A Multi-Robot System for Continuous Area
Sweeping Tasks

Mazda Ahmadi and Peter Stone
Department of Computer Sciences
The University of Texas at Austin
Email:{mazda,pstone } @cs.utexas.edu
http://www.cs.utexas.edu/~ {mazda, pstone}

Abstract— As mobile robots become increasingly autonomous
over extended periods of time, opportunities arise for their use
on repetitive tasks. We define and implement behaviors for a
class of such tasks that we call continuous area sweeping tasks.
A continuous area sweeping task is one in which a group of robots
must repeatedly visit all points in a fixed area, possibly with non-
uniform frequency, as specified by a task-dependent cost function.
Examples of problems that need continuous area sweeping are
trash removal in a large building and routine surveillance. In our
previous work we have introduced a single-robot approach to this
problem. In this paper, we extend that approach to multi-robot
scenarios. The focus of this paper is adaptive and decentralized
task assignment in continuous area sweeping problems, with the
aim of ensuring stability in environments with dynamic factors,
such as robot malfunctions or the addition of new robots to
the team. Our proposed negotiation-based approach is fully
implemented and tested both in simulation and on physical
robots.

I. INTRODUCTION

Consider a group of robots whose goal is to keep the floors
clean in a large office building. This task requires continual
execution: by the time the robots have cleaned the entire
building once, some parts have become dirty again. A first-cut
approach might lead the robots to simply clean the building
from top to bottom and then start over again. However, if the
rate at which areas of the building become dirty is non-uniform
and possibly even non-stationary, a more sophisticated solution
is called for. In particular, the robots should ensure that they
clean highly-trafficked areas, such as the main entrance and
the restrooms, much more frequently than, say, the closets.

We define such a task as an example of continuous area
sweeping tasks. More generally, a continuous area sweeping
task is one in which a group of robots must repeatedly visit all
points in a fixed area, possibly with non-uniform frequency,
as specified by a task-dependent cost function.

Additional examples of continuous area sweeping tasks
include trash removal and the task we consider in this paper,
routine surveillance. When performing surveillance, a robot
needs to continually traverse its environment in an effort
to detect some events of interest, such as gas leaks, water
dripping, lights on, open doors, etc. In the surveillance task,
a location can be “visited” by observing, rather than by
occupying it physically.

The goal of a continuous area sweeping task is not just to
sweep the area in minimum time, but to sweep the area in
such a way as to minimize the average event detection time,
possibly weighted by the importance of different events. Event
detection time is the time-period between event occurrence and

its detection. The definition of event importance is problem-
dependent. For example, in the trash collection task, the
importance of collecting food trash may be higher than that
of collecting paper goods. Minimizing the weighted average
event detection time will result in the sensible behavior of
visiting kitchens and other public areas more often than (most)
individual offices. Similarly, for the surveillance task, one may
define the importance of identifying gas leaks as being higher
than finding lights on.

Continuous area sweeping tasks are closely related to the
security sweep [1], or sweeping [2] task. In the security sweep
or sweeping task, the goal is to make the robot(s) visit the
whole environment just once in minimum time. Continuous
area sweeping is also related to coverage path-planning [3],
which “is a new path planning approach that determines a path
for a robot to pass over all points in its free space.” [3] The
relevant differences are that in continuous area sweeping, the
sweep must be performed i) repeatedly (continuously), and ii)
non-uniformly, that is with more frequent attention given to
some areas than to others. As surveyed by Parker [4], most
previous approaches to surveillance assume ideal sensors and
no computational bounds. In contrast, in this paper we consider
solutions that are fully implementable (and implemented) on
physical robots.

We tackle continuous area sweeping by dividing it into two
sub-problems:

1) Enabling a single robot to autonomously perform a

continuous area sweeping task in a sub-region.

2) Partitioning the overall area among the multiple robots.
Once the area is partitioned among the robots, each one of
them sweeps its part of the environment using the single-robot
area sweeping method.

We have previously addressed the first sub-problem of
single-robot exploration [5]. In this paper we mainly focus
on the second sub-problem: area partitioning. We assume an
environment with different dynamic factors, such as addition
of new robots, robot malfunctions, change in robot speeds or
changing distributions for event appearances.

The remainder of the paper is organized as follows. Sec-
tion II surveys the previous work most related to our own. In
Section III we formalize the class of continuous area sweeping
tasks. Section IV introduces an overview of an algorithmic
solution to single robot continuous area sweeping tasks. In
Section V the negotiation method for adaptive area partitioning
is introduced. In Section VI we instantiate the formalism and
algorithms on the robot surveillance domain. Our methods

are fully implemented and tested both in simulation and on
a physical robot, the Sony AIBO ERS-7 4-legged robot.
Section VII discusses future work and concludes.

II. RELATED WORK

Most of the methods for area partitioning use fully central-
ized and static approaches. For example Hert et. al. [6] tries
to partition the environment into n equal size parts. Bern et.
al. [7] also try to partition the environment into equal size
parts but with the additional condition that the parts do not
have any acute angles.

Notice that these works assume a heuristic for the notion
of best partitioning, such as equal size parts, or parts without
acute angles. But in our work, the goal is to minimize the
average detection time, and the algorithms will directly try to
achieve that goal. In our experimental results section, we will
provide an example in which the partitions do not follow any
of these heuristics (Figure 6(b)).

There are some other methods that address dynamic area
partitioning in different ways, but that are not suitable for
continuous area sweeping. For example Min and Yin [8]
propose a dynamic area partitioning method in which the
robots start with an initial static partitioned area. When a
robot finishes its assigned task, it negotiates for more parts of
the environment. Since they do not partition the environment
permanently, although it is suitable for their one sweep of the
environment, it is not good for our continuous sweeping task.
For example in Figure 1(a) the robot “a” is responsible for
part A and robot “b” is responsible of parts B and C. If by the
time that robot “a” finishes part A, robot “b” is still sweeping
part B, then robot “a” will be responsible for part C. But a
better partition, which our algorithm will achieve is the one
in Figure 1(b), where robot “a” gets a little more area close
to its original responsibility area. Additionally, Min and Yin
assume full and error-free communication, whereas we do not
assume full communication between all robots.

Jager and Nebel [9] partition the environment into polygons
such that each robot requests to clean a polygon and the
others respond if they have cleaned it. This will result in
an unpredictable area partitioning, because while a robot is
requesting a polygon, it does not consider the whole region
that it has and will sweep. Thus, this method is also most
suitable for single sweep applications.

ey

B B

(a) (b)
Fig. 1. (a) Partitioning using Min and Kin algorithm [8]. (b) Partitioning
using our method.

Schneider and Mataric [10] propose a dynamic method in
which all the robots have full knowledge of the positions of the
other robots. The only dynamic factor that they can respond
to is the addition of a new robot. In addition to the fact that
our algorithm handles different dynamic factors (e.g. robots
with changing speeds), it does not rely on knowledge of other
robots’ positions at any given time.

III. CONTINUOUS AREA SWEEPING FORMULATION

In this section we specify our task in detail. In a continuous
area sweeping task, the robot must repeatedly visit all the
points in its environment in an effort to detect or react to
different types of events e € E. The events can in general
have varying degrees of importance, imp., and each event
may occur in different places with varying frequencies. In the
case that all points are equally likely locations for an event of
interest, the events are equally important, and the robot needs
to be physically present at the point to “visit” it, the problem
reduces to the traveling salesman problem. Thus, in general,
continuous area sweeping is NP-Hard, and we must rely on
approximate solutions.

We begin by dividing the robot’s environment into disjoint
grid GG, with each event occurring in one grid cell. We consider
time as a sequence of discrete steps. The orientation § € O =
{North, South, East, West} of the robot is also considered as
being one of 4 disjoint values. We track the last time a robot
has visited each cell ¢ € G in an array LV[G] by setting
LV|g] = current-time whenever the robot visits cell g.

The problem is defined as a tuple (S,A,Ts,, Pey, CF),
where:

e S=Gx O x LV[G] is a set of states, representing the
position and orientation of the robot as well as the array
of last-visit times to each cell.

e A is the set of possible actions. The actions in this
formulation are specified as going to a point in the
environment. In particular, the environment is divided into
a coarse grid called CG (CG need not be related to G
in any way, though in general we expect it to be coarser
than G). Each action a € A is defined as traversing the
path between the current position and the center point of
one of the coarse grid cells in C'G and at the end turning
to reach one of the four orientations. That is, there are
|CG| x |O] possible actions from each state. The time
complexity of the algorithm is highly dependent on the
number of actions, which is why we usually want C'G to
be coarser than G.

o Ty, is the state transition probabilities. Based on the
current state and action, it gives the distribution over
the states that the robot will transition to. The transition
function is stochastic, because based on possible robot
localization errors and non-determinism in its movement,
the robot may end up in grid cell g; when aiming for
grid cell g;.

e P, is the probability of appearance of event e in cell
g per cycle. For example, if P,, = 0.1, there is the
expectation of event e occurring every 10 cycles in cell g.
P, is a property of the environment and is not observable
by the robots.

e CF is the cost function of the policy. The cost function
that we define for the continuous area sweeping problem
is the average time elapsed from appearance to detection
of the events, weighted by their importance of the event
(¢#mp.). Since the robots should collectively observe the
environment in order to detect all the events in minimum
time, this criterion is for the whole multi-robot system.

The goal of each robot is to find a policy w: S — A such
that the joint policy of all robots minimizes the cost function.
For each robot, the policy determines which action is chosen
by the robot in each state.

Since the robots do not observe the times of event appear-
ances, they are unable to calculate the cost function (C'F)
of their executed policies. Thus direct methods to minimize
CF even in the single-robot case will not work. A heuristic
single-robot algorithm will be presented in the next section.

IV. EXPLORATION ALGORITHM

In this section, we present a description of our initial
approach to single robot continuous area sweeping tasks. We
begin by assuming that time is discretized into cycles repre-
senting the times at which the robot can make action decisions.
In our system, cycles begin when the robot receives a new
vision input (= 25Hz). For the purposes of our algorithm, we
define an expected reward of each grid cell g at cycle ¢ as the
expected sum of the event importance values present in grid
cell g at time {.

We tackle this problem by dividing it into two sub-problems:

1) Learn the expected accumulation rate of event im-
portance values in each cell (potential reward). The
expected reward of visiting a cell at any given time
depends on this rate and the time at which the cell was
last visited. (learning)

2) Given these expected rewards and knowledge of the
robot’s (possibly stochastic) transition function, compute
a sequence of actions for the robot (policy) with mini-
mum cost. (planning)

The details of these two steps of the algorithm are presented
in our previous paper [S5]. We have also theoretically proven
that performing the two steps of learning and planning will
result in minimizing the cost function [5]. For the purposes of
this paper, it is sufficient to know that each individual robot
is capable of efficiently engaging in continuous area sweeping
within any fixed sub-region of its environment.

V. COOPERATIVE BEHAVIOR

We achieve cooperative behavior by partitioning the en-
vironment among robots. Partitions are assigned to different
robots, and the robots do the exploration autonomously in their
assigned partitions. Note that restricting robots to partitions
may not necessarily lead to the optimal behavior for multi-
robot continuous area sweeping, but doing so allows for a
convenient and efficient task decomposition.

A naive first approach is to statically partition the environ-
ment among the robots. However in our environment, with the
probability of event appearances changing dynamically plus
the possibility of the addition and removal of robots from the
environment, static partitioning is not suitable.

Instead, we propose a negotiation model for partitioning the
environment among robots. We define RG, as the set of grid
cells that robot x is responsible for. The basic idea behind
the negotiation method is: Considering two robots, a and b,
if there is a ¢ € RG,, that robot b can visit — following its
own exploration algorithm — more often than robot a, then g
should be added to RG; and removed from RG,,.

Algorithm 1 High level negotiation procedure.

1) Robot 1 sends S;={border line grid cells} of message
type 1.
2) Robot 2 Upon receiving S; of message type 1:
t := big negative number;
for all g € S; do
t, := possible time between visits for g (by Robot 2)
to := available time between visits for g (by Robot 1)
if (tQ — tl) > ¢ then

ti=1ty —1t1;
9mazx = &5
end if
end for

G* = cells that will be visited because of addition respon-
sibility of gaz-

send Sy = {G*} of message type 2 as an offer.

3) Robeot 2 upon receiving message type 2, accepts the best
offer, and sends an acknowledgement (message type 3).

4) Robot 1 upon receiving acknowledgement, the transfer
will be complete.

The high-level negotiation procedure is shown in Fig V. The
regular negotiation structure is as follows:

First: in fixed periods each robot,

1) labels the grid cells on the border of its RG as candidates.
These grid cells are the ones that the robot is considering
giving up responsibility for. Note that all the grid cells on the
border of a robot’s responsibility area, but not on the border
of the whole environment are considered candidates.

2) Broadcasts a message consisting of information about the
candidate grid cells. The message format is as follows:

(g, avg_time, pot_reward)

Where, ¢ is the grid cell id and avg_-time is the robot’s
current average detection time for that grid cell. pot_reward
is potential reward which is the learned expected accumulation
rate of event importance values in cell g. pot_reward is used
to compute expected reward and is sent to other robots for
use in the robots’ single-robot exploration algorithm (because
they have no first-hand experience about the rate of event
appearance in other robots’ grid cells). These messages are
called type 1 messages.

Second: Upon receiving type 1 messages, the robot stores
them in a list. At fixed intervals, each robot processes its stored
messages as follows:

1) For each grid cell g in the stored messages, the robot
pretends that it is responsible for it (in addition to its whole
current partition), and using the single-robot algorithm finds
a new hypothetical path. With that path, it computes time
between visits for g, and stores it in time,.

2) For each grid cell g in stored messages, using timeg
and imp, the robot computes the weighted detection time
(new_avg_timeg) for that grid cell under the assumption that
the robot adds g to its partition.

3) From among all the grid cells mentioned in type 1 mes-
sages, each robot finds the cell with the maximum difference

between the computed event detection time (new_avg-timeg)
and the average detection time that the message sender could
provide (avg_time, from the message). That is it finds the cell
maxg such that (new_avg_time, —avg_time,) is maximized.
From the local information that the robot has, from among all
the candidate cells in type 1 messages, mazg is the best one to
add to the robot’s partition, because it is the one for which its
addition to the partition will most decrease the cost function.
Notice that transfer of any cell between two robots may change
cells’ time between visits for both robots. Since the robots do
not have information on those changes, the decisions based
on time between visits for transferring more than a single cell
could lead to unpredictable transfers, and likely oscillations.

4) maxg which was computed in the previous step, is the
cell that the robot will offer to take into its partition. In the
new path that the robot has to take in order to visit maxyg,
possibly some additional cells from other partitions will be
visited. The robot stores these cells in Vi,4.4. The cells in
Vinaazg Will be visited without any further effort, thus the robot
offers to take over responsibility for them as well. In particular,
it sends a message to take over all the cells in V444 to the
robots currently responsible for them. The message format is
as follows:

(num, (go, avg_timeg), (g1, avg_timey), ...)

Where, num is the number of offered grid cells, while g;
and avg_time;, for 0 < i < num, are grid cell ids and average
detection times for each offered grid cell respectively. These
messages are called type 2 messages.

Third: Each robot accumulates its received type 2 mes-
sages, and then processes them at fixed intervals.

1) The robot has the chance to accept one of the offers,
that is, it can give away a set of its cells to one of the robots
that has made an offer for them. For this purpose, it assigns
a value to each offer. For offer o, its value will be equal to:

Zi:numfl ti o ti
i=0,9:€RG avg-rime; my-avg-timeg,

Where num is the number of cells in offer o, avg_time;
is the average time between visits for grid g; in offer o and
my_avg-timegy, is the robot’s average time between visits
for that same grid cell. By accepting cell g;, avg_time; will
decrease to my_avg-timeg,. Thus, the offers that decrease the
cost function the most have the most value. If the highest value
is positive, the offer associated with it is accepted.

In other words, from all the offered grid cells, it finds the set
(received from a single robot and in the robot’s own RG) such
that the sum of the difference between the offered detection
time and the current average detection time is maximized.

2) The robot then gives up the responsibility for the cells
in the accepted offer.

3) Finally, if the robot has accepted an offer it sends an
acknowledgement to the robot willing to take responsibility
for them (message type 3).

Fourth: When a robot receives an acknowledgement for a
set of grid cells (message type 3), it assumes the responsibility
of that set of grid cells and the negotiation is considered
finished. Each robot then resumes its single-robot sweeping
within its (possibly changed) partition.

Notice that the only message type of the three that can cause
inconsistency if it is not delivered, is the acknowledgement
message (message type 3). If any other message does not get
delivered, no change of responsibility will occur. But if the
acknowledgement message does not get delivered no robot will
assume the responsibility for a set of grid cells and if there is
no recovery mechanism, the inconsistency can be permanent.
In our current system, we send the acknowledgement message
5 times to reduce the possibility of that inconsistency. In our
experiments the maximum of consecutive message losses was
2, and thus no inconsistency occurred.

When a new robot is added to the environment, it sends out
a message declaring its presence, and the robots who are close
enough to hear its message send out their position information
to it. It then takes responsibility for half of the partition of
the closest robot to it. The negotiation then continues, and
appropriate adjustments are made. Similarly, when a robot is
removed from the environment, it sends out a signal notifying
others that it is being removed, or if it is crashed, other robots
will detect its removal after not hearing from it for an extended
period of time. After that closest robot to it takes charge of
the its responsibility area, and further negotiations will split
the area appropriately.

VI. EXPERIMENTAL RESULTS

To test our approach, we have implemented and evaluated
our algorithm on a simulated as well as a physical robot in a
representation of the routine surveillance task. As our robot,
we use Sony ERS-7 four-legged AIBO robots (Figure 2). The
robot’s sensor device for “visiting” locations in its environ-
ment is a camera mounted in the head of the robot. It can
capture 208 x 160 frames of pixels at roughly 30Hz (Due
to the computational intensity of image processing, our robots
typically make decisions at roughly 25Hz). By turning its head,
the robot can gain a 180-degree field of view. It has 20 degrees
of freedom and a 576Mhz on-board processor.

As baseline software, we
use our legged team code
base [11], which provides
robust color-based vision,
fast locomotion, and rea-
sonably accurate localiza- > =
tion within a 4.4m x 2.9m
area via a particle filtering
approach. The field is as specified in the 2004 rules of the
RoboCup Four-Legged Robot League: http://www.tzi.
de/4legged. Even so, the robot is not, in general, perfectly
localized, as a result of both noisy sensations and noisy
actions. The robot also has limited processing power, which
limits the algorithms that can be designed for it. We consider
one type of event in the environment, which is the appearance
of an orange ball that the robot can recognize from anywhere
on the field provided that it has an unobstructed view.

We have tested two different configurations of the world in
a custom-built simulator, and one configuration on real robots.
The simulator, though abstract with respect to locomotion,
provides a reasonable representation of the Aibo’s visual

Fig. 2. ERS-7 Sony AIBO robot

Region 1 Region 2 Region 3

Region R;’% 3

(@) (b)
Fig. 3. (a) Representation of configuration I. (b) The partitioned area between
two homogeneous robots in configuration 1.

Robot 2 Resp.
Area

Robot 1 Responsibility Area

and localization capabilities, and allows for more thorough
experimentation, particularly in large environments.

In this paper, the focus of the experiments is on the
negotiation and the adaptive area partitioning. For detailed
results on the single-robot exploration and some videos of a
robot in action please see [5].

A. Configuration I in simulation

The configuration of the environment in the first experiment,
is shown in Figure 3(a). For this experiment, we divide the
world (4.4m x 2.9m) into a 45 x 54 grid (G). The coarse grid
(CG) is a 15 x 18 grid. The reported results are averaged over
at least 10 trials.

1) Two homogeneous robots: We start with having two
homogeneous robots on the field. In the initial partitioning,
each robot gets half of the area (divided vertically). The
partitioned area, which is achieved after reaching equilibrium
is shown in Figure 3(b). Notice that when robot 2 traverses the
path between regions 2 and 3, it automatically visits the bottom
cells, thus it takes the responsibility for all of the bottom grid
cells. They reached this assignment with only one negotiation
in which 683 cells were transferred from robot 2 to robot 1.

Conventional area partitioning algorithms will try to divide
the area equally between the two robots, which is less efficient
than the equilibrium that our robots reached. If the area is
divided equally between robots, the average event detection
time would be 33.9 & 0.7 seconds, while with our partitioned
area, it is 32.2 £+ 0.6 seconds. Since there are just two homo-
geneous robots in a simple environment, a minor performance
enhancement (in this case %5) is all we can expect.

2) Three homogeneous robots: Later in the experiment we
added a new robot in the middle of the field. While usual non-
adaptive area partitioning methods cannot adapt to the addition
of the new robot, our robots reached a new equilibrium which
is showed in Figure 4(a). It took the robots two negotiations to
reach this partitioning. 421 cells were transferred from robot
3 to robot 2 and 283 cells from robot 2 to robot 1.

A conventional static partitioning for three robots could
achieve a similar partitioning. The average event detection time
in this case was 28.3 = 0.6 seconds.

3) Three heterogeneous robots: Following the previous
experiment, we slowed down robot 3 to half of its original
speed. That condition can happen in the real world as the
result of a joint failure. It took the robots one negotiation with
457 cells transfered to reach the new partitioning which is
shown in Figure 4(b).

If no new negotiation were performed after slowing down
robot 3, the average event detection time would have been

Region 1 | Region 3 Region | |/ Rés

Robot | Resp, Robot 1 Resp.

(a) (b)
Fig. 4. (a) The partitioned area for three homogeneous robots in configuration
1. (b) The partitioned area for three heterogeneous robots in configuration 1.
The robot 3 has half the speed of the other two robots.

Robot 1 Resp. |/
s

/| Robot 3 Resp.

(@) (b)
Fig. 5. (a) The partitioned area between three homogeneous robots in
configuration I, when the chance of ball appearance in area X is 10 times
the other cells. (b) The partitioned area between three homogeneous robots
in configuration /, when the chance of event appearance is 1000 times more
in area X.

30.1 + 0.4 seconds. However, after the negotiation and the
resulting new partitioning, the average event detection time
was 29.310.2 seconds. Notice that here we only have 3 robots,
and only one of them slows down. If there are more robots, the
speedup will be more significant. To our knowledge, previous
work in the area could not adapt to this new situation.

4) Non uniform distribution of event occurrences: Contin-
uing with three homogeneous robots, we next consider the
case in which the chance of event appearance in area X
(Figure 5(a)), which consists of 45 grid cells, increases by
a factor of 10. The robot can learn the distribution based on
the event occurrence by itself [5], though it requires time to
notice the change. In this case, to speed up the experiment, we
manually increased the potential reward value in the robot’s
internal algorithm to represent the new distribution. With only
one negotiation and 497 cell transfer, the new partitioning is
formed, which is shown in Figure 5(a). The average event
detection time with the original partitioned area, (shown in
Figure 4(a)) was 34.7 £ 0.8 seconds, while with the new
partitioning it reduces to 29.4 + 0.5 seconds.

If the chance of the ball appearance in area X is multiplied
by 1000, one of the robots ends up constantly staying and
watching area X, while the other two robots divide the envi-
ronment as shown in Figure 5(b). With the original partitioned
area (Figure 4(a)), the average detection time would be 45.3 £
0.2 seconds, but with the new partitioning it reduces to to
0.2 £ 0.0 seconds. Notice that with the new partitioning, one
of the robots constantly watches area X and thus most of the
events are observed in no time.

B. Configuration I in simulation

The aim of this experiment is to show that the cooperation
algorithm can scale up to more complex situations. The
environment in this experiment is shown in Figure 6(a). It
is 8m x 8m and is divided into a 80 x 80 grid G. CG is a
20 x 20 grid.

=
it

(@) (b) ©
Fig. 6. (a) Representation of configuration /1. (b) Task decomposition of 8
robots in configuration /7, which is achieved by our partitioning algorithm.
(c) A typical and reasonable task decomposition in configuration 1.

There are 8 robots with different speeds, as shown in
Table I. The partitioned area after negotiation is shown in
Figure 6(b). It took the robots 67 negotiations and in total
24535 cell transfers to reach this partitioning. Although some
of the shapes looks irregular, each robot can observe its whole
partition while following a simple path. Using a perfectly
space-equivalent partition (as some approaches do), leads to
average event detection time of 15.3 + 1.0 seconds. In Fig-
ures 6(c) we show a heuristic partition chosen so as to roughly
equalize space, but in a way that follows borders and appears
to be reasonable. The average detection time in the heuristic
reasonable partition (Figure 6(c)) is 9.0 £ 0.8, while with our
partitioning (Figure 6(b)), it decreases to 6.1 = 0.5. This data
is averaged over 10 trials. This significant improvement over
the static area partitioning suggests that with higher number
of robots, the advantage of our method is more significant.

Robots 1 2 3 4 5 6 7 8
Speed (cm/s) | 10 | 20 | 10 | 30 | 40 | 40 | 20 | 50
TABLE I

SPEED OF ROBOTS FOR CONFIGURATION /] EXPERIMENT

C. Configuration III with real robots

. Region 1
Region 1
Robot 1 Resp.
: Robot 2 :
Region 2 Resp. Region 2
Region 3 Region 3

(@) (b) ©
Fig. 7. a) Representation of configuration I11. (b) Task division for real
robots in configuration I11. (c) Picture of configuration 11 with two robots.

To show that the system also works on real robots, we
present an experiment with real robots in a simple environ-
ment. An overview of the configuration is shown in Figure 7(a)
and the picture of the actual environment with the robot is
shown in Figure 7(c). The robots know the locations of the
walls in the environment, but must decide for themselves how
to move so as to perform surveillance.

In this case, the grid G was 15 x 18, and CG was a 5 X 6
grid. The resulting task division between the robots is shown in

Figure 7(b). For the same reason as discussed in Section VI-
A.1, this is the optimal task division. For a movie of this
experiment, please visit http://www.cs.utexas.edu/
“AustinVilla/?p=research/surveillance

VII. CONCLUSION AND FUTURE WORK

In this paper, the problem of multi-robot continuous area
sweeping is examined. The problem is defined as one in which
robots must repeatedly visit every part of the environment in
order to detect a set of events of interest. The frequency of the
events can possibly be non-uniform. Thus the robots should
visit the points with non-uniform frequency. Examples of
continuous area sweeping tasks are surveillance and cleaning.

The focus of this paper is area partitioning, while the robots
are continuously doing their tasks. The area partitioning is
done by a negotiation method, which is adaptive to dynamic
environments. The adaptive area partitioning is especially
important if the rate of event appearance is non-uniform in
the environment, or if the robots are heterogeneous in their
capabilities.

Our on-going research agenda includes expanding the robot
behavior to include non-greedy planning and to find an op-
timality bound for the area partitioning method. Also we
are working on designing recovery mechanisms for the cases
where unbounded consecutive messages get lost, and an in-
consistency occurs.

ACKNOWLEDGMENTS

The authors would like to thank the members of the UT
Austin Villa team for their efforts in developing the software
used as a basis for the work reported in this paper, and also
Bikramjit Banerjee, Roozbeh Mottaghi, Ali Nouri and Mohan
Sridharan for their comments on earlier versions of this paper.
This research was supported in part by NSF CAREER award
11S-0237699 and ONR YIP award N00014-04-1-0545.

REFERENCES

[1] N. Kalra, A. T. Stentz, and D. Ferguson, “Hoplites: A market framework
for complex tight coordination in multi-agent teams,” Robotics Institute,
Carnegie Mellon University, Tech. Rep. CMU-RI-TR-04-41, 2004.

[2] J. A. T. Y. E. Kurabayashi, D. Ota, “Cooperative sweeping by multiple
mobile robots,” in Proc. of IEEE International Conference on Robotics
& Automation (ICRA), 1996.

[3] H. Choset, “Coverage for robotics; a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, 2001.

[4] L. E. Parker, “Distributed algorithms for multi-robot observation of
multiple moving targets,” Autonomous Robots, vol. 12, no. 3, pp. 231-
255, 2002.

[5] M. Ahmadi and P. Stone, “Continuous area sweeping: A task definition
and initial approach,” in The 12th International Conference on Advanced
Robotics, July 2005.

[6] S. Hert and V. Lumelsky, “Polygon area decomposition for multiple-
robot workspace division,” Special Issue of International Journal of
Computational Geometry & Applications on Applied Computational
Geometry, vol. 8, no. 4, pp. 437-466, 1998.

[7]1 H. Bast and S. Hert, “The area partitioning problem,” in Proceedings of
the 12th Canadian Conference on Computational Geometry, 1995.

[8] T. W. Min and H. K. Yin, “A decentralized approach for cooperative
sweeping by multiple mobile robots,” in International Conference on
Intelligent Robots and Systems (IROS), 1998.

[9] M. Jager and B. Nebel, “Dynamic decentralized area partitioning for
cooperating cleaning robots,” in /CRA, 2002.

[10] M. Schneider-Fontan and M. Mataric, “Territorial multi-robot task
division,” IEEE Transactions on Robotics and Automation, vol. 15, no. 5,
1998.

[11] Peter Stone et al., “The UT Austin Villa 2004 RoboCup four-legged
team: Coming of age,” The University of Texas at Austin, AI Laboratory,
Tech. Rep. UT-AI-TR-04-313, October 2004.

