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Abstract

In this paper, we address the problem of learning the structure of a pairwise graph-
ical model from samples in a high-dimensional setting. Our first main result stud-
ies the sparsistency, or consistency in sparsity pattern recovery, properties of a
forward-backward greedy algorithm as applied to general statistical models. As
a special case, we then apply this algorithm to learn the structure of a discrete
graphical model via neighborhood estimation. As a corollary of our general result,
we derive sufficient conditions on the number of samplesn, the maximum node-
degreed and the problem sizep, as well as other conditions on the model param-
eters, so that the algorithm recovers all the edges with highprobability. Our result
guarantees graph selection for samples scaling asn = Ω(d2 log(p)), in contrast to
existing convex-optimization based algorithms that require a sample complexity
of Ω(d3 log(p)). Further, the greedy algorithm only requires a restricted strong
convexity condition which is typically milder than irrepresentability assumptions.
We corroborate these results using numerical simulations at the end.

1 Introduction

Undirected graphical models, also known as Markov random fields, are used in a variety of domains,
including statistical physics, natural language processing and image analysis among others. In this
paper we are concerned with the task of estimating the graph structureG of a Markov random field
(MRF) over a discrete random vectorX = (X1, X2, . . . , Xp), givenn independent and identically
distributed samples{x(1), x(2), . . . , x(n)}. This underlying graph structure encodes conditional in-
dependence assumptions among subsets of the variables, andthus plays an important role in a broad
range of applications of MRFs.

Existing approaches: Neighborhood Estimation, Greedy Local Search.Methods for estimating such
graph structure include those based on constraint and hypothesis testing [22], and those that estimate
restricted classes of graph structures such as trees [8], polytrees [11], and hypertrees [23]. A recent
class of successful approaches for graphical model structure learning are based on estimating the lo-
cal neighborhood of each node. One subclass of these for the special case of bounded degree graphs
involve the use of exhaustive search so that their computational complexity grows at least as quickly
asO(pd), whered is the maximum neighborhood size in the graphical model [1, 4, 9]. Another
subclass use convex programs to learn the neighborhood structure: for instance [20, 17, 16] estimate
the neighborhood set for each vertexr ∈ V by optimizing itsℓ1-regularized conditional likelihood;
[15, 10] useℓ1/ℓ2-regularized conditional likelihood. Even these methods,however need to solve
regularized convex programs with typically polynomial computational cost ofO(p4) or O(p6), are
still expensive for large problems. Another popular class of approaches are based on using a score
metric and searching for the best scoring structure from a candidate set of graph structures. Ex-
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act search is typically NP-hard [7]; indeed for general discrete MRFs, not only is the search space
intractably large, but calculation of typical score metrics itself is computationally intractable since
they involve computing the partition function associated with the Markov random field [26]. Such
methods thus have to use approximations and search heuristics for tractable computation.Question:
Can one use local procedures that are as inexpensive as the heuristic greedy approaches, and yet
come with the strong statistical guarantees of the regularized convex program based approaches?

High-dimensional Estimation; Greedy Methods.There has been an increasing focus in recent years
on high-dimensional statistical models where the number ofparametersp is comparable to or even
larger than the number of observationsn. It is now well understood that consistent estimation is pos-
sible even under such high-dimensional scaling if some low-dimensional structure is imposed on the
model space. Of relevance to graphical model structure learning is the structure of sparsity, where
a sparse set of non-zero parameters entail a sparse set of edges. A surge of recent work [5, 12]
has shown thatℓ1-regularization for learning such sparse models can lead topractical algorithms
with strong theoretical guarantees. A line of recent work (cf. paragraph above) has thus leveraged
this sparsity inducing nature ofℓ1-regularization, to propose and analyze convex programs based on
regularized log-likelihood functions. A related line of recent work on learning sparse models has
focused on “stagewise” greedy algorithms. These perform simple forward steps (adding parameters
greedily), and possibly also backward steps (removing parameters greedily), and yet provide strong
statistical guarantees for the estimate after a finite number of greedy steps. The forward greedy vari-
ant which performs just the forward step has appeared in various guises in multiple communities: in
machine learning as boosting [13], in function approximation [24], and in signal processing as basis
pursuit [6]. In the context of statistical model estimation, Zhang [28] analyzed the forward greedy
algorithm for the case of sparse linear regression; and showed that the forward greedy algorithm is
sparsistent (consistent for model selection recovery) under the same “irrepresentable” condition as
that required for “sparsistency” of the Lasso. Zhang [27] analyzes a more general greedy algorithm
for sparse linear regression that performs forward and backward steps, and showed that it is spar-
sistent under a weaker restricted eigenvalue condition. Here we ask the question:Can we provide
an analysis of a general forward backward algorithm for parameter estimation in general statistical
models?Specifically, we need to extend the sparsistency analysis of[28] to general non-linear mod-
els, which requires a subtler analysis due to the circular requirement of requiring to control the third
order terms in the Taylor series expansion of the log-likelihood, that in turn requires the estimate to
be well-behaved. Such extensions in the case ofℓ1-regularization occur for instance in [20, 25, 3].

Our Contributions.In this paper, we address both questions above. In the first part, we analyze the
forward backward greedy algorithm [28] for general statistical models. We note that even though we
consider the general statistical model case, our analysis is much simpler and accessible than [28],
and would be of use even to a reader interested in just the linear model case of Zhang [28]. In the
second part, we use this to show that when combined with neighborhood estimation, the forward
backward variant applied to local conditional log-likelihoods provides a simple computationally
tractable method that adds and deletes edges, but comes withstrongsparsistencyguarantees. We
reiterate that the our first result on the sparsistency of theforward backward greedy algorithm for
general objectives is of independent interest even outsidethe context of graphical models. As we
show, the greedy method is better than theℓ1-regularized counterpart in [20] theoretically, as well
as experimentally. The sufficient condition on the parameters imposed by the greedy algorithm
is a restricted strong convexity condition [19], which is weaker than the irrepresentable condition
required by [20]. Further, the number of samples required for sparsistent graph recovery scales as
O(d2 log p), whered is the maximum node degree, in contrast toO(d3 log p) for theℓ1-regularized
counterpart. We corroborate this in our simulations, wherewe find that the greedy algorithm requires
fewer observations than [20] for sparsistent graph recovery.

2 Review, Setup and Notation
2.1 Markov Random Fields

Let X = (X1, . . . , Xp) be a random vector, each variableXi taking values in a discrete setX
of cardinalitym. Let G = (V,E) denote a graph withp nodes, corresponding to thep variables
{X1, . . . , Xp}. A pairwise Markov random field overX = (X1, . . . , Xp) is then specified by
nodewise and pairwise functionsθr : X 7→ R for all r ∈ V , andθrt : X ×X 7→ R for all (r, t) ∈ E:

P(x) ∝ exp
{∑

r∈V

θr(xr) +
∑

(r,t)∈E

θrt(xr, xt)
}
. (1)
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In this paper, we largely focus on the case where the variables are binary withX = {−1,+1},
where we can rewrite (1) to the Ising model form [14] for some set of parameters{θr} and{θrt} as

P(x) ∝ exp
{∑

r∈V

θrxr +
∑

(r,t)∈E

θrtxrxt

}
. (2)

2.2 Graphical Model Selection

Let D := {x(1), . . . , x(n)} denote the set ofn samples, where eachp-dimensional vectorx(i) ∈
{1, . . . ,m}p is drawn i.i.d. from a distributionPθ∗ of the form (1), for parametersθ∗ and graph
G = (V,E∗) over thep variables. Note that the true edge setE∗ can also be expressed as a function
of the parameters as

E∗ = {(r, t) ∈ V × V : θ∗st 6= 0}. (3)

Thegraphical model selectiontask consists of inferring this edge setE∗ from the samplesD. The
goal is to construct an estimator̂En for which P[Ên = E∗] → 1 asn → ∞. Denote byN ∗(r)
the set of neighbors of a vertexr ∈ V , so thatN ∗(r) = {t : (r, t) ∈ E∗}. Then the graphical
model selection problem is equivalent to that of estimatingthe neighborhoodŝNn(r) ⊂ V , so that
P[N̂n(r) = N ∗(r); ∀r ∈ V ] → 1 asn → ∞.

For any pair of random variablesXr andXt, the parameterθrt fully characterizes whether there is
an edge between them, and can be estimated via its conditional likelihood. In particular, defining
Θr := (θr1, . . . , θrp), our goal is to use the conditional likelihood ofXr conditioned onXV \r to
estimateΘr and hence its neighborhoodN (r). This conditional distribution ofXr conditioned on
XV \r generated by (2) is given by the logistic model

P

(
Xr = xr

∣∣∣XV \r = xV \r

)
=

exp(θrxr +
∑

t∈V \r θrtxrxt)

1 + exp(θr +
∑

r∈V \r θrtxr)
.

Given then samplesD, the corresponding conditional log-likelihood is given by

L(Θr;D) =
1

n

n∑

i=1




log



1+ exp



θrx
(i)+

∑

t∈V \r

θrtx
(i)
r x

(i)
t







−θrx(i)
r −

∑

t∈V \r

θrtx
(i)
r x

(i)
t




 . (4)

In Section 4, we study a greedy algorithm (Algorithm 2) that finds these node neighborhoods
N̂n(r) = Supp(Θ̂r) of each random variableXr separately by a greedy stagewise optimization
of the conditional log-likelihood ofXr conditioned onXV \r. The algorithm then combines these

neighborhoods to obtain a graph estimateÊ using an “OR” rule:Ên = ∪r{(r, t) : t ∈ N̂n(r)}.
Other rules such as the “AND” rule, that add an edge only if it occurs in each of the respective node
neighborhoods, could be used to combine the node-neighborhoods to a graph estimate. We show
in Theorem 2 that the neighborhood selection by the greedy algorithm succeeds in recovering the
exact node-neighborhoods with high probability, so that bya union bound, the graph estimates using
either the AND or OR rules would be exact with high probability as well.

Before we describe this greedy algorithm and its analysis inSection 4 however, we first consider
the general statistical model case in the next section. We first describe the forward backward greedy
algorithm of Zhang [28] as applied to general statistical models, followed by a sparsistency analysis
for this general case. We then specialize these general results in Section 4 to the graphical model
case. The next section is thus of independent interest even outside the context of graphical models.

3 Greedy Algorithm for General Losses

Consider a random variableZ with distributionP, and letZn
1 := {Z1, . . . , Zn} denoten obser-

vations drawn i.i.d. according toP. Suppose we are interested in estimating some parameter
θ∗ ∈ R

p of the distributionP that is sparse; denote its number of non-zeroes bys∗ := ‖θ∗‖0.
Let L : Rp ×Zn 7→ R be some loss function that assigns a cost to any parameterθ ∈ R

p, for a
given set of observationsZn

1 . For ease of notation, in the sequel, we adopt the shorthandL(θ) for
L(θ;Zn

1 ). We assume thatθ∗ satisfiesEZ [∇L(θ∗)] = 0.
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Algorithm 1 Greedy forward-backward algorithm for finding a sparse optimizer ofL(·)
Input: DataD := {x(1), . . . , x(n)}, Stopping ThresholdǫS , Backward Step Factorν ∈ (0, 1)

Output: Sparse optimizer̂θ

θ̂(0) ←− 0 andŜ(0) ←− φ and k ←− 1

while truedo {Forward Step}
(j∗, α∗)←− arg min

j∈(Ŝ(k−1))c ;α

L(θ̂(k−1)+αej ;D)

Ŝ(k) ←− Ŝ(k−1) ∪ {j∗}
δ
(k)
f ←− L(θ̂(k−1);D)− L(θ̂(k−1) + α∗ej∗ ;D)

if δ(k)f ≤ ǫS then
break

end if

θ̂(k) ←− argmin
θ
L
(
θ
Ŝ(k) ;D

)

k ←− k + 1

while truedo {Backward Step}
j∗ ←− arg min

j∈Ŝ(k−1)
L(θ̂(k−1) − θ̂

(k−1)
j ej ;D)

if L
(
θ̂(k−1) − θ̂

(k−1)
j∗ ej∗ ;D

)
− L

(
θ̂(k−1);D

)
> νδ

(k)
f then

break
end if

Ŝ(k−1) ←− Ŝ(k) − {j∗}
θ̂(k−1) ←− argmin

θ
L
(
θ
Ŝ(k−1) ;D

)

k ←− k − 1
end while

end while

We now consider the forward backward greedy algorithm in Algorithm 1 that rewrites the algorithm
in [27] to allow for general loss functions. The algorithm starts with an empty set of active variables
Ŝ(0) and gradually adds (and removes) vairables to the active setuntil it meets the stopping criterion.
This algorithm has two major steps: the forward step and the backward step. In the forward step,
the algorithm finds thebestnext candidate and adds it to the active set as long as it improves the loss
function at least byǫS , otherwise the stopping criterion is met and the algorithm terminates. Then,
in the backward step, the algorithm checks theinfluenceof all variables in the presence of the newly
added variable. If one or more of the previously added variables do not contribute at leastνǫS to
the loss function, then the algorithm removes them from the active set. This procedure ensures that
at each round, the loss function is improved by at least(1 − ν)ǫS and hence it terminates within a
finite number of steps.

We state the assumptions on the loss function such that sparsistency is guaranteed. Let us first recall
the definition of restricted strong convexity from Negahbanet al. [18]. Specifically, for a given setS,
the loss function is said to satisfy restricted strong convexity (RSC) with parameterκl with respect
to the setS if

L(θ +∆;Zn
1 )− L(θ;Zn

1 )− 〈∇L(θ;Zn
1 ),∆〉 ≥ κl

2
‖∆‖22 for all ∆ ∈ S. (5)

We can now define sparsity restricted strong convexity as follows. Specifically, we say that the
loss functionL satisfiesRSC(k) with parameterκl if it satisfies RSC with parameterκl for the set
{∆ ∈ R

p : ‖∆‖0 ≤ k}.

In contrast, we say that the loss function satisfies restricted strong smoothness (RSS) with parameter
κu with respect to a setS if

L(θ +∆;Zn
1 )− L(θ;Zn

1 )− 〈∇L(θ;Zn
1 ),∆〉 ≤ κu

2
‖∆‖22 for all ∆ ∈ S.
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We can defineRSS(k) similarly. The loss functionL satisfiesRSS(k) with parameterκu if it
satisfies RSS with parameterκu for the set{∆ ∈ R

p : ‖∆‖0 ≤ k}. Given any constantsκl andκu,
and a sample based loss functionL, we can typically use concentration based arguments to obtain
bounds on the sample size required so that theRSS andRSC conditions hold with high probability.

Another property of the loss function that we require is an upper boundλn on theℓ∞ norm of the
gradient of the loss at the true parameterθ∗, i.e.,λn ≥ ‖∇L(θ∗)‖∞. This captures the “noise level”
of the samples with respect to the loss. Here too, we can typically use concentration arguments to
show for instance thatλn ≤ cn(log(p)/n)

1/2, for some constantcn > 0 with high probability.

Theorem 1 (Sparsistency). Suppose the loss functionL(·) satisfiesRSC (η s∗) andRSS (η s∗)
with parametersκl andκu for someη ≥ 2 + 4ρ2(

√
(ρ2 − ρ)/s∗ +

√
2)2 with ρ = κu/κl. Moreover,

suppose that the true parametersθ∗ satisfyminj∈S∗ |θ∗j | >
√
32ρǫS/κl. Then if we run Algorithm 1

with stopping thresholdǫS ≥ (8ρη/κl) s
∗λ2

n, the output̂θ with supportŜ satisfies:

(a) Error Bound: ‖θ̂ − θ∗‖2 ≤ 2
κl

√
s∗ (λn

√
η +

√
ǫS
√
2κu).

(b) No False Exclusions: S∗ − Ŝ = ∅.

(c) No False Inclusions: Ŝ − S∗ = ∅.

Proof. The proof theorem hinges on three main lemmas: Lemmas 1 and 2 which are simple conse-
quences of the forward and backward steps failing when the greedy algorithm stops, and Lemma 3
which uses these two lemmas and extends techniques from [21]and [19] to obtain anℓ2 error bound
on the error. Provided these lemmas hold, we then show below that the greedy algorithm is sparsis-
tent. However, these lemmas requireapriori that the RSC and RSS conditions hold for sparsity size
|S∗ ∪ Ŝ|. Thus, we use the result in Lemma 4 that ifRSC(ηs∗) holds, then the solution when the
algorithm terminates satisfies|Ŝ| ≤ (η − 1)s∗, and hence|Ŝ ∪ S∗| ≤ ηs∗. Thus, we can then apply
Lemmas 1, 2 and Lemma 3 to complete the proof as detailed below.

(a) The result follows directly from Lemma 3, and noting that|Ŝ ∪S∗| ≤ ηs∗. In this Lemma, we
show that the upper bound holds by drawing from fixed point techniques in [21] and [19], and by
using a simple consequence of the forward step failing when the greedy algorithm stops.

(b) We follow the chaining argument in [27]. For anyτ ∈ R, we have

τ |{j ∈ S∗ − Ŝ : |θ∗j |2 > τ}| ≤ ‖θ∗
S∗−Ŝ

‖22 ≤ ‖θ∗ − θ̂‖22

≤ 8ηs∗λ2
n

κ2
l

+
16κuǫS

κ2
l

|S∗ − Ŝ|,

where the last inequality follows from part (a) and the inequality (a + b)2 ≤ 2a2 + 2b2. Now,
settingτ = 32κuǫS

κ2
l

, and dividing both sides byτ/2 we get

2|{j ∈ S∗ − Ŝ : |θ∗j |2 > τ}| ≤ ηs∗λ2
n

2κuǫS
+ |S∗ − Ŝ|.

Substituting|{j ∈ S∗ − Ŝ : |θ∗j |2 > τ}| = |S∗ − Ŝ| − |{j ∈ S∗ − Ŝ : |θ∗j |2 ≤ τ}|, we get

|S∗ − Ŝ| ≤ |{j ∈ S∗ − Ŝ : |θ∗j |2 ≤ τ}|+ ηs∗λ2
n

2κuǫS
≤ |{j ∈ S∗ − Ŝ : |θ∗j |2 ≤ τ}|+ 1/2,

due to the setting of the stopping thresholdǫS . This in turn entails that

|S∗ − Ŝ| ≤ |{j ∈ S∗ − Ŝ : |θ∗j |2 ≤ τ}| = 0,

by our assumption on the size of the minimum entry ofθ∗.

(c) From Lemma 2, which provides a simple consequence of the backward step failing when the
greedy algorithm stops, for̂∆ = θ̂ − θ∗, we haveǫS/κu|Ŝ − S∗| ≤ ‖∆̂Ŝ−S∗‖22 ≤ ‖∆̂‖22, so that

using Lemma 3 and that|S∗ − Ŝ| = 0, we obtain that|Ŝ − S∗| ≤ 4ηs∗λ2
n
κu

ǫSκ2
l

≤ 1/2, due to the

setting of the stopping thresholdǫS .
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Algorithm 2 Greedy forward-backward algorithm for pairwise discrete graphical model learning

Input: DataD := {x(1), . . . , x(n)}, Stopping ThresholdǫS , Backward Step Factorν ∈ (0, 1)

Output: Estimated EdgeŝE

for r ∈ V do
Run Algorithm 1 with the lossL(·) set as in (4), to obtain̂Θr with supportN̂r

end for

OutputÊ =
⋃

r

{
(r, t) : t ∈ N̂r

}

3.1 Lemmas for Theorem 1

We list the simple lemmas that characterize the solution obtained when the algorithm terminates,
and on which the proof of Theorem 1 hinges.

Lemma 1 (Stopping Forward Step). When the algorithm 1 stops with parameterθ̂ supported on̂S,
we have

∣∣∣L
(
θ̂
)
− L (θ∗)

∣∣∣ <
√

2 |S∗ − Ŝ| κu ǫS

∥∥∥θ̂ − θ∗
∥∥∥
2
.

Lemma 2 (Stopping Backward Step). When the algorithm 1 stops with parameterθ̂ supported on
Ŝ, we have

∥∥∥∆̂Ŝ−S∗

∥∥∥
2

2
≥ ǫS

κu

∣∣∣Ŝ − S∗
∣∣∣ .

Lemma 3 (Stopping Error Bound). When the algorithm 1 stops with parameterθ̂ supported on̂S,
we have

∥∥∥θ̂ − θ∗
∥∥∥
2
≤ 2

κl

(
λn

√∣∣∣S∗ ∪ Ŝ
∣∣∣+
√

2
∣∣∣S∗ − Ŝ

∣∣∣κuǫS

)
.

Lemma 4 (Stopping Size). If ǫS >
λ2
n

κu

(√
2

η−1
−
√

2
η

)−2

andRSC (ηs∗) holds for someη ≥ 2 +

4ρ2
(√

ρ2−ρ

s∗
+
√
2

)2
, then the algorithm 1 stops withk ≤ (η − 1)s∗.

Notice that ifǫS ≥ (8ρη/κl) (η
2/(4ρ2)) λ2

n, then, the assumption of this lemma is satisfied. Hence
for large value ofs∗ ≥ 8ρ2 > η2/(4ρ2), it suffices to haveǫS ≥ (8ρη/κl) s

∗λ2
n.

4 Greedy Algorithm for Pairwise Graphical Models

Suppose we are given set ofn i.i.d. samplesD := {x(1), . . . , x(n)}, drawn from a pairwise Ising
model as in (2), with parametersθ∗, and graphG = (V,E∗). It will be useful to denote the maximum
node-degree in the graphE∗ by d. As we will show, our model selection performance depends
critically on this parameterd. We propose Algorithm 2 for estimating the underlying graphical
model from then samplesD.

Theorem 2 (Pairwise Sparsistency). Suppose we run Algorithm 2 with stopping thresholdǫS ≥
c1

d log p
n , where,d is the maximum node degree in the graphical model, and the true parametersθ∗

satisfy c3√
d
> minj∈S∗ |θ∗j | > c2

√
ǫS , and further that number of samples scales as

n > c4 d
2 log p,

for some constantsc1, c2, c3, c4. Then, with probability at least1 − c′ exp(−c′′n), the outputθ̂
supported on̂S satisfies:

(a) No False Exclusions: E∗ − Ê = ∅.
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(b) No False Inclusions: Ê − E∗ = ∅.

Proof. This theorem is a corollary to our general Theorem 1. We first show that the conditions of
Theorem 1 hold under the assumptions in this corollary.

RSC, RSS.We first note that the conditional log-likelihood loss function in (4) corresponds to a lo-
gistic likelihood. Moreover, the covariates are all binary, and bounded, and hence also sub-Gaussian.
[19, 2] analyze the RSC and RSS properties of generalized linear models, of which logistic models
are an instance, and show that the following result holds if the covariates are sub-Gaussian. Let
∂L(∆; θ∗) = L(θ∗ + ∆) − L(θ∗) − 〈∇L(θ∗),∆〉 be the second order Taylor series remainder.
Then, Proposition 2 in [19] states that that there exist constantsκl

1 andκl
2, independent ofn, p such

that with probability at least1− c1 exp(−c2n), for some constantsc1, c2 > 0,

∂L(∆; θ∗) ≥ κl
1‖∆‖2

{
‖∆‖2 − κl

2

√
log(p)

n
‖∆‖1

}
for all ∆ : ‖∆‖2 ≤ 1.

Thus, if‖∆‖0 ≤ k := ηd, then‖∆‖1 ≤
√
k‖∆‖2, so that

∂L(∆; θ∗) ≥ ‖∆‖22

(
κl
1 − κl

2

√
k log p

n

)
≥ κl

1

2
‖∆‖22,

if n > 4(κl
2/κ

l
1)

2 ηd log(p). In other words, with probability at least1 − c1 exp(−c2n), the loss
functionL satisfiesRSC(k) with parameterκl

1 providedn > 4(κl
2/κ

l
1)

2 ηd log(p). Similarly, it
follows from [19, 2] that there exist constantsκu

1 andκu
2 such that with probability at least1 −

c′1 exp(−c′2n),

∂L(∆; θ∗) ≤ κu
1‖∆‖2{‖∆‖2 − κu

2‖∆‖1} for all ∆ : ‖∆‖2 ≤ 1,

so that by a similar argument, with probability at least1−c′1 exp(−c′2n), the loss functionL satisfies
RSS(k) with parameterκu

1 providedn > 4(κu
2/κ

u
1 )

2 ηd log(p).

Noise Level. Next, we obtain a bound on the noiselevelλn ≥ ‖∇L(θ∗)‖∞ following simi-
lar arguments to [20]. LetW denote the gradient∇L(θ∗) of the loss function (4). Any en-

try of W has the formWt = 1
n

∑n
i=1 Z

(i)
rt , whereZ(i)

rt = x
(i)
t (x

(i)
r − P(xr = 1|x(i)

\s )) are

zero-mean, i.i.d. and bounded|Z(i)
rt | ≤ 1. Thus, an application of Hoeffding’s inequality

yields thatP[|Wt| > δ] ≤ 2 exp(−2nδ2). Applying a union bound over indices inW , we get
P[‖W‖∞ > δ] ≤ 2 exp(−2nδ2 + log(p)). Thus, ifλn = (log(p)/n)1/2, then‖W‖∞ ≤ λn with
probability at least1− exp(−nλ2

n + log(p)).

We can now verify that under the assumptions in the corollary, the conditions on the stopping sizeǫS
and the minimum absolute value of the non-zero parametersminj∈S∗ |θ∗j | are satisfied. Moreover,
from the discussion above, under the sample size scaling in the corollary, the requiredRSC and
RSS conditions hold as well. Thus, Theorem 1 yields that each node neighborhood is recovered
with no false exclusions or inclusions with probability at least1− c′ exp(−c′′n). An application of
a union bound over all nodes completes the proof.

Remarks.The sufficient condition on the parameters imposed by the greedy algorithm is a restricted
strong convexity condition [19], which is weaker than the irrepresentable condition required by
[20]. Further, the number of samples required for sparsistent graph recovery scales asO(d2 log p),
whered is the maximum node degree, in contrast toO(d3 log p) for theℓ1 regularized counterpart.
We corroborate this in our simulations, where we find that thegreedy algorithm requires fewer
observations than [20] for sparsistent graph recovery.

We also note that the result can also be extended to the general pairwise graphical model case, where
each random variable takes values in the range{1, . . . ,m}. In that case, the conditional likelihood
of each node conditioned on the rest of the nodes takes the form of a multiclass logistic model, and
the greedy algorithm would take the form of a “group” forward-backward greedy algorithm, which
would add or remove all the parameters corresponding to an edge as a group. Our analysis however
naturally extends to such a group greedy setting as well. Theanalysis for RSC and RSS remains the
same and for bounds onλn, see equation (12) in [15]. We defer further discussion on this due to the
lack of space.
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Fig 1: Plots of success probabilityP[N̂±(r) = N ∗(r), ∀r ∈ V ] versus the control parameter
β(n, p, d) = n/[20d log(p)] for Ising model on (a) chain(d = 2), (b) 4-nearest neighbor(d = 4)
and (c) Star graph(d = 0.1p). The coupling parameters are chosen randomly fromθ∗st = ±0.50
for both greedy and node-wiseℓ1-regularized logistic regression methods. As our theorem suggests
and these figures show, the greedy algorithm requires less samples to recover the exact structure of
the graphical model.

5 Experimental Results

We now present experimental results that illustrate the power of Algorithm 2 and support our theo-
retical guarantees. We simulated structure learning of different graph structures and compared the
learning rates of our method to that of node-wiseℓ1-regularized logistic regression as outlined in
[20].

We performed experiments using 3 different graph structures: (a) chain (line graph), (b) 4-nearest
neighbor (grid graph) and (c) star graph. For each experiment, we assumed a pairwise binary Ising
model in which eachθ∗rt = ±1 randomly. For each graph type, we generated a set ofn i.i.d.
samples{x(1), ..., x(n)} using Gibbs sampling. We then attempted to learn the structure of the
model using both Algorithm 2 as well as node-wiseℓ1-regularized logistic regression. We then
compared the actual graph structure with the empirically learned graph structures. If the graph
structures matched completely then we declared the result asuccessotherwise we declared the result
a failure. We compared these results over a range of sample sizes (n) and averaged the results for
each sample size over a batch of size10. For all greedy experiments we set the stopping threshold
ǫS = c log(np)

n , wherec is a tuning constant, as suggested by Theorem 2, and set the backwards
step thresholdν = 0.5. For all logistic regression experiments we set the regularization parameter
λn = c′

√
log(p)/n, wherec′ was set via cross-validation.

Figure 1 shows the results for the chain(d = 2), grid (d = 4) and star(d = 0.1p) graphs using
both Algorithm 2 and node-wiseℓ1-regularized logistic regression for three different graph sizes
p ∈ {36, 64, 100} with mixed (random sign) couplings. For each sample size, wegenerated a batch
of 10 different graphical models and averaged the probability ofsuccess (complete structure learned)
over the batch. Each curve then represents the probability of success versus the control parameter
β(n, p, d) = n/[20d log(p)] which increases with the sample sizen. These results support our
theoretical claims and demonstrate the efficiency of the greedy method in comparison to node-wise
ℓ1-regularized logistic regression [20].
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