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Abstract

In this paper, we address the problem of learning the streictiia pairwise graph-
ical model from samples in a high-dimensional setting. Qst fnain result stud-
ies the sparsistency, or consistency in sparsity patterovegy, properties of a
forward-backward greedy algorithm as applied to genegdistical models. As
a special case, we then apply this algorithm to learn thectsire of a discrete
graphical model via neighborhood estimation. As a corpldiour general result,
we derive sufficient conditions on the number of samplethe maximum node-
degreel and the problem sizg, as well as other conditions on the model param-
eters, so that the algorithm recovers all the edges with prighability. Our result
guarantees graph selection for samples scaling-a€2(d? log(p)), in contrast to
existing convex-optimization based algorithms that regjai sample complexity
of Q(d*log(p)). Further, the greedy algorithm only requires a restricteong
convexity condition which is typically milder than irre@@ntability assumptions.
We corroborate these results using numerical simulatibtieeaend.

1 Introduction

Undirected graphical models, also known as Markov randduatsfi@re used in a variety of domains,
including statistical physics, natural language procesaind image analysis among others. In this
paper we are concerned with the task of estimating the gitaptisreG of a Markov random field
(MRF) over a discrete random vectar = (X, X, ..., X}), givenn independent and identically
distributed samplegz(), 2(?), ... (™}, This underlying graph structure encodes conditional in-
dependence assumptions among subsets of the variablgbpamulays an important role in a broad
range of applications of MRFs.

Existing approaches: Neighborhood Estimation, Greedyal 8earch Methods for estimating such
graph structure include those based on constraint and hggisttesting [22], and those that estimate
restricted classes of graph structures such as trees [8irees [11], and hypertrees [23]. A recent
class of successful approaches for graphical model steuttarning are based on estimating the lo-
cal neighborhood of each node. One subclass of these fop#ueas case of bounded degree graphs
involve the use of exhaustive search so that their compu@ltcomplexity grows at least as quickly
asO(p?), whered is the maximum neighborhood size in the graphical model [B]4 Another
subclass use convex programs to learn the neighborhoadisteufor instance [20, 17, 16] estimate
the neighborhood set for each vertex V' by optimizing its¢;-regularized conditional likelihood;
[15, 10] uset, /¢>-regularized conditional likelihood. Even these methddsyever need to solve
regularized convex programs with typically polynomial qmutational cost o (p*) or O(p®), are
still expensive for large problems. Another popular clasapproaches are based on using a score
metric and searching for the best scoring structure fromralidate set of graph structures. Ex-



act search is typically NP-hard [7]; indeed for general dise MRFs, not only is the search space
intractably large, but calculation of typical score medritself is computationally intractable since
they involve computing the partition function associatdéthwhe Markov random field [26]. Such
methods thus have to use approximations and search hesif@titractable computatioQuestion:
Can one use local procedures that are as inexpensive asuhsticegreedy approaches, and yet
come with the strong statistical guarantees of the re@ddrconvex program based approaches?

High-dimensional Estimation; Greedy Method$iere has been an increasing focus in recent years
on high-dimensional statistical models where the numb@aodmeterg is comparable to or even
larger than the number of observationdt is now well understood that consistent estimation is pos
sible even under such high-dimensional scaling if somedowensional structure is imposed on the
model space. Of relevance to graphical model structuraileguis the structure of sparsity, where
a sparse set of non-zero parameters entail a sparse setex. edgsurge of recent work [5, 12]
has shown that;-regularization for learning such sparse models can legatdotical algorithms
with strong theoretical guarantees. A line of recent wofk paragraph above) has thus leveraged
this sparsity inducing nature éf-regularization, to propose and analyze convex prograsectan
regularized log-likelihood functions. A related line otent work on learning sparse models has
focused on “stagewise” greedy algorithms. These perfommpls forward steps (adding parameters
greedily), and possibly also backward steps (removingrpaters greedily), and yet provide strong
statistical guarantees for the estimate after a finite numibgreedy steps. The forward greedy vari-
ant which performs just the forward step has appeared iowsiguises in multiple communities: in
machine learning as boosting [13], in function approxima{4], and in signal processing as basis
pursuit [6]. In the context of statistical model estimati@mang [28] analyzed the forward greedy
algorithm for the case of sparse linear regression; and etidhat the forward greedy algorithm is
sparsistent (consistent for model selection recoveryguttte same “irrepresentable” condition as
that required for “sparsistency” of the Lasso. Zhang [24lgres a more general greedy algorithm
for sparse linear regression that performs forward andwank steps, and showed that it is spar-
sistent under a weaker restricted eigenvalue conditiome e ask the questiorCan we provide
an analysis of a general forward backward algorithm for paugter estimation in general statistical
models?Specifically, we need to extend the sparsistency analy$&8pfo general non-linear mod-
els, which requires a subtler analysis due to the circulguirement of requiring to control the third
order terms in the Taylor series expansion of the log-lii@dd, that in turn requires the estimate to
be well-behaved. Such extensions in the casg-@égularization occur for instance in [20, 25, 3].

Our Contributions.In this paper, we address both questions above. In the firstypa analyze the
forward backward greedy algorithm [28] for general stat@tmodels. We note that even though we
consider the general statistical model case, our analysisuch simpler and accessible than [28],
and would be of use even to a reader interested in just tharlmedel case of Zhang [28]. In the
second part, we use this to show that when combined with beitfood estimation, the forward
backward variant applied to local conditional log-likeliids provides a simple computationally
tractable method that adds and deletes edges, but comestwaitiysparsistencyguarantees. We
reiterate that the our first result on the sparsistency ofdheard backward greedy algorithm for
general objectives is of independent interest even outhieleontext of graphical models. As we
show, the greedy method is better than theegularized counterpart in [20] theoretically, as well
as experimentally. The sufficient condition on the paramseir@posed by the greedy algorithm
is a restricted strong convexity condition [19], which isaker than the irrepresentable condition
required by [20]. Further, the number of samples requiredparsistent graph recovery scales as
O(d?log p), whered is the maximum node degree, in contrastxal® log p) for the ¢, -regularized
counterpart. We corroborate this in our simulations, wierdind that the greedy algorithm requires
fewer observations than [20] for sparsistent graph regover

2 Review, Setup and Notation
2.1 Markov Random Fields

Let X = (Xi,...,X,) be a random vector, each variabtg taking values in a discrete sat

of cardinalitym. Let G = (V, E) denote a graph witlh nodes, corresponding to thevariables
{X1,...,X,}. A pairwise Markov random field ovek = (Xi,...,X,) is then specified by

nodewise and pairwise functiofis: X — Rforallr € V,andf,; : X x X — Rforall (r,t) € E:

P(z)  exp { Z Or(zr) + Z Ori(xr, 30) }. 1)

rev (r,t)eE



In this paper, we largely focus on the case where the vadadie binary withtY = {—1,+1},
where we can rewrite (1) to the Ising model form [14] for soreedf parameter§d,.} and{0,;} as

P(z) x exp{ Z 0,x, + Z 07-tm7-xt}. 2)

reVv (r,it)eE

2.2 Graphical Model Selection

Let D := {2 ... 2™} denote the set of samples, where eaghdimensional vector:(") ¢
{1,...,m}? is drawn i.i.d. from a distributio®y- of the form (1), for paramete®* and graph

G = (V, E*) over thep variables. Note that the true edge &&tcan also be expressed as a function
of the parameters as

E*={(rt) €V xV: 05, #0} 3)

The graphical model selectiotask consists of inferring this edge gt from the sample®. The
goal is to construct an estimaté, for which P[E,, = E*] — 1 asn — co. Denote byN*(r)
the set of neighbors of a vertexe V, so thatN*(r) = {t : (r,t) € E*}. Then the graphical
model selection problem is equivalent to that of estimaMneighborhooWn(r) C V, so that

PN, (r) = N*(r);Vr € V] = 1 asn — oo.

For any pair of random variables,. and X, the parametef,., fully characterizes whether there is
an edge between them, and can be estimated via its condliiikelinood. In particular, defining
©; = (01,...,0,p), Our goal is to use the conditional likelihood &f. conditioned onXy,, to

estimate®,. and hence its neighborhoadd(r). This conditional distribution of(,. conditioned on
Xy, generated by (2) is given by the logistic model

- exp(erm’f‘ + ZtEV\r' er'tCCrCCt)
B 1 —+ exp(ﬁr + Z'r‘EV\T' ertxr) '

]P’(XT -z,

XV\’I‘ = xV\r)

Given then samplesD, the corresponding conditional log-likelihood is given by

L(O,; D) = - Z {log (1—0— exp (&x(z) —O—Z ert$£-2)$§ )>>—9rz5. ) —Z 97‘7:51;5- )xg )} . @

i=1 teV\r teV\r

In Section 4, we study a greedy algorithm (Algorithm 2) thad§ these node neighborhoods

Nn(r) = Supr(@r) of each random variabl&’,. separately by a greedy stagewise optimization
of the conditional log-likelihood ofY,. conditioned onXy-,.. The algorithm then combines these

neighborhoods to obtain a graph estimateising an “OR” rule:E,, = U,{(r,t) : t € N, (r)}.
Other rules such as the “AND” rule, that add an edge only itdurs in each of the respective node
neighborhoods, could be used to combine the node-neighbdsto a graph estimate. We show
in Theorem 2 that the neighborhood selection by the greeglyriéthm succeeds in recovering the
exact node-neighborhoods with high probability, so thah lyion bound, the graph estimates using
either the AND or OR rules would be exact with high probajpiis well.

Before we describe this greedy algorithm and its analysBSeaotion 4 however, we first consider
the general statistical model case in the next section. \Wedfscribe the forward backward greedy
algorithm of Zhang [28] as applied to general statisticatlals, followed by a sparsistency analysis
for this general case. We then specialize these generdlg@sisection 4 to the graphical model
case. The next section is thus of independent interest auside the context of graphical models.

3 Greedy Algorithm for General L osses

Consider a random variablg with distribution, and letZ} := {Z, ..., Z,} denoten obser-
vations drawn i.i.d. according t®. Suppose we are interested in estimating some parameter
0* € RP of the distributionP that is sparse; denote its number of non-zeroes*by= |[/6*o.

Let £: RP x Z" — R be some loss function that assigns a cost to any pararieteiR?, for a
given set of observations}’. For ease of notation, in the sequel, we adopt the shortiigsédfor

L(0; Z7). We assume thdt* satisfiesEz [VL(0*)] = 0.



Algorithm 1 Greedy forward-backward algorithm for finding a sparserojater of £(-)

Input: DataD := {zV),..., (™}, Stopping Thresholds, Backward Step Factar € (0,1)
Output: Sparse optimizef

9 +— 0 andS@ +— ¢ and k +— 1

while truedo {Forward Step

(ju, ax) +— arg min L% +ae;; D)
j€(§(k7]))c;a

S® — §E-Dy (5,}
3 «— £OF ;D) — LOFD + ane;.; D)
if 6" < es then
break
end if
0% «— argmin £(0; D)
E+—k+1

while truedo {Backward Step
j* +— arg min L(Q(kfl) — 5;‘“*%]-; D)

jeg(k—l)
if L0 — 9 Veje; D) = £(0*1; D) > v} then
break
end if

G010 _ gy
o= argm@in £(9§<k—1)5D)

k<«—k—1
end while

end while

We now consider the forward backward greedy algorithm inofilpm 1 that rewrites the algorithm
in [27] to allow for general loss functions. The algorithrarss with an empty set of active variables

5O and gradually adds (and removes) vairables to the activensiéit meets the stopping criterion.
This algorithm has two major steps: the forward step and #okward step. In the forward step,
the algorithm finds théestnext candidate and adds it to the active set as long as it vepithe loss
function at least by s, otherwise the stopping criterion is met and the algoritarminates. Then,
in the backward step, the algorithm checksitifeienceof all variables in the presence of the newly
added variable. If one or more of the previously added véagato not contribute at leasts to
the loss function, then the algorithm removes them from thig@set. This procedure ensures that
at each round, the loss function is improved by at Iéast v)es and hence it terminates within a
finite number of steps.

We state the assumptions on the loss function such thatisigsusy is guaranteed. Let us first recall
the definition of restricted strong convexity from Negahbgal. [18]. Specifically, for a given sB{
the loss function is said to satisfy restricted strong caitygRSC) with parametex; with respect
to the seB if

L0+ A Z0) — L(0; Z7) — (VL(6; Z7), A) > % IA]2 forall Aes. )

We can now define sparsity restricted strong convexity devisl Specifically, we say that the
loss functionl satisfiesRSC' (k) with parameter, if it satisfies RSC with parametey for the set
{AeRP:[|Allo < K}

In contrast, we say that the loss function satisfies resttistrong smoothness (RSS) with parameter
K., With respect to a sé if

LO+ A ZP) — L(0; Z7) — (VL0 Z1),A) < %HAH% forall A €S.



We can defineRSS(k) similarly. The loss functionC satisfiesRSS(k) with parameter,, if it
satisfies RSS with parametey, for the set{ A € R” : ||A|lo < k}. Given any constants; ands,,
and a sample based loss functifnwe can typically use concentration based arguments tarobta
bounds on the sample size required so thafilé and RS C conditions hold with high probability.

Another property of the loss function that we require is aparpound\,, on the/., norm of the
gradient of the loss at the true parameteri.e., \,, > ||VL(0")| . This captures the “noise level”
of the samples with respect to the loss. Here too, we candlpiose concentration arguments to
show for instance that,, < ¢, (log(p)/n)'/2, for some constant, > 0 with high probability.

Theorem 1 (Sparsistency) Suppose the loss functiafy-) satisfiesRSC (1 s*) and RSS (1 s*)
with parameterss; and x,, for somen > 2 + 4p*(\/(p? — p)/s* + v/2)* with p = k. /x;. Moreover,
suppose that the true parametérssatisfymin e s« [07] > \/32pes/ki. Then if we run Algorithm 1

with stopping thresholds > (8pn/k;) s* A2, the outpu® with supportS satisfies:
(a) Error Bound: |6 — 6|5 < 25 (AT + fesV2Ka).
(b) No False Exclusions. S* — S = 0.

(c) NoFalselInclusions; S — S* = 0.

Proof. The proof theorem hinges on three main lemmas: Lemmas 1 arnich are simple conse-
guences of the forward and backward steps failing when teedyralgorithm stops, and Lemma 3
which uses these two lemmas and extends techniques frorafi2i[[L9] to obtain a, error bound

on the error. Provided these lemmas hold, we then show bélaithe greedy algorithm is sparsis-
tent. However, these lemmas requagriori that the RSC and RSS conditions hold for sparsity size

|S* U S|. Thus, we use the result in Lemma 4 thaRifC(ns*) holds, then the solution when the

algorithm terminates satisfiéS| < ( — 1)s*, and henceéS U S*| < ns*. Thus, we can then apply
Lemmas 1, 2 and Lemma 3 to complete the proof as detailed below

(a) The result follows directly from Lemma 3, and noting ttﬁU S*| < ns*. In this Lemma, we
show that the upper bound holds by drawing from fixed poirtinégues in [21] and [19], and by
using a simple consequence of the forward step failing whemgteedy algorithm stops.

(b) We follow the chaining argumentin [27]. For anye R, we have
THi €S =S:16;1° > 7} < ll65. 5l3 < 6" — 613

8ns*A2 16k,
7)32 4 Ku€s

S* -3
= = | l,

<

where the last inequality follows from part (a) and the inaigy (a + b)? < 2a? + 2b%. Now,
settingr = 32’;—;5 and dividing both sides by/2 we get

~ *\2 ~
21{5 *_ 507 < 5 An *— 5.
{5 €8™ =565 > 7} < 5 = +15" - 5]
Substituting{j € S* — S : |05> > 7}| = [S* = 5| — |{j € S* = S : |0;]*> < 7}|, we get

« -~ . " e~ * S*Ai . * a *
|57 =8l <Hies 515 <m+ g0 <{ies 5051 < v} +1/2,

due to the setting of the stopping thresheld This in turn entails that
1S~ S| <|{jes —S:|0;* <7} =0,
by our assumption on the size of the minimum entry-af
(c) From Lemma 2, which provides a simple consequence of élekviard step failing when the
greedy algorithm stops, fak = § — 6*, we havecs /K, |S — S*| < ||Ag_4.]13 < ||Al|3, so that
using Lemma 3 and thabt* — §| = 0, we obtain thatS — 5*| < % < 1/2, due to the
setting of the stopping threshold.

O



Algorithm 2 Greedy forward-backward algorithm for pairwise discretapdical model learning

Input: DataD := {z),..., (™}, Stopping Thresholds, Backward Step Factar € (0,1)
Output: Estimated Edge&

for r € V do R -
Run Algorithm 1 with the los€ () set as in (4), to obtaif®, with support\/,.
end for

OutputEl = U, {(r, t):te /\//\r}

3.1 Lemmasfor Theorem 1

We list the simple lemmas that characterize the solutioainbtl when the algorithm terminates,
and on which the proof of Theorem 1 hinges.

Lemma 1 (Stopping Forward Step)When the algorithm 1 stops with parame@esupported orb,

we have
’L‘, (5) L@

Lemma 2 (Stopping Backward Step)When the algorithm 1 stops with parame@esupported on
S, we have

215* — §| Ku €S H@— 0"

2

Lemma 3 (Stopping Error Bound)When the algorithm 1 stops with parame@esupported orb,

we have
2 Py
g—(kn\/S*US‘+\/2 WS).
2 Rl

2

Lemma 4 (Stopping Size) If es > 2z (, e \/5)72 and RSC (ns*) holds for some; > 2 +

Ru

Hé—e* S+ 3

2
4p° ( e2oe y \/§> , then the algorithm 1 stops with< (n — 1)s*.
2)) A2 then, the assumption of this lemma is satisfied. Hence

Notice that ifes > (8pn/r1) (n?/(4p
/(4p?), it suffices to haves > (8pn/k) s*A2.

) (n
for large value of* > 8p% > n?/(

4 Greedy Algorithm for Pairwise Graphical M odels

Suppose we are given setofi.i.d. samplesD := {z(M),... ("} drawn from a pairwise Ising
model as in (2), with parametefs, and graptz = (V, E*). Itwill be useful to denote the maximum
node-degree in the grapfi* by d. As we will show, our model selection performance depends
critically on this parameted. We propose Algorithm 2 for estimating the underlying griaph
model from then samplesD.

Theorem 2 (Pairwise Sparsistency)Suppose we run Algorithm 2 with stopping thresheid>
Cl&ngp’ where,d is the maximum node degree in the graphical model, and tleeganameterg*
satisfy% > minjeg- [07| > cay/€s, and further that number of samples scales as

n > cyd? logp,

for some constants,, cs, cs, c4. Then, with probability at least — ¢’ exp(—c¢”’n), the 0utput§
supported orf satisfies:

(a) No False Exclusions. E* — E = ().



(b) No FalseInclusions. £ — E* = 0.

Proof. This theorem is a corollary to our general Theorem 1. We flistasthat the conditions of
Theorem 1 hold under the assumptions in this corollary.

RSC, RSSMe first note that the conditional log-likelihood loss fupatin (4) corresponds to a lo-
gistic likelihood. Moreover, the covariates are all binanyd bounded, and hence also sub-Gaussian.
[19, 2] analyze the RSC and RSS properties of generalizeddimodels, of which logistic models
are an instance, and show that the following result holdeéfdovariates are sub-Gaussian. Let
OL(A;0%) = L(O* + A) — L(0*) — (VL(0*),A) be the second order Taylor series remainder.
Then, Proposition 2 in [19] states that that there exist onisx} andx), independent of., p such

that with probability at least — ¢; exp(—can), for some constants;, co > 0,

lo
AL(A;0%) > nll||A|2{||A|2—le g(p)mul} forall A: [|A, < 1.

n

Thus, if|| Ao < k := nd, then||A||; < VE||A|2, so that

. klogp K
OL(A;0%) = |Al3 (f’vll—fflz\/ - ) > S lIAl,

if n > 4(kh/k)2nd log(p). In other words, with probability at least— c; exp(—con), the loss
function £ satisfiesRSC(k) with parameter} providedn > 4(x,/x})%nd log(p). Similarly, it

follows from [19, 2] that there exist constant$ and x4 such that with probability at leagt —

ch exp(—cyn),

LA 07) < rY[Allo{l|Allz = m5llAlLY - forall A flAlly <1,

so that by a similar argument, with probability at leastc] exp(—c4n), the loss functiorl satisfies
RSS(k) with parameter? providedn > 4(k%/k%)? nd log(p).

Noise Level. Next, we obtain a bound on the noiselevg] > [[VL(0*)|| following simi-
lar arguments to [20]. LeWV denote the gradienvL(6*) of the loss function (4). Any en-

try of W has the formi, = 13" | Zﬁ?, Wherezﬁ? = xgi) (a:ﬁf) - Pz, = 1|a:§is))) are

zero-mean, i.i.d. and bounddﬂﬁm < 1. Thus, an application of Hoeffding's inequality
yields thatP[|W;| > §] < 2exp(—2nd?). Applying a union bound over indices W, we get
P[|W||oo > 0] < 2exp(—2n6% + log(p)). Thus, if\,, = (log(p)/n)/?, then||W ||, < A, with
probability at least — exp(—nA2 + log(p)).

We can now verify that under the assumptions in the corqltag/conditions on the stopping size
and the minimum absolute value of the non-zero parametéis: s- |07| are satisfied. Moreover,
from the discussion above, under the sample size scalingeircdrollary, the require®SC and
RSS conditions hold as well. Thus, Theorem 1 yields that eactenwghborhood is recovered
with no false exclusions or inclusions with probability eaétl — ¢’ exp(—c”’n). An application of
a union bound over all nodes completes the proof.

O

RemarksThe sufficient condition on the parameters imposed by thedyralgorithm is a restricted
strong convexity condition [19], which is weaker than theeiresentable condition required by
[20]. Further, the number of samples required for sparsiggeaph recovery scales é5d? log p),
whered is the maximum node degree, in contrastx@i® log p) for the ¢, regularized counterpart.
We corroborate this in our simulations, where we find thatgheedy algorithm requires fewer
observations than [20] for sparsistent graph recovery.

We also note that the result can also be extended to the dpa@xaise graphical model case, where
each random variable takes values in the rafige. ., m}. In that case, the conditional likelihood
of each node conditioned on the rest of the nodes takes thedba multiclass logistic model, and
the greedy algorithm would take the form of a “group” forwdoackward greedy algorithm, which
would add or remove all the parameters corresponding to @a asla group. Our analysis however
naturally extends to such a group greedy setting as well.ahlagysis for RSC and RSS remains the
same and for bounds o%,, see equation (12) in [15]. We defer further discussion @dhe to the
lack of space.
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Fig 1: Plots of success probabili@[ﬁi(r) = N*(r),Vr € V] versus the control parameter
B(n,p,d) = n/[20d1og(p)] for Ising model on (a) chaild = 2), (b) 4-nearest neighbdd = 4)
and (c) Star grapld = 0.1p). The coupling parameters are chosen randomly ff¢m= +0.50
for both greedy and node-wige-regularized logistic regression methods. As our theoneggssts
and these figures show, the greedy algorithm requires lesglea to recover the exact structure of
the graphical model.

5 Experimental Results

We now present experimental results that illustrate theguaf Algorithm 2 and support our theo-
retical guarantees. We simulated structure learning éémift graph structures and compared the
learning rates of our method to that of node-wiseregularized logistic regression as outlined in
[20].

We performed experiments using 3 different graph strustufa) chain (line graph), (b) 4-nearest
neighbor (grid graph) and (c) star graph. For each expetimenassumed a pairwise binary Ising
model in which eacl¥?, = +1 randomly. For each graph type, we generated a set iafd.
samples{z), ..., (™} using Gibbs sampling. We then attempted to learn the streiaifithe
model using both Algorithm 2 as well as node-wiseregularized logistic regression. We then
compared the actual graph structure with the empiricalyred graph structures. If the graph
structures matched completely then we declared the resutt@esstherwise we declared the result
afailure. We compared these results over a range of sample sizes @ averaged the results for
each sample size over a batch of sige For all greedy experiments we set the stopping threshold

cs = 280) \wherec is a tuning constant, as suggested by Theorem 2, and set ¢tkevérals
step threshold/ = 0.5. For all logistic regression experiments we set the regation parameter

An = '/log(p)/n, wherec’ was set via cross-validation.

Figure 1 shows the results for the chdih= 2), grid (d = 4) and star(d = 0.1p) graphs using
both Algorithm 2 and node-wisé -regularized logistic regression for three different draizes

p € {36,64,100} with mixed (random sign) couplings. For each sample sizegeveerated a batch
of 10 different graphical models and averaged the probabilisuctess (complete structure learned)
over the batch. Each curve then represents the probabilgyaress versus the control parameter
B(n,p,d) = n/[20dlog(p)] which increases with the sample size These results support our
theoretical claims and demonstrate the efficiency of thedyenethod in comparison to node-wise
¢1-regularized logistic regression [20].
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