representing knowledge in first-order languages can be often simplified by introducing
sorts, which requires that the definitions of the syntax and semantics above be generalized.

Besides function constants and predicate constants, a many-sorted signature includes
symbols calledsorts. In addition to an arityn, we assign to every function constant and
every predicate constant itsargument sortss1, . . . , sn; to every function constant we assign
also itsvalue sortsn+1. For instance, in the situation calculus (Section 16.1), the symbols
situationandactionare sorts;do is a binary function symbol with the argument sortsaction
andsituation, and the value sortsituation.

For every sorts, we assume a separate infinite sequence of variables of that sort. The
recursive definition of a term assigns a sort to every term. Atomic formulas are expressions
of the formP (t1, . . . , tn), where the sorts of the termst1, . . . , tn are the argument sorts
of P , and also expressionst1 = t2 wheret1 andt2 are terms of the same sort.

An interpretation, in the many-sorted setting, includes a separate non-empty universe
|I|s for each sorts. Otherwise, extending the definition of the semantics to many-sorted
languages is straightforward.

A further extension of the syntax and semantics of first-order formulas allows one sort
to be a “subsort” of another. For instance, when we talk aboutthe blocks world, it may
be convenient to treat the sortblock as a subsort of the sortlocation. Let b1 andb2 be
object constants of the sortblock, let tablebe an object constant of the sortlocation, and
let on be a binary function constant with the argument sortsblockandlocation. Not only
on(b1, table) will be counted as a term, but alsoon(b1, b2), because the sort ofb2 is a
subsort of the second argument sort ofon.

Generally, a subsort relation is an order (reflexive, transitive and anti-symmetric rela-
tion) on the set of sorts. In the recursive definition of a term, f(t1, . . . , tn) is a term if
the sort of eachti is a subsort of thei-th argument sort off . The condition on sorts in the
definition of atomic formulasP (t1, . . . , tn) is similar. An expressiont1 = t2 is considered
an atomic formula if the sorts oft1 andt2 have a common supersort. In the definition of
an interpretation,|I|s1 is required to be a subset of|I|s2 whenevers1 is a subsort ofs2.

In the rest of this chapter we often assume for simplicity that the underlying signature
is nonsorted.

Uniqueness of Names

To talk about Paul, Quentin and Robert from Section 1.2.1 in afirst-order language, we
can introduce the signature consisting of the object constants Paul, Quentin, Robertand
the unary predicate constantin, and then use the atomic sentences

in(Paul), in(Quentin), in(Robert) (1.4)

instead of the atomsp, q, r from the propositional representation.
However some interpretations of this signature are uninuitive and do not correspond

to any of the 8 interpretations of the propositional signature {p, q, r}. Those are the in-
tepretations that map two, or even all three, object constants to the same element of the
universe. (The definition of an interpretation in first-order logic does not require thatcI

1 be



10 1. Knowledge Representation and Classical Logic

different fromcI
2 for distinct object constantsc1, c2.) We can express thatPaulI , QuentinI

andRobertI are pairwise distinct by saying thatI satisfies the “unique name conditions”

Paul 6= Quentin, Paul 6= Robert, Quentin6= Robert. (1.5)

Generally, theunique name assumptionfor a signatureσ is expressed by the formulas

∀x1 · · ·xmy1 · · · yn(f(x1, . . . , xm) 6= g(y1, . . . , yn)) (1.6)

for all pairs of distinct function constantsf , g, and

∀x1 · · ·xny1 · · · yn(f(x1, . . . , xn) = f(y1, . . . , yn)
→ (x1 = y1 ∧ · · · ∧ xn = yn))

(1.7)

for all function constantsf of arity > 0. These formulas entailt1 6= t2 for any distinct
variable-free termst1, t2.

The set of equality axioms that was introduced by Keith Clark[58] and is often used in
the theory of logic programming includes, in addition to (1.6) and (1.7), the axiomst 6= x,
wheret is a term containingx as a proper subterm.

Domain Closure

Consider the first-order counterpart of the propositional formula (1.1), expressing that at
least one person is away:

¬in(Paul) ∨ ¬in(Quentin) ∨ ¬in(Robert). (1.8)

The same idea can be also conveyed by the formula

∃x¬in(x). (1.9)

But sentences (1.8) and (1.9) are not equivalent to each other: the former entails the latter,
but not the other way around. Indeed, the definition of an interpretation in first-order logic
does not require that every element of the universe be equal to cI for some object constantc.
Formula (1.9) interprets “at least one” as referring to a certain group that includesPaul,
QuentinandRobert, and may also include others.

If we want to express that every element of the universe corresponds to one of the three
explicitly named persons then this can be done by the formula

∀x(x = Paul∨ x = Quentin∨ x = Robert). (1.10)

This “domain closure condition” entails the equivalence between (1.8) and (1.9); more
generally, it entails the equivalences

∀xF (x)↔ F (Paul) ∧ F (Quentin) ∧ F (Robert),
∃xF (x)↔ F (Paul) ∨ F (Quentin) ∨ F (Robert)

for any formulaF (x). These equivalences allow us to replace all quantifiers in anarbitrary
formula with mutiple conjunctions and disjunctions. Furthermore, under the unique name
assumption (1.5) any equality between two object constantscan be equivalently replaced
by⊤ or⊥, depending on whether the constants are equal to each other.The result of these
transformations is a propositional combination of the atomic sentences (1.4).
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Generally, consider a signatureσ containing finitely many object constantsc1, . . . , cn

are no function constants of arity> 0. Thedomain closure assumptionfor σ is the formula

∀x(x = c1 ∨ · · · ∨ x = cn). (1.11)

The interpretations ofσ that satisfy both the unique name assumptionc1 6= cj (1 ≤ i <
j ≤ n) and the domain closure assumption (1.11) are essentially identical to the interpre-
tations of the propositional signature that consists of allatomic sentences ofσ other than
equalities. Any sentenceF of σ can be transformed into a formulaF ′ of this propositional
signature such that the unique name and domain closure assumptions entailF ′ ↔ F . In
this sense, these assumptions turn first-order sentences into abbreviations for propositional
formulas.

The domain closure assumption in the presence of function constant of arity> 0 is
discussed in Sections 1.2.2 and 1.2.3.

Reification

The first-order language introduced in Section 1.2.2 has variables for people, such as Paul
and Quentin, but not for places, such as their office. In this sense, people are “reified” in
that language, and places are not. To reify places, we can addthem to the signature as a
second sort, addofficeas an object constant of that sort, and turnin into a binary predicate
constant with the argument sortspersonandplace. In the modified language, the formula
in(Paul) will turn into in(Paul, office).

Reification makes the language more expressive. For instance, having reified places,
we can say that every person has a unique location:

∀x∃!p in(x, p). (1.12)

There is no way to express this idea in the language from Section 1.2.2.
As another example illustrating the idea of reification, compare two versions of the

situation calculus. We can express that blockb1 is clear in the initial situationS0 by
writing either

clear(b1, S0) (1.13)

or

Holds(clear(b1), S0). (1.14)

In (1.13),clear is a binary predicate constant; in (1.14),clear is a unary function constant.
Formula (1.14) is written in the version of the situation calculus in which (relational) fluents
are reified;fluentis the first argument sort of the predicate constantHolds. The version of
the situation calculus introduced in Section 16.1 is the more expressive version, with reified
fluents. Expression (1.13) is viewed there as shorthand for (1.14).

Explicit Definitions in First-Order Logic

Let Γ be a set of sentences of a signatureσ. To extendΓ by anexplicit definition of a
predicate constantmeans to add toσ a new predicate constantP of some arityn, and to
add toΓ a sentence of the form

∀v1 · · · vn(P (v1, . . . , vn)↔ F ),
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wherev1, . . . , vn are distinct variables andF is a formula of the signatureσ. About the
effect of such an extension we can say the same as about the effect of adding an explicit
definion to a set of propositional formulas (Section 1.2.1):there is an obvious one-to-one
correspondence between the models of the original knowledge base and the models of the
extended knowledge base.

With function constants, the situation is a little more complex. To extend a setΓ of
sentences of a signatureσ by anexplicit definition of a function constantmeans to add toσ
a new function constantf , and to add toΓ a sentence of the form

∀v1 · · · vnv(f(v1, . . . , vn) = v ↔ F ),

wherev1, . . . , vn, v are distinct variables andF is a formula of the signatureσ such thatΓ
entails the sentence

∀v1 · · · vn∃!vF.

The last assumption is essential: if it does not hold then adding a function constant along
with the corresponding axiom would eliminate some of the models ofΓ.

For instance, ifΓ entails (1.12) then we can extendΓ by the explicit definition of the
function constantlocation:

∀xp(location(x) = p↔ in(x, p)).

Natural Deduction with Quantifiers and Equality

The natural deduction system for first-order logic includesall axiom schemas and inference
rules shown in Section 1.2.1 and a few additional postulates. First, we add the introduction
and elimination rules for quantifiers:

(∀I)
Γ⇒ F (v)

Γ⇒ ∀vF (v)
(∀E)

Γ⇒ ∀vF (v)
Γ⇒ F (t)

wherev is not a free variable wheret is substitutable
of any formula inΓ for v in F (v)

(∃I)
Γ⇒ F (t)

Γ⇒ ∃vF (v)
(∃E)

Γ⇒ ∃vF (v) ∆, F (v)⇒ G
Γ, ∆⇒ G

wheret is substitutable wherev is not a free variable
for v in F (v) of any formula in∆, G

Second, postulates for equality are added: the axiom schemaexpressing its reflexivity

⇒ t = t

and the inference rules for replacing equals by equals:

(Repl)
Γ⇒ t1 = t2 ∆⇒ F (t1)

Γ, ∆⇒ F (t2)

Γ⇒ t1 = t2 ∆⇒ F (t2)

Γ, ∆⇒ F (t1)

wheret1 andt2 are terms substitutable forv in F (v).
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1. (1.9) ⇒ (1.9) — axiom.
2. ¬in(x) ⇒ ¬in(x) — axiom.
3. x = P ⇒ x = P — axiom.
4. x = P,¬in(x) ⇒ ¬in(P ) — by Replfrom 3, 2.
5. x = P,¬in(x) ⇒ ¬in(P ) ∨ ¬in(Q) — by (∨I) from 4.
6. x = P,¬in(x) ⇒ (1.8) — by (∨I) from 5.
7. x = Q ⇒ x = Q — axiom.
8. x = Q,¬in(x) ⇒ ¬in(Q) — by Replfrom 7, 2.
9. x = Q,¬in(x) ⇒ ¬in(P ) ∨ ¬in(Q) — by (∨I) from 8.

10. x = Q,¬in(x) ⇒ (1.8) — by (∨I) from 9.
11. x = P ∨ x = Q ⇒ x = P ∨ x = Q — axiom.
12. x = P ∨ x = Q,¬in(x) ⇒ (1.8) — by (∨E) from 11, 6, 10.
13. x = R ⇒ x = R — axiom.
14. x = R,¬in(x) ⇒ ¬in(R) — by Replfrom 13, 2.
15. x = R,¬in(x) ⇒ (1.8) — by (∨I) from 14.
16. (1.10) ⇒ (1.10) — axiom.
17. (1.10) ⇒ x = P ∨ x = Q

∨ x = R — by (∀E) from 16.
18. (1.10),¬in(x) ⇒ (1.8) — by (∨E) from 17, 12, 15.
19. (1.9), (1.10) ⇒ (1.8) — by (∃E) from 1, 18.

Figure 1.3: A proof in first-order logic

This formal system is sound and complete: for any finite setΓ of sentences and any
formulaF , the sequentΓ ⇒ F is provable if and only ifΓ |= F . The completeness of (a
different formalization of) first-order logic was proved byGodel [102].

As in the propositional case (Section 1.2.1), the soundnesstheorem justifies establish-
ing entailment in first-order logic by an object-level argument. For instance, we can prove
the claim that (1.8) is entailed by (1.9) and (1.10) as follows: takex such that¬in(x) and
consider the three cases corresponding to the disjunctive terms of (1.10); in each case, one
of the disjunctive terms of (1.8) follows. This argument is an informal summary of the
proof shown in Figure 1.3, with the namesPaul, Quentin, Robertreplaced byP , Q, R.

Since proofs in the deductive system described above can be effectively enumerated,
from the soundness and completeness of the system we can conclude that the set of log-
ically valid sentences is recursively enumerable. But it isnot recursive [57], even if the
underlying signature consists of a single binary predicateconstant, and even if we disre-
gard formulas containing equality [137].

As discussed in Section 3.3.1, most descriptions logics canbe viewed as decidable
fragments of first-order logic.

Limitations of First-Order Logic

The sentence

∀xy(Q(x, y)↔ P (y, x))
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expresses thatQ is the inverse ofP . Does there exist a first-order sentence expressing
thatQ is thetransitive closureof P? To be more precise, does there exist a sentenceF of
the signature{P, Q} such that an interpretationI of this signature satisfiesF if and only
if QI is the transitive closure ofP I?

The answer to this question is no. From the perspective of knowledge representation,
this is an essential limitation, because the concept of transitive closure is the mathemati-
cal counterpart of the important commonsense idea of reachability. As discussed in Sec-
tion 1.2.3 below, one way to overcome this limitation is to turn to second-order logic.

Another example illustrating the usefulness of second-order logic in knowledge repre-
sentation is related to the idea of domain closure (Section 1.2.2). If the underlying signature
contains the object constantsc1, . . . , cn and no function constants of arity> 0 then sen-
tence (1.11) expresses the domain closure assumption: an interpretationI satisfies (1.11)
if and only if

|I| = {cI
1, . . . , c

I
n}.

Consider now the signature consisting of the object constant c and the unary function con-
stantf . Does there exist a first-order sentence expressing the domain closure assumption
for this signature? To be precise, we would like to find a sentenceF such that an interpre-
tationI satisfiesF if and only if

|I| = {cI , f(c)I , f(f(c))I , . . .}.

There is no first-order sentence with this property.
Similarly, first-order languages do not allow us to state Reiter’s foundational axiom

expressing that each situation is the result of performing asequence of actions in the initial
situation ([231, Section 4.2.2]; see also Section 16.3 below).

1.2.3 Second-Order Logic

Syntax and Semantics

In second-order logic, the definition of a signature remainsthe same (Section 1.2.2). But its
syntax is richer, because, along with object variables, we assume now an infinite sequence
of function variablesof arity n for eachn > 0, and an infinite sequence ofpredicate
variablesof arity n for eachn ≥ 0. Object variables are viewed as function variables of
arity 0.

Function variables can be used to form new terms in the same way as function con-
stants. For instance, ifα is a unary function variable andc is an object constant thenα(c)
is a term. Predicate variables can be used to form atomic formulas in the same way as pred-
icate constants. In non-atomic formulas, function and predicate variables can be bound by
quantifiers in the same way as object variables. For instance,

∀αβ∃γ∀x(γ(x) = α(β(x)))

is a sentence expressing the possibility of composing any two functions. (When we say
that a second-order formula is a sentence, we mean that all occurrences of all variables in
it are bound, including function and predicate variables.)

Note thatα = β is not an atomic formula, because unary function variables are not
terms. But this expression can be viewed as shorthand for theformula

∀x(α(x) = β(x)).
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Similarly, the expressionp = q, wherep andq are unary predicate variables, can be viewed
as shorthand for

∀x(p(x)↔ q(x)).

The condition “Q is the transitive closure ofP ” can be expressed by the second-order
sentence

∀xy(Q(x, y)↔ ∀q(F (q)→ q(x, y))), (1.15)

whereF (q) stands for

∀x1y1(P (x1, y1)→ q(x1, y1))
∧∀x1y1z1((q(x1, y1) ∧ q(y1, z1))→ q(x1, z1))

(Q is the intersection of all transitive relations containingP ).
The domain closure assumption for the signature{c, f} can be expressed by the sen-

tence

∀p(G(p)→ ∀x p(x)), (1.16)

whereG(p) stands for
p(c) ∧ ∀x(p(x)→ p(f(x)))

(any set that containsc and is closed underf covers the whole universe).
The definition of an interpretation remains the same (Section 1.2.2). The semantics of

second-order logic defines, for each sentenceF and each interpretationI, the correspond-
ing truth valueF I . In the clauses for quantifiers, whenever a quantifier binds afunction
variable, names of arbitrary functions from|I|n to I are substituted for it; when a quantifier
binds a predicate variable, names of arbitrary functions from |I|n to {FALSE, TRUE} are
substituted.

Quantifiers binding a propositional variablep can be always eliminated:∀pF (p) is
equivalent toF (⊥)∧F (⊤), and∃pF (p) is equivalent toF (⊥)∨F (⊤). In the special case
when the underlying signature consists of propositional constants, second-order formulas
(in prenex form) are known asquantified Boolean formulas(see Section 2.5.1). The equiv-
alences above allow us to rewrite any such formula in the syntax of propositional logic.
But a sentence containing predicate variables of arity> 0 may not be equivalent to any
first-order sentence; (1.15) and (1.16) are examples of such“hard” cases.

Object-Level Proofs in Second-Order Logic

In this section we consider a deductive system for second-order logic that contains all
postulates from Sections 1.2.1 and 1.2.2; in rules(∀E) and(∃I), if v is a function variable
of arity > 0 thent is assumed to be a function variable of the same arity, and similarly for
predicate variables. In addition, we include two axiom schemas asserting the existence of
predicates and functions. One is the axiom schema of comprehension

⇒ ∃p∀v1 . . . vn(p(v1, . . . , vn)↔ F ),

wherev1, . . . , vn are distinct object variables, andp is not free inF . (Recall that↔ is not
allowed in sequents, but we treatF ↔ G as shorthand for(F → G) ∧ (G → F ).) The
other is the axioms of choice

⇒ ∀v1 · · · vn∃vn+1 p(v1, . . . , vn+1)→ ∃α∀v1 . . . vn(p(v1, . . . , vn, α(v1, . . . , vn)),
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1. F ⇒ F — axiom.
2. F ⇒ p(x)→ p(y) — by (∀E) from 1.
3. ⇒ ∃p∀z(p(z)↔ x = z) — axiom (comprehension).
4. ∀z(p(z)↔ x = z) ⇒ ∀z(p(z)↔ x = z) — axiom.
5. ∀z(p(z)↔ x = z) ⇒ p(x)↔ x = x — by (∀E) from 4.
6. ∀z(p(z)↔ x = z) ⇒ x = x→ p(x) — by (∧E) from 5.
7. ⇒ x = x — axiom.
8. ∀z(p(z)↔ x = z) ⇒ p(x) — by (→ E) from 7, 6.
9. F, ∀z(p(z)↔ x = z) ⇒ p(y) — by (→ E) from 8, 2.

10. ∀z(p(z)↔ x = z) ⇒ p(y)↔ x = y — by (∀E) from 4.
11. ∀z(p(z)↔ x = z) ⇒ p(y)→ x = y — by (∧E) from 10.
12. F, ∀z(p(z)↔ x = z) ⇒ x = y — by (→ E) from 9, 11.
13. F ⇒ x = y — by (∃E) from 1, 12.
14. ⇒ F → x = y — by (→ I) from 13.

Figure 1.4: A proof in second-order logic.F stands for∀p(p(x)→ p(y))

wherev1, . . . , vn+1 are distinct object variables.
This deductive system is sound but incomplete. Adding any sound axioms or inference

rules would not make it complete, because the set of logically valid second-order sentences
is not recursively enumerable.

As in the case of first-order logic, the availability of a sound deductive system allows
us to establish second-order entailment by object-level reasoning. To illustrate this point,
consider the formula

∀p(p(x)→ p(y))→ x = y,

which can be thought of as a formalization of ‘Leibniz’s principle of equality”: two objects
are equal if they share the same properties. Its logical validity can be justified as follows.
Assume∀p(p(x)→ p(y)), and takep to be the property of being equal tox. Clearlyx has
this property; consequentlyy has this property as well, that is,x = y. This argument is an
informal summary of the proof shown in Figure 1.4.

1.3 Automated Theorem Proving

Automated theorem proving is the study of techniques for programming computers to
search for proofs of formal assertions, either fully automatically or with varying degrees
of human guidance. This area has potential applications to hardware and software verifi-
cation, expert systems, planning, mathematics research, and education.

Given a setA of axioms and a logical consequenceB, a theorem proving program
should, ideally, eventually construct a proof ofB from A. If B is not a consequence ofA,
the program may run forever without coming to any definite conclusion. This is the best
one can hope for, in general, in many logics, and indeed even this is not always possible.
In principle, theorem proving programs can be written just by enumerating all possible
proofs and stopping when a proof of the desired statement is found, but this approach is so
inefficient as to be useless. Much more powerful methods havebeen developed.
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History of Theorem Proving

Despite the potential advantages of machine theorem proving, it was difficult initially to
obtain any kind of respectable performance from machines ontheorem proving problems.
Some of the earliest automatic theorem proving methods, such as those of Gilmore [101],
Prawitz [224], and Davis and Putnam[70] were based on Herbrand’s theorem, which gives
an enumeration process for testing if a theorem of first-order logic is true. Davis and Put-
nam used Skolem functions and conjunctive normal form clauses, and generated elements
of the Herbrand universe exhaustively, while Prawitz showed how this enumeration could
be guided to only generate terms likely to be useful for the proof, but did not use Skolem
functions or clause form. Later Davis[67] showed how to realize this same idea in the
context of clause form and Skolem functions. However, theseapproaches turned out to be
too inefficient. Theresolutionapproach of Robinson [235, 236] was developed in about
1963, and led to a significant advance in first-order theorem provers. This approach, like
that of Davis and Putnam[70], used clause form and Skolem functions, but made use of
a unificationalgorithm to to find the terms most likely to lead to a proof. Robinson also
used the resolution inference rule which in itself is all that is needed for theorem proving
in first-order logic. The theorem proving group at Argonne, Illinois took the lead in imple-
menting resolution theorem provers, with some initial success on group theory problems
that had been intractable before. They were even able to solve some previously open prob-
lems using resolution theorem provers. For a discussion of the early history of mechanical
theorem proving, see [68].

About the same time, Maslov[173] developed theinverse methodwhich has been less
widely known than resolution in the West. This method was originally defined for clas-
sical first-order logic without function symbols and equality, and for formulas having a
quantifier prefix followed by a disjunction of conjunctions of clauses. Later the method
was extended to formulas with function symbols. This methodwas used not only for theo-
rem proving but also to show the decidability of some classesof first-order formulas. In the
inverse method, substitutions were originally represented as sets of equations, and there ap-
pears to have been some analogue of most general unifiers. Themethod was implemented
for classical first-order logic by 1968. The inverse method is based on forward reasoning to
derive a formula. In terms of implementation, it is competitive with resolution, and in fact
can be simulated by resolution with the introduction of new predicate symbols to define
subformulas of the original formula. For a readable exposition of the inverse method, see
[164]. For many extensions of the method, see [72].

In the West, the initial successes of resolution led to a rushof enthusiasm, as reso-
lution theorem provers were applied to question-answeringproblems, situation calculus
problems, and many others. It was soon discovered that resolution had serious inefficien-
cies, and a long series of refinements were developed to attempt to overcome them. These
included the unit preference rule, the set of support strategy, hyper-resolution, paramodula-
tion for equality, and a nearly innumerable list of other refinements. The initial enthusiasm
for resolution, and for automated deduction in general, soon wore off. This reaction led,
for example, to the development of specialized decision procedures for proving theorems
in certain theories [196, 197] and the development of expertsystems.

However, resolution and similar approaches continued to bedeveloped. Data struc-
tures were developed permitting the resolution operation to be implemented much more
efficiently, which were eventually greatly refined[228] as in the Vampire prover[233]. One
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of the first provers to employ such techniques was Stickel’s Prolog Technology Theorem
Prover [259]. Techniques for parallel implementations of provers were also eventually
considered [35]. Other strategies besides resolution weredeveloped, such as model elimi-
nation [167], which led eventually to logic programming andProlog, the matings method
for higher-order logic [3], and Bibel’s connection method [29]. Though these methods are
not resolution based, they did preserve some of the key concepts of resolution, namely, the
use of unification and the combination of unification with inference in clause form first-
order logic. Two other techniques used to improve the performance of provers, especially
in competitions[260], arestrategy selectionandstrategy scheduling. Strategy selection
means that different theorem proving strategies and different settings of the coefficients
are used for different kinds of problems. Strategy scheduling means that even for a given
kind of problem, many strategies are used, one after another, and a specified amount of time
is allotted to each one. Between the two of these approaches,there is considerable freedom
for imposing an outer level of control on the theorem prover to tailor its performance to a
given problem set.

Some other provers dealt with higher-order logic, such as the TPS prover of Andrews
and others [4, 5] and the interactive NqTHM and ACL2 provers of Boyer, Moore, and
Kaufmann [144, 143] for proofs by mathematical induction. Today, a variety of approaches
including formal methods and theorem proving seem to be accepted as part of the standard
AI tool kit.

Despite early difficulties, the power of theorem provers hascontinued to increase. No-
table in this respect is Otter[183], which is widely distributed, and coded in C with very
efficient data structures. Prover9 is a more recent prover ofW. McCune in the same style,
and is a successor of Otter. The increasing speed of hardwarehas also significantly aided
theorem provers. An impetus was given to theorem proving research by McCune’s so-
lution of the Robbins problem[182] by a first-order equational theorem prover derived
from Otter. The Robbins problem is a first-order theorem involving equality that had been
known to mathematicians for decades but which no one was ableto solve. McCune’s
prover was able to find a proof after about a week of computation. Many other proofs have
also been found by McCune’s group on various provers; see forexample the web page
http://www.cs.unm.edu/˜veroff/MEDIAN_ALGEBRA/. Now substantial the-
orems in mathematics whose correctness is in doubt can be checked by interactive theorem
provers [202].

First-order theorem provers vary in their user interfaces,but most of them permit for-
mulas to be entered in clause form in a reasonable syntax. Some provers also permit the
user to enter first-order formulas; these provers generallyprovide various ways of translat-
ing such formulas to clause form. Some provers require substantial user guidance, though
most such provers have higher-order features, while other provers are designed to be more
automatic. For automatic provers, there are often many different flags that can be set to
guide the search. For example, typical first-order provers allow the user to select from
among a number of inference strategies for first-order logicas well as strategies for equal-
ity. For equality, it may be possible to specify a termination ordering to guide the appli-
cation of equations. Sometimes the user will select incomplete strategies, hoping that the
desired proof will be found faster. It is also often possibleto set a size bound so that all
clauses or literals larger than a certain size are deleted. Of course one does not know in
advance what bound to choose, so some experimentation is necessary. Asliding priority
approach to setting the size bound automatically was presented in [218]. It is sometimes
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possible to assign various weights to various symbols or subterms or to variables to guide
the proof search. Modern provers generally have term indexing[228] built in to speed up in-
ference, and also have some equality strategy involving ordered paramodulation and rewrit-
ing. Many provers are based on resolution, but some are basedon model elimination and
some are based on propositional approaches. Provers can generate clauses rapidly; for ex-
ample Vampire[233] can often generate more than 40,000 clauses per second. Most provers
rapidly fill up memory with generated clauses, so that if a proof is not found in a few min-
utes it will not be found at all. However, equational proofs involve considerable simplifi-
cation and can sometimes run for a long time without exhausting memory. For example,
the Robbins problem ran for 8 days on a SPARC 5 class UNIX computer with a size bound
of 70 and required about 30 megabytes of memory, generating 49548 equations, most of
which were deleted by simplification. Sometimes small problems can run for a long time
without finding a proof, and sometimes problems with a hundred or more input clauses
can result in proofs fairly quickly. Generally, simple problems will be proved by nearly
any complete strategy on a modern prover, but hard problems may require fine tuning. For
an overview of a list of problems and information about how well various provers per-
form on them, see the web site atwww.tptp.org , and for a sketch of some of the main
first-order provers in use today, seehttp://www.cs.miami.edu/˜tptp/CASC/
as well as the journal articles devoted to the individual competitions such as [260, 261].
Current provers often do not have facilities for interacting with other reasoning programs,
but work in this area is progressing.

In addition to developing first-order provers, there has been work on other logics, too.
The simplest logic typically considered ispropositional logic, in which there are only
predicate symbols (that is, Boolean variables) and logicalconnectives. Despite its simplic-
ity, propositional logic has surprisingly many applications, such as in hardware verification
and constraint satisfaction problems. Propositional provers have even found applications in
planning. The general validity (respectively, satisfiability) problem of propositional logic
is NP-hard, which means that it does not in all likelihood have an efficient general solution.
Nevertheless, there are propositional provers that are surprisingly efficient, and becoming
increasingly more so; see Chapter 2 of this handbook for details.

Binary decision diagrams[44] are a particular form of propositional formulas for which
efficient provers exist. BDD’s are used in hardware verification, and initiated a tremendous
surge of interest by industry in formal verification techniques. Also, the Davis-Putnam-
Logemann-Loveland method [69] for propositional logic is heavily used in industry for
hardware verification.

Another restricted logic for which efficient provers exist is that of temporal logic, the
logic of time (see Chapter 12 of this handbook). This has applications to concurrency. The
model-checking approach of Clarke and others[49] has proven to be particularly efficient
in this area, and has also stimulated considerable interestby industry.

Other logical systems for which provers have been developedare the theory of equa-
tional systems, for which term-rewriting techniques lead to remarkably efficient theorem
provers, mathematical induction, geometry theorem proving, constraints (chapter 4 of this
handbok), higher-order logic, and set theory.

Not only proving theorems, but finding counter-examples, orbuilding models, is of
increasing importance. This permits one to detect when a theorem is not provable, and
thus one need not waste time attempting to find a proof. This is, of course, an activity
which human mathematicians often engage in. These counter-examples are typically finite
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structures. For the so-calledfinitely controllabletheories, running a theorem prover and a
counter-example (model) finder together yields a decision procedure, which theoretically
can have practical applications to such theories. Model finding has recently been extended
to larger classes of theories [52].

Among the current applications of theorem provers one can list hardware verification
and program verification. For a more detailed survey, see theexcellent report by Love-
land [169]. Among potential applications of theorem provers are planning problems, the
situation calculus, and problems involving knowledge and belief.

There are a number of provers in prominence today, includingOtter [183], the provers
of Boyer, Moore, and Kaufmann [144, 143], Andrew’s matings prover [3], the HOL prover
[103], Isabelle [210], Mizar [267], NuPrl [63], PVS [208], and many more. Many of these
require substantial human guidance to find proofs. The Omegasystem[247] is a higher
order logic proof development system that attempts to overcome some of the shortcomings
of traditional first-order proof systems. In the past it has used a natural deduction calculus
to develop proofs with human guidance, though the system is changing.

Provers can be evaluated on a number of grounds. One iscompleteness; can they, in
principle, provide a proof of every true theorem? Another evaluation criterion is their per-
formance on specific examples; in this regard, the TPTP problem set [262] is of particular
value. Finally, one can attempt to provide an analytic estimate of the efficiency of a theo-
rem prover on classes of problems [219]. This gives a measurewhich is to a large extent
independent of particular problems or machines. The Handbook of Automated Reasoning
[237] is a good source of information about many areas of theorem proving.

We next discuss resolution for the propositional calculus and then some of the many
first-order theorem proving methods, with particular attention to resolution. We also con-
sider techniques for first-order logic with equality. Finally, we briefly discuss some other
logics, and corresponding theorem proving techniques.

1.3.1 Resolution in the Propositional Calculus

The main problem for theorem proving purposes is given a formulaA, to determine whether
it is valid. SinceA is valid iff ¬A is unsatisfiable, it is possible to determine validity if one
can determine satisfiability. Many theorem provers test satisfiability instead of validity.

The problem of determining whether a Boolean formulaA is satisfiable is one of the
NP-complete problems. This means that the fastest algorithms known require an amount
of time that is asymptotically exponential in the size ofA. Also, it is not likely that faster
algorithms will be found, although no one can prove that theydo not exist.

Despite this negative result, there is a wide variety of methods in use for testing if a for-
mula is satisfiable. One of the simplest istruth tables. For a formulaA over{P1, P2, · · · , Pn},
this involves testing for each of the2n valuationsI over{P1, P2, · · · , Pn} whetherI |= A.
In general, this will require time at least proportional to2n to show thatA is valid, but may
detect satisfiability sooner.

Clause Form

Many of the other satisfiability checking algorithms dependon conversion of a formula
A to clause form. This is defined as follows: Anatom is a proposition. Aliteral is an
atom or an atom preceded by a negation sign. The two literalsP and¬P are said to be
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complementaryto each other. Aclauseis a disjunction of literals. A formula is inclause
form if it is a conjunction of clauses. Thus the formula

(P ∨ ¬R) ∧ (¬P ∨Q ∨R) ∧ (¬Q ∨ ¬R)

is in clause form. This is also known asconjunctive normal form. We represent clauses
by sets of literals and clause form formulas by sets of clauses, so that the above formula
would be represented by the following set of sets:

{{P,¬R}, {¬P, Q, R}, {¬Q,¬R}}

A unit clauseis a clause that contains only one literal. Theempty clause{} is understood
to representFALSE.

It is straightforward to show that for every formulaA there is an equivalent formulaB
in clause form. Furthermore, there are well-known algorithms for converting any formula
A into such an equivalent formulaB. These involve converting all connectives to∧, ∨,
and¬, pushing¬ to the bottom, and bringing∧ to the top. Unfortunately, this process
of conversion can take exponential time and can increase thelength of the formula by an
exponential amount.

The exponential increase in size in converting to clause form can be avoided by adding
extra propositions representing subformulas of the given formula. For example, given the
formula

(P1 ∧Q1) ∨ (P2 ∧Q2) ∨ (P3 ∧Q3) ∨ · · · ∨ (Pn ∧Qn)

a straightforward conversion to clause form creates2n clauses of lengthn, for a formula
of length at leastn2n. However, by adding the new propositionsRi which are defined as
Pi ∧Qi, one obtains the new formula

(R1 ∨R2 ∨ · · · ∨Rn) ∧ ((P1 ∧Q1)↔ R1) ∧ · · · ∧ ((Pn ∧Qn)↔ Rn).

When this formula is converted to clause form, a much smallerset of clauses results, and
the exponential size increase does not occur. The same technique works for any Boolean
formula. This transformation is satisfiability preservingbut not equivalence preserving,
which is enough for theorem proving purposes.

Ground Resolution

Many first-order theorem provers are based on resolution, and there is a propositional ana-
logue of resolution calledground resolution, which we now present as an introduction
to first-order resolution. Although resolution is reasonably efficient for first-order logic, it
turns out that ground resolution is generally much less efficient than Davis and Putnam-like
procedures for propositional logic[70, 69], often referred to as DPLL procedures because
the original Davis and Putnam procedure had some inefficiencies. These DPLL procedures
are specialized to clause form and explore the set of possible interpretations of a proposi-
tional formula by depth-first search and backtracking with some additional simplification
rules for unit clauses.

Ground resolution is a decision procedure for propositional formulas in clause form. If
C1 andC2 are two clauses, andL1 ∈ C1 andL2 ∈ C2 are complementary literals, then

(C1 − {L1}) ∪ (C2 − {L2})
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is called aresolventof C1 andC2, where the set difference of two setsA andB is indicated
by A − B, that is,{x : x ∈ A, x 6∈ B}. There may be more than one resolvent of two
clauses, or maybe none. It is straightforward to show that a resolventD of two clausesC1

andC2 is a logical consequence ofC1 ∧ C2.
For example, ifC1 is {¬P, Q} andC2 is {¬Q, R}, then one can chooseL1 to beQ

andL2 to be¬Q. Then the resolvent is{¬P, R}. Note also thatR is a resolvent of{Q}
and{¬Q, R}, and{} (the empty clause) is a resolvent of{Q} and{¬Q}.

A resolution proofof a clauseC from a setS of clauses is a sequenceC1, C2, · · · , Cn

of clauses in which eachCi is either a member ofS or a resolvent ofCj andCk, for
j, k less thani, andCn is C. Such a proof is called a (resolution)refutation if Cn is {}.
Resolution iscomplete:

Theorem 1.3.1SupposeS is a set of propositional clauses. ThenS is unsatisfiable iff
there exists a resolution refutation fromS.

As an example, letS be the set of clauses

{{P}, {¬P, Q}, {¬Q}}

The following is a resolution refutation fromS, listing with each resolvent the two clauses
that are resolved together:

1. P given
2. ¬P, Q given
3. ¬Q given
4. Q 1,2,resolution
5. {} 3,4,resolution

(Here set braces are omitted, except for the empty clause.) This is a resolution refutation
from S, soS is unsatisfiable.

Define R(S) to be
⋃

C1,C2∈S resolvents(C1, C2). Define R1(S) to be R(S) and

Ri+1(S) to beR(S ∪ Ri(S)), for i > 1. Typical resolution theorem provers essentially
generate all of the resolution proofs fromS (with some improvements that will be dis-
cussed later), looking for a proof of the empty clause. Formally, such provers generate
R1(S), R2(S), R3(S), and so on, until for somei, Ri(S) = Ri+1(S), or the empty clause
is generated. In the former case,S is satisfiable. If the empty clause is generated,S is
unsatisfiable.

Even though DPLL essentially constructs a resolution proof, propositional resolution is
much less efficient than DPLL as a decision procedure for satisfiability of formulas in the
propositional calculus because the total number of resolutions performed by a propositional
resolution prover in the search for a proof is typically muchlarger than for DPLL. Also,
Haken [110] showed that there are unsatisfiable setsS of propositional clauses for which
the length of the shortest resolution refutation is exponential in the size (number of clauses)
in S. Despite these inefficiencies, we introduced propositional resolution as a way to lead
up to first-order resolution, which has significant advantages. In order to extend resolution
to first-order logic, it is necessary to addunificationto it.

1.3.2 First-order Proof Systems

We now discuss methods for partially deciding validity. These construct proofs of first-
order formulas, and a formula is valid iff it can be proven in such a system. Thus there
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arecompleteproof systems for first-order logic, and Godel’s incompleteness theorem does
not apply to first-order logic. Since the set of proofs is countable, one can partially decide
validity of a formulaA by enumerating the set of proofs, and stopping whenever a proof
of A is found. This already gives us a theorem prover, but proversconstructed in this way
are typically very inefficient.

There are a number of classical proof systems for first-orderlogic: Hilbert-style sys-
tems, Gentzen-style systems, natural deduction systems, semantic tableau systems, and
others [88]. Since these generally have not found much application to automated deduc-
tion, except for semantic tableau systems, they are not discussed here. Typically they
specify inference rules of the form

A1, A2, · · · , An

A

which means that if one has already derived the formulasA1, A2, · · · , An, then one can
also inferA. Using such rules, one builds up a proof as a sequence of formulas, and if a
formulaB appears in such a sequence, one has provedB.

We now discuss proof systems that have found application to automated deduction. In
the following sections, the lettersf, g, h, ... will be used asfunction symbols, a, b, c, ... as
individual constants, x, y, z and possibly other letters asindividual variables, and= as
the equality symbol. Each function symbol has anarity, which is a non-negative integer
telling how many arguments it takes. Aterm is either a variable, an individual constant, or
an expression of the formf(t1, t2, ..., tn) wheref is a function symbol of arityn and the
ti are terms. The lettersr, s, t, ... will denote terms.

Clause Form

Many first-order theorem provers convert a first-order formula to clause formbefore at-
tempting to prove it. The beauty of clause form is that it makes the syntax of first-order
logic, already quite simple, even simpler. Quantifiers are omitted, and Boolean connectives
as well. One has in the end just sets of sets of literals. It is amazing that the expressive
power of first-order logic can be reduced to such a simple form. This simplicity also makes
clause form suitable for machine implementation of theoremprovers. Not only that, but
the validity problem is also simplified in a theoretical sense; one only needs to consider the
Herbrand interpretations, so the question of validity becomes easier to analyze.

Any first-order formulaA can be transformed to a clause form formulaB such thatA
is satisfiable iffB is satisfiable. The translation is not validity preserving.So in order to
show thatA is valid, one translates¬A to clause formB and shows thatB is unsatisfiable.
For convenience, assume thatA is asentence, that is, it has no free variables.

The translation of a first-order sentenceA to clause form has several steps:

• Push negations in

• Replace existentially quantified variables by Skolem functions

• Move universal quantifiers to the front

• Convert the matrix of the formula to conjunctive normal form

• Remove universal quantifiers and Boolean connectives
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This transformation will be presented as a set of rewrite rules. A rewrite ruleX −→ Y
means that a subformula of the formX is replaced by a subformula of the formY .

The following rewrite rules push negations in.

(A↔ B) −→ (A→ B) ∧ (B → A)
(A→ B) −→ ((¬A) ∨B)
¬¬A −→ A
¬(A ∧B) −→ (¬A) ∨ (¬B)
¬(A ∨B) −→ (¬A) ∧ (¬B)
¬∀xA −→ ∃x(¬A)
¬∃xA −→ ∀x(¬A)

After negations have been pushed in, we assume for simplicity that variables in the formula
are renamed so that each variable appears in only one quantifier. Existential quantifiers are
then eliminated by replacing formulas of the form∃xA[x] by A[f(x1, · · · , xn)], where
x1, · · · , xn are all the universally quantified variables whose scope includes the formula
A, andf is a new function symbol (that does not already appear in the formula), called a
Skolem function.

The following rules then move quantifiers to the front:

(∀xA) ∨B −→ ∀x(A ∨B)
B ∨ (∀xA) −→ ∀x(B ∨A)
(∀xA) ∧B −→ ∀x(A ∧B)
B ∧ (∀xA) −→ ∀x(B ∧A)

Next, the matrix is converted to conjunctive normal form by the following rules:

(A ∨ (B ∧ C)) −→ (A ∨B) ∧ (A ∨ C)
((B ∧ C) ∨A) −→ (B ∨A) ∧ (C ∨A)

Finally, universal quantifiers are removed from the front ofthe formula and a conjunctive
normal form formula of the form

(A1 ∨A2 ∨ · · · ∨Ak) ∧ (B1 ∨B2 ∨ · · · ∨Bm) ∧ · · · ∧ (C1 ∨ C2 ∨ · · · ∨ Cn)

is replaced by the set of sets of literals

{{A1, A2, · · · , Ak}, {B1, B2, · · · , Bm}, · · · , {C1, C2, · · · , Cn}}

This last formula is the clause form formula which is satisfiable iff the original formula is.
As an example, consider the formula

¬∃x(P (x)→ ∀yQ(x, y))

First, negation is pushed past the existential quantifier:

∀x(¬(P (x)→ ∀yQ(x, y)))

Next, negation is further pushed in, which involves replacing→ by its definition as follows:

∀x¬((¬P (x)) ∨ ∀yQ(x, y))
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Then¬ is moved in past∨:

∀x((¬¬P (x)) ∧ ¬∀yQ(x, y))

Next the double negation is eliminated and¬ is moved past the quantifier:

∀x(P (x) ∧ ∃y¬Q(x, y))

Now, negations have been pushed in. Note that no variable appears in more than one
quantifier, so it is not necessary to rename variables. Next,the existential quantifier is
replaced by a Skolem function:

∀x(P (x) ∧ ¬Q(x, f(x)))

There are no quantifiers to move to the front. Eliminating theuniversal quantifier yields
the formula

P (x) ∧ ¬Q(x, f(x))

The clause form is then

{{P (x)}, {¬Q(x, f(x))}}

Recall that ifB is the clause form ofA, thenB is satisfiable iffA is. As in propositional
calculus, the clause form translation can increase the sizeof a formula by an exponential
amount. This can be avoided as in the propositional calculusby introducing new predicate
symbols for sub-formulas. SupposeA is a formula with sub-formulaB, denoted byA[B].
Let x1, x2, · · · , xn be the free variables inB. Let P be a new predicate symbol (that
does not appear inA). ThenA[B] is transformed to the formulaA[P (x1, x2, · · · , xn)] ∧
∀x1∀x2 · · · ∀xn(P (x1, x2, · · · , xn) ↔ B). Thus the occurrence ofB in A is replaced by
P (x1, x2, · · · , xn), and the equivalence ofB with P (x1, x2, · · · , xn) is added on to the
formula as well. This transformation can be applied to the new formula in turn, and again
as many times as desired. The transformation is satisfiability preserving, which means that
the resulting formula is satisfiable iff the original formulaA was.

Free variables in a clause are assumed to be universally quantified. Thus the clause
{¬P (x), Q(f(x))} represents the formula∀x(¬P (x)∨Q(f(x))). A term, literal, or clause
not containing any variables is said to beground.

A set of clauses represents the conjunction of the clauses inthe set. Thus the set
{{¬P (x), Q(f(x))}, {¬Q(y), R(g(y))}, {P (a)}, {¬R(z)}} represents the formula(∀x(¬P (x)∨
Q(f(x)))) ∧ (∀y(¬Q(y) ∨R(g(y)))) ∧ P (a) ∧ ∀z¬R(z).

Herbrand interpretations

There is a special kind of interpretation that turns out to besignificant for mechanical
theorem proving. This is called aHerbrand interpretation. Herbrand interpretations are
defined relative to a setS of clauses. The domainD of a Herbrand interpretationI consists
of the set of terms constructed from function and constant symbols ofS, with an extra
constant symbol added ifS has no constant symbols. The constant and function symbols
are interpreted so that for any finite termt composed of these symbols,tI is the termt
itself, which is an element ofD. Thus ifS has a unary function symbolf and a constant
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symbolc, thenD = {c, f(c), f(f(c)), f(f(f(c))), · · ·} andc is interpreted so thatcI is
the elementc of D andf is interpreted so thatf I applied to the termc yields the termf(c),
f I applied to the termf(c) of D yieldsf(f(c)), and so on. Thus these interpretations are
quite syntactic in nature. There is no restriction, however, on how a Herbrand interpretation
I may interpret the predicate symbols ofS.

The interest of Herbrand interpretations for theorem proving comes from the following
result:

Theorem 1.3.2 If S is a set of clauses, thenS is satisfiable iff there is a Herbrand inter-
pretationI such thatI |= S.

What this theorem means is that for purposes of testing satisfiability of clause sets,
one only needs to consider Herbrand interpretations. This implicitly leads to a mechanical
theorem proving procedure, which will be presented below. This procedure makes use of
substitutions.

A substitutionis a mapping from variables to terms which is the identity on all but
finitely many variables. IfL is a literal andα is a substitution, thenLα is the result of
replacing all variables inL by their image underα. The application of substitutions to
terms, clauses, and sets of clauses is defined similarly. Theexpression{x1 7→ t1, x2 7→
t2, · · · , xn 7→ tn} denotes the substitution mapping the variablexi to the termti, for
1 ≤ i ≤ n.

For example,P (x, f(x)){x 7→ g(y)} = P (g(y), f(g(y))).
If L is a literal andα is a substitution, thenLα is called aninstanceof L. Thus

P (g(y), f(g(y))) is an instance ofP (x, f(x)). Similar terminology applies to clauses and
terms.

If S is a set of clauses, then aHerbrand setfor S is an unsatisfiable setT of ground
clauses such that for every clauseD in T there is a clauseC in S such thatD is an instance
of C. If there is a Herbrand set forS, thenS is unsatisfiable.

For example, letS be the following clause set:

{{P (a)}, {¬P (x), P (f(x))}, {¬P (f(f(a)))}}

For this set of clauses, the following is a Herbrand set:

{{P (a)}, {¬P (a), P (f(a))}, {¬P (f(a)), P (f(f(a)))}, {¬P (f(f(a)))}}

Theground instantiation problemis the following: Given a setS of clauses, is there a
Herbrand set forS?

The following result is known as Herbrand’s theorem, and follows from theorem 1.3.2:

Theorem 1.3.3A setS of clauses is unsatisfiable iff there is a Herbrand setT for S.

It follows from this result that a setS of clauses is unsatisfiable iff the ground instanti-
ation problem forS is solvable. Thus the problem of first-order validity has been reduced
to the ground instantiation problem. This is actually quitean achievement, because the
ground instantiation problem deals only with syntactic concepts such as replacing vari-
ables by terms, and with propositional unsatisfiability, which is easily understood.

Herbrand’s theorem implies the completeness of the following theorem proving method:
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Given a setS of clauses, letC1, C2, C3, · · · be an enumeration of all of the ground in-
stances of clauses inS. This set of ground instances is countable, so it can be enumerated.
Consider the following procedureProver:

procedure Prover(S)
for i = 1, 2, 3, · · · do

if {C1, C2, · · ·Ci} is unsatisfiablethen return “unsatisfiable”fi
od

endProver

By Herbrand’s theorem, it follows thatProver(S) will eventually return “unsatisfiable”
iff S is unsatisfiable. This is therefore a primitive theorem proving procedure. It is inter-
esting that some of the earliest attempts to mechanize theorem proving [101] were based
on this idea. The problem with this approach is that it enumerates many ground instances
that could never appear in a proof. However, the efficiency ofpropositional decision pro-
cedures is an attractive feature of this procedure, and it may be possible to modify it to
obtain an efficient theorem proving procedure. And in fact, many of the theorem provers
in use today are based implicitly on this procedure, and thereby on Herbrand’s theorem.
The instance-basedmethods such as model evolution [24, 26], clause linking[157], the
disconnection calculus[30, 252], and OSHL[220] are based fairly directly on Herbrand’s
theorem. These methods attempt to apply DPLL-like approaches[69] to first-order theorem
proving. Ganzinger and Korovin [94] also study the properties of instance-based methods
and show how redundancy elimination and decidable fragments of first-order logic can be
incorporated into them. Korovin has continued this line of research with some later papers.

Unification and Resolution

Most mechanical theorem provers today are based on unification, which guides the instan-
tiation of clauses in an attempt to make the procedureProver above more efficient. The
idea of unification is to find those instances which are in somesense the most general ones
that could appear in a proof. This avoids a lot of work that results from the generation of
irrelevant instances byProver.

In the following discussion≡ will refer to syntactic identity of terms, literals, et cetera.
A substitutionα is called aunifierof literalsL andM if Lα ≡Mα. If such a substitution
exists,L andM are said to beunifiable. A substitutionα is amost general unifierof L
andM if for any other unifierβ of L andM , there is a substitutionγ such thatLβ ≡ Lαγ
andMβ ≡Mαγ.

It turns out that if two literalsL andM are unifiable, then there is a most general unifier
of L andM , and such most general unifiers can be computed efficiently bya number of
simple algorithms. The earliest in recent history was givenby Robinson [236].

We present a simple unification algorithm on terms which is similar to that presented
by Robinson. This algorithm is worst-case exponential time, but often efficient in practice.
Algorithms that are more efficient (and even linear time) on large terms have been devised
since then[172, 209]. Ifs andt are two terms andα is a most general unifier ofs andt,
thensα can be of size exponential in the sizes ofs andt, so constructingsα is inherently
exponential unless the proper encoding of terms is used; this entails representing repeated
subterms only once. However, many symbolic computation systems still use Robinson’s
original algorithm.
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procedureUnify (r, s);
[[ return the most general unifier of termsr ands]]
if r is a variablethen
if r ≡ s then return{} else
( if r occurs ins then return fail else
return{r 7→ s}) else

if s is a variablethen
( if s occurs inr then return fail else
return{s 7→ r}) else

if the top-level function symbols ofr ands
differ or have different aritiesthen return fail
else
supposer is f(r1 . . . rn) ands is f(s1 . . . sn);
return(Unify lists([r1 . . . rn], [s1 . . . sn]))

end Unify ;

procedureUnify lists([r1 . . . rn], [s1 . . . sn]);
if [r1 . . . rn] is empty then return{}

else
θ ← Unify(r1, t1);
if θ ≡ fail then return fail fi ;
α← Unify lists([r2 . . . rn]θ, [s2 . . . sn]θ)}
if α ≡ fail then return fail fi ;

return{θ ◦ α}
end Unify lists;

For this last procedure,θ ◦ α is defined as the composition of the substitutionsθ and
α, defined byt(θ ◦ α) = (tθ)α. Note that the composition of two substitutions is a
substitution. To extend the above algorithm to literalsL andM , returnfail if L andM
have different signs or predicate symbols. SupposeL andM both have the same sign
and predicate symbolP . SupposeL andM areP (r1, r2, · · · , rn) andP (s1, s2, · · · , sn),
respectively, or their negations. Then returnUnify lists([r1 . . . rn], [s1 . . . sn]) as the most
general unifier ofL andM .

As examples of unification, a most general unifier of the termsf(x, a) andf(b, y) is
{x 7→ b, y 7→ a}. The termsf(x, g(x)) andf(y, y) are not unifiable. A most general
unifier off(x, y, g(y)) andf(z, h(z), w) is {x 7→ z, y 7→ h(z), w 7→ g(h(z))}.

One can also define unifiers and most general unifiers ofsetsof terms. A substitution
α is said to be a unifier of a set{t1, t2, · · · , tn} of terms ift1α ≡ t2α ≡ t3α · · ·. If such a
unifier α exists, this set of terms is said to be unifiable. It turns out that if {t1, t2, · · · , tn}
is a set of terms and has a unifier, then it has a most general unifier, and this unifier can be
computed asUnify(f(t1, t2, · · · , tn), f(t2, t3, · · · , tn, t1)) wheref is a function symbol
of arity n. In a similar way, one can define most general unifiers of sets of literals.

Finally, supposeC1 andC2 are two clauses andA1 andA2 are non-empty subsets of
C1 andC2, respectively. Suppose for convenience that there are no common variables
betweenC1 andC2. Suppose the set{L : L ∈ A1} ∪ {¬L : L ∈ A2} is unifiable, and let
α be its most general unifier. Define theresolventof C1 andC2 on the subsetsA1 andA2
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to be the clause

(C1 −A1)α ∪ (C2 −A2)α

A resolvent ofC1 andC2 is defined to be a resolvent ofC1 andC2 on two such sets
A1 andA2 of literals. A1 andA2 are calledsubsets of resolution. If C1 andC2 have
common variables, it is assumed that the variables of one of these clauses are renamed
before resolving to insure that there are no common variables. There may be more than
one resolvent of two clauses, or there may not be any resolvents at all.

Most of the time,A1 andA2 consist of single literals. This considerably simplifies
the definition, and most of our examples will be of this special case. IfA1 ≡ {L} and
A2 ≡ {M}, thenL andM are calledliterals of resolution. We call this kind of resolution
single literal resolution. Often, one defines resolution in terms offactoring and single
literal resolution. IfC is a clause andθ is a most general unifier of two distinct literals
of C, thenCθ is called afactor of C. Defining resolution in terms of factoring has some
advantages, though it increases the number of clauses one must store.

Here are some examples. SupposeC1 is {P (a)} andC2 is {¬P (x), Q(f(x))}. Then
a resolvent of these two clauses on the literalsP (a) and¬P (x) is {Q(f(a))}. This is
because the most general unifier of these two literals is{x 7→ a}, and applying this substi-
tution to{Q(f(x))} yields the clause{Q(f(a))}.

SupposeC1 is {¬P (a, x)} andC2 is {P (y, b)}. Then{} (the empty clause) is a resol-
vent ofC1 andC2 on the literals¬P (a, x) andP (y, b).

SupposeC1 is {¬P (x), Q(f(x))} andC2 is {¬Q(x), R(g(x))}. In this case, the vari-
ables ofC2 are first renamed before resolving, to eliminate common variables, yielding
the clause{¬Q(y), R(g(y))}. Then a resolvent ofC1 andC2 on the literalsQ(f(x)) and
¬Q(y) is {¬P (x), R(g(f(x)))}.

SupposeC1 is {P (x), P (y)} andC2 is {¬P (z), Q(f(z))}. Then a resolvent ofC1 and
C2 on the sets{P (x), P (y)} and{¬P (z)} is {Q(f(z))}.

A resolution proofof a clauseC from a setS of clauses is a sequenceC1, C2, · · · , Cn

of clauses in whichCn is C and in which for alli, eitherCi is an element ofS or there
exist integersj, k < i such thatCi is a resolvent ofCj andCk. Such a proof is called a
(resolution)refutationfrom S if Cn is {} (the empty clause).

A theorem proving method is said to becompleteif it is able to prove any valid formula.
For unsatisfiability testing, a theorem proving method is said to be complete if it can derive
false, or the empty clause, from any unsatisfiable set of clauses. It is known that resolution
is complete:

Theorem 1.3.4A setS of first-order clauses is unsatisfiable iff there is a resolution refu-
tation fromS.

Therefore one can use resolution to test unsatisfiability ofclause sets, and hence valid-
ity of first-order formulas. The advantage of resolution over theProver procedure above
is that resolution uses unification to choose instances of the clauses that are more likely to
appear in a proof. So in order to show that a first-order formulaA is valid, one can do the
following:

• Convert¬A to clause formS

• Search for a proof of the empty clause fromS
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As an example of this procedure, resolution can be applied toshow that the first-order
formula

∀x∃y(P (x)→ Q(x, y)) ∧ ∀x∀y∃z(Q(x, y)→ R(x, z))→ ∀x∃z(P (x)→ R(x, z))

is valid. Here→ represents logical implication, as usual. In the refutational approach, one
negates this formula to obtain

¬[∀x∃y(P (x)→ Q(x, y)) ∧ ∀x∀y∃z(Q(x, y)→ R(x, z))→ ∀x∃z(P (x)→ R(x, z))],

and shows that this formula is unsatisfiable. The procedure of section 1.3.1 for translating
formulas into clause form yields the following setS of clauses:

{{¬P (x), Q(x, f(x))}, {¬Q(x, y), R(x, g(x, y))}, {P (a)}, {¬R(a, z)}}.

The following is then a resolution refutation from this clause set:

1. P (a) (input)
2. ¬P (x), Q(x, f(x)) (input)
3. Q(a, f(a)) (resolution, 1,2)
4. ¬Q(x, y), R(x, g(x, y)) (input)
5. R(a, g(a, f(a))) (3,4, resolution)
6. ¬R(a, z) (input)
7. FALSE (5,6, resolution)

The designation “input” means that a clause is inS. Sincefalse (the empty clause) has
been derived fromS by resolution, it follows thatS is unsatisfiable, and so the original
first-order formula is valid.

Even though resolution is much more efficient than theProver procedure, it is still not
as efficient as one would like. In the early days of resolution, a number of refinements
were added to resolution, mostly by the Argonne group, to make it more efficient. These
were the set of support strategy, unit preference, hyper-resolution, subsumption and tau-
tology deletion, and demodulation. In addition, the Argonne group preferred using small
clauses when searching for resolution proofs. Also, they employed some very efficient data
structures for storing and accessing clauses. We will describe most of these refinements
now.

A clauseC is called atautologyif for some literalL, L ∈ C and¬L ∈ C. It is known
that if S is unsatisfiable, there is a refutation fromS that does not contain any tautologies.
This means that tautologies can be deleted as soon as they aregenerated and need never be
included in resolution proofs.

In general, given a setS of clauses, one searches for a refutation fromS by performing
a sequence of resolutions. To ensure completeness, this search should befair, that is, if
clausesC1 andC2 have been generated already, and it is possible to resolve these clauses,
then this resolution must eventually be done. However, the order in which resolutions are
performed is nonetheless very flexible, and a good choice in this respect can help the prover
a lot. One good idea is to prefer resolutions of clauses that are small, that is, that have small
terms in them.

Another way to guide the choice of resolutions is based on subsumption, as follows:
ClauseC is said tosubsumeclauseD if there is a substitutionΘ such thatCΘ ⊆ D.
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For example, the clause{Q(x)} subsumes the clause{¬P (a), Q(a)}. C is said toprop-
erly subsumeD if C subsumesD and the number of literals inC is less than or equal
to the number of literals inD. For example, the clause{Q(x), Q(y)} subsumes{Q(a)},
but does not properly subsume it. It is known that clauses properly subsumed by other
clauses can be deleted when searching for resolution refutations fromS. It is possible
that these deleted clauses may still appear in the final refutation, but once a clauseC is
generated that properly subsumesD, it is never necessary to useD in any further resolu-
tions. Subsumption deletion can reduce the proof time tremendously, since long clauses
tend to be subsumed by short ones. Of course, if two clauses properly subsume each other,
one of them should be kept. The use of appropriate data structures [228, 232] can greatly
speed up the subsumption test, and indeed term indexing datastructures are essential for
an efficient theorem prover, both for quickly finding clausesto resolve and for performing
the subsumption test. As an example[228], in a run of the Vampire prover on the prob-
lem LCL-129-1.p from the TPTP library ofwww.tptp.org , in 270 seconds 8,272,207
clauses were generated of which 5,203,928 were deleted because their weights were too
large, 3,060,226 were deleted because they were subsumed byexisting clauses (forward
subsumption), and only 8,053 clauses were retained.

This can all be combined to obtain a program for searching forresolution proofs from
S, as follows:

procedure Resolver(S)
R← S;
while false 6∈ R do
choose clausesC1, C2 ∈ R fairly, preferring small clauses;
if no new pairsC1, C2 exist then return “satisfiable”fi;
R′ ← {D : D is a resolvent ofC1, C2 andD is not a tautology};
for D ∈ R′ do
if no clause inR properly subsumesD
then R← {D} ∪ {C ∈ R : D does not properly subsumeC} fi;

od
od

end Resolver

In order to make precise what a “small clause” is, one defines‖C‖, the symbol sizeof
clauseC, as follows:

‖x‖ = 1 for variablesx
‖c‖ = 1 for constant symbolsc

‖f(t1, · · · , tn)‖ = 1 + ‖t1‖+ · · ·+ ‖tn‖ for termsf(t1, · · · , tn)
‖P (t1, · · · , tn)‖ = 1 + ‖t1‖+ · · ·+ ‖tn‖ for atomsP (t1, · · · , tn)

‖¬A‖ = ‖A‖ for atomsA
‖{L1, L2, · · · , Ln}‖ = ‖L1‖+ · · ·+ ‖Ln‖ for clauses{L1, L2, · · · , Ln}

Small clauses, then, are those having a small symbol size.
Another technique used by the Argonne group is theunit preference strategy, defined

as follows: Aunit clauseis a clause that contains exactly one literal. Aunit resolutionis a
resolution of clausesC1 andC2, where at least one ofC1 andC2 is a unit clause. Theunit
preferencestrategy prefers unit resolutions, when searching for proofs. Unit preference
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has to be modified to permit non-unit resolutions to guarantee completeness. Thus non-
unit resolutions are also performed, but not as early. The unit preference strategy helps
because unit resolutions reduce the number of literals in a clause.

Refinements of Resolution

In an attempt to make resolution more efficient, many, many refinements were developed
in the early days of theorem proving. We present a few of them,and mention a number of
others. For a discussion of resolution and its refinements, and theorem proving in general,
see [54, 168, 46, 278, 88, 159]. It is hard to know which refinements will help on any given
example, but experience with a theorem prover can help to give one a better idea of which
refinements to try. In general, none of these refinements helpvery much most of the time.

A literal is calledpositiveif it is an atom, that is, has no negation sign. A literal with a
negation sign is callednegative. A clauseC is calledpositiveif all of the literals inC are
positive.C is callednegativeif all of the literals inC are negative. A resolution ofC1 and
C2 is called positive if one ofC1 andC2 is a positive clause. It is called negative if one of
C1 andC2 is a negative clause. It turns out that positive resolution is complete, that is, ifS
is unsatisfiable, then there is a refutation fromS in which all of the resolutions are positive.
This refinement of resolution is known asP1 deduction in the literature. Similarly, negative
resolution is complete. Hyper-resolution is essentially amodification of positive resolution
in which a series of positive resolvents is done all at once. To be precise, suppose thatC
is a clause having at least one negative literal andD1, D2, · · · , Dn are positive clauses.
SupposeC1 is a resolvent ofC andD1, C2 is a resolvent ofC1 andD2, · · ·, andCn is a
resolvent ofCn−1 andDn. Suppose thatCn is a positive clause but none of the clauses
Ci are positive, fori < n. ThenCn is called ahyper-resolventof C andD1, D2, · · · , Dn.
Thus the inference steps in hyper-resolution are sequencesof positive resolutions. In the
hyperresolution strategy, the inference engine looks for acomplete collectionD1 . . . Dn of
clauses to resolve withC and only performs the inference when the entire hyperresolution
can be carried out. Hyper-resolution is sometimes useful because it reduces the number of
intermediate results that must be stored in the prover.

Typically, when proving a theorem, there is a general setA of axioms and a particular
formulaF that one wishes to prove. So one wishes to show that the formula A → F is
valid. In the refutational approach, this is done by showingthat¬(A → F ) is unsatisfi-
able. Now,¬(A→ F ) is transformed toA ∧ ¬F in the clause form translation. One then
obtains a setSA of clauses fromA and a setSF of clauses from¬F . The setSA ∪ SF

is unsatisfiable iffA → F is valid. One typically tries to showSA ∪ SF unsatisfiable by
performing resolutions. Since one is attempting to proveF , one would expect that reso-
lutions involving the clausesSF are more likely to be useful, since resolutions involving
two clauses fromSA are essentially combining general axioms. Thus one would like to
only perform resolutions involving clauses inSF or clauses derived from them. This can
be achieved by theset of supportstrategy, if the setSF is properly chosen.

The set of support strategy restricts all resolutions to involve a clause in theset of
supportor a clause derived from it. To guarantee completeness, the set of support must
be chosen to include the set of clausesC of S such thatI 6|= C for some interpretation
I. SetsA of axioms typically have standard modelsI, so thatI |= A. Since translation
to clause form is satisfiability preserving,I ′ |= SA as well, whereI ′ is obtained from
I by a suitable interpretation of Skolem functions. If the setof support is chosen as the
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clauses not satisfied byI ′, then this set of support will be a subset of the setSF above and
inferences are restricted to those that are relevant to the particular theorem. Of course, it
is not necessary to test ifI |= C for clausesC; if one knows thatA is satisfiable, one can
chooseSF as the set of support.

Thesemantic resolutionstrategy is like the set-of-support resolution, but requires that
when two clausesC1 and C2 resolve, at least one of them must not be satisfied by a
specified interpretationI. Some interpretations permit the testI |= C to be carried out;
this is possible, for example, ifI has a finite domain. Using such a semantic definition
of the set of support strategy further restricts the set of possible resolutions over the set of
support strategy while retaining completeness.

Other refinements of resolution include ordered resolution, which orders the literals
of a clause, and requires that the subsets of resolution include a maximal literal in their
respective clauses. Unit resolution requires all resolutions to be unit resolutions, and is not
complete. Input resolution requires all resolutions to involve a clause fromS, and this is
not complete, either. Unit resulting (UR) resolution is like unit resolution, but has larger
inference steps. This is also not complete, but works well surprisingly often. Locking
resolution attaches indices to literals, and uses these to order the literals in a clause and
decide which literals have to belong to the subsets of resolution. Ancestry-filter form
resolution imposes a kind of linear format on resolution proofs. These strategies are both
complete. Semantic resolution is compatible with some ordering refinements, that is, the
two strategies together are still complete.

It is interesting that resolution is complete forlogical consequences, in the following
sense: IfS is a set of clauses, andC is a clause such thatS |= C, that is,C is a logical
consequence ofS, then there is a clauseD derivable by resolution such thatD subsumes
C.

Another resolution refinement that is useful sometimes issplitting. If C is a clause and
C ≡ C1 ∪C2, whereC1 andC2 have no common variables, thenS ∪ {C} is unsatisfiable
iff S∪{C1} is unsatisfiable andS∪{C2} is unsatisfiable. The effect of this is to reduce the
problem of testing unsatisfiability ofS ∪{C} to two simpler problems. A typical example
of such a clauseC is a ground clause with two or more literals.

There is a special class of clauses calledHorn clausesfor which specialized theorem
proving strategies are complete. AHorn clauseis a clause that has at most one positive
literal. Such clauses have found tremendous application inlogic programming languages.
If S is a set of Horn clauses, then unit resolution is complete, asis input resolution.

Other Strategies

There are a number of other strategies which apply to setsS of clauses, but do not use
resolution. One of the most notable ismodel elimination[167], which constructschainsof
literals and has some similarities to the DPLL procedure. Model elimination also specifies
the order in which literals of a clause will “resolve away.” There are also a number of
connection methods[29, 162], which operate by constructing links between complementary
literals in different clauses, and creating structures containing more than one clause linked
together. In addition, there are a number ofinstance-basedstrategies, which create a setT
of ground instances ofS and testT for unsatisfiability using a DPLL-like procedure. Such
instance-based methods can be much more efficient than resolution on certain kinds of
clause sets, namely, those that are highly non-Horn but do not involve deep term structure.
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Furthermore, there are a number of strategies that do not useclause form at all. These
include the semantic tableau methods, which work backwardsfrom a formula and construct
a tree of possibilities; Andrews’ matings method, which is suitable for higher order logic
and has obtained some impressive proofs automatically; natural deduction methods; and
sequent style systems. Tableau systems have found substantial application in automated
deduction, and many of these are even adapted to formulas in clause form; for a survey see
[109].

Evaluating strategies

In general, we feel that qualities that need to be consideredwhen evaluating a strategy are
not onlycompletenessbut alsopropositional efficiency, goal-sensitivityanduse of seman-
tics. By propositional efficiency is meant the degree to which theefficiency of the method
on propositional problems compares with DPLL; most strategies do poorly in this respect.
By goal-sensitivity is meant the degree to which the method permits one to concentrate on
inferences related to the particular clauses coming from the negation of the theorem (the
setSF discussed above). When there are many, many input clauses, goal sensitivity is
crucial. By use of semantics is meant whether the method can take advantage of natural
semantics that may be provided with the problem statement inits search for a proof. An
early prover that did use semantics in this way was the geometry prover of Gelernter et
al [95]. Note that model elimination and set of support strategies are goal-sensitive but
apparently not propositionally efficient. Semantic resolution is goal-sensitive and can use
natural semantics, but is not propositionally efficient, either. Some instance-based strate-
gies are goal-sensitive and use natural semantics and are propositionally efficient, but may
have to resort to exhaustive enumeration of ground terms instead of unification in order to
instantiate clauses. A further issue is to what extent various methods permit the incorpora-
tion of efficient equality techniques, which varies a lot from method to method. Therefore
there are some interesting problems involved in combining as many of these desirable fea-
tures as possible. And for strategies involving extensive human interaction, the criteria for
evaluation are considerably different.

1.3.3 Equality

When proving theorems involving equations, one obtains many irrelevant terms. For ex-
ample, if one has the equationsx + 0 = x andx ∗ 1 = x, and addition and multiplica-
tion are commutative and associative, then one obtains manyterms identical tox, such as
1 ∗ x ∗ 1 ∗ 1 + 0. For products of two or three variables or constants, the situation becomes
much worse. It is imperative to find a way to get rid of all of these equivalent terms. For
this purpose, specialized methods have been developed to handle equality.

As examples of mathematical structures where such equations arise, for groups and
monoids the group operation is associative with an identity, and for abelian groups the
group operation is associative and commutative. Rings and fields also have an associative
and commutative addition operator with an identity and another multiplication operator
that is typically associative. For Boolean algebras, the multiplication operation is also
idempotent. For example, set union and intersection are associative, commutative, and
idempotent. Lattices have similar properties. Such equations and structures typically arise



1. Knowledge Representation and Classical Logic 35

when axiomatizing integers, reals, complex numbers, matrices, and other mathematical
objects.

The most straightforward method of handling equality is to use a general first-order
resolution theorem prover together with theequality axioms, which are the following (as-
suming free variables are implicitly universally quantified):

x = x
x = y → y = x

x = y ∧ y = z → x = z
x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn → f(x1 · · ·xn) = f(y1 · · · yn)

for all function symbolsf
x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn ∧ P (x1 · · ·xn)→ P (y1 · · · yn)

for all predicate symbolsP

Let Eq refer to this set of equality axioms. The approach of usingEq explicitly leads
to many inefficiencies, as noted above, although in some cases it works reasonably well.

Another approach to equality is themodification methodof Brand[41, 20]. In this
approach, a setS of clauses is transformed into another setS′ with the following property:
S ∪ Eq is unsatisfiable iffS′ ∪ {x = x} is unsatisfiable. Thus this transformation avoids
the need for the equality axioms, except for{x = x}. This approach often works a little
better than usingEq explicitly.

Contexts

In order to discuss other inference rules for equality, someterminology is needed. Acon-
text is a term with occurrences of� in it. For example,f(�, g(a, �)) is a context. A�

by itself is also a context. One can also have literals and clauses with� in them, and they
are also called contexts. Ifn is an integer, then ann-contextis a term withn occurrences
of �. If t is ann-context andm ≤ n, thent[t1, . . . , tm] representst with the leftmost
m occurrences of� replaced by the termst1, . . . , tm, respectively. Thus for example
f(�, b, �) is a 2-context, andf(�, b, �)[g(c)] is f(g(c), b, �). Also, f(�, b, �)[g(c)][a]
is f(g(c), b, a). In general, ifr is ann-context andm ≤ n and the termssi are 0-contexts,
then r[s1, . . . , sn] ≡ r[s1][s2] . . . [sn]. However,f(�, b, �)[g(�)] is f(g(�), b, �), so
f(�, b, �)[g(�)][a] is f(g(a), b, �). In general, ifr is ak-context fork ≥ 1 ands is an
n-context forn ≥ 1, thenr[s][t] ≡ r[s[t]], by a simple argument (both replace the leftmost
� in r[s] by t).

Termination Orderings on Terms

It is necessary to discuss partial orderings on terms in order to explain inference rules for
equality. Partial orderings give a precise definition of thecomplexity of a term, so thats > t
means that the terms is more complex thant in some sense, and replacings by t makes a
clause simpler. A partial ordering> is well-foundedif there are no infinite sequencesxi

of elements such thatxi > xi+1 for all i ≥ 0. A termination orderingon terms is a partial
ordering> which is well founded and satisfies thefull invariance property, that is, ifs > t
andΘ is a substitution thensΘ > tΘ, and also satisfies thereplacement property, that is,
s > t impliesr[s] > r[t] for all 1-contextsr.



36 1. Knowledge Representation and Classical Logic

Note that ifs > t and> is a termination ordering, then all variables int appear also
in s. For example, iff(x) > g(x, y), then by full invariancef(x) > g(x, f(x)), and
by replacementg(x, f(x)) > g(x, g(x, f(x))), et cetera, giving an infinite descending
sequence of terms.

The concept of amultisetis often useful to show termination. Informally, a multisetis
a set in which an element can occur more than once. Formally, amultisetS is a function
from some underlying domainD to the non-negative integers. It is said to be finite if
{x : S(x) > 0} is finite. One writesx ∈ S if S(x) > 0. S(x) is called themultiplicity of
x in S; this represents the number of timesx appears inS. If S andT are multisets then
S ∪T is defined by(S∪T )(x) = S(x)+T (x) for all x. A partial ordering> onD can be
extended to a partial ordering≫ on multisets in the following way: One writesS ≫ T if
there is some multisetV such thatS = S′∪V andT = T ′∪V andS′ is nonempty and for
all t in T ′ there is ans in S′ such thats > t. This relation can be computed reasonably fast
by deleting common elements fromS andT as long as possible, then testing if the specified
relation betweenS′ andT ′ holds. The idea is that a multiset becomes smaller if an element
is replaced by any number of smaller elements. Thus{3, 4, 4} ≫ {2, 2, 2, 2, 1, 4, 4}since3
has been replaced by2, 2, 2, 2, 1. This operation can be repeated any number of times, still
yielding a smaller multiset; in fact, the relation≫ can be defined in this way as the smallest
transitive relation having this property [76]. One can showthat if > is well founded, so is
≫. For a comparison with other definitions of multiset ordering, see [133].

We now give some examples of termination orderings. The simplest kind of termina-
tion orderings are those that are based on size. Recall that‖s‖ is the symbol size (number
of symbol occurrences) of a terms. One can then define> so thats > t if for all Θ making
sΘ andtΘ ground terms,‖sΘ‖ > ‖tΘ‖. For example,f(x, y) > g(y) in this ordering,
but it is not true thath(x, a, b) > f(x, x) becausex could be replaced by a large term.
This termination ordering is computable;s > t iff ‖s‖ > ‖t‖ and no variable occurs more
times int thans.

More powerful techniques are needed to get some more interesting termination order-
ings. One of the most remarkable results in this area is a theorem of Dershowitz [76]
about simplification orderings, that gives a general technique for showing that an ordering
is a termination ordering. Before his theorem, each ordering had to be shown well founded
separately, and this was often difficult. This theorem makesuse of simplification orderings.

Definition 1.3.5 A partial ordering> on terms is asimplification orderingif it satisfies
the replacement property, that is, for 1-contextsr, s > t impliesr[s] > r[t], and has the
subterm property, that is,s > t if t is a proper subterm ofs. Also, if there are function
symbolsf with variable arity, it is required thatf(...s...) > f(......) for all suchf .

Theorem 1.3.6All simplification orderings are well founded.

Proof. Based on Kruskal’s tree theorem[152], which says that in anyinfinite sequence
t1, t2, t3, ... of terms, there are natural numbersi andj with i < j such thatti is embedded
in tj in a certain sense. It turns out that ifti is embedded intj then tj ≥ ti for any
simplification ordering>.

�

The recursive path orderingis one of the simplest simplification orderings. This or-
dering is defined in terms of aprecedenceordering on function symbols, which is a partial
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ordering on the function symbols. One writesf < g to indicate thatf is less thang in the
precedence relation on function symbols. The recursive path ordering will be presented as
a complete set of inference rules that may be used to construct proofs ofs > t. That is, if
s > t then there is a proof of this in the system. Also, by using the inference rules back-
wards in a goal-directed manner, it is possible to constructa reasonably efficient decision
procedure for statements of the forms > t. Recall that if> is an ordering, then≫ is the
extension of this ordering to multisets. The ordering we present is somewhat weaker than
that usually given in the literature.

f = g {s1...sm} ≫ {t1...tn}

f(s1...sm) > g(t1...tn)

si ≥ t

f(s1...sm) > t

true

s ≥ s

f > g f(s1...sm) > ti all i

f(s1...sm) > g(t1...tn)

For example, suppose∗ > +. Then one can show thatx ∗ (y + z) > x ∗ y + x ∗ z as
follows:

true
y ≥ y

y + z > y

{x, y + z} ≫ {x, y}

x ∗ (y + z) > x ∗ y

true
y ≥ y

y + z > z

{x, y + z} ≫ {x, z}

x ∗ (y + z) > x ∗ z ∗ > +

x ∗ (y + z) > x ∗ y + x ∗ z

For some purposes, it is necessary to modify this ordering sothat subterms are con-
sidered lexicographically. In general, if> is an ordering, then the lexicographic extension
>lex of > to tuples is defined as follows:

s1 > t1
(s1...sm) >lex (t1...tn)

s1 = t1 (s2...sm) >lex (t2...tn)

(s1...sm) >lex (t1...tn)

true

(s1...sm) >lex ()

One can show that if> is well founded, then so is its extension>lex to bounded length
tuples. This lexicographic treatment of subterms is the idea of the lexicographic path or-
dering of Kamin and Levy[138]. This ordering is defined by thefollowing inference rules:

f = g (s1...sm) >lex (t1...tn) f(s1...sm) > tj , all j ≥ 2

f(s1...sm) > g(t1...tn)



38 1. Knowledge Representation and Classical Logic

si ≥ t

f(s1...sm) > t

true

s ≥ s

f > g f(s1...sm) > ti all i

f(s1...sm) > g(t1...tn)

In the first inference rule, it is not necessary to testf(s1...sm) > t1 since(s1...sm) >lex

(t1...tn) impliess1 ≥ t1 hencef(s1...sm) > t1. One can show that this ordering is a sim-
plification ordering for systems having fixed arity functionsymbols. This ordering has the
useful property thatf(f(x, y), z) >lex f(x, f(y, z)); informally, the reason for this is that
the terms have the same size, but the first subtermf(x, y) of f(f(x, y), z) is always larger
than the first subtermx of f(x, f(y, z)).

The first orderings that could be classified as recursive pathorderings were those of
Plaisted[215, 214]. A large number of other similar orderings have been developed since
the ones mentioned above, for example thedependency pairmethod[7] and its recent au-
tomatic versions [123, 100].

Paramodulation

Above, we saw that the equality axiomsEq can be used to prove theorems involving equal-
ity, and that Brand’s modification method is another approach that avoids the need for
the equality axioms. A better approach in most cases is to usethe paramodulation rule,
[234, 199] defined as follows:

C[t], r = s ∨D, r andt are unifiable, t is not a variable, Unify(r, t) = θ

Cθ[sθ] ∨Dθ

HereC[t] is a clause containing a subtermt, C is a context, andt is a non-variable term.
Also, Cθ[sθ] is the clause(C[t])θ with sθ replacing the specified occurence oftθ. Also,
r = s ∨ D is another clause having a literalr = s whose predicate is equality and
remaining literalsD, which can be empty. To understand this rule, consider thatrθ = sθ is
an instance ofr = s, andrθ andtθ are identical. IfDθ is false, thenrθ = sθ must be true,
so it is possible to replacerθ in (C[t])θ by sθ if Dθ is false. ThusCθ[sθ]∨Dθ is inferred.
It is assumed as usual that variables inC[t] or in r = s ∨ D are renamed if necessary
to insure that these clauses have no common variables beforeperforming paramodulation.
The clauseC[t] is said to be paramodulatedinto. It is also possible to paramodulate in the
other direction, that is, the equationr = s can be used in either direction.

For example, the clauseP (g(a))∨Q(b) is a paramodulant ofP (f (x)) and (f (a) = g(a))
∨ Q(b). Brand[41] showed that ifEq is the set of equality axioms given above andS is
a set of clauses, thenS ∪ Eq is unsatisfiable iff there is a proof of the empty clause from
S∪{x = x} using resolution and paramodulation as inference rules. Thus, paramodulation
allows us to dispense with all the equality axioms exceptx = x.

Some more recent proofs of the completeness of resolution and paramodulation [128]
show the completeness of restricted versions of paramodulation which considerably reduce
the search space. In particular, it is possible to restrict this rule so that it is not performed
if sθ > rθ, where> is a termination ordering fixed in advance. So if one has an equation
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r = s, andr > s, then this equation can only be used to replace instances ofr by instances
of s. If s > r, then this equation can only be used in the reverse direction. The effect
of this is to constrain paramodulation so that “big” terms are replaced by “smaller” ones,
considerably improving its efficiency. It would be a disaster to allow paramodulation to
replacex by x ∗ 1, for example. Another complete refinement of ordered paramodulation
is that paramodulation only needs to be done into the “large”side of an equation. If the
subtermt of C[t] occurs in an equationu = v or v = u of C[t], andu > v, where
> is the termination ordering being used, then the paramodulation need not be done if
the specified occurrence oft is in v. Some early versions of paramodulation required the
use of the functionally reflexive axioms of the formf(x1, · · · , xn) = f(x1, · · · , xn), but
this is now known not to be necessary. WhenD is empty, paramodulation is similar to
“narrowing”, which has been much studied in the context of logic programming and term
rewriting. Recently, a more refined approach to the completeness proof of resolution and
paramodulation has been found [17, 18] which permits greater control over the equality
strategy. This approach also permits one to devise resolution strategies that have a greater
control over the order in which literals are resolved away.

Demodulation

Similar to paramodulation is the rewriting or “demodulation” rule, which is essentially a
method of simplification.

C[t], r = s, rθ ≡ t, rθ > sθ

C[sθ]

HereC[t] is a clause (soC is a 1-context) containing a non-variable termt, r = s is a
unit clause, and> is the termination ordering that is fixed in advance. It is assumed that
variables are renamed so thatC[t] andr = s have no common variables before this rule
is applied. The clauseC[sθ] is called ademodulantof C[t] andr = s. Similarly, C[sθ]
is a demodulant ofC[t] ands = r, if rθ > sθ. Thus an equation can be used in either
direction, if the ordering condition is satisfied.

As an example, given the equationx ∗ 1 = x and assumingx ∗ 1 > x and given a
clauseC[f(a) ∗ 1] having a subterm of the formf(a) ∗ 1, this clause can be simplified to
C[f(a)], replacing the occurrence off(a) ∗ 1 in C by f(a).

To justify the demodulation rule, the instancerθ = sθ of the equationr = s can be
inferred because free variables are implicitly universally quantified. This makes it possible
to replacerθ in C by sθ, and vice versa. Butrθ is t, sot can be replaced bysθ.

Not only is the demodulantC[sθ] inferred, but the original clauseC[t] is typically
deleted. Thus, in contrast to resolution and paramodulation, demodulation replaces clauses
by simpler clauses. This can be a considerable aid in reducing the number of generated
clauses. This also makes mechanical theorem proving closerto human reasoning.

The reason for specifying thatsθ is simpler thanrθ is not only the intuitive desire to
simplify clauses, but also to ensure that demodulation terminates. For example, there is
no termination ordering in whichx ∗ y > y ∗ x, since then the clausea ∗ b = c could
demodulate using the equationx ∗ y = y ∗ x to b ∗ a = c and then toa ∗ b = c and so on
indefinitely. Such an ordering> could not be a termination ordering, since it violates the
well-foundedness condition. However, for many termination orderings>, x ∗ 1 > x, and
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thus the clausesP (x ∗ 1) andx ∗ 1 = x haveP (x) as a demodulant if some such ordering
is being used.

Resolution with ordered paramodulation and demodulation is still complete if paramod-
ulation and demodulation are done with respect to the same simplification ordering during
the proof process[128]. Demodulation is essential in practice, for without it one can gener-
ate expressions likex∗1∗1∗1 that clutter up the search space. Some complete refinements
of paramodulation also restrict which literals can be paramodulated into, which must be the
“largest” literals in the clause in a sense. Such refinementsare typically used with reso-
lution refinements that also restrict subsets of resolutionto contain “large” literals in a
clause. Another recent development isbasic paramodulation, which restricts the positions
in a term into which paramodulation can be done[19, 200]; this refinement was used in
McCune’s proof of the Robbins problem [182].

1.3.4 Term Rewriting Systems

A beautiful theory ofterm-rewriting systemshas been developed to handle proofs involving
equational systems; these are theorems of the formE |= e whereE is a collection of
equations ande is an equation. For such systems, term-rewriting techniques often lead to
very efficient proofs. The Robbins problem was of this form, for example.

An equational systemis a set of equations. Often one is interested in knowing if an
equation follows logically from the given set. For example,given the equationsx + y =
y + x, (x+ y)+ z = x +(y + z), and−(−(x+ y)+−(x +−y)) = x, one might want to
know if the equation−(−x+ y)+−(−x+−y) = x is a logical consequence. As another
example, one might want to know whetherx ∗ y = y ∗ x in a group in whichx2 = e for
all x. Such systems are of interest in theorem proving, programming languages, and other
areas. Common data structures like lists and stacks can often be described by such sets
of equations. In addition, a functional program is essentially a set of equations, typically
with higher order functions, and the execution of a program is then a kind of equational
reasoning. In fact, some programming languages based on term rewriting have been im-
plemented, and can execute several tens of millions of rewrites per second [73]. Another
language based on rewriting is MAUDE [122]. Rewriting techniques have also been used
to detect flaws in security protocols and prove properties ofsuch protocols[131]. Systems
for mechanising such proofs on a computer are becoming more and more powerful. The
Waldmeister system [93] is particularly effective for proofs involving equations and rewrit-
ing. The area of rewriting was largely originated by the workof Knuth and Bendix [148].
For a discussion of term-rewriting techniques, see [77, 12,78, 205, 263].

Syntax of equational systems

A term u is said to be asubtermof t if u is t or if t is f(t1, ..., tn) andu is a subterm of
ti for somei. An equationis an expression of the forms = t wheres andt are terms.
An equational systemis a set of equations. We will generally consider only unsorted
equational systems, for simplicity The letterE will be used to refer to equational systems.

We give a set of inference rules for deriving consequences ofequations.

t = u

tθ = uθ
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t = u

u = t

t = u

f(...t...) = f(...u...)

t = u u = v

t = v

true

t = t

The following result is due to Birkhoff [31]:

Theorem 1.3.7 If E is a set of equations thenE |= r = s iff r = s is derivable fromE
using these rules.

This result can be stated in an equivalent way. Namely,E |= r = s iff there is a
finite sequenceu1, u2, ..., un of terms such thatr is u1 ands is un and for alli, ui+1 is
obtained fromui by replacing a subtermt of ui by a termu, where the equationt = u or
the equationu = t is an instance of an equation inE.

This gives a method for deriving logical consequences of sets of equations. However,
it is inefficient. Therefore it is of interest to find restrictions of these inference rules that
are still capable of deriving all equational consequences of an equational system. This is
the motivation for the theory of term-rewriting systems.

Term rewriting

The idea of a term rewriting system is to orient an equationr = s into a ruler −→ s
indicating that instances ofr may be replaced by instances ofs but not vice versa. Often
this is done in such a way as to replace terms by simpler terms,where the definition of
what is simple may be fairly subtle. However, as a first approximation, smaller terms are
typically simpler. The equationx + 0 = x then would typically be oriented into the rule
x+0 −→ x. This reduces the generation of terms like((x+0)+0)+0 which can appear in
proofs if no such directionality is applied. The study of term rewriting systems is concerned
with how to orient rules and what conditions guarantee that the resulting systems have the
same computational power as the equational systems they came from.

Terminology

In this section, variablesr, s, t, u refer totermsand−→ is a relation over terms. Thus the
discussion is at a higher level than earlier.

A term-rewriting systemR is a set of rules of the formr −→ s, wherer ands are
terms. It is common to require that any variable that appearsin s must also appear inr. It
is also common to require thatr is not a variable. Therewrite relation−→R is defined by
the following inference rules:

r −→ s ρ a substitution

rρ −→ sρ
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r −→ s

f(...r...) −→ f(...s...)

true

r −→∗ r

r −→ s

r −→∗ s

r −→∗ s s −→∗ t

r −→∗ t

r −→ s

r ↔ s

s −→ r

r ↔ s

true

r ↔∗ r

r ↔ s

r ↔∗ s

r ↔∗ s s↔∗ t

r↔∗ t

The notation⊢r indicates derivability using these rules. Ther subscript refers to “rewrit-
ing” (not to the termr). A setR of rules may be thought of as a set of logical axioms.
Writing s −→ t is in R, indicates thats −→ t is such an axiom. WritingR ⊢r s −→ t
indicates thats −→ t may refer to a rewrite relation not included inR. Oftens −→R t
is used as an abbreviation forR ⊢r s −→ t, and sometimes the subscriptR is dropped.
Similarly,−→∗

R is defined in terms of derivability fromR. Note that the relation−→∗

R is
the reflexive transitive closure of−→R. Thusr −→∗

R s if there is a sequencer1, r2, ..., rn

such thatr1 is r, rn is s, andri −→R ri+1 for all i. Such a sequence is called arewrite
sequencefrom r to s, or aderivation from r to s. Note thatr −→∗

R r for all r andR.
A term r is reducibleif there is a terms such thatr −→ s, otherwiser is irreducible. If
r −→∗

R s ands is irreducible thens is called anormal formof r.
For example, given the systemR = {x + 0 −→ x, 0 + x −→ x}, the term0 + (y + 0)

rewrites in two ways;0+(y +0) −→ 0+y and0+(y +0) −→ y +0. Applying rewriting
again, one obtains0+(y +0) −→∗ y. In this case,y is a normal form of0+(y+0), since
y cannot be further rewritten. Computationally, rewriting aterms proceeds by finding a
subtermt of s, called aredex, such thatt is an instance of the left-hand side of some rule
in R, and replacingt by the corresponding instance of the right-hand side of the rule. For
example,0 + (y + 0) is an instance of the left-hand side0 + x of the rule0 + x −→ x.
The corresponding instance of the right-hand sidex of this rule isy + 0, so0 + (y + 0) is
replaced byy + 0. This approach assumes that all variables on the right-handside appear
also on the left-hand side.

We now relate rewriting to equational theories. From the above rules,r ↔ s if r −→ s
or s −→ r, and↔∗ is the reflexive transitive closure of↔. Thusr ↔∗ s if there is
a sequencer1, r2, ..., rn such thatr1 is r, rn is s, andri ↔ ri+1 for all i. SupposeR
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is a term rewriting system{r1 −→ s1, ..., rn −→ sn}. DefineR= to be the associated
equational system{r1 = s1, ..., rn = sn}. Also, t =R u is defined asR= |= t = u, that
is, the equationt = u is a logical consequence of the associated equational system. The
relation=R is thus the smallest congruence relation generated byR, in algebraic terms.
The relation=R is defined semantically, and the relation−→∗ is defined syntactically. It
is useful to find relationships between these two concepts inorder to be able to compute
properties of=R and to find complete restrictions of the inference rules of Birkhoff’s
theorem. Note that by Birkhoff’s theorem,R= |= t = u iff t ↔∗

R u. This is already
a connection between the two concepts. However, the fact that rewriting can go in both
directions in the derivation fort ↔∗

R u is a disadvantage. What we will show is that ifR
has certain properties, some of them decidable, thent =R u iff any normal form oft is the
same as any normal form ofu. This permits us to decide ift =R u by rewritingt andu to
any normal form and checking if these are identical.

1.3.5 Confluence and termination properties

We now present some properties of term rewriting systemsR. Equivalently, these can be
thought of as properties of the rewrite relation−→R. For termss andt, s ↓ t means that
there is a termu such thats −→∗ u andt −→∗ u. Also, s ↑ t means that there is a term
r such thatr −→∗ s andr −→∗ t. R is said to beconfluentif for all termss andt, s ↑ t
implies s ↓ t. The meaning of this is that any two rewrite sequences from a given term,
can always be “brought together.” Sometimes one is also interested inground confluence.
R is said to be ground confluent if for all ground termsr, if r −→∗ s andr −→∗ t then
s ↓ t. Most research in term rewriting systems concentrates on confluent systems.

A term rewriting systemR (alternatively, a rewrite relation−→) has theChurch-Rosser
propertyif for all termss andt, s↔∗ t iff s ↓ t.

Theorem 1.3.8 [198] A term rewriting systemR has the Church-Rosser property iffR is
confluent.

Sinces ↔∗ t iff s =R t, this theorem connects the equational theory ofR with
rewriting. In order to decide ifs =R t for confluentR it is only necessary to see ifs andt
rewrite to a common term.

Two term rewriting systems are said to beequivalentif their associated equational
theories are equivalent (have the same logical consequences).

Definition 1.3.9 A term rewriting system isterminating(strongly normalizing) if it has no
infinite rewrite sequences. Informally, this means that therewriting process, applied to a
term, will eventually stop, no matter how the rewrite rules are applied.

One desires all rewrite sequences to stop in order to guarantee that no matter how the
rewriting is done, it will eventually terminate. An exampleof a terminating system is
{g(x) −→ f(x), f(x) −→ x}. The first rule changesg’s to f ’s and so can only be applied
as many times as there areg’s. The second rule reduces the size and so it can only be
applied as many times as the size of a term. An example of a nonterminating system is
{x −→ f(x)}. It can be difficult to determine if a system is terminating. The intuitive
idea is that a system terminates if each rule makes a term simpler in some sense. However,
the definition of simplicity is not always related to size. Itcan be that a term becomes
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simpler even if it becomes larger. In fact, it is not even partially decidable whether a term
rewriting system is terminating [130]. Termination orderings are often used to prove that
term rewriting systems are terminating. Recall the definition of termination ordering from
section 1.3.3.

Theorem 1.3.10SupposeR is a term rewriting system and> is a termination ordering
and for all rulesr −→ s in R, r > s. ThenR is terminating.

This result can be extended to quasi-orderings, which are relations that are reflexive
and transitive, but the above result should be enough to givean idea of the proof methods
used. Many termination orderings are known; some will be discussed in Section 1.3.5. The
orderings of interest are computable orderings, that is, itis decidable whetherr > s given
termsr ands.

Note that ifR is terminating, it is always possible to find a normal form of aterm by
any rewrite sequence continued long enough. However there can be more than one normal
form. If R is terminating and confluent, there is exactly one normal form for every term.
This gives a decision procedure for the equational theory, since for termsr ands, r =R s
iff r ↔∗

R s (by Birkhoff’s theorem) iffr ↓ s (by confluence) iffr ands have the same
normal form (by termination). This gives us a directed form of theorem proving in such
an equational theory. A term rewriting system which is both terminating and confluent is
calledcanonical. Some authors use the termconvergentfor such systems [77]. Many such
systems are known. Systems that are not terminating may still be globally finite, which
means that for every terms there are finitely many termst such thats −→∗ t. For a
discussion of global finiteness, see [108].

We have indicated how termination is shown; more will be presented in Section 1.3.5.
However, we haven’t shown how to prove confluence. As stated,this looks like a difficult
property. However, it turns out that ifR is terminating, confluence is decidable, from
Newman’s lemma [198], given below. IfR is not terminating, there are some methods that
can still be used to prove confluence. This is interesting, even though in that case one does
not get a decision procedure by rewriting to normal form, since it allows some flexibility
in the rewriting procedure.

Definition 1.3.11 A term rewriting system islocally confluent (weakly confluent)if for all
termsr, s, andt, if r −→ s andr −→ t thens ↓ t.

Theorem 1.3.12 (Newman’s lemma)If R is locally confluent and terminating thenR is
confluent.

It turns out that one can test whetherR is locally confluent usingcritical pairs [148],
so that local confluence is decidable for terminating systems. Also, ifR is not locally con-
fluent, it can sometimes be made so by computing critical pairs between rewrite rules inR
and using these critical pairs to add new rewrite rules toR until the process stops. This pro-
cess is known ascompletionand was introduced by Knuth and Bendix [148]. Completion
can also be seen as adding equations to a set of rewrite rules by ordered paramodulation
and demodulation, deleting new equations that are instances of existing ones or that are
instances ofx = x. These new equations are then oriented into rewrite rules and the pro-
cess continues. This process may terminate with a finite canonical term rewriting system
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or it may continue forever. It may also fail by generating an equation that cannot be ori-
ented into a rewrite rule. One can still useordered rewritingon such equations so that they
function much as a term rewriting system [62]. When completion does not terminate, and
even if it fails, it is still possible to use a modified versionof the completion procedure as
a semidecision procedure for the associated equational theory using the so-calledunfailing
completion[15, 16] which in the limit produces a ground confluent term rewriting system.
In fact, Huet proved earlier[129] that if the original completion procedure does not fail, it
provides a semidecision procedure for the associated equational theory.

Termination orderings

We give techniques to show that a term rewriting system is terminating. These all make use
of well founded partial orderings on terms having the property that if s −→ t thens > t.
If such an ordering exists, then a rewriting system is terminating since infinite reduction
sequences correspond to infinite descending sequences of terms in the ordering. Recall
from section 1.3.3 that a termination ordering is a well-founded ordering that has the full
invariance and replacement properties.

The termination ordering based on size was discussed in section 1.3.3. Unfortunately,
this ordering is too weak to handle many interesting systemssuch as those containing the
rulex ∗ (y + z) −→ x ∗ y +x ∗ z, since the right hand side is bigger than the left-hand side
and has more occurrences ofx. This ordering can be modified to weigh different symbols
differently; the definition of||s|| can be modified to be a weighted sum of the number of
occurrences of the symbols. The ordering of Knuth and Bendix[148] is more refined and
is able to show that systems containing the rule(x ∗ y) ∗ z −→ x ∗ (y ∗ z) terminate.

Another class of termination orderings are the polynomial orderings suggested by
Lankford [153, 154]. For these, each function and constant symbol is interpreted as a
polynomial with integer coefficients and terms are ordered by the functions associated
with them.

The recursive path ordering was discussed in section 1.3.3.In order to handle the
associativity rule(x ∗ y) ∗ z −→ x ∗ (y ∗ z) it is necessary to modify the ordering so that
subterms are considered lexicographically. This lexicographic treatment of subterms is
the idea of the lexicographic path ordering of Kamin and Levy[138]. Using this ordering,
one can prove the termination of Ackermann’s function. There are also many orderings
intermediate between the recursive path ordering and the lexicographic path ordering; these
are known as orderings with “status.” The idea of status is that for some function symbols,
whenf(s1...sm) andf(t1...tn) are compared, the subtermssi andti are compared using
the multiset ordering. For other function symbols, the subterms are compared using the
lexicographic ordering. For other function symbols, the subterms are compared using the
lexicographic ordering in reverse, that is, from right to left; this is equivalent to reversing
the lists and then applying the lexicographic ordering. Onecan show that all such versions
of the orderings are simplification orderings, for functionsymbols of bounded arity.

There are also many other orderings known that are similar tothe above ones, such as
the recursive decomposition ordering [134] and others; forsome surveys see [76, 251]. In
practice,quasi-orderingsare often used to prove termination. A relation is a quasi-ordering
if it is reflexive and transitive. A quasi-ordering is often written as≥. Thusx ≥ x for all x,
and ifx ≥ y andy ≥ z thenx ≥ z. It is possible thatx ≥ y andy ≥ x even ifx andy are
distinct; then one writesx ≈ y indicating that suchx andy are in some sense “equivalent”
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in the ordering. One writesx > y if x ≥ y but noty ≥ x, for a quasi-ordering≥. The
relation> is called thestrict part of the quasi-ordering≥. Note that the strict part of a
quasi-ordering is a partial ordering. The multiset extension of a quasi-ordering is defined
in a manner similar to the multiset extension of a partial ordering [133, 76].

Definition 1.3.13 A quasi-ordering≥ on terms satisfies thereplacement property(ismono-
tonic) if s ≥ t impliesf(...s...) ≥ f(...t...). Note that it is possible to haves > t and
f(...s...) ≈ f(...t...).

Definition 1.3.14 A quasi-ordering≥ is a quasi-simplification orderingif f(...t...) ≥ t
for all terms and iff(...t...) ≥ f(......) for all terms and all function symbolsf of variable
arity, and if the ordering satisfies the replacement property.

Definition 1.3.15 A quasi-ordering≥ satisfies thefull invariance property(see section
1.3.5) ifs > t impliessΘ > tΘ for all s, t, Θ.

Theorem 1.3.16 (Dershowitz [75])For terms over a finite set of function symbols, all
quasi-simplification orderings have strict parts which arewell founded.

Proof. Using Kruskal’s tree theorem [152].
�

Theorem 1.3.17SupposeR is a term rewriting system and≥ is a quasi-simplification
ordering which satisfies the full invariance property. Suppose that for all rulesl −→ r in
R, l > r. ThenR is terminating.

Actually, a version of the recursive path ordering adapted to quasi-orderings is known
as the recursive path ordering in the literature. The idea isthat terms that are identical up
to permutation of arguments, are equivalent. There are a number of different orderings like
the recursive path ordering.

Some decidability results about termination are known. In general, it is undecidable
whether a systemR is terminating [130]; however, for ground systems, that is,systems in
which left and right-hand sides of rules are ground terms, termination is decidable [130].
For non-ground systems, termination of even one rule systems has been shown to be un-
decidable [64]. However, automatic tools hav been developed that are very effective at
either proving a system to be terminating or showing that it is not terminating, or finding
an orientation of a set of equations that is terminating [123, 83, 149, 100]. In fact, one such
system [149] from [92] was able to find an automatic proof of termination of a system for
which the termination proof was the main result of a couple ofpublished papers.

A number of relationships between termination orderings and large ordinals have been
found; this is only natural since any well-founded orderingcorresponds to some ordinal.
It is interesting that the recursive path ordering and otherorderings provide intuitive and
useful descriptions of large ordinals. For a discussion of this, see [76] and [74].

There has also been some work on modular properties of termination; for example, if
one knows thatR1 andR2 terminate, what can be said about the termination ofR1 ∪ R2

under certain conditions? For a few examples of works along this line, see [265, 266, 188].
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1.3.6 Equational rewriting

There are two motivations for equational rewriting. The first is that some rules are non-
terminating and cannot be used with a conventional term rewriting system. One example
is the commutative axiomx + y = y + x which is nonterminating no matter how it is
oriented into a rewrite rule. The second reason is that if an operator like+ is associative
and commutative then there are many equivalent ways to represent terms likea+b+c+d.
This imposes a burden in storage and time on a theorem prover or term rewriting system.
Equational rewriting permits us to treat some axioms, likex+ y = y +x, in a special way,
avoiding problems with termination. It also permits us to avoid explicitly representing
many equivalent forms of a term. The cost is a more complicated rewriting relation, more
difficult termination proofs, and a more complicated completion procedure. Indeed, signif-
icant developments are still occurring in these areas, to attempt to deal with the problems
involved. In equational rewriting, some equations are converted into rewrite rulesR and
others are treated as equationsE. Typically, rules that terminate are placed inR and rules
for which termination is difficult are placed inE, especially ifE unification algorithms are
known.

The general idea is to considerE-equivalence classes of terms instead of single terms.
TheE-equivalence classes consist of terms that are provably equal underE. For example,
if E includes associative and commutative axioms for+, then the terms(a + b) + c,
a + (b + c), c + (b + a), et cetera will all be in the sameE-equivalence class. Recall that
s =E t if E |= s = t, that is,t can be obtained froms by replacing subterms usingE. Note
that=E is an equivalence relation. Usually some representation ofthe whole equivalence
class is used; thus it is not necessary to store all the different terms in the class. This is a
considerable savings in storage and time for term rewritingand theorem proving systems.

It is necessary to define a rewriting relation onE-equivalence classes of terms. Ifs
is a term, let[s]E be itsE-equivalence class, that is, the set of termsE-equivalent tos.
The simplest approach is to say that[s]E −→ [t]E if s −→ t. Retracting this back to
individual terms, one writesu −→R/E v if there are termss andt such thatu =E s and
v =E t ands −→R t. This systemR/E is called aclass rewriting system. However,
R/E rewriting turns out to be difficult to compute, since it requires searching through all
termsE-equivalant tou. A computationally simpler idea is to say thatu −→ v if u has a
subterms such thats =E s′ ands′ −→R t andv is u with s replaced byt. In this case
one writes thatu −→R,E v. This systemR, E is called theextended rewrite systemfor R
moduloE. Note that rules withE-equivalent left-hand sides need not be kept. TheR, E
rewrite relation only requires using the equational theoryon the chosen redexs instead of
the whole term, to matchs with the left-hand side of some rule. SuchE-matching is often
(but not always, see [119]) easy enough computationally to makeR, E rewriting much
more efficient thanR/E rewriting. Unfortunately,−→R/E has better logical properties
for decidingR∪E equivalence. So the theory of equational rewriting is largely concerned
with finding connections between these two rewriting relations.

Consider the systemsR/E andR, E whereR is {a ∗ b −→ d} andE consists of the
associative and commutative axioms for∗. Supposes is (a ∗ c) ∗ b andt is c ∗ d. Then
s −→R/E t sinces is E-equivalent toc ∗ (a ∗ b). However, it is not true thats −→R,E t
since there is no subterm ofs that isE-equivalent toa ∗ b. Supposes is (b ∗ a) ∗ c. Then
s −→R,E d ∗ c sinceb ∗ a is E-equivalent toa ∗ b.

Note that ifE equivalence classes are nontrivial then it is impossible for class rewriting
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to be confluent in the traditional sense (since any termE-equivalent to a normal form will
also be a normal form of a term). So it is necessary to modify the definition to allowE-
equivalent normal forms. We want to capture the property that class rewriting is confluent
when considered as a rewrite relation on equivalence classes. More precisely,R/E is
(class) confluentif for any term t, if t −→∗

R/E u and t −→∗

R/E v then there areE-
equivalent termsu′ andv′ such thatu −→∗

R/E u′ andv −→∗

R/E v′. This implies thatR/E
is confluent and hence Church-Rosser, considered as a rewrite relation onE-equivalence
classes. IfR/E is class confluent and terminating then a term may have more than one
normal form, but all of them will beE-equivalent. Furthermore, ifR/E is class confluent
and terminating, then anyR= ∪ E equivalent terms can be reduced toE equivalent terms
by rewriting. Then anE-equivalence procedure can be used to decideR=∪E equivalence,
if there is one. Note thatE-equivalent rules need not both be kept, for this method.

R is said to beChurch-Rosser moduloE if any two R= ∪ E-equivalent terms can be
R, E rewritten toE-equivalent terms. This is not the same as saying thatR/E is Church-
Rosser, considered as a rewrite system onE-equivalence classes; in fact, it is a stronger
property. Note thatR, E rewriting is a subset ofR/E rewriting, so ifR/E is terminating,
so isR, E. If R/E is terminating andR is Church-Rosser moduloE thenR, E rewriting is
also terminating andR=∪E-equality is decidable ifE-equality is. Also, the computation-
ally simplerR, E rewriting can be used to decide the equational theory. But Church-Rosser
moduloE is not a local property; in fact it is undecidable in general.Therefore one desires
decidable sufficient conditions for it. This is the contribution of Jouannaud and Kirch-
ner [132], using confluence and “coherence”. The idea of coherence is that there should be
some similarity in the way all elements of anE-equivalence class rewrite. Their conditions
involve critical pairs between rules and equations andE-unification procedures.

Another approach is to add new rules toR to obtain a logically equivalent system
R′/E; that is,R= ∪ E andR′= ∪ E have the same logical consequences (i.e., they are
equivalent), butR′, E rewriting is the same asR/E rewriting. Therefore it is possible to
use the computationally simplerR′, E rewriting to decide the equality theory ofR/E. This
is done for associative-commutative operators by Petersonand Stickel [212]. In this case,
confluence can be decided by methods simpler than those of Jouannaud and Kirchner.
Termination for equational rewriting systems is tricky to decide; this will be discussed
later. Another topic is completion for equational rewriting, adding rules to convert an
equational rewriting system into a logically equivalent equational rewriting system with
desired confluence properties. This is discussed by Peterson and Stickel [212] and also by
Jouannaud and Kirchner [132]; for earlier work along this line see [155, 156].

AC rewriting

We now consider the special case of rewriting relative to theassociative and commutative
axiomsE = {f(x, y) = f(y, x), f(f(x, y), z) = f(x, f(y, z))} for a function symbolf .
Special efficient methods exist for this case. One idea is to modify the term structure so
thatR, E rewriting can be used rather thanR/E rewriting. This is done by offlattening
that is, a termf(s1, f(s2, ..., f(sn−1, sn)..)), where none of thesi havef as a top-level
function symbol, is represented asf(s1, s2, ..., sn). Heref is a vary-adic symbol, which
can take a variable number of arguments. Similarly,f(f(s1, s2), s3) is represented as
f(s1, s2, s3). This represents all terms that are equivalent up to the associative equation
f(f(x, y), z) = f(x, f(y, z)) by the same term. Also, terms that are equivalent up to
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permutation of arguments off are also considered as identical. This means that eachE-
equivalence class is represented by a single term. This alsomeans that all members of a
givenE-equivalence class have the same term structure, makingR, E rewriting seem more
of a possibility. Note however that the subterm structure has been changed;f(s1, s2) is
a subterm off(f(s1, s2), s3) but there is no corresponding subterm off(s1, s2, s3). This
means thatR, E rewriting does not simulateR/E rewriting on the original system. For
example, consider the systemsR/E andR, E whereR is {a ∗ b −→ d} andE consists
of the associative and commutative axioms for∗. Supposes is (a ∗ b) ∗ c andt is d ∗ c.
Thens −→R/E t; in fact,s −→R,E t. However, if one flattens the terms, thens becomes
∗(a, b, c) ands no longer rewrites tot since the subterma ∗ b has disappeared.

To overcome this, one addsextensionsto rewrite rules to simulate their effect on flat-
tened terms. The extension of the rule{a∗b −→ d} is {∗(x, a, b) −→ ∗(x, d)}, wherex is
a new variable. With this extended rule,∗(a, b, c) rewrites tod ∗ c. The general idea, then,
is to flatten terms, and extendR by adding extensions of rewrite rules to it. Then, extended
rewriting on flattened terms using the extendedR is equivalent to class rewriting on the
original R. Formally, supposes andt are terms ands′ and t′ are their flattened forms.
SupposeR is a term rewriting system andR′ is R with the extensions added. SupposeE
is associativity and commutativity. Thens −→R/E t iff s′ −→R′,E t′. The extendedR is
obtained by adding, for each rule of the formf(r1, r2, ..., rn) −→ s wheref is associative
and commutative, an extended rule of the formf(x, r1, r2, ..., rn) −→ f(x, s), wherex is
a new variable. The original rule is also retained. This ideadoes not always work on other
equational theories, however. Note that some kind of associative-commutative matching
is needed for extended rewriting. This can be fairly expensive, since there are so many
permutations to consider, but it is fairly straightforwardto implement. Completion relative
to associativity and commutativity can be done with the flattened representation; a method
for this is given in [212]. This method requires associative-commutative unification (see
section 1.3.6).

Other sets of equations

The general topic of completion for other equational theories was addressed by Jouannaud
and Kirchner in [132]. Earlier work along these lines was done by Lankford, as mentioned
above. Such completion procedures may useE-unification. Also, they may distinguish
rules with linear left-hand sides from other rules. (A term is linear if no variable appears
more than once.)

AC termination orderings

We now consider termination orderings for special equational theoriesE. The problem
is thatE-equivalent terms are identified when doing equational rewriting, so that allE-
equivalent terms have to be considered the same by the ordering. Equational rewrit-
ing causes considerable problems for the recursive path ordering and similar orderings.
For example, consider the associative-commutative equationsE. One can representE-
equivalence classes by flattened terms, as mentioned above.However, applying the re-
cursive path ordering to such terms violates monotonicity.Suppose∗ > + and ∗ is
associative-commutative. Thenx ∗ (y + z) > x ∗ y + x ∗ z. By monotonicity, one should
haveu ∗x∗ (y + z) > u ∗ (x∗ y +x∗ z). In fact, this fails; the term on the right is larger in
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the recursive path ordering. A number of attempts have been made to overcome this. The
first was the associative path ordering of Dershowitz, Hsiang, Josephson, and Plaisted[79],
developed by the last author. This ordering applied to transformed terms, in which big op-
erators like∗ were pushed inside small operators like+. The ordering was not originally
extended to non-ground terms, but it seems that it would be fairly simple to do so using
the fact that a variable is smaller than any term properly containing it. A simpler approach
to extending this ordering to non-ground terms was given later by Plaisted [216], and then
further developed in Bachmair and Plaisted [13], but this requires certain conditions on the
precedence. This work was generalized by Bachmair and Dershowitz [14] using the idea
of “commutation” between two term rewriting systems. Later, Kapur [141] devised a fully
general associative termination ordering that applies to non-ground terms, but may be hard
to compute. Work in this area has continued since that time[150]. Another issue is the
incorporation of status in such orderings, such as left-to-right, right-to-left, or multiset, for
various function symbols.E-termination orderings for other equational theories may be
even more complicated than for associativity and commutativity.

Congruence closure

Suppose one wants to determine whetherE |= s = t whereE is a set (conjunction) of
ground equations ands and t are ground terms. For example, one may want to decide
whether{f5(c) = c, f3(c) = c} |= f(c) = c. This is a case in which rewriting techniques
apply but another method is more efficient. The method is calledcongruence closure[197];
for some efficient implementations and data structures see [82]. The idea of congruence
closure is essentially to use equality axioms, but restricted to terms that appear inE, in-
cluding its subterms. For the above problem, the following is a derivation off(c) = c,
identifying equationsu = v andv = u:

1. f5(c) = c (given)

2. f3(c) = c (given)

3. f4(c) = f(c) (2, using equality replacement)

4. f5(c) = f2(c) (3, using equality replacement)

5. f2(c) = c (1,4, transitivity)

6. f3(c) = f(c) (5, using equality replacement)

7. f(c) = c (2,6, transitivity)

One can show that this approach is complete.

E-unification algorithms

When the set of axioms in a theorem to be proved includes a setE of equations, it is often
better to use specialized methods than general theorem proving techniques. For exam-
ple, if the binary infix operator∗ is associative and commutative, many equivalent terms
x∗(y∗z), y∗(x∗z), y∗(z∗x), et cetera may be generated. These cannot be eliminated by
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rewriting since none is simpler than the others. Even the idea of using unorderable equa-
tions as rewrite rules when the applied instance is orderable, won’t help. One approach to
this problem is to incorporate a generalE-unification algorithm into the theorem prover.
Plotkin [221] first discussed this general concept and showed its completeness in the con-
text of theorem proving. WithE unification built into a prover, only one representative
of eachE-equivalence class need be kept, significantly reducing thenumber of formulas
retained.E-unification is also known as semantic unification, which maybe a misnomer
since no semantics (interpretation) is really involved. The general idea is that ifE is a set
of equations, anE-unifier of two termss andt is a substitutionΘ such thatE |= sΘ =
tΘ, and a most generalE-unifier is anE-unifier that is as general as possible in a certain
technical sense relative to the theoryE. Many unification algorithms for various sets of
equations have been developed [246, 9]. For some theories, there may be at most one most
generalE-unifier, and for others, there may be more than one, or even infinitely many,
most generalE-unifiers.

An important special case, already mentioned above in the context of term-rewriting, is
associative-commutative (AC) unification. In this case, iftwo terms areE-unifiable, then
there are at most finitely many most generalE-unifiers, and there are algorithms to find
them that are usually efficient in practice. The well-known algorithm of [258] essentially
involves solving Diophantine equations and finding a basis for the set of solutions and find-
ing combinations of basis vectors in which all variables arepresent. This can sometimes
be very time consuming; the time to perform AC-unification can be double exponential
in the sizes of the terms being unified[139]. Domenjoud [81] showed that the two terms
x + x + x + x andy1 + y2 + y3 + y4 have more than 34 billion different AC unifiers.
Perhaps AC unification algorithm is artificially adding complexity to theorem proving, or
perhaps the problem of theorem proving in the presence of AC axioms is really hard, and
the difficulty of the AC unification simply reveals that. There may be ways of reducing
the work involved in AC unification. For example, one might consider resource bounded
AC unification, that is, finding all unifiers within some size bound. This might reduce the
number of unifiers in cases where many of them are very large. Another idea is to con-
sider “optional variables,” that is, variables that may or may not be present. Ifx is not
present in the productx ∗ y then this product is equivalent toy. This is essentially equiva-
lent to introducing a new identity operator, and greatly reduces the number of AC unifiers.
This approach has been studied by Domenjoud[80]. This permits one to represent a large
number of solutions compactly, but requires one to keep track of optionality conditions.

Rule-based unification

Unification can be viewed as equation solving, and thereforeis part of theorem proving or
possibly logic programming. This approach to unification permits conceptual simplicity
and also is convenient for theoretical investigations. Forexample, unifying two literals
P (s1, s2, ..., sn) andP (t1, t2, ..., tn) can be viewed as solving the set of equations{s1 =
t1, s2 = t2, ..., sn = tn}. Unification can be expressed as a collection of rules operating on
such sets of equations to either obtain a most general unifieror detect non-unifiability. For
example, one rule replaces an equationf(u1, u2, ..., un) = f(v1, v2, ..., vn) by the set of
equations{u1 = v1, u2 = v2, ..., un = vn}. Another rule detects non-unifiability if there
is an equation of the formf(...) = g(...) for distinctf andg. Another rule detects non-
unifiability if there is an equation of the formx = t wheret is a term properly containing
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x. With a few more such rules, one can obtain a simple unification algorithm that will
terminate with a set of equations representing a most general unifier. For example, the set
of equations{x = f(a), y = g(f(a))} would represent the substitution{x ← f(a), y ←
g(f(a))}. This approach has also been extended toE-unification for various equational
theoriesE. For a survey of this aproach, see [135].

1.3.7 Other logics

Up to now, we have considered theorem proving in general first-order logic. However,
there are many more specialized logics for which more efficient methods exist. Such log-
ics fix the domain of the interpretation, such as to the reals or integers, and also the inter-
pretations of some of the symbols, such as “+” and “*”. Examples of theories considered
include Presburger arithmetic, the first-order theory of natural numbers with addition [206],
Euclidean and non-Euclidean geometry[279, 56], inequalities involving real polynomials
(for which Tarski first gave a decision procedure)[53], ground equalities and inequalities,
for which congruence closure[197] is an efficient decision procedure, modal logic, tem-
poral logic, and many more specialized logics. Theorem proving for ground formulas of
first-order logic is also known assatisfiability modulo theories(SMT) in the literature. De-
scription logics [8], discussed in chapter 3 of this handbook, are sublanguages of first-order
logic, with extensions, that often have efficient decision procedures and have applications
to the semantic web. Specialized logics are often built intoprovers or logic programming
systems usingconstraints[34]. The idea of using constraints in theorem proving has been
around for some time [147]. Another specialized area is thatof computing polynomial
ideals, for which efficient methods have been developed [45]. An approach to combin-
ing decision procedures was given in [196] and there has beencontinued interest in the
combination of decision procedures since that time.

Higher-Order Logic

In addition to the logics mentioned above, there are more general logics to consider, includ-
ing higher-order logics. Such logics permit quantificationover functions and predicates, as
well as variables. The HOL prover [103] uses higher-order logic and permits users to give
considerable guidance in the search for a proof. Andrews’ TPS prover is more automatic,
and has obtained some impressive proofs fully automatically, including Cantor’s theorem
that the powerset of a set has more elements than the set. The TPS prover was greatly
aided by a breadth-first method of instantiating matings described in [32]. In general,
higher-order logic often permits a more natural formulation of a theorem than first-order
logic, and shorter proofs, in addition to being more expressive. But of course the price
is that the theorem prover is more complicated; in particular, higher-order unification is
considerably more complex than first-order unification.

Mathematical Induction

Without going to a full higher-order logic, one can still obtain a considerable increase in
power by adding mathematical induction to a first-order prover. The mathematical induc-
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tion schema is the following one:

∀y[[∀x((x < y)→ P (x))]→ P (y)]

∀yP (y)

Here< is a well-founded ordering. Specializing this to the usual ordering on the integers,
one obtains the following Peano induction schema:

P (0), ∀x(P (x)→ P (x + 1))

∀xP (x)

With such inference rules, one can, for example, prove that addition and multiplication are
associative and commutative, given their straightforwarddefinitions. Both of these induc-
tion schemas are second-order, because the predicateP is implicitly universally quantified.
The problem in using these schemas in an automatic theorem prover is in instantiatingP .
Once this is done, the induction schema can often be proved byfirst-order techniques. One
way to adapt a first-order prover to perform mathematical induction, then, is simply to per-
mit a human to instantiateP . The problem of instantiatingP is similar to the problem of
finding loop invariants for program verification.

By instantiatingP is meant replacingP (y) in the above formula byA[y] for some
first-order formulaA containing the variabley. Equivalently, this means instantiatingP to
the functionλz.A[z]. When this is done, the first schema above becomes

∀y[[∀x((x < y)→ A[x])]→ A[y]]

∀yA[y]

Note that the hypothesis and conclusion are now first-order formulas. This instantiated
induction schema can then be given to a first-order prover. One way to do this is to have
the prover prove the formula∀y[[∀x((x < y) → A[x])] → A[y]], and then conclude
∀yA[y]. Another approach is to add the first-order formula{∀y[[∀x((x < y)→ A[x])]→
A[y]]} → {∀yA[y]} to the set of axioms. Both approaches are facilitated by using a
structure-preserving translation of these formulas to clause form, in which the formula
A[y] is defined to be equivalent toP (y) for a new predicate symbolP .

A number of semi-automatic techniques for finding such a formulaA and choosing the
ordering< have been developed. One of them is the following: To prove that for all finite
ground termst, A[t], first proveA[c] for all constant symbolsc, and then for each function
symbolf of arity n prove thatA[t1] ∧A[t2] ∧ · · · ∧A[tn]→ A[f(t1, t2, · · · , tn)]. This is
known asstructural inductionand is often reasonably effective.

A common case when an induction proof may be necessary is whenthe prover is not
able to prove the formula∀xA[x], but the formulasA[t] are separately provable for all
ground termst. Analogously, it may not be possible to prove that∀x(naturalnumber(x)→
A[x]), but one may be able to proveA[0], A[1], A[2], · · · individually. In such a case, it is
reasonable to try to prove∀xA[x] by induction, instantiatingP (x) in the above schema to
A[x]. However, this still does not specify which ordering< to use. For this, it can be useful
to detect how long it takes to prove theA[t] individually. For example, if the time to prove
A[n] for natural numbern is proportional ton, then one may want to try the usual (size)
ordering on natural numbers. IfA[n] is easy to prove for all evenn but for oddn, the time
is proportional ton, then one may try to prove the even case directly without induction and
the odd case by induction, using the usual ordering on natural numbers.
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The Boyer-Moore prover NqTHM [39, 37] has mathematical induction techniques built
in, and many difficult proofs have been done on it, generally with substantial human guid-
ance. For example, correctness of AMD Athlon’s elementary floating point operations,
and parts of IBM Power 5 and other processors have been provedon it. ACL2 [144, 143]
is a software system built on Common Lisp related to NqTHM that is intended to be an
industrial strength version of NqTHM, mainly for the purpose of software and hardware
verification. Boyer, Kaufmann, and Moore won the ACM Software System Award in 2005
for these provers. A number of other provers also have automatic or semi-automatic induc-
tion proof techniques. Rippling[48] is a technique originally developed for mathematical
induction but which also has applications to summing seriesand general equational reason-
ing. Theground reducibilityproperty is also often used for induction proofs, and has ap-
plications to showing the completeness of algebraic specifications[136]. A term isground
reducibleby a term rewriting systemR if all its ground instances are reducible byR. This
property was first shown decidable in [217], with another proof soon after in [140]. It was
shown to be exponential time complete by Comon and Jacquemard [61]. However, closely
related versions of this problem are undecidable. RecentlyKapur and Subramaniam[142]
described a class of inductive theorems for which validity is decidable, and this work was
extended by Giesl and Kapur [99]. Bundy has written an excellent survey of inductive the-
orem proving [47] and the same handbook also has a survey of the so-calledinductionless
inductiontechnique, which is based on completion of term-rewriting systems [60]; see also
[98].

Set Theory

Since most of mathematics can be expressed in terms of set theory, it is logical to develop
theorem proving methods that apply directly to theorems expressed in set theory. Second-
order provers do this implicitly. First-order provers can be used for set theory as well;
Zermelo-Fraenkel set theory consists of an infinite set of first-order axioms, and so one
again has the problem of instantiating the axiom schemas so that a first-order prover can
be used. There is another version of set theory known as von Neumann-Bernays-Godel set
theory [38] which is already expressed in first-order logic.Quite a bit of work has been
done on this version of set theory as applied to automated deduction problems. Unfortu-
nately, this version of set theory is somewhat cumbersome for a human or for a machine.
Still, some mathematicians have an interest in this approach. There are also a number of
systems in which humans can construct proofs in set theory, such as Mizar [267] and others
[27, 225]. In fact, there is an entire project (the QED project) devoted to to computer-aided
translation of mathematical proofs into completely formalized proofs[107].

It is interesting to note in this respect that many set theoryproofs that are simple for a
human are very hard for resolution and other clause-based theorem provers. This includes
theorems about the associativity of union and intersection, for example. In this area, it
seems worthwhile to incorporate more of the simple definitional replacement approach
used by humans into clause-based theorem provers.

As an example of the problem, suppose that it is desired to prove that∀x((x ∩ x) =
x) from the axioms of set theory. A human would typically prove this by noting that
(x ∩ x) = x is equivalent to((x ∩ x) ⊂ x) ∧ (x ⊂ (x ∩ x)), then observe thatA ⊂ B is
equivalent to∀y((y ∈ A) → (y ∈ B)), and finally observe thaty ∈ (x ∩ x) is equivalent
to (y ∈ x) ∧ (y ∈ x). After applying all of these equivalences to the original theorem, a
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human would observe that the result is a tautology, thus proving the theorem.
But for a resolution theorem prover, the situation is not so simple. The axioms needed

for this proof are

(x = y)↔ [(x ⊂ y) ∧ (y ⊂ x)]
(x ⊂ y)↔ ∀z((z ∈ x)→ (z ∈ y))
(z ∈ (x ∩ y))↔ [(z ∈ x) ∧ (z ∈ y)]

When these are all translated into clause form and Skolemized, the intuition of replacing a
formula by its definition gets lost in a mass of Skolem functions, and a resolution prover has
a much harder time. This particular example may be easy enough for a resolution prover
to obtain, but other examples that are easy for a human quickly become very difficult for a
resolution theorem prover using the standard approach.

The problem is more general than set theory, and has to do withhow definitions are
treated by resolution theorem provers. One possible methodto deal with this problem is
to use “replacement rules” as described in [158]. This givesa considerable improvement
in efficiency on many problems of this kind. Andrews’ matingsprover has a method of
selectively instantiating definitions [33] that also helpson such problems in a higher-order
context. The U-rules of OSHL also help significantly[190].

1.4 Applications of Automated Theorem Provers

Among theorem proving applications, we can distinguish between those applications that
are truly automated, and those requiring some level of humanintervention; between KR
and non-KR applications; and between applications using classical first-order theorem
provers and those that do not. In the latter category fall applications using theorem proving
systems that do not support equality, or allow only restricted languages such as Horn clause
logic, or supply inferential procedures beyond those of classical theorem proving.

These distinctions are not independent. In general, applications requiring human inter-
vention have been only slightly used for KR; moreover, KR applications are more likely to
use a restricted language, or to use special-purpose inferential procedures.

It should be noted that any theorem proving system that can solve the math problems
that form a substantial part of the TPTP (Thousands of Problems for Theorem Provers)
testbed [262] must be a classical first-order theorem proverthat supports equality.

1.4.1 Applications Involving Human Intervention

Because theorem proving is in general intractable, the majority of applications of auto-
mated theorem provers require direction from human users inorder to work. The inter-
vention required can be extensive, e.g., the user may be required to supply lemmas to the
proofs on which the automated theorem prover is working [85]. In the worst case, a user
may be required to supply every step of a proof to an automatedtheorem prover; in this
case, the automated theorem prover is functioning simply asa proof checker .

The need for human intervention has often limited the applicability of automated the-
orem provers to applications where reasoning can be done offline; that is, where the rea-
soner is not used as part of a real-time application. Even given this restriction, automated
theorem provers have proved very valuable in a number of domains, including software
development and verification of software and hardware.
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Software Development

An example of an application to software development is the Amphion system, which
was developed by Stickel et al. [257] and uses the SNARK theorem prover [256]. It
has been used by NASA to compose programs out of a library of FORTRAN-77 subrou-
tines. The user of Amphion, who does not have to have any familiarity with either the-
orem proving or the library subroutines, gives a graphical specification; this specification
is translated into a theorem of first-order logic; and SNARK provides a constructive proof
of this theorem. This constructive proof is then translatedinto the application program in
FORTRAN-77.

The NORA/HAMMR system [87] similarly determines what software components can
be reused during program development. Each software component is associated with a
contractwritten in a formal language which captures the essentials of the component’s be-
havior. The system determines whether candidate components have compatible contracts
and are thus potentially reusable; the proof of compatibility is carried out using an auto-
mated theorem prover, though with a fair amount of human guidance. Automated theorem
provers used for NORA/HAMMR include Setheo [163], Spass [275, 276], and PROTEIN
[25], a theorem prover based on Mark Stickel’s PTTP [253, 255].

In the area of algorithm design and program analysis and optimization, KIDS (Kestrel
Interactive Development System) [248] is a program derivation system that uses automated
theorem proving technology to facilitate the derivation ofprograms from high-level pro-
gram specifications. The program specification is viewed as agoal, and rules of transfor-
mational development are viewed as axioms of the system. Thesystem, guided by the user,
searches to find the appropriate transformational rules; the application of which leads to
the final program. Both Amphion and KIDS require relatively little intervention from the
user once the initial specification is made; KIDS, for example, requires active interaction
only for the algorithm design tactic.

Formal verification of both hardware and software has been a particularly fruitful appli-
cation of automated theorem provers. The need for verification of program correctness had
been noted as far back as the early 1960s by McCarthy [177], who suggested approaching
the problem by stating a theorem that a program had certain properties — and in particular,
computed certain functions — and then using an automated theorem prover to prove this
theorem. Verification of cryptographic protocols is another important subfield of this area.

The field of hardware verification can be traced back to the design of the first hardware
description languages, e.g., ISP [28], and became active inthe 1970s and 1980s, with the
advent of VLSI design. (See, e.g, [23].) It gained further prominence after the discovery
in 1994 [111] of the Pentium FDIV bug, a bug in the floating point unit of Pentium pro-
cessors. It was caused by missing lookup table entries and led to incorrect results for some
floating point division operators. The error was widespread, well-publicized, and costly to
Intel, Pentium’s manufacturer, since it was obliged to offer to replace all affected Pentium
processors.

General-purpose automated theorem provers that have been commonly used for hard-
ware and/or software verification include

• The Boyer-Moore theorem provers NqTHM and ACL2 [37, 146, 145] were inspired
by McCarthy’s first papers on the topic of verifying program correctness. As men-
tioned in the previous section, these award winning theoremprovers have been used
for many verification applications.
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• The Isabelle theorem prover [210, 203] can handle higher-order logics and temporal
logics . Isabelle is thus especially well-suited in cases where program specifications
are written in temporal or dynamic logic (as is frequently the case). It has also been
used for verification of cryptographic protocols [249], which are frequently writeen
in higher order and/or epistemic logics [50].

• OTTER has been used for a system that analyzes and detects attacks on security
APIs (application programming interfaces) [280].

Special-purpose verification systems which build verification techniques on top of a
theorem prover include

• The PVS system [207] has been used by NASA’s SPIDER (ScalableProcessor-
Independent Design for Enhanced Reliability) to verify SPIDER protocols [213].

• The KIV (Karlsruhe Interactive Verifier) has been used for a range of software ver-
ification applications, including validation of knowledge-based systems [85]. The
underlying approach is similar to that of the KIDS and Amphion projects in that first,
the user is required to enter a specification; second, the user is entering a specifica-
tion of a modularized system, and the interactions between the modules; and third,
the user works with the system to construct a proof of validity. More interaction
between the user and the theorem prover seems to be required in this case, perhaps
due to the increased complexity of the problem. KIV offers a number of techniques
to reduce the burden on the user, including reuse of proofs and the generation of
counterexamples.

1.4.2 Non-Interactive KR Applications of Automated Theorem Provers

McCarthy argued [176] for an AI system consisting of a set of axioms and an automated
theorem prover to reason with those axioms. The first implementation of this vision came
in the late 1960s with Cordell Green’s question-answering system QA3 and planning sys-
tem [105, 106], Given a set of facts and a question, Green’s question-answering system
worked by resolving the (negated) question against the set of facts. Green’s planning sys-
tem used resolution theorem proving on a set of axioms representing facts about the world
in order to make simple inferences about moving blocks in a simple blocks-world domain.
In the late 1960s and early 1970s, SRI’s Shakey project [201]attempted to use the planning
system STRIPS [86] for robot motion planning; automated theorem proving was used to
determine applicability of operators and differences between states [239]. The difficulties
posed by the intractability of theorem proving became evident. (Shakey also faced other
problems, including dealing with noisy sensors and incomplete knowledge. Moreover, the
Shakey project does not actually count as a non-interactiveapplication of automated the-
orem proving, since people could obviously change Shakey’senvironment while it acted.
Nonetheless, projects like these underscored the importance of dealing effectively with
theorem proving’s essential intractability.)

In fact, there are today many fewer non-interactive than interactive applications of the-
orem proving, due to its computational complexity. Moreover, non-interactive applications
will generally use carefully crafted heuristics that are tailored and fine-tuned to a particular
domain or application. Without such heuristics, the theorem-proving program would not



58 1. Knowledge Representation and Classical Logic

be able to handle the huge number of clauses generated. Finally, as mentioned above, non-
interactive applications often use ATPs that are not general theorem provers with complete
proof procedures. This is because completeness and generality often come at the price of
efficiency.

Some of the most successful non-interactive ATP applications are based on two theo-
rem provers developed by Mark Stickel at SRI, PTTP [253, 255]and SNARK [256]. PTTP
attempts to retain as much as possible the efficiency of Prolog (see Section 1.4.4 below)
while it remedies the ways in which Prolog fails as a general-purpose theorem prover,
namely, its unsound unification algorithm, its incomplete search strategy, and its incom-
plete inference system. PTTP was used in SRI’s TACITUS system [124, 127], a message
understanding system for reports on equipment failure, naval operations, and terrorist ac-
tivities. PTTP was used specifically to furnish minimal-cost abductive explanations . It is
frequently necessary to perform abduction — that is, to posit a likely explanation — when
processing text. For example, to understand the sentence “The Boston office called,” one
must understand that the construct of metonymy (the use of a single characteristic to iden-
tify an entity of which it is an attribute) is being used, and that what is meant isa person
in the officecalled. Thus, to understand the sentence we must posit an explanation of a
person being in the office and making that call.

There are usually many possible explanations that can be posited for any particular
phenomenon; thus, the problem arises of choosing the simplest non-trivial explanation.
(One would not, for example, wish to posit an explanation consistent with an office actually
being able to make a call.) TACITUS considers explanations of the form P (a), where
∀xP (x)→ Q(x) andQ(a) are in the theory, and chooses the explanation that has minimal
cost [254]. Every conjunct in the logical form of a sentence is given an assumability cost;
this cost is passed back to antecedents in the Horn clause. Because of the way costs are
propagated, the cost may be partly dependent on the length ofthe proofs of the literals in
the explanation.

PTTP was also used a central component of Stanford’s Logic-Based Subsumption Ar-
chitecture for robot control [1], which was used to program aNomad-200 robot to travel to
different rooms in a multi-story building. The system employed a multi-layered architec-
ture; in each layer, PTTP was used to prove theorems from the given axioms. Goals were
transmitted to layers below or to robot manipulators.

PTTP is fully automated; the user has no control over the search for solutions. In par-
ticular, each rule is used in its original form and in its contrapositive. In certain situations,
such as stating principles about substituting equals, reasoning with a contrapositive form
can lead to considerable inefficiency.

Stickel’s successor theorem prover to PTTP, SNARK [256], gives users this control. It
is more closely patterned after Otter; difficult theorems that are intractable for PTTP can
be handled by SNARK. It was used as the reasoning component for SRI’s participation
in DARPA’s High-Performance Knowledge Bases (HPKB) Project [59], which focused on
constructing large knowledge bases in the domain of crisis managment; and developing
question-answering systems for querying these knowledge bases. SNARK was used pri-
marily in SRI’s question-answering portion of that system.SNARK, in contrast to what
would have been possible with PTTP, allowed users to fine tunethe question-answering
system for HPKB, by crafting an ordering of predicates and clauses on which resolution
would be performed. This ordering could be modified as the knowledge base was altered.
Such strategies were necessary to get SNARK to work effectively given the large size of
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the HPKB knowledge base.
For its use in the HPKB project, SNARK had to be extended to handle temporal rea-

soning .
SNARK has also been used for consistency checking of semantic web ontologies [21].
Other general-purpose theorem provers have also been used for natural language appli-

cations, though on a smaller scale and for less mature applications. Otter has been used in
PENG (Processable English) [243], a controlled natural language used for writing precise
specifications. Specifications in PENG can be translated into first-order logic; Otter is then
used to draw conclusions. As discussed in detail in Chapter 20, Bos and Markert [36] have
used Vampire (as well as the Paradox model finder) to determine whether a hypothesis is
entailed by some text.

The Cyc artificial intelligence project [161, 160, 174] is another widespread application
of non-interactive automated theorem proving. The ultimate goal of Cyc is the develop-
ment of a comprehensive, encyclopedic knowledge base of commonsense facts, along with
inference mechanisms for reasoning with that knowledge. Cyc contains an ontology giv-
ing taxonomic information about commonsense concepts, as well as assertions about the
concepts.

Cyc’s underlying language, CycL, allows expression of various constructs that go be-
yond first-order logic. Examples include:

• the concept of contexts [51]: one can state that something istrue in a particular
context as opposed to absolutely. (E.g.,, the statement that vampires are afraid of
garlic is true in a mythological context, though not in real life.)

• higher-order concepts (E.g., one can state that if a relation is reflexive, symmetric,
and transitive, it is an equivalence relation.)

• exceptions (E.g., one can say that except for Taiwan, all Chinese provinces are part
of the People’s Republic of China.)

The Cyc knowledge base is huge. Nevertheless, it has been successfully used in real-
world applications, including HPKB. (Cyc currently has over 3 million assertions; at the
time of its use in HPKB, it had over a million assertions.) Theorem proving in Cyc is
incomplete but efficient, partly due to various special purpose mechanisms for reasoning
with its higher-order constructs. For example, Cyc’s reasoner includes a special module
for solving disjointWithqueries that traverses the taxonomies in the knowledge baseto
determine whether two classes have an empty intersection.

Ramachandran et al. [227, 226] compared the performance of Cyc’s reasoner with stan-
dard theorem provers. First, most of ResearchCyc’s knowledge base4 was translated into
first-order logic. The translated sentences were then loaded into various theorem provers,
namely, Vampire, E [242], Spass, and Otter. The installations of Vampire and Spass avail-
able to Ramachandran et al. didn’t have sufficient memory to load all assertions, neces-
sitating performing the comparison of Cyc with these theorem provers on just 10 percent
of ResearchCyc’s knowledge base. On sample queries — e.g., “Babies can’t be doctors,”
“If the U.S. bombs Iraq, someone is responsible,” –Cyc proved to be considerably more

4ResearchCyc [174] contains the knowledge base open to the public for research; certain portions of Cyc
itself are not open to the public. The knowledge base of ResearchCyc contains over a million assertions.
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efficient. For example, for the query about babies and doctors, Cyc took 0.04 seconds to
answer the query, while Vampire took 847.6 seconds.

Ramachandran and his colleagues conjecture that the disparity in performance partly
reflects the fact that Cyc’s reasoner and the standard theorem provers have been designed
for different sets of problems. General automated theorem provers have been designed
to perform deep inference on small sets of axioms. If one looks at the problems in the
TPTP database, they often have just a few dozen and rarely have more than a few hundred
axioms. Cyc’s reasoner, on the other hand, has been designedto perform relatively shallow
inference on large sets of axioms.

It is also worth noting that the greatest disparity of inference time between Cyc and the
other theorem provers occurred when Cyc was using a special purpose reasoning module.
In that sense, of course, purists might argue that Cyc is not really doing theorem proving
faster than standard ATPs; rather, it is doing something that is functionally equivalent to
theorem proving while ATPs are doing theorem proving, and itis doing that something
much faster.

1.4.3 Exploiting Structure

Knowledge bases for real-world applications and commonsense reasoning often exhibit a
modular-like structure, containing multiple sets of factswith relatively little connection to
one another. For example, a knowledge base in the banking domain might contain sets
of facts concerning loans, checking accounts, and investment instruments; moreover, these
sets of facts might have little overlap with one another. In such a situation, reasoning would
primarily take place within a module, rather than between modules. Reasoning between
modules would take place — for example, one might want to reason about using automated
payments from a checking account to pay off installments on aloan — but would be
limited. One would expect that a theorem prover that takes advantage of this modularity
would be more efficient: most of the time, it would be doing searches in reduced spaces,
and it would produce fewer irrelevant resolvents.

A recent trend in automated reasoning focuses on exploitingstructure of a knowledge
base to improve performance. This section presents a detailed example of such an ap-
proach. Amir and McIlraith [2] have studied the ways in whicha knowledge base can
be automatically partitioned into loosely coupled clusters of domain knowledge, forming
a network of subtheories. The subtheories in the network arelinked via the literals they
share in common. Inference is carried out within a subtheory; if a literal is inferred within
one subtheory that links to another subtheory, it may be passed from the first to the second
subtheory.

Consider, from [2], the following theory specifying the workings of an espresso ma-
chine, and the preparation of espresso and tea: (Note that while this example is proposi-
tional,the theory is first-order.)

(1)¬ okpump∨¬ onpump∨ water
(2)¬manfill∨ water
(3)¬manfill∨¬ onpump
(4) manfill∨ onpump
(5)¬ water∨¬ okboiler∨¬ onboiler∨ steam
(6) water∨¬ steam
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(7) okboiler∨¬ steam
(8) onboiler∨¬ steam
(9)¬ steam∨¬ cofee∨ hotdrink
(10) coffee∨ teabag
(11)¬ steam∨¬ teabag∨ hotdrink

Intuitively, this theory can be decomposed into three subtheories . The first,A1, contain-
ing axioms 1 through 4, regards water in the machine; it specifies the relations between
manually filling the machine with water, having a working pump, and having water in the
machine. The second,A2, containing axioms 5 through 8, regards getting steam; it speci-
fies the relations between having water, a working boiler, the boiler switch turned on, and
steam. The third,A3, containing axioms 9 through 11, regards getting a hot drink; it spec-
ifies the relation between having steam, having coffee, having a teabag, and having a hot
drink.

In this partitioning, the literalwater links A1andA2; the literalsteamlinks A2andA3.
One can reason with logical partitions using forward message-passing of linking literals. If
one assertsokpump, and performs resolution on the clauses ofA1, one obtainswater. If one
assertsokboilerandonboiler in A2, passeswater from A1 to A2, and performs resolution
in A2, one obtainssteam. If one passessteamto A3 and performs resolution inA3, one
obtainshotdrink.

In general, the complexity of this sort of reasoning dependson the number of partitions,
the size of the partitions, the interconnectedness of the subtheory graph, and the number of
literals linking subtheories. When partitioning the knowledge base, one wants to minimize
these parameters to the extent possible. (Note that one can’t simultaneously minimize all
parameters; as the number of partitions goes down, the size of at least some of the partitions
goes up.)

McIlraith et al. [170] did some empirical studies on large parts of the Cyc database
used for HPKB, comparing the results of the SNARK theorem prover with and without
this partitioning strategy. SNARK plus (automatically-performed) partitioning performed
considerably better than SNARK with no strategy, though it was comparable to SNARK
plus set-of-support strategies. When partitioning was paired with another strategy like
set-of-support, it outperformed combinations of strategies without partitioning.

Clustering to improve reasoning performance has also been explored by Hayes et al.
[118]. In a similar spirit, there has been growing interest in modularization of ontologies
from the Description Logic and Semantic Web communities [274, 229, 104]. Researchers
have been investigating how such modularization affects the efficiency of reasoning (i.e.,
performing subsumption and classification, and performingconsistency checks) over the
ontologies.

1.4.4 Prolog

In terms of its use in working applications, the logic programming paradigm [151] repre-
sents an important success in automated theorem proving. Its main advantage is its effi-
ciency; this makes it suitable for real-world applications. The most popular language for
logic programming is Prolog [42].

What makes Prolog work so efficiently is a combination of the restricted form of first-
order logic used, and the particular resolution and search strategies that are implemented.
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In the simplest case, a Prolog program consists of a set of Horn clauses; that is, either
atomic formulas or implications of the form(P1 ∧ P2 ∧ . . .) → P0, where thePi’s are
all atomic formulas. This translates into having at most oneliteral in the consequence of
any implication. The resolution strategy used is linear-input resolution, that is, for each
resolvent, one of the parents is either in the initial database or is an ancestor of the other
parent. The search strategy used is backward-chaining; thereasoner backchains from the
query or goal, against the sentences in the logic program.

The following are also true in the logic programming paradigm: there is a form of
negation that is interpreted as negation-as-failure : thatis, not a will be taken to be true
if a cannot be proven; and the result of a logic program can dependon the ordering of
its clauses and subgoals. Prolog implementations provide additional control mechanisms,
including the cut and fail operators; the result is that few programs in Prolog are pure
realizations of the declarative paradigm. Prolog also has an incomplete mechanism for
unification, particularly of arithmetic expressions.

Prolog has been widely used in developing expert systems, especially in Europe and
Japan, although languages such as Java and C++ have become more popular.

Examples of successful practical applications of logic programming include the HAPPS
system for model house configuration [84] and the Munich RentAdvisor [91], which cal-
culates the estimated fair rent for an apartment. (This is a rather complex operation that can
take days to do by hand.) There has been special interest in the last decade on world-wide
web applications of logic programming (seeTheory and Practice of Logic Programming,
vol. 1, no. 3)

What are the drawbacks to Prolog? Why is there continued interest in the significantly
less efficient general theorem provers?

First, the restriction to Horn clause form is rather severe;one may not be able to express
knowledge crucial for one’s application. An implication whose conclusion is a disjunction
is not expressible in Horn clause form. This means, for example, that one cannot represent
a rule like
If you are diagnosed with high-blood pressure, you will either have to reduce your salt
intake or take medication
because that is most naturally represented as an implication with a disjunction in the con-
sequent.

Second, Prolog’s depth-first-search strategy is incomplete .
Third, because, in most current Prolog implementations, the results of a Prolog pro-

gram depend crucially on the ordering of its clauses, and because it is difficult to predict
how the negation-as-failure mechanism will interact with one’s knowledge base and goal
query, it may be difficult to predict a program’s output.

Fourth, since Prolog does not support inference with equality, it cannot be used for
mathematical theorem proving.

There has been interest in the logic programming community in addressing limitations
or perceived drawbacks of Prolog. Disjunctive logic programming [6] allows clauses with
a disjunction of literals in the consequent of a rule. Franconi et al. [89] discusses one
application of disjunctive logic programming, the implementation of a clean-up procedure
prior to processing census data.

The fact that logic programs may have unclear or ambiguous semantics has concerned
researchers for decades. This has led to the development of answer set programming,
discussed in detail in Chapter 7, in which logic programs areinterpreted with the stable
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model semantics . Answer set programming has been used for many applications, includ-
ing question-answering, computational biology, and system validation.

1.5 Suitability of Logic for Knowledge Representation

The central tenet of logicist AI5—that knowledge is best represented using formal logic—
has been debated as long as the field of knowledge representation has existed. Among
logicist AI’s strong advocates are John McCarthy [176, 181], Patrick Hayes [115, 117,
114], and Robert Moore [192], critics of the logicist approach have included Yehoshua
Bar-Hillel [22], Marvin Minsky [191], Drew McDermott[186], and Rodney Brooks [43].
(McDermott can be counted in both the logicist and anti-logicist camps, having advocated
for and contributed to logicist AI [184, 187, 185] before losing faith in the enterprise.)

The crux of the debate is simply this: Logicists believe thatfirst-order logic, along
with its modifications, is a language particularly well suited to capture reasoning, due
to its expressivity, its model-theoretic semantics, and its inferential power. Note [115]
that it is not a particular syntax for which logicists argue;it is the notion of a formal,
declarative semantics and methods of inference that are important. (See [96, 65, 240, 40]
for examples of how AI logicism is used.) Anti-logicists have argued that the program,
outside of textbook examples, is undesirable and infeasible. To paraphrase McDermott
[186], You Don’t Want To Do It, and You Can’t Do It Anyway.

This handbook clearly approaches AI from a logicist point ofview. It is nevertheless
worthwhile examining the debate in detail. For it has not consisted merely of an ongo-
ing sequence of arguments for and against a particular research approach. Rather, the
arguments of the anti-logicists have proved quite beneficial for the logicist agenda. The
critiques have often been recognized as valid within the logicist community; researchers
have applied themselves to solving the underlying difficulties; and in the process have
frequently founded productive subfields of logicist AI, such as nonmonotonic reasoning.
Examining the debate puts into context the research in knowledge representation that is
discussed in this handbook.

1.5.1 Anti-logicist arguments and responses

In the nearly fifty years since McCarthy’s Advice Taker paperfirst appeared [176], the crit-
icisms against the logicist approach have been remarkably stable. Most of the arguments
can be characterized under the following categories:

• Deductive reasoning isn’t enough

• Deductive reasoning is too expensive

• Writing down all the knowledge (the right way) is infeasible

• Other approaches do it better and/or cheaper

5The termlogicismgenerally refers to the school of thought that mathematics can be reduced to logic [277],
logiciststo the proponents of logicism. Within the artificial intelligence community, however, alogicist refers to
a proponent of logicist AI, as defined in this section [264].
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The argument: Deductive reasoning isn’t enough

McCarthy’s original logicist proposal called for the formalization of a set of commonsense
facts in first-order logic, along with an automated theorem prover to reason with those
facts. He gave as an example the reasoning task of planning toget to the airport. Mc-
Carthy argued that starting out from facts about first, location of oneself, one’s car, and the
airport; second, how these locations relate to one another;third, the feasibility of certain
actions, such as walking and driving; fourth, the effects that actions had; and fifth, basic
planning constructs, one could deduce that to get to the airport, one should walk to one’s
car and drive the car to the airport. There were, all together, just 15 axioms in this draft
formalization.

Bar-Hillel argued:

It sounds rather incredible that the machine could have arrived at its conclusion—
which, in plain English, is “Walk from your desk to your car!”—by sound de-
duction! This conclusion surely could not possibly follow from the premise in
any serious sense. Might it not be occasionally cheaper to call a taxi and have
it take you over to the airport? Couldn’t you decide to cancelyour flight or to
do a hundred other things?

The need for nonmonotonic reasoning:

In part, Bar-Hillel was alluding to the many exceptions thatcould exist in any realisti-
cally complex situation. Indeed, it soon became apparent toAI researchers that exceptions
exist for even simple situations and facts. The classic example is that of reasoning that a
bird can fly. Birds typically can fly, although there are exceptions, such as penguins and
birds whose wings are broken. If one wants to formalize a theory of bird flying, one can’t
simply write

∀x(Bird(x) → Flies(x)) (1.17)

because that would mean that all birds fly. That would be wrong, because it doesn’t take
penguins and broken-winged birds into account. One could instead write

∀x(Bird(x) ∧ ¬Penguin(x) ∧ ¬Brokenwinged(x)→ Flies(x)) (1.18)

which says that all birds fly, as long as they are not penguins or broken-winged, or better
yet, from the representational point of view, the followingthree formulas:

∀x(Bird(x) ∧ ¬Ab(x)→ Flies(x)) (1.19)

∀x(Penguin(x)→ Ab(x)) (1.20)

∀x(Brokenwinged(x)→ Ab(x)) (1.21)

which say that birds fly unless they’re abnormal, and that penguins and broken-winged
birds are abnormal.

A formula in the style of (1.18) is difficult to write, since one needs to state all pos-
sible exceptions to bird flying in order to have a correct axiom. But even aside from the
representational difficulties, there is a serious inferential problem. If one only knows that
Tweety is a bird, one can’t use Axiom (1.18) in a deductive proof. One needs to know as
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well that the second and third conjuncts on the left-hand side of the implication are true:
that is, that Tweety isn’t a penguin and isn’t broken-winged. Something stronger than de-
duction is needed here; something that permits jumping to the conclusion that Tweety flies
from the fact that Tweety is a bird and the absence of any knowledge that would contradict
this conclusion. This sort of default reasoning would benonmonotonicin the set of ax-
ioms: adding further information (e.g., that Tweety is a penguin) could mean that one has
to retract conclusions (that is, that Tweety flies).

The need for nonmonotonic reasoning was noted, as well, by Minsky [191]. At the
time Minsky wrote his critique, early work on nonmonotonicity had already begun. Sev-
eral years later, most of the major formal approaches to nonmonotonic reasoning had al-
ready been mapped out [178, 230, 187]. This validated both the logicist AI approach,
since it demonstrated that formal systems could be used for default reasoning, and the
anti-logicists, who had from the first argued that first-order logic was too weak for many
reasoning tasks.

Nonmonotonicity and the anti-logicists

From the time they were first developed, nonmonotonic logicswere seen as an essential
logicist tool. It was expected that default reasoning wouldhelp deal with many KR difficul-
ties, such as the frame problem, the problem of efficiently determining which things remain
the same in a changing world. However, it turned out to be surprisingly difficult to develop
nonmonotonic theories that entailed the expected conclusions. To solve the frame prob-
lem, for example, one needs to formalize theprinciple of inertia—that properties tend to
persist over time. However, a naive formalization of this principle along the lines of [179]
leads to themultiple extensionproblem; a phenomenon in which the theory supports sev-
eral models, some of which are unintuitive. Hanks and McDermott [113] demonstrated a
particular example of this, the Yale shooting problem. Theywrote up a simple nonmono-
tonic theory containing some general facts about actions (that loading a gun causes the gun
to be loaded, and that shooting a loaded gun at someone causesthat individual to die), the
principle of inertia, and a particular narrative (that a gunis loaded at one time, and shot
at an individual a short time after). The expected conclusion, that the individual will die,
did not hold. Instead, Hanks and McDermott got multiple extensions: the expected exten-
sion, in which the individual dies; and an unexpected extension, in which the individual
survives, but the gun mysteriously becomes unloaded. The difficulty is that the principle
of inertia can apply either to the gun remaining loaded or theindividual remaining alive.
Intuitively we expect the principle to be applied to the gun remaining loaded; however,
there was nothing in Hank’s and McDermott’s theory to enforce that.

The Yale shooting problem was not hard to handle: solutions began appearing shortly
after the problem became known. (See [165, 166, 245] for someearly solutions.) Nonethe-
less, the fact that nonmonotonic logics could lead to unexpected conclusions for such sim-
ple problems was evidence to anti-logicists of the infeasibility of logicist AI. Indeed, it led
McDermott to abandon logicist AI. Nonmonotonic logic was essentially useless, McDer-
mott argued [186], claiming that it required one to know beforehand what conclusions one
wanted to draw from a set of axioms, and to build that conclusion into the premises.

In contrast, what logicist AI learned from the Yale shootingproblem was the impor-
tance of a good underlying representation. The difficulty with Hanks and McDermott’s ax-
iomatization was not that it was written in a nonmonotonic logic; it was that it was devoid
of a concept of causation. The Yale shooting problem does notarise in an axiomatization
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based on a sound theory of causation [250, 193, 244].
From today’s perspective, the Yale shooting scenario is rather trivial. Over the last ten

years, research related to the frame problem has concentrated on more elaborate kinds of
action domains—those that include actions with indirect effects, nondeterministic actions,
and interacting concurrently executed actions. Efficient implementations of such advanced
forms of nonmonotonic reasoning have been used in serious industrial applications, such
as the design of a decision support system for the Space Shuttle [204].

The current state of research on nonmonotonic reasoning andthe frame problem is
described in Chapters 6, 7 an 16–20 of this Handbook.

The need for abduction and induction

Anti-logicists have pointed out that not all commonsense reasoning is deductive. Two
important examples of non-deductive reasoning areabduction, explaining the cause of
a phenomenon, andinduction, reasoning from specific instances of a class to the entire
class. Abduction, in particular, is important for both expert and commonsense reasoning.
Diagnosis is a form of abduction; understanding natural language requires abduction as
well [125].

Some philosophers of science [222, 120, 121] have suggestedthat abduction can be
grounded in deduction. The idea is to hypothesize or guess anexplanation for a particular
phenomenon, and then try to justify this guess using deduction. A well-known example of
this approach is known as the deductive-nomological hypothesis.

McDermott [186] has argued against such attempts, pointingout what has been noted
by philosophers of science [241]: theapproach is overly simplistic, can justify trivial expla-
nations, and can support multiple explanations without offering a way of choosing among
candidates. But he was titling at a strawman. In fact, the small part of logicist AI that
has focused on abduction has been considerably more sophisticated in its approach. As
discussed in the previous section, Hobbs, Stickel, and others have used theorem proving
technology to support abductive reasoning [254, 125], but they do it by carefully examining
the structure of the generated proofs, and the particular context in which the explanandum
occurs. There is a well-thought-out approach toward choosing among multiple explana-
tions and toward filtering out trivial explanations.

There is also growing interest ininductive logic programming[195]. This field uses
machine learning techniques to construct a logic program thatl entails all the positive and
none of the negative examples of a given set of examples.

The argument: Deductive reasoning is too expensive

The decisive question [is] how a machine, even assuming it will have somehow
countless millions of facts stored in its memory, will be able to pick out those
facts which will serve as premises for its deduction.
– Yehoshua Bar-Hillel [22]

When McCarthy first presented his Advice Taker paper and Bar-Hillel made the above
remark, automated theorem proving technology was in its infancy: resolution theorem
proving was still several years away from being invented. But even with relatively ad-
vanced theorem proving techniques, Bar-Hillel’s point remains. General automated theo-
rem proving programs frequently cannot handle theories with several hundred axioms, let
alone several million.
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This point has in fact shaped much of the AI logicist researchagenda. The research
has progressed along several fronts,. There has been a largeeffort to make general the-
orem proving more efficient (this is discussed at length in Section 1.3); special-purpose
reasoning techniques have been developed (e.g., by the description logic community [11]
as well as by Cyc (see Section 1.4.2) to determine subsumption and disjointness of classes;
and logic programming techniques (for both Prolog (see Section 1.4.4) and answer set pro-
gramming (see Chapter 7)) have been developed so that relatively efficient inferences can
be carried out under certain restricted assumptions. The HPKB project and Cyc demon-
strate that at least in some circumstances, inference is practical even with massively large
knowledge bases.

The argument: Writing down all the knowledge (the right way) is infeasible

Just constructing a knowledge base is a major intellectual research problem
... The problem of finding suitable axioms—the problem of “stating the facts”
in terms of always-correct, logical, assumptions—is very much harder than is
generally believed.–Marvin Minsky [191].

The problem is in fact much greater than Minsky realized, although it has taken AI
logicists a while to realize the severity of the underlying issues. At the time that Minsky
wrote his paper, his critique on this point was not universally appreciated by proponents of
AI logicism. The sense one gets from reading the papers of PatHayes [116, 117, 114]6, for
example, is one of confidence and optimism. Hayes decried thepaucity of existing domain
formalizations, but at the time seemed to believe that creating the formalizations could be
done as long as enough people actually sat down to write the axioms. He proposed, for
the subfield of naive physics that a committee be formed, thatthe body of commonsense
knowledge about the physical world be divided into clusters, with clusters assigned to
different committee members, who would occasionally meet in order to integrate their
theories.

But there never was a concerted effort to formalize naive physics. Although there
have been some attempts to formalize knowledge of various domains (see, e.g., [126],
and the proceedings of the various symposia on Logical Formalizations of Commonsense
Knowledge), most research in knowledge representation remains at the meta-level. The
result, as Davis [66] has pointed out, is that at this point constructing a theory that can
reason correctly about simple tasks like staking plants in agarden is beyond our capability.

What makes it so difficult to write down the necessary knowledge? It is not, certainly,
merely the writing down of millions of facts. The Cyc knowledge base, as discussed in
Section 1.4, has over 3 million assertions. But that knowledge base is still missing the nec-
essary information to reason about staking plants in a garden, cracking eggs into a bowl, or
many other challenge problems in commonsense reasoning andknowledge representation
[189]. Size alone will not solve the problem. That is why atempt to use various web-based
technologies to gather vast amount of knowledge [175] are irrelevant to this critique of the
logicist approach.

Rather, formalizing domains in logic is difficult for at least the following reasons:

6Although [114] was published in the 1980s, a preliminary version was first written in the late 1970s.
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• First, it is difficult to become aware of all our implicit knowledge; that is, to make
this knowledge explicit, even in English or any other natural langauge. The care-
ful examination of many domains or non-trivial commonsensereasoning problems
makes this point clear. For example, reasoning about how andwhether to organize
the giving of a surprise birthday present [194] involves reasoning about the factors
that cause a person to be surprised, how surprises can be foiled, joint planning, coop-
eration, and the importance of correct timing. The knowledge involved is complex
and needs to be carefully teased out of the mass of social protocols that unknowingly
govern our behavior.

• Second, as Davis [66] has pointed out, there is some knowledge that is difficult to
express in any language. Davis gives the example of reasoning about a screw. Al-
though it is easy to see that a small bump in the surface will affect the functionality of
a screw much more than a small pit in the surface, it is hard to express the knowledge
needed to make this inference.

• Third, there are some technical difficulties that prevent formalization of certain types
of knowledge. For example, there is still no comprehensive theory of how agents
infer and reason about other agents’ ignorance (although [112] is an excellent start
in this direction); this makes it difficult to axiomatize realistic theories of multi-agent
planning, which depend crucially on inferring what other agents do and do not know,
and how they make up for their ignorance.

• Fourth, the construction of an ontology for a domain is a necessary but difficult
prerequisite to axiomatization. Deciding what basic constructs are necessary and
how to organize them is a tricky enterprise, which often mustbe reworked when one
starts to write down axioms and finds that it is awkward to formalize the necessary
knowledge.

• Fifth, it is hard to integrate existing axiomatizations. Davis gives as an example his
axiomatizations of string, and of cutting. There are various technical difficulties—
mainly, assumptions that have been built into each domain axiomatization—that pre-
vent a straightforward integration of the two axiomatizations into a single theory that
could support simple inferences about cutting string. The problem of integration, in
simpler form, will also be familiar to anyone who has ever tried to integrate ontolo-
gies. Concepts do not always line up neatly; how one alters these concepts in order
to allow subsumption is a challenging task.

There have nonetheless been many successes in writing down knowledge correctly. The
best known are the theories of causation and temporal reasoning that were developed in
part to deal with the frame and Yale shooting problems. Othersuccessful axiomatizations,
including theories of knowlede and belief, multiple agency, spatial reasoning, and physical
reasoning, are well illustrated in the domain theories in this handbook.

The argument: Other approaches do it better and/or cheaper

Anyone familiar with AI must realize that the study of knowledge representation—
at least as it applies to the “commonsense” knowledge required for reading
typical text such as newspapers — is not going anywhere fast.This subfield
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of AI has become notorious for the production of countless non-monotonic
logics and almost as many logics of knowledge and belief, andnone of the
work shows any obvious application to actual knowledge-representation prob-
lems.— Eugene Charniak [55]

During the last fifteen years, statistical learning techniques have become increasingly
popular within AI, particularly for applications such as natural language processing for
which classic knowledge representation techniques had once been considered essential.
For decades, for example, it had been assumed that much background domain knowledge
would be needed in order to correctly parse sentences. For instance, a sentence likeJohn
saw the girl with the toothbrushhas two parses, one in which the prepositional phrasewith
the toothbrushmodifies the phraseJohn saw, and one in which it modifies the noun phrase
the girl. Background knowledge, however, eliminates the first parse, since people do not
see with toothbrushes. (In contrast, both parses are plausible for the sentenceJohn saw the
girl with the telescope). The difficulty with KR-based approaches is that it requires a great
deal of knowledge to properly process even small corpora of sentences.

Statistical learning techniques offers a different paradigm for many issues that arise in
processing language. One useful concept is that ofcollocation[171], in which a program
learns about commonly occurring collocated words and phrases, and subsequently uses
this knowledge in order to parse. This is particularly useful for parsing and disambiguating
phonemes for voice recognition applications. A statistical learning program might learn,
for example, thatweapons of mass destructionare words that are collocated with a high
frequency. If this knowledge is then fed into a voice recognition program, it could be used
to disambiguate between the wordsmathandmass. The words in the phraseWeapons of
math destructionare collocated with a low frequency, so that interpretationbecomes less
likely.

Programs using statistical learning techniques have become popular in text-retrieval
applications; in particular, they are used in systems that have performed well in recent
TREC competitions [269, 270, 271, 272, 273]. What is notableabout systems using these
techniques is not that they outperform systems using classic KR techiques. Indeed, the
top perfomers among KR-based systems, statistical-learning-based systems, and hybrid
systems have performed (at recent TREC conferences) at about the same level. Rather,
statistical-learning systems stand out because they are considerably cheaper to build. There
is no need to painstakingly build tailor-made knowledge bases for the purposes of under-
standing a small corpora of texts.

Nevertheless, it is unlikely that statistical-learning systems will ever obviate the need
for logicist AI in these applications. Statistical techniques can only go so far. They are
especially useful in domains in which language is higly restricted (e.g., newspaper texts,
the example cited by Charniak), and for applications in which deep understanding is not re-
quired. But for many true AI applications, such as story understanding and deep question-
answering applications, deep understanding is essential.

It is no coincidence that the rising popularity of statistical techniques has coincided
with the rise of the text-retrievalcompetitions (TREC) as opposed to the message-understanding
competitions (MUC). It is also worth noting that the successful participants in HPKB relied
heavily on classical logicist KR techniques.

In general, this pattern appears in other applications. Statistical learning techniques do
well with low cost on relatively easy problems. However, hard problems remain resistant
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to these techniques. For these problems, logicist-KR-based techniques appear to work best.
This may likely mean that the most successful applications in the future will make

use of both approaches. As with the other critiques discussed above, the logicist research
agenda is once again being set and influenced by non-logicistapproaches; ultimately, this
can only serve to strengthen the applicability of the logicist approach and the success of
logicist-based applications.
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