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Abstract—Relative to the large literature on upper bounds We refer the reader to various standard texts on optimizatio

on complexity of convex optimization, lesser attention hadeen
paid to the fundamental hardness of these problems. Given th
extensive use of convex optimization in machine learning ah
statistics, gaining an understanding of these complexitfheoretic

(e.g., [2], [3], [4]) for further details on such results.
On the other hand, there has been relatively little study
of the inherent complexity of convex optimization problems

issues is important. In this paper, we study the Comp|exity D To the beSt Of our knOW|edge, the fiI‘St fOI‘mal Study in thIS

stochastic convex optimization in an oracle model of compation.

We introduce a new notion of discrepancy between functions,

and use it to reduce problems of stochastic convex optimizan
to statistical parameter estimation, which can be lower bonded
using information-theoretic methods. Using this approach we

area was undertaken in the seminal work of Nemirovski
and Yudin [5], hereafter referred to as NY. One obstacle

to a classical complexity-theoretic analysis, as thesbaaast

observed, is that of casting convex optimization problems i

improve upon known results and obtain tight minimax complexty ~ 1Uring Machine model. They avoided this problem by instead

estimates for various function classes.

Keywords: Convex optimization, oracle complexity, compu

tational learning theory; Fano’s inequality; Minimax aysis.

I. INTRODUCTION

considering a natural oracle model of complexity, in which
at every round the optimization procedure queries an oracle

for certain information on the function being optimized.i§h

information can be either noiseless or noisy, depending on

whether the goal is to lower bound the oracle complexity of

deterministic or stochastic optimization algorithms. Wog

within this framework, the authors obtained a series of lowe

Convex optimization forms the backbone of many alg@ounds on the computational complexity of convex optimiza-

rithms for statistical learning and estimation. Given timany
statistical estimation problems are large-scale in natwrih

tion problems, both in deterministic and stochastic sg#tirin
addition to the original text NY[[5], we refer the interested

the problem dimension and/or sample size being large—itrisader to the book by Nesterdyi [4], and the lecture notes by
essential to make efficient use of computational resourc@gemirovski [6] for further background.

Stochastic optimization algorithms are an attractive <lag

In this paper, we consider the computational complexity of

methods, known to yield moderately accurate solutions insgochastic convex optimization within this oracle model. |

relatively short time[[1]. Given the popularity of such dtes-
tic optimization methods, understanding the fundameratad-c

particular, we improve upon the work of NYI[5] for stochastic
convex optimization in two ways. First, our lower boundsédav

putational complexity of stochastic convex optimizati® ian improved dependence on the dimension of the space. In the
thus a key issue for large-scale learning. A large body ebntext of statistical estimation, these bounds show hawv th
literature is devoted to obtaining rates of convergence g@ffficulty of the estimation problem increases with the niemb
specific procedures for various classes of convex optimizat of parameters. Second, our techniques naturally extenivéo g
problems. A typical outcome of such analysis is an uppgharper results for optimization over simpler functionssks.
bound on the error—for instance, gap to the optimal cost\te show that the complexity of optimization for strongly
as a function of the number of iterations. Such analyses hahvex losses is smaller than that for convex, Lipschitgdes
been performed for many standard optimization algorithmhird, we show that for a fixed function class, if the set
among them gradient descent, mirror descent, interiortpots¥ optimizers is assumed to have special structure such as
programming, and stochastic gradient descent, to name.a feparsity, then the fundamental complexity of optimizatiam
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be significantly smaller. All of our proofs exploit a new raoti
of the discrepancy between two functions that appears to be
natural for optimization problems. They involve a reductio
from stochastic optimization to a statistical parametdi- es
mation problem, and an application of information-theioret
lower bounds for the estimation problem. We note that specia
cases of the first two results in this paper appeared in the ex-
tended abstract [7], and that a related study was indepégden
undertaken by Raginsky and Rakhlid [8].

The remainder of this paper is organized as follows. We
begin in Sectior ]l with background on oracle complexity,
and a precise formulation of the problems addressed in this



paper. Sectioi 1l is devoted to the statement of our mathe methodM queries atr; € S, and the oracle reveals the
results, and discussion of their consequences. In Secdibn Information ¢(x;, f). The method then uses the information

we provide the proofs of our main results, which all exploit &¢(z1, f), ..., é(x, f)} to decide at which point,; the
common framework of four steps. More technical aspects néxt query should be made. For a given oracle functiplet
these proofs are deferred to the appendices. M denote the class of all optimization methotisthat make

T queries according to the procedure outlined above. For any

a) Notation: For the convenience of the reader, w&n€thodM € My, we define its error on functioyi after T
collect here some notation used throughout the paper. 8PS as
p € [1,00], we use||z|, to denote theﬁp-no_rm of a vector er(M, £,S,0) i= f(er)—min f(z) = fer)—f@}), (1)
x € RP, and we letq denote the conjugate exponent, z€S
satisfying - + ¢ = 1. For two distributionsP and Q, we where z7 is the method's query at tim@. Note that by
use D(P[|Q) to denote the Kullback-Leibler (KL) divergencedefinition of 2 as a minimizing argument, this error is a non-
between the distributions. The notatié04) refers to the 0- negative quantity.
1 valued indicator random variable of the sét For two When the oracle is stochastic, the method’s queryt time
vectorsa, 8 € {—1,+1}, we define the Hamming distancer is itself random, since it depends on the random answers

Apla,f) = X, Ifo; # pi]. Given a convex function provided by the oracle. In this case, the optimization error
f+RY = R, the subdifferential off at« is the setdf(z) er(M, f,S,¢) is also a random variable. Accordingly, for
given by the case of stochastic oracles, we measure the accuracy in

terms of the expected valuB;[er(M, f,S, ¢)], where the

expectation is taken over the oracle randomness. Giversa cla

of functionsF defined over a convex sBtand a clasM of

all optimization methods based @horacle queries, we define
We begin by introducing background on the oracle modgie minimax error

of convex optimization, and then turn to a precise specitioat

of the problem to be studied. er(F.S;¢) = k- ]chg]EHGT(Ma £S89 (@)

{zeR? | f(y) > f(x)+ (2, y—x) forallye R}

Il. BACKGROUND AND PROBLEM FORMULATION

In the sequel, we provide results for particular classes of

o o oracles. So as to ease the notation, when the oraeclear
Convex optimization is the task of minimizing a convexom the context, we simply write:.(F,S).

function f over a convex seS C R? Assuming that

the minimum is achieved, it corresponds to computing an -

elementz* that achieves the minimum—that is, an elemerit: Stochastic first-order oracles

2% € argminges f(z). An optimization methods any pro-  In this paper, we study stochastic oracles for which the
cedure that solves this task, typically by repeatedly sielgc information setZ C R x R¢ consists of pairs of noisy function
values fromS. For a given class of optimization problems, ouand subgradient evaluations. More precisely, we have:

primary focus in this paper is to determine lower bounds C%Swefinition 1. For a given sef and function classF, the class

the co_mputatlor?al cost, as measured In terms of the NUMBEtirst-order stochastic oracles consists of random maggin
of (n_0|sy) funct_lon and s_ubgradlent eval_ua_tlon_s, requited é: 8 x F — T of the formg(z, f) (f(x), 2(z)) such that
obtain an e-optimal solution to any optimization problem
within the class. E[f(z)] = f(z), E[Z(z)] €df(z), and

More §pec_nﬁcal|y, we follow the approach of Nemirovski E[Hg(x)HQ} < o2 3)
and Yudin [5], and measure computational cost based on the P
oracle model of optimization. The main components of thid/e useO, , to denote the class of all stochastic first-order
model are arporacle and aninformation set An oracleis a oracles with parameier:{p, o). Note that the first two
(possibly random) functiom : S — Z that answers any query conditions imply thatf(z) is an unbiased estimate of the
x € S by returning an elemenp(z) in an information set function valuef(z), and thatz(z) is an unbiased estimate of
Z. The information set varies depending on the oracle; far subgradient € df(x). When f is actually differentiable,
instance, for an exact oracle of‘" order, the answer to athenz(x) is an unbiased estimate of the gradi&hf(x). The
query x; consists off(x;) and the firstm derivatives of f third condition in equatior{3) controls the “noisiness"tbé
at z;. For the case of stochastic oracles studied in this papsnpgradient estimates in terms of tfyenorm.
these values are corrupted with zero-mean noise with balinde
variance. We then measure the computational labor of anyStochastic gradient methods are a widely used class of
optimization method as the number of queries it poses to talgorithms that can be understood as operating based on
oracle. information provided by a stochastic first-order oracle. As

In particular, given a positive integ&t corresponding to the a particular example, consider a function of the separable
number of iterations, an optimization methgd designed to form f(z) = L Y% | h;(z), where eachh; is differentiable.
approximately minimize the convex functigimver the convex Functions of this form arise very frequently in statistical
setS proceeds as follows. At any given iteratioe=1,...,7, problems, where each teritorresponds to a different sample

A. Convex optimization in the oracle model



and the overall cost function is some type of statisticak lofiolds, and such thaf satisfies the/s-strong convexity condi-
(e.g., maximum likelihood, support vector machines, biogst tion
etc.) The natural stochastic gradient method for this faokis
to choose an indeke {1,2,...,n} uniformly at random, and  f (az + (1 — a)y) >
then to return the paith,(x), Vh;(z)). Taking averages over 72 )
the randomly chosen indexyields 1 7 h;(z) = f(z), S0 af(z) + (1 -a)f(y) +all —a)olle—ylz (6)
thath;(x) is an unbiased estimate ¢fx), with an analogous for all 2.4 €S
unbiased property holding for the gradient/ofx). Y=
In this paper, we restrict our attention to the case of strong
convexity with respect to thé-norm. (Similar results on the
oracle complexity for strong convexity with respect to eréint
We now turn to the classes of convex functions for which orms can be obtained by straightforward modifications ef th
we study oracle complexity. In all cases, we consider regrguments given here). For future reference, it should becho
valued convex functions defined over some convexSséée nat the Lipschitz constart and strong convexity constant
assume without loss of generality ttficontains an open setinteract with one another. In particular, whenegerc R¢
around), and many of our lower bounds involve the maximungontains the/..-ball of radiusr, the LipschitzL and strong

C. Function classes of interest

radiusr = r(S) > 0 such that convexity~y constants must satisfy the inequality
S D Buo(r) == {z €R? | ||z]|ls <7} 4) L. L Ko
v T4

Our first class consists aonvex Lipschitz functions:
In order to establish this inequality, we note that strong

- . d
Definition 2. For a given convex se C R* and parameter convexity condition witha = 1/2 implies that

p € [1,00], the classF.,(S,L,p) consists of all convex

functionsf : S — R such that v 2 (54) — f(2) = fly) < Llz =yl
= = — 2 = — e
F@) = f@|<Lle—yl, foralzyes @ : e =yl 2lle =l
) ) We now choose the pair, y € S such that|z — y||o. = ~ and
whereg =1 - 2. |z — yll2 = rV/d. Such a choice is possible whenever

We have defined the Lipschitz conditionl (5) in terms o contains the (., ball of radius r. Since we have

the conjugate exponent € [1,00], defined by the relation ||z — y||, < d"/?||z — y||~, this choice yieldsll—z < Ldf”
% =1- 1—17. To be clear, our motivation in doing so is towhich establishes the clairhl(7).
maintain consistency with our definition of the stochastist{i
order oracle, in which we assumed thft||Z(z)[|2] < o2

We note that the Lipschitz conditiofil(5) is equivalent to the AS @ third example, we study the oracle complexity of op-

condition timization over the class of convex functions that have spar
minimizers. This class of functions is well-motivated, cgn
Iz, <L Vzedf(z), and forallz € int(S). a large body of statistical work has studied the estimatibn o

vectors, matrices and functions under various types ofsgiyar
constraints. A common theme in this line of work is that the
ambient dimensiod enters the rates only logarithmically, and

If we consider the case of a differentiable functign the
unbiasedness condition in Definitibh 1 implies that

. (@) so has a mild effect. Consequently, it is natural to inveség
V@), = [EE@)]l, < ElZ(@)l, whether the complexity of optimization methods also enjoys
®) = such a mild dependence on ambient dimension under sparsity
< WVEIE@|Z < o, assumptions.

where inequality (a) follows from the convexity of the £, o vectorz € RY, we use|z|, to denote the number

¢p,-norm and Jensen’s inequality, and inequality (b) is a tesWs \ o -aro elements in. Recalling the seF. (S, L, p) from

of Jensen's inequality applied to the concave functign. pefinition([d, we now define a class of Lipschitz functions with
This bound implies thatf must be Lipschitz with constantSparse minimizers.

at mosto with respect to the duaf,-norm. Therefore, we

necessarily must havé < o, in order for the function Definition 4. For a convex sef C R? and positive integer

class from Definitio 2 to be consistent with the stochastlc < |d/2], let Fy,(k;S, L) be the set of be the class of all

first-order oracle. convex functions that aré-Lipschitz in the/,-norm, and
have at least oné-sparse optimizer, meaning that there exists

A second function class consists of strongly convex fumsjo Some

defined as follows: x* € arg InlIslf(I) satisfying||z*||o < k, (8)
re

Definition 3. For a given convex se¥ C R? and parameter
p € [1,00], the classF.. (S, p; L,y) consists of all convex We frequently use the shorthand notatigg, (k) when the set
functions f : S — R such that the Lipschitz conditiofd) S and parametef, are clear from context.



IIl. M AIN RESULTS AND THEIR CONSEQUENCES transient behavior over the first few iterations.)

With the setup of stochastic convex optimization in place, _ o

Wwe are now in a position to state the main results of this pap€?) We start from the special case that has been primarily con

and to discuss some of their consequences. As previousijered in past works. We consider the cldss(B, (1), L, p)

mentioned, a subset of our results assume that theSsetVith ¢ = 1—1/pand the stochastic first-order oraci@s ;. for

contains anl., ball of radiusr = 7(S). Our bounds scale this class. Then the radiusof the largest/, ball inscribed

with r, thereby reflecting the natural dependence on the sigéhin the By (1) scales as- = d~'/4. By inspection of the

of the setS. Also, we set the oracle second moment bound lower bounds bound$(9) and {10), we see that

to be the same as the Lipschitz constann our results. alL dm—l/q) for1<p<?2
sup ep(Fev, By(l); 9) = L VT

A. Oracle complexity for convex Lipschitz functions ¢€0p.L Q VT for p > 2.

We begin by analyzing the minimax oracle complexity of (11)

optimization for the class of bounded and convex Lipschiis mentioned previously, the dimension-independent lower
functions 7., from Definition[2. bound for the case > 2 was demonstrated in Chapter 5

Theorem 1. LetS ¢ R? be a convex set such tHa B.. (r) of NY, and shown to be optinﬁlsince it is achieved using

for somer > 0. Then there exists a universal constarfi?i"or descent with the prox-functioh- ||7. For the case of

¢o > 0 such that the minimax oracle complexity over the clads < » < 2. the lower bounds are also unimprovable, since
F.u(S, L, p) satisfies the following lower bounds: they are again achieved (up to constant factors) by stdchast
(;; F70r ’1 <p<2 gradient descent. See Appenflix C for further details onethes

matching upper bounds.

. ) d Lr (b) Let us now consider how our bounds can also make sharp
¢ggpL er(Fev,S;¢) 2 min g oL v T 144 ( ©) predictions for non-dual geometries, using the speciak cas
" S = B (1). For this choice, we have(S) = 1, and hence
(b) Forp>2, Theoren 1l implies that for ap € [1,2], the minimax oracle
A% Ldi-1/pp complexity is lower bounded as
sup ep(Fev,S;¢p) > ming oL r ——, —————
$EO, L VT 72

. d
(10) ¢235L6*T(FCV,JB%OO(1);¢) =Q (L T) .

Remarks:Nemirovski and Yudin[[5] proved the lower boundUp to constant factors, this lower bound is sharp for all

1 . ; . .
Q(—T) for the function class ., in the special case th&tis p € [1,2]. Indeed, for any convex s, stochastic gradient

the unit ball of a given norm, and the functions are Lipschitz gescent achieves a matching upper bound (see Section 5.2.4,
the correspondingual norm For p > 2, they established the p. 196 of NY [B], as well as AppendiXIC in this paper for
minimax optimality of this dimension-independent resut by ther discussion).

appealing to a matching upper bound achieved by the method
of mirror descent. In contrast, here we do not require the twe) As another example, suppose tBat B, (1). Observe that
norms—namely, that constraining the §etand that for the this £,-norm unit ball satisfies the relatidy (1) >
Lipschitz constraint—to be dual to one other; instead, we gi .

. . . so that we have:(B,(1)) = 1/+/d. Consequently, for this
give lower bounds in terms of the large&t, ball contained choice, the lower bound¥9) takes the form
within the constraint sef. As discussed below, our bounds do '
include the results for the dual setting of past work as aiapec * 1

2 . S . Ba(1);0) =Q (L — ),

case, but more generally, by examining the relative gegmetr ¢ZgEL er(Fov, B2(1); 9) VT

of an arbitrary set with respect to tlig, ball, we obtain results L . L .
y b & which is a dimension-independent lower bound. This lower

for arbitrary sets. (We note that thg, constraint is natural o .

. SR e . ._bound forB,(1) is indeed tight forp € [1,2], and as before

in many optimization problems arising in machine learning. . . . P '
y op P g 5&3 rate is achieved by stochastic gradient desc¢ent [5].

settings, in which upper and lower bounds on variables a
often imposed.) Thus, in contrast to the past work of NY o
stochastic optimization, our analysis gives sharper dsioen

dependence under more general settings. It also highlighats
role of the geometry of the sé& in determining the oracle
complexity.

TBoo(1),

Pd) Turning to the case gf > 2, whenS = B (1), the lower

bound [[I0) can be achieved (up to constant factors) using

mirror descent with the dual north |2; for further discussion,

we again refer the reader to Section 5.2.1, p. 190 of NY [5],

In general, our lower bounds cannot be improved, \zi%f well as to Appendi_[]C of this paper. Also, even though
is lower bound requires the oracle to have only bounded

hence specify the optimal minimax oracle complexity. variance, our proof actually uses a stochastic oracle based
consider here some examples to illustrate their sharpnes%. ' P y

Throughout we assume thé&t is large enough to ensureocn Bernoull;l ranfl(l)m \{grlables, f(l)r which alllt mohmentﬁ eextﬁt'
that the 1/v/T term attains the lower bound and not the onsequently, at least In general, our results show thaethe
L/144 term. (_Th|3 condition IS reasonable given our goal 2tpere is an additional logarithmic factor in the upper baufior p =

of understanding the rate &8 increases, as opposed to th&(logd).



is no hope of achieving faster rates by restricting to omaclalgorithms proposed in very recent works|[17],1[18] mataod th
with bounds on higher-order moments. This is an interestitgver bound exactly up to constant factors. It should bedhote
contrast to the case of havinlgss than two moments, in Theorem[ R exhibits an interesting phase transition between
which the rates are slower. For instance, as shown in Sectiaro regimes. On one hand, suppose that the strong convexity
5.3.1 of NY [5], suppose that the gradient estimates in @arameter? is large: then as long &g is sufficiently large,
stochastic oracle satisfy the moment boubfE(x)||, < o* the first termQ(1/T) determines the minimax rate, which
for someb € [1,2). In this setting, the oracle complexity iscorresponds to the fast rate possible under strong cogvexit
lower bounded by (T~~1/?). SinceT"# < T2 for all In contrast, if we consider a poorly conditioned objective
b € [1,2), there is a significant penalty in convergence ratawth v =~ 0, then the term involving2(1/v/T) is dominant,

for having less than two bounded moments. corresponding to the rate for a convex objective. This bielav
(e) Even though the results have been stated in a first-oréematural, since Theoref 2 recovers (as a special case) the
stochastic oracle model, they actually hold in a strongesase convex result withy = 0. However, it should be noted that
Let Vif(x) denote thei,;,-order derivative off evaluated at Theoreni® applies only to the sBt. (), and not to arbitrary

x, when it exists. With this notation, our results apply to asetsS like Theorem[]l. Consequently, the generalization of
oracle that responds with a random functif}nsuch that Theorem[2 to arbitrary convex, compact sets remains an

R L . interesting open question.
Elfi(z)] = E[f(z)], and E[V'fi(z)]=V"f(z)

for all z € S andi such thatV'f(x) exists, along with C. Oracle complexity for convex Lipschitz functions with

appropriately bounded second moments of all the deriv&tivgparse optima

g::)r\llseeggr?\r/]géer:ggigfersei; gﬁ?{;?g:_égg”g:g%g c:anndmem; dl hFinaIIy, we turn to the Qrgf:le complexity of optimization
. o : ' 6ver the classF, from Definition[4.

result continues to hold even for the significantly stronger

oracle that responds with a random function that is a noi§jreorem 3. Let F, be the class of all convex functions that

realization of the true function. In this sense, our resslt are L-Lipschitz with respect to thg || norm and that have a

close in spirit to a statistical sample complexity lower bdu k-sparse optimizer. Le3 ¢ R¢ be a convex set witB, (r) C

Our proof technique is based on constructing a “packing sei” Then there exists a universal constant 0 such that for

of functions, and thus has some similarity to techniquesl usall k < L%J, we have

in statistical minimax analysis (e.gL.![9],_[10], [11], n2&and

learning theory (e.g.. [13], [14],.[15]). A significant diffence, . . 2 1og% Lkr

as will be shown shortly, is that the metric of interest for 5P (Fsp, #) > min § cLr T g (- A4

optimization is very different than those typically studlign ’

statistical minimax theory. b) Remark:If k = O(d'~%) for somes € (0,1) (so that
1og% = O(logd)), then this bound is sharp up to constant
B. Oracle complexity for strongly convex Lipschitz funesio factors. In particular, suppose that we use mirror descased

We now turn to the statement of lower bounds over thHg' the || ; l1+e norm W'.th e = 2logd/(2 ¥Ogd_ 1). As we
class of Lipschitz and strongly convex functiof#., from iscuss in more detail in AppendiX C, it can be shown that

Definition [3. In all these statements, we assume tfat< this technique will achieve a solution accurateo, / B loed)
L7 as s required for the definition .., to be sensible. Within 7' iterations; this achievable result matches our lower

" ] . bound [I#) up to constant factors under the assumed scaling
Theorem 2. Let S = B.(r). Then there exist universal; _ O(d'~%) . To the best of our knowledge, Theoréi 3

constantscy, ¢; > 0 such that the minimax oracle complexity,oyides the first tight lower bound on the oracle complexity
over the classF..(S,p; L,v) satisfies the following lower sparse optimization.

bounds:
(a) For p = 1, the oracle complexityuque@m € (Fsev, @) IS
lower bounded by

IV. PROOFS OF RESULTS

We now turn to the proofs of our main results. We be-
min 4 L el ]2 L*  Lr (12) gin in Section[IV-A by outlining the framework and estab-
e 2 T’ 1152+2d’ 144 (- lishing some basic results on which our proofs are based.

, . . Sections[IV-B through_IV-D are devoted to the proofs of
(b) For p > 2, the oracle complexityup,cq, ,, € (Fsev: ) IS TheoremgL through 3 respectively.
lower bounded by

mm{ClLQd12/P Lyd'"Y/p  L2d'2/%  Lrd' /" A Framework and basic results

) C2 ) ;
7T vT 115272 144 13 We begin by establishing a basic set of results that are
(13) exploited in the proofs of the main results. At a high-leweir
As with Theorenf1L, these lower bounds are sharp. In pamain idea is to show that the problem of convex optimization
ticular, for S = B, (1), stochastic gradient descent achieves at least as hard as estimating the parameters of Bernoulli
the rate[(IR) up to logarithmic factors [16], and closelated variables—that is, the biases @findependent coins. In order




to perform this embedding, for a given error toleranceve a convex sets C R? and two functionsf, g, we define

start with an appropriately chosen subset of the vertices of . X X
d-dimensional hypercube, each of which corresponds to some olfr9) = i%é [f(:v) +9(@) = f(=F) - g(%ﬂ' (18)

values of thed Bernoulli parameters. For a given function This discrepancy measure is non-negative, symmetric in its
class, we then construct a “difficult” subclass of functidimest
are indexed by these vertices of the hypercube. We then show
that being able to optimize any function in this subclass to
e-accuracy requires identifying the hypercube vertex. Thes infres {f(z) + g(x)}
multiway hypothesis test based on the observations prdvide
by T' queries to the stochastic oracle, and we apply Fano's
inequality [19] or Le Cam’s bound [20], [12] to lower bound
the probability of error. In the remainder of this section,
we provide more detail on each of steps involved in this
embedding.

1) Constructing a difficult subclass of function®ur first
step is to construct a subclass of functighs F that we use .
to derive lower bounds. Any such subclass is parametrized BVQ)
a subsel C {—1,+1}< of the hypercube, chosen as follows.f(x;:)
Recalling thatAy denotes the Hamming metric, we [gt= ,

{al,..., 0™} be a subset of the vertices of the hypercube !
such that N N
d Ly Zg
_— ,
Ap(a,a”) > 1 forall j # k, (15) Fig. 1. lllustration of the discrepancy functiop(f, g). The

functions f and g achieve their minimum valueg(z}) and
meaning thad is a 4-packing in the Hamming norm. It is ~ 9(z;) at the pointsz} and; respectively.
a classical fact (e.g.[ [21]) that one can construct suchta se o ) )
with cardinality |V| > (2/1/€)%/2. arguments, and SatISfIQEG.f, g) =0 if and only if 2% = 2g,
Now let Gpase = {f;7, f;, i = 1,...,d} denote some baseSO that we may refer to it as a premetric. (It does not satisfy

set of2d functions defined on the convex s&tto be chosen the triangle inequality nor the condition thatf,g) = 0 if
appropriately depending on the problem at hand. For a giveRd only if f = g, both of which are required fow to be a
tolerances € (0,1], we define, for each vertex € V, the metric.) . -
functionz — g (z) given by Given t_he subclasgi(0), we qua_nufy how densel_y it is

packed with respect to the premetyiausing the quantity

d
> {24 @id) £ (@) + (1/2— aid) fi ()}, (16) ¥(G(9) = min, p(ga:gp)- (19)
=1

We denote this quantity by () when the clas§ is clear from

Depending on the result to be proven, our choice of the bas@ context. We now state a simple result that demonstriages t
functions{f;", f;} and the pre-factor will ensure that each utility of maintaining a separation undgramong functions in
g satisfies the appropriate Lipschitz and/or strong conyexig(§).
properties overS. Moreover, we will ensure that that all
minimizersz, of eachg, are contained withir$.

Based on these functions and the packinglsetve define
the function class

ISU

Lemma 1. For any z € S, there can be at most one function
Jdo € G(9) such that

Q)

ga(f) - ingga(x) < T (20)
TE
G(9) = {ga, a € V}. (A7) Thus, if we have an elemerE € S that approximately

minimizes one function in the s&t(d) up to tolerance)(J),

Note thatG(d) contains a total ofV| functions by construc- ) ) TN P
tion, and as mentioned previously, our choices of the ba%}aen it cannot approximately minimize any other function in
X ’ the set.

functions etc. will ensure thaf(§) € F. We demonstrate o .
o) < Proof: For a givenz € S, suppose that there exists an

specific choices of the clagqd) in the proofs of Theore 1 o
thprougrB to follow. $0) P s a € V such thatg, (Z) — go(z}) < @ From the definition

2) Optimizing well is equivalent to function identiﬁcationOlc ¥(9) in @9), for any €V, f # a, we have
We now claim that if a method can optimize over the subclass  ¢(8) < go(Z) — inf g (z) + gs(Z) — inf gs(x)
G(d) up to a certain tolerance, then it must be capable of ves ves
identifying which functiong, € G(§) was chosen. We first < @ + g3(%) — inf gg(x).
require a measure for thedosenesf functions in terms of 3 z€8
their behavior near each others’ minima. Recall that we uBe-arranging yields the inequality; (%) — gs () > %w(d),
T} € R? to denote a minimizing point of the functigh Given from which the claim[{20) follows.



[ | As with Oracle A, this oracle returns unbiased estimates of
Suppose that for some fixed but unknown functipn € the function values and gradients. We frequently work with
G(5), some methodU+ is allowed to makel’ queries to an functionsf;t, f;~ that depend only on thé" coordinatex(q).

oracle with information functiom(-; g.-), thereby obtaining |n sych cases, under the assumptipggﬂ%| <1 and|§¢f(i) <
the information sequence 1, we have
$(a1595) = {d(eeiga) t =1,2,.... T} d _ 2/
1 - - sl = 5 (D [p 2 -2
Our next lemma shows that if the methdd achieves a low 1“5 P g2 oz (i) Y 02(i)
=1

minimax error over the clagg(d), then one can use its output 2 2/p2
to construct a hypothesis test that returns the true pasmet < cd : (23)
a* at least2/3 of the time. (In this statement, we recall th

. - . N 8n our later uses of Oracles A and B, we choose the pre-
definition [2) of the minimax error in optimization.)

factor ¢ appropriately so as to produce the desired Lipschitz
Lemma 2. Suppose that based on the datar?; g;), there constants.
exists a methodM that achieves a minimax error satisfying 4) Lower bounds on coin-tossing:Finally, we use
b(5) information-theoretic methods to lower bound the prolgbil
Eler(M7,G(6),S, )] < 5 (21) of correctly estimating the true parametet € V in our
~model. At each round of either Oracle A or Oracle B, we
Based on such a methottir, one can construct a hypothesis.an consider a set af coin tosses, with an associated vector
testa : ¢(z1;g5) — V such thatmax Py[a # o*] < 3 0* = (L +ajd,..., 4 + a;0) of parameters. At any round,
o - the output of Oracle A can (at most) reveal the instantiation
we cl?)rr?sot]:u(gtlvzrzl isrgritggﬁdx@Tt?aéfsfﬁ':ﬂt?j;hfez?g;.ézsl)’bi € {0,1} ofa randomly chosen index, whereas Oraclle B can
follows. If there exists somex € V such thatg,(z7) — at most reveal the entire vectfif, by, ..., b4). Our goal is to
(2a) < 20 then we sei(Mz) equal to Ifano such lower bound the probability of estimating the true_ pararnete
Jo\Ta) = 3 D r) €d o «*, based on a sequence of len@thAs noted previously in
o €xists, then we choose( M) gnlformly at random from remarks following Theorerl 1, this part of our proof exploits
V. _Frpm L‘?”.‘m@' Fhere can exist only one suck V Fhat classical techniques from statistical minimax theoryjudig
satisfies this inequality. Consequently, using Markovéejual- the use of Fano’s inequality (e.q. [O1. [10], [11], [12])chhe
ity, we haveP[a(Mr) # '] < Pyler(Mr, ga+,S,0) > Cam’s bound (e.g.[[20]/ ]2 2]). I
¥(6)/3] < i. Maximizing overa* completes the proof.m R
We have thus shown that having a low minimax optimizationemma 3. Suppose that the Bernoulli parameter vector
error overg(d) implies that the vertex™ € V can be identified is chosen uniformly at random from the packing $¥gtand
most of the time. suppose that the outcome 6K d coins chosen uniformly at
3) Oracle answers and coin tossedMe now describe random is revealed at each rourid=1,...,7T. Then for any
stochastic first order oracleg for which the samples § € (0,1/4], any hypothesis test satisfies
#(xT;9,) can be related to coin tosses. In particular, we 160T52 + log 2
associate a coin with each dimensior {1,2,...,d}, and Pla+£a]>1— 166407 + log 2

> : (24)
consider the set of coin bias vectors lying in the set 4log(2/V/e)

0(5) = {(1/2+a16,...,1/2+agd) | a €V}, (22) where the probability is taken over both randomness in the

oracle and the choice ok*.
Given a particular functiong, € G(d)—or equivalently,

vertexa € V—we consider two different types of stochasti
first-order oracleg, defined as follows:

Note that we will apply the lower bound(24) with= 1 in
the case of Oracle A, anfl= d in the case of Oracle B.
Proof: For each timet = 1,2,...,T, let U; denote

By construction, the function value and gradients returnd@e randomly chosen subset of sizeX;; be the outcome
by Oracle A are unbiased estimates of those ggf In of oracle’s coin toss at timg for coordinate: and let
. ) e ; " d - -
particular, since each co-ordinatés chosen with probability Y: € {—1,0,1} be a random vector with entries

1/d, the expectatiof[ga, 4 ()] is given by . {Xm_ if i € U, and
d tai — e .
c B -1 if 4 ¢ U;.
=3 [EBISF (@) + EL b7 (@)] = gala), -
i=1 By Fano’s inequality[[19], we have the lower bound
with a similar relation for the gradient. Furthermore, asgo I((U,. YT - a*) + log 2
as the base function™ and f;~ have gradients bounded by Pla#a’]>1- (T, tfgglm ) +log :

1, we haveE([||Z,, a(z)|l,] < ¢ for all p € [1, 0.
where I({(U;, Y:}E ;) denotes the mutual information
Parts of proofs are based on an oracle which responds wiktween the sequendélU,,Y;)}._; and the random param-
function values and gradients that @relimensionaln nature. eter vectora*. As discussed earlier, we are guaranteed that
log |V| > 4log(2/+/e). Consequently, in order to prove the



Oracle A: 1-dimensional unbiased gradients

(a) Pick an index € {1,...,d} uniformly at random.
(b) Drawb, € {0, 1} according to a Bernoulli distribution with parametef2 + «;0.
(c) For the given input: € S, return the valugj, 4(z) and a sub-gradiert, 4(z) € 9gqn a(x) of the function

Ja,a = clbifF+ (1 —bi)fi ].

Oracle B: d-dimensional unbiased gradients

(@) Fori=1,...,d, drawb; € {0,1} according to a Bernoulli distribution with parametef2 + «;4.
(b) For the given input: € S, return the valugj, p(z) and a sub-gradiert, z(x) € dg,, p(x) of the function

d
do[bifit =]

i=1

9o,B ‘=

ISHe

lower bound [[2K), it suffices to establish the upper bour@onsequently, as long as < 1/4, we haveD(§) < 16652.

I{U, Y} E s a%) < 16T 052, Returning to the bound [{26), we conclude that
By the independent and identically distributed nature ef thD(Py - i | Pyjy) < 16 £ 6%. Taking averages over
sampling model, we have U, we obtain the boundI(Y;a* | U)<16¢6%, and
T applying the decomposition (P5) yields the upper bound
I(((U, Y1), ..., (Up, Yr)): ) = ZI((Ut,Yt);Oé*) I((U,Y); ") <16 £ 52, thereby completing the proof. m
— The reader might have observed that Fano’s inequality
=T I((Uy, Y1); %), yields a non-trivial lower bound only whdi| is large enough.

) ] ) ) Since |V| depends on the dimensiahfor our construction,

so that it suffices to upper bound the mutual information fQje can apply the Fano lower bound only foiarge enough.
a single round. To simplify notation, from here onwards w§majler values ofl can be lower bounded by reduction to the
write (Y,U) to mean the paifYy,Us). With this notation, cased = 1; here we state a simple lower bound for estimating

the remainder c2)f our proof is devoted to establishing thgte pias of a single coin, which is a straightforward apjitoa
I(Y;U) <16 €67, _ _ of Le Cam’s bounding techniqué [20], [12]. In this special

By chain rule for mutual information [19], we have case, we hav®’ = {1/2+ 6,1/2 — 5}, and we recall that the

I(U,Y);a%) = I(Y;a* | U) + I(a*; V). (25) estimatora(Mr) takes values in.

Since the subsel/ is chosen independently ef*, we have LEmma 4. Given a sample sizd" > 1 and a parameter
I(a*;U) = 0, and so it suffices to upper bound the first ternft” € V. let {Xi,..., X7} be T"ii.d Bernoulli variables

By definition of conditional mutual information [19], we hav With parametera”. Let @ be any test function based on
these samples and returning an elemenf/ofThen for any

I(Y;a* | U) =Ey[D(Pya-u | Pyiv)] § € (0,1/4], we have the lower bound
Sincea has a uniform distribution ovey, we havePy ;; = P..la 1> 1 _ /T2
ILV\ > aev Pyla,u, and convexity of the Kullback-Leibler (KL) a*e{gig%,g} a6 7 7] 2 '
divergence yields the upper bound
D(Py|o+v | Pyjr) < ﬁ Z D(Py o v || Pyja,v). (26) Proof: We observe first that foiv € 1V, we have
acV

_ ) Eo-[|a — a*|] = 26P4+[@ # o',
Now for any pair a*,a0 € V, the KL divergence

D(Py|o+v || Pyjo,y) can be at most the KL divergenceso that it suffices to lower bound the expected error. To ease
betweery independent pairs of Bernoulli variates with paramaotation, letQ; andQ_; denote the probability distributions
eters; 46 and} —é. Letting D(6) denote the Kullback-Leibler indexed by = 1 +46 anda = J — § respectively. By Lemma
divergence between a single pair of Bernoulli variableshwitl of Yu [12], we have

parameters; + § and  — 4, a little calculation yields

sup Eq«[lad — a*|] > 2641 — —Q_ 2.
, es 1 L sup Bo-[Ja - a”l] 2 25{1 - @ - Q1)1 /2]
D(0) = (5 +0 ) log % +|5—6)log7
2 390 2 3+0 where we use the fact thitl /2 +6) — (1/2— )| = 26. Thus,
_ 951 1 45 we need to upper bound the total variation distafi@a —
= colog {1 1—26 Q-_1]]1. From Pinkser’s inequality [19], we have

862 (1)
= 1-25" Q1 — Q-1 £ v2D(Q:1]|Q-1) < V32742,




where inequality (i) follows from the calculation followgn When «; = 5; thenz,(i) = z5(i) = —a;/2, so that this
equatiori 26 (see proof of Lemrh& 3), and uses our assumptanordinate does not make a contribution to the discrepancy
that & € (0,1/4]. Putting together the pieces, we obtain &nctionp(g.,gg). On the other hand, whem; # 3;, we have
lower bound on the probability of error

1
a— o @)+ fi (@) = |2(6) + = | + |2(6) — 5| > 1

SRR e By T @)+ I @) = |2) + 5|+ [o) — 5|

arey arey 20 for all x € R. Consequently, any such co-ordinate yields
as claimed. B a contribution of2¢§/d to the discrepancy. Recalling our
Equipped with these tools, we are now prepared to prove qsicking set[{T/5) withi/4 separation in Hamming norm, we
main results. conclude that for any distinet # 5 within our packing set,
B. Proof of Theorerfll p(9a>9p) = 2—06 Ag(a, ) 2 0—25

We begin with oracle complexity for bounded Lipschitz, w4t 1y definition ofs, we have established the lower bound
functions, as stated in Theordm 1. We first prove the res%d > c5

for the setS = Boo ().

a) Proof forp € [1,2]: Consider Oracle A that returns
the quantitieSg,, (), Zo, 4 (z)). By definition of the oracle,
each round reveals only at most one coin flip, meaning that W
can apply Lemmal3 witlf = 1, thereby obtaining the lower ©

Settlng the target errar:= £ ﬁ, we observe that this choice

ensures that < @ Recalling the requirement < 1/4,
havee < ¢/72. In this regime, we may apply Lemrnaa 2 to

obtain the upper bourll; [a(Mr) # o] < . Combining this

upper bound with the lower bound{27) yields the inequality

bound
N 16T62 + 10g2 1 >1 216T52 + 10g2
>1—-2—=. ->1-2———
PlaMr) # o] 21 = 2=00 5775 7) 3 dlog(2/+/e)
We now seek an upper bounB[a(Mr) # o] using Recalling thate = £, making the substitution = 18¢ — 3¢,
Lemmal2. In order to do so, we need to specify the based performing Some algebra yields
functions(f;", ;") involved. Fori = 1,...,d, we define 12 I
1 1 T= Q( ) foralld>11andforalle<m
fiF@) = |z(@)+ =|, and f; (z):=|z(i)—=|. (28)
2 2 Combined with Theorem 5.3.1 of NY_I[5] (or by using the

Given thatS = B, ( ), we see that the minimizers gf, are lower bound of Lemmal4 instead of Lemila 3), we conclude
contained inS. Also, both the functions are 1-Lipschitz in thethat this lower bound holds for all dimensiods
¢1-norm. By the constructioi (16), we are guaranteed that for b) Proof forp > 2: The preceding proof based on Oracle
any subgradient o, we have A is also valid forp > 2, but yields a relatively weak result.
Here we show how the use of Oracle B yields the stronger
claim stated in Theorefnl 1(b). When using this oracle dall
Therefore, in order to ensure that is L-Lipschitz in the dual coin tosses at each round are revealed, so that Ldmma 3 with
¢,-norm, it suffices to set = L/2. ¢ = d yields the lower bound
_ Let us now lower bound the diecrepeney functibnl (18). We R 16T d 32 + log 2
first observe that each functiap, is minimized over the set Pla(Mr) #a] > 1 - 2—————. (29)
0 nrnizet Dver T dlog(2//e)
B (3) at the vector, := —a/2, at which point it achieves
its minimum value We now seek an upper bound Bfte( M) # a]. As before,
) c we use the sef = IB%OO(%), and the previous definitiong_{28)
we{]?”}l)ga(x) ~ 37 cd. of £ (x) and f; (x). From our earlier analysis (in particular,
= equation[(2B)), the quantityz,, ()|, is at mosted'/?~1, so
that settingc = Ld'~'/? yields functions that are Lipschitz

[Za,a(@)]lp <2¢  forallp>1.

Furthermore, we note that for any+# 3, we have

with parameterl.
9a(2) + gp(x =3 Z [( + a6 + + 6 ) F(w) As before, for any distinct pait, 3 € V, we have the lower
bound
! 2ch b
* (2 O‘Z‘H —fi0 ) filw )} P(9ar95) = — Anla. f) =
d
c SO thatzp( ) > 05 Consequently, if we set the target error
= — 14+ ;6 + B0 1-+
d ; [( “ Bid) 1i" (@) €:= 18, then we are guaranteed that ¥ 9 , as is required
(1 — ;b — Bd) f-*(x)} for applying LemmdR. Application of this lemma yields the
. ’ U upper bound,[@(Mr) # o] < 1. Combined with the lower
_c Z [(fH (@) + f7 (2) Tew # Bi) bound [[29), we obtain the inequality
d i 1 16d7T 82 + log 2

4 (L4 200) £ (1) + (1 — 2008/ () s = )] R R CYNG)
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Substitutingd = 18¢/c¢ yields the scaling = Q(ﬁ) for all bound on the discrepangyg., gs) from Lemmab. We split

d > 11 ande < ¢/72. Recalling thatc = Ld'~'/?, we obtain our analysis into two sub-cases.

the bound[(ZI0). Combining this bound with Theorem 5.3.1 of

NY [B], or alternatively, by using the lower bound of Lemfia 4ase 1:First suppose that—6 > 46/(1+ 24), in which case
instead of Lemmal3, we conclude that the claim holds for d#mmal$ yields the lower bound

dimensions. 2¢6272
p(gas98) = mAH(aaﬂ)
We have thus completed the proof of Theorem 1 in the (D) 5272
special casé = B..(3). In order to prove the general claims, = 5010 Va #B €V,

which scale withr when B, (r) C S, we note that our

preceding proof required only th& D B.(1) so that the Where inequality (i) uses the fact théty(«, f) > d/4 by

minimizing pointsz, = —a/2 € S for all a (in particular, definition of V. Hence by definition of), we have estab-

the Lipschitz constant of, does not depend of for our lished the lower bounds(6) > 5. Setting the target
construction). In the general case, we define our base anstierror ¢ := ¢§?r?/(18(1 — 6)), we observe that this ensures
to be e < ¥(8)/9. Recalling the requirement < 1/4, we note
oy 3 ) that € < ¢r?/(288(1 — 6)). In this regime, we may apply
1 (@) = ‘I(l) + 5" and  f; (z) = ‘I(l) 5 Lemmal2 to obtain the upper boufi}[a(Mr) # a] < L
With this choice, the functiong, (z) are minimized at;,, =

5
—ra/2, and inf,es go(r) = ¢d/2 — crd. Mimicking the

r

Combining this upper bound with the lower boufd](24) yields
the inequality

previous steps withr = 1/2, we obtain the lower bound 1 ~1_ 216T52 +log?2
S crd 3 leg(Q/\/g)
P(9gar9p) = - Ve #FBeEV. i, 28T(10) 4 Jog 9
The rest of the proof above did not depend$rso that we B dlog(2/+/e)

again obtain the lower bound = Q(5%) or T = Q(3) Simplifying the above expression yields that fbr> 11, we
depending on the oracle used. In this case, the differencenisve the lower bound
i _ Léor o Lr -
p computation means that= =¥ < 7, from which the 410g(2/1/) — log 2
general claims follow. T>cr? |2
- 288¢(1 — 0)

We now turn to the proof of lower bounds on the oracle - 28800¢(1 - 0)
complexity of the class of strongly convex functions fronfrinally, we observe that = c¢rr andv? = (1—6)c/(4d) which
Definition[3. In this case, we work with the following family gives1 —6 = 4dr~?/L. Substituting the above relations in the

C. Proof of Theorerfil2 > o2 dlog(2/\/e) (32)

of base functions, parametrized by a sc#lar [0,1): lower bound[(3R) gives the first term in the stated result for
d>11.
fiH (@) == r0]x(i) +r| + a-9 (z(i) +r)°, and To obtain lower bounds for dimensiods< 11, we use an
] 4 0 argument based ot = 1. For this special case, we consider
f (@) == rble() —r| + a-9 (z(i) —r)*. (30) f* andf~ to be the two functions of the single coordinate
4 coming out of definition[(30). The packing sEtconsists of
A key ingredient of the proof is a uniform lower bound on thenly two elements now, correspondingdo=1 anda = —1.
discrepancy between pairs of these functions: Specializing the result of Lemnid 5 to this case, we see that

the two functions are2cs®r?/(1 — ) separated. Now we
again apply Lemm&l2 to get an upper bound on the error
probability and Lemmal4 to get a lower bound, which gives

2(;527‘2 1 _ > 4_5 < .
Pgar g5) > {i-na Ag(a, B) ?f 1-6> i (31) the result ford < 11
L= A, ) i 1-0< 2%
. . . _ Case 2:0n the other hand, suppose that 6 < 45/(1 + 26).
The proof of this lemma is provided in AppendiX A. Let ugn this case, appealing to Lemrh 5 gives us that,, 3) >
now proceed to the proofs of the main theorem claims.  ¢5r2/4 for o # § € V. Recalling thatL = ¢r, we set the
c) Proof forp = 1: We observe that both the functionsgesired accuracy := cdr? /36 = Ldr/36. From this point

., f; arer-Lipschitz with respect to thd - | norm by onwards, we mimic the proof of Theordm 1; doing so yields
construction. Hencey,, is cr-Lipschitz and furthermore, by that for all § (0,1/4), we have

the definition of Oracle A, we havE||Z, 4(z)[|? < ¢*r?. In J 1242

addition, the functiong,, is (1 — 6)c/(4d)-strongly convex T=0 (_> =0 ( " ) ,

with respect to the Euclidean norm. We now follow the same 82 €

steps as the proof of Theordr 1, but this time exploiting thmrresponding to the second term in Theofém 1.
ensemble formed by the base functiohs] (30), and the lower

Lemma 5. Using an ensemble based on the base fun
tions (30), we have
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Finally, the third and fourth terms are obtained just likén this definition, the quantity: > 0 is a pre-factor to be
Theorem[]L by checking the conditioh < 1/4 in the two chosen later, andl € (0, 1] is a given error tolerance. Observe
cases above. Overall, this completes the proof for the cahat each function,, € G(J; k) is convex, and Lipschitz with
p=1. parameter: with respect to thd| - ||o. norm.

d) Proof for p > 2: As with the proof of Theo- Central to the remainder of the proof is the function class
rem[1(b), we use Oracle B that returdsiimensional values G(§; k) := {ga, a € V(k)}. In particular, we need to control
and gradients in this case, with the base functions definedtlire discrepancy)(d; k) := (G(5;k)) for this class. The
equatior-3D. With this choice, we have the upper bound following result, proven in Appendik]B, provides a suitable

E[|Za 5 (x)||2 < 2d2/P=2¢2, lower bound:

so that setting the constamt = Ld'~'/?/r ensures that Lemma 6. We have

El|Za,5(x)||Z < L?. As before, we have the strong convexity k) =  inf plgags) > C’“ST. (34)
parameter ’ a£BEV(K) ’ - 4
5, c(1—0) Ld~'?(1-#) Using Lemmd B, we may complete the proof of Theofém 3.
L R Ar ’ Define the base functions
Also p(ga,9s) is given by Lemmdls. In particular, Iet us FH (@) == d(jz(i) +r| +8|z()]), and
consider the case—6 > 46/(1+ 26 so that > ot L
[(1520) 30 hatv(0) 2 s, 17 (@) 2= d(Ja0) | + 3l2(@)])

and we set the desired accuracy= ¢ 1 9) as before. With

th|s setting ofe, we invoke Lemma&l2 as before to argue thdtonsider Oracle B, which returné-dimensional gradients
Pyla(Mr) # o] < £. To lower bound the error probability, based on the function

we appeal to Lemn@ 3 with = d just like Theoreni11(b) and

obtain the inequality Ga.B( == Z [bif;(x) + (1 = b;) f7 ()],
Lo, 16dT 62 + log?2
3= 7 dlog(2/ve) where {b;} are Bernoulli variables. By construction, the

function g, p is at most 3c-Lipschitz in ¢, norm (i.e.

[Za,8(z)]loc < 3c), so that settinge = Z vyields an L-

Lipschitz function.

T—q ( 1 > _ ( cr? ) Our next step is to use Fano’s inequalify 1[19] to lower
62 e(1—19) bound the probability of error in the multiway testing preil

The stated result can now be attained by recalling= associated with this stochastic oracle, following an arguim
Ld'='/7/r andn? = Ld~/P(1—6)/r for 1—0 > 45/(1+20) similar to (but somewhat simpler than) the proof of Lenira 3.

andd > 11. Ford < 11, the cases op > 2 andp — 1 are Fano's inequality yields the lower bound

Rearranging terms and substituting= 1§51’”0), we obtain
ford > 11

identical up to constant factors in the lower bounds we state - Yo D(Pa [[P5) + log 2
This completes the proof far — 6 > 46/(1 + 26). Pla#a*]>1- (=) (35)
Finally, the case foll — 6 < 46/(1 + 26) involves similar B log V|

modifications as part(a) by using the different express@n f(as in the proof of Lemmdl3, we have used convexity of
p(ga>gp)- Thus we have completed the proof of this theoremaytyal information [[19] to bound it by the average of the
pairwise KL divergences.) By construction, any two parame-
D. Proof of Theorenl3 tersa, 8 € V differ in at most2k places, and the remaining
We begin by constructing an appropriate subsefgf(k) entries are all zeroes in both vectors. The proof of Lernina 3

over which the Fano method can be applied. Lgk) : shows that ford € [0, 1], each of thesek places makes

{a',...,a™} be a set of vectors, such that eaoh < a contribution of at most64°. Recalling that we haved’

{-1, O +1}d satisfies samples, we conclude th&(P,, |P3) < 32kT§2. Substituting
_ _ k this upper bound into the Fano lower bouhdl(35) and recalling

led]o=k Vj=1,...,M andAg(c?,a) > 5 that the cardinality o is at leastxp (§ log %75 ), we obtain

for all 7 # £. It can be shown that there exists such a packing
set with|V(k)| > exp (& log k/2) elements (e.g., see Lemma Pla(Mr) #a] >1—2 <
5 in Raskutti et al.[[22]).

For anya € V(k), we define the functior — g, (z) via

2kT62 + log 2

e ) (36)
2 108 %72

By Lemma[6 and our choice= L/3, we have

c[i{(%w)u o]+ (5 - 00 @) - ) v() > - o

=1

Therefore, if we aim for the target errer= £% then we

+0 Z |:c(z’)|] . (33) are guaranteed that< g ) as is required for the application
i of Lemmal2. Recalling the requiremedt< 1/4 givese <
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Lkér/432. Now Lemmal® implies thaP[a(Mr) # o] < Consequently, using the definition {30) of the base funstion
1/3, which when combined with the earlier bould](36) yieldsome algebra yields the relations

2 1-0 . 1436 1446 .
% S>1_2 (32’?15 +10g2> . @) = — (@)’ + — =" + ( : )re(i), and
08 %72
fi(z)= —egc(z)2 + 1+ 397°2 _a+ 9)7“:6(2').
Rearranging yields the lower bound 4 4 2
log = log 45k Using these expressions fgf" and f,-, we obtain that the
T—0 2’“/2 alrz2 2;{272’“/2 7 quantity i;(z) = (3 + a:d) f; (z) + (3 — id) f; (z) can
0 € be written as

where the second step uses the relatica 125, As long as hi(z) = l(f;r(x) 17 (@) + ud (fH(z) — £ (@)
k < [d/2], we havelog <2k = @ (log 4), which completes %_ p

&2
the proof. I 1+ 39

x(i)? + —= : + (1 + 0)a;orz(i).

A little calculation shows that constrained minimum of the

univariate functiom; over the interval—r, r] is achieved at
V. DISCUSSION

i i i —20;6r(1+6) if 1=0 > 95
In this paper, we have studied the complexity of convex 2% (i) == -6 1t6 =
optimization within the stochastic first-order oracle mioide —our if 10 <2
derived lower bounds for various function classes, inaigdi _
convex functions, strongly convex functions, and convexcfu Where we have recalled that; takes values in{—1,+1}.
tions with sparse optima. As we discussed, our lower boun8ybstituting the minimizing argument (i), we find that the
are sharp in general, since there are matching upper bouRti8imum value is given by
achieved by known algorithms, among them stochastic gradi- 5 o

- . 1430,.2 _ 6°r (146) ;
ent descent and stochastic mirror descent. Our bounds also ha(z* (i) = 7t ) if 1
reveal various dimension-dependent and geometric aspects 1%%2 — (14 60)6r2 if 1
of the stochastic oracle complexity of convex optimization
An interesting aspect of our proof technique is the use 8umming over all co-ordinates€ {1,2,...,d} yields that
tools common in statistical minimax theory_. In partlculgﬁ,nfzeﬁoo(r) ga(x) = 5 51 hi(x* (7)), and hence that
our proofs are based on constructing packing sets, defined
with respect to a pre-metric that measures how the degree {_52T20(1+9>2 + CT2(14+39) if =0 > 95

L
AN

0
J.

+
DI D

2
2

==
i

=) 116

Her? — (1+0)cor?  if 155 < 26.

of separation between the optima of different functions. Wg@lgrif(r) ga () =

then leveraged information-theoretic techniques, inipaler

Fano’s inequality and its variants, in order to establisheo

bounds. b) Evaluating the joint infimum:Here we begin by
There are various directions for future research. It wowld Rpserving that for any tway, 3 € V, we have

interesting to consider the effect of memory constraintshen

37)

complexity of convex optimization, or to derive lower bosnd d 1430

for problems of distributed optimization. We suspect thnt t (z) + — i)+ — 2

proof techniques developed in this paper may be useful for i=1

studying these related problems. +2(1 + O)aydre()(a; = B)].  (38)
APPENDIX As in our previous calculation, the only coordinates that

contribute top(g.,93) are the ones where; # f;, and
A. Proof of Lemma&]5 for such coordinates, the function above is minimized at

Let d b bit i of funct . 2*(i) = 0. Furthermore, the minimum value for any such
et go and gs be an arbitrary pair of functions in our ‘oo is(1 + 30)cr?/(24d).

class, and recall that the constraint Seis given by the ball
B (7). From the definition[(T8) of the discrepaneywe need
to compute the single function infimuinf,cg () 9o (), as
well as the quantitynf,cp__ () {ga(z) + gs(x)}.

a) Evaluating the single function infimurmBeginning f { +gs(a)} =
with the former quantity, first observe that for anye B..(r), weﬁi(” 9a(z) + gs(x
we have

We split the remainder of our analysis into two cases: first,
if we suppose tha%g > 26, or equivalently thatl — ¢ >
46/(1 + 26), then equation(38) yields that

d
3 [1 +30 5 262r2(1 +9)2]I(ai _5)

1-6

Ul o

|x(?) +r| =2@() +r and x(i) — |r| =r — z(i).
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Combined with our earlier expressioh {37) for the single d) Evaluating the joint infimum:We now turn to the
function infimum, we obtain that the discrepancy is given bgomputation ofinf,cp__ (r){9a(7) + gs(z)}. From the rela-

25%r2¢(1 + 6)? tion (39) and the definitions af, andgsz, some algebra yields
p(gaagﬂ) = AH(O{,B)
d(1—0) .
N i {30 (0) + 95(2)) =
> ) v
= d(l — 9) H(O‘aﬂ)
On the other hand, if we assume thtf < 24, or C}Egg; {2r +26 (e + Bi)x (i) + [z(9)]]}.  (41)

equivalently thatl — 6 < 4§/(1 + 2§), then we obtain

2)} = Let us consider the minimizer of thé&" term in this
summation. First, suppose that # ;, in which case there
c 1430, s 1-0, are two possibilities.
d Z { 5 <2(1 +0)r70 - o " >H(ai - ﬂi)} ' o If a; # f; and neithera; nor 3; is zero, then we must
=t haveq; + 5; = 0, so that the minimum value dfr is
achieved at(i) = 0.
o Otherwise, suppose that; # 0 and 5; = 0. In this

{ga + gp(x

Combined with our earlier expressioh {37) for the single
function infimum, we obtain

p(gas 95) = ¢ (2(1 025 — 1- 9T2) Ap(a, B) case, we see fr.om equatidEKAl) that it is equiyalent to
d 2 minimizing a;z(¢) + |x(7)|. Settingz(i) = —a; achieves
(é c(1+6)r 6AH(a, 9), the min.in-1um value ofr.
d In the remaining two cases, we hawg = ;.

where step (i) uses the bound- 6 < 2§(1 + 6). Noting that

o If oy = f; 0, then the component is minimized
6 > 0 completes the proof of the lemma. @ b # P ! mimiz

at (i) = —a;r and the minimum value along the

B. Proof of Lemm&l6 component i2r(1 — §).

Recall that the constraint s&tin this lemma is the ball ° gtjl(i)_:ﬁzo_ 0, then the minimum value igr, achieved
B (r). Thus, recalling the definition(18) of the discrep- '
ancy p, we need to compute the single function infimunfonsequently, accumulating all of these individual casés i
inf,ep(r) 9o (), as well as the quantitnf,cp_ () {ga(z)+ @ single expression, we obtain

gs(x)}-

¢) Evaluating the single function infimumBeginning . _ _ A
with the former quantity, first observe that for anye B (r), iréfs {ga(@) + g5(2)} = 2er | d 5,211[0” =B # 0]
we have a (42)

1 : 1 _
{5 + ai5] |x(d) + 7] + {5 - oaﬁ] |z (i) — 7| Finally, .combining equation§ (40) and {42) in the definition
— 4 2002(i). (39) of p, we find that

We now consider one of the individual terms arising in the d
definition [16) of the functiory,. Using the relation[(39), we p(gas gp) = 2cr |d — 52}1[041- = Bi # 0] = (d — kd)
see that i=1

é K% +ai6) ) + (% —aié) f;(x)] = = 257 [ ZH% ) 7&0]
(% + o ) |z (@) + 7| + (; aié) 2(i) — 7| + 8|2(3), = créAH(a,ﬁ)7

which is equal to where the second equality follows sineeand 5 have exactly

. k non-zero elements each. Finally, sirkes ank/2-packing
7+ (205 + 1)dz(i) if 2(i) >0 set in Hamming distance, we havey (o, 3) > k/2, which
r+ (20 — 1)ox(i) if (i) <0 completes the proof.

From this representation, we see that wheneyeg 0, then
thei'" term in the summation defining, minimized atz(i) =
—ra;, at which point it takes on its minimum valu€l — ¢).
On the other hand, for any term witl; = 0, the function is  This appendix is devoted to background on the family of
minimized atz(i) = 0 with associated minimum value ef  mirror descent methods. We first describe the basic formeof th
Combining these two facts shows that the vecterr is an algorithm and some known convergence results, before show-
element of the seirg min,cgs g (), and moreover that ing that different forms of mirror descent provide matching
inf go(z) = cr (d — k). (40) UPper bounds f(_)r severa! of the onver bounds established in
this paper, as discussed in the main text.

C. Upper bounds via mirror descent
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1) Background on mirror descentMirror descent is a Consequently, based on mirror descent for— 1 rounds,
generalization of (projected) stochastic gradient detsdest we may setry = ﬁ ZtT:’ll x; SO as to obtain the same
introduced by Nemirovski and Yudir |[5]; here we follow aconvergence bounds up to constant factors. In the following
more recent presentation of it due to Beck and Tebollle [23liscussion, we assume this choiceagf for comparing the
For a given norm|| - ||, let ® : R — R U {+co0} be a mirror descent upper bounds to our lower bounds.
differentiable function that id-strongly convex with respect 2) Matching upper boundsNow consider the form of
to || - ||, meaning that mirror descent obtained by choosing the proximal function

B(y) > (a) + (VB(x), y — )+ gy > B(a) = gomlel}  fori<a<2 (48)
We assume tha® is a function of Legendre typé [24]. [25], Note that this proximal function id-strongly convex with
which implies that the conjugate dutf is differentiable onits respect to thel,-norm for 1 < a < 2, meaning that
domain withVo* = (V@)fl. For a given proximal function, ﬁ”x”i is lower bounded by
we let Dg be the Bregman divergence induced &y given

by 1

2 1 2 g 1 2
s—llvle + | Vo—=llzllz | (@—»)+35lz—yla-
Da(r.y) = B(@) - Bly) — (VO(g), o —y).  (43) Y 2o 1) ’

oLy =T 4 Yh E=4r- a) Upper bounds for dual settingtet us start from the
With this set-up, we can now describe the mirror descepisel < p < 2. In this case we use stochastic gradient
algorithm basegl on the proximal functi@n for r_ninimiz_ing descent with , and the choice pfensures thak||z(z)||? <
a convex functionf over a convex sef contained within E[|Z(z)||Z < L? (the second inequality is true by assumption

the domain of®. Starting with an arbitrary initialzo € S, of Theoren{ll). Also a straightforward calculation shows tha
it generates a sequende; }:°, contained withinS via the 2|l < ||lz*l, d}/2=1/4, which leads to

updates

) Ld1/271/q
Tip1 = argr;leiél {nt<a:, Vf(z)) + Dg(x, It)}, (44) E[f(zr) — f(z%)] = (T) .
wherern, > 0 is a stepsize. In case of stochastic optimizatior hiS upper bound matches the lower bound from equaftion (11)
V[ () is simply replaced by the noisy versiGitz,). in this case. Fop > 2, we use mirror descent with = ¢ =

A special case of this algorithm is obtained by choosing the (» — 1). In this caseE||2(x)|7 < L* and||z*[, < 1 for
proximal function® () = 1|2, which is 1-strongly convex the convex seB,(1) and the function clasZc, (B, (1), L,p).
with respect to the Euclidean norm. The associated Bregnfdfince in this case, the upper bound from equalioh 45 is
divergenceDe (z,y) = 3|z — y||2 is simply (a scaled version O(L/VT) as long ap = o(log d), which again matches our
of) the Euclidean norm, so that the updafes (44) corresppnd@wer bound from Equation 11. Finally, fos = Q(logd),

a standard projected gradient descent method. If one eceiWe use mirror descent with = 2logd/(2logd — 1), which
only an unbiased estimate of the gradi&hf(z,), then this gives an upper bound @ (L+/logd/T), sincel/(a — 1) =
algorithm corresponds to a form of projected stochastidigra©(log d) in this regime. _

ent descent. Moreover, other choices of the proximal foncti ) Upper bounds for, ball: For this case, we use
lead to different stochastic algorithms, as discussedwoelo Mirror descent based on the proximal functibpwith a = ¢.

Explicit convergence rates for this algorithm can be otetdin Under the conditior||z*[|.. < 1, a condition which holds in
under appropriate convexity and Lipschitz assumptions fHr lower bounds, we obtain
f. Following the set-up used in our lower bound analysis, l2*]q < [|2*]|lo d/ = d'/9,
we assume thakE||Vz(z;)||2 < L? for all z € S, where L . 2/q .
o]l := sup|j<i(z, v) is the dual norm defined by - |. which implies that®,(x )A: (9(2d ).2Under the conditions
Given stochastic mirror descent based on unbiased estimaleTheorenil, we have||z(z,)[|, < L* wherep = ¢/(¢—1)

of the gradient, it can be showed that (see e.g., Chapter §8fines the dual norm. Note that the conditibn< ¢ < 2
of NY [B] or Beck and Teboulle[[23]) with the initialization MPlies thatp > 2. Substituting this in the upper bourld [45)

ro = argminges ®(z) and stepsizesy = 1/v/t, the opti- yields
mization error of the sequende;} is bounded as E[f(a:T) 3 f(a:*)] _ (’)(L \/W)
iZT:E[f(x )= fa)] < Ly 2el@ha)
T t - T :O(Ldl—l/p\/z)
t=1 7 )
< L (@) (45) which matches the lower bound from Theorlem 1(b). (Note that

N T there is an additional log factor, as in the previous disouss
Note that this averaged convergence is a little differemifr which we ignore.)

the convergence afr discussed in our lower bounds. In order For1 < p < 2, we use stochastic gradient descent with
to relate the two guantities, observe that by Jensen’s al#tgu 2, in which case|z*|| < v/d andE||Z(z)||2 < E[|2(z)|2 <

ZT . 1 L? by assumption. Substituting these in the upper bound for
E [f (%) < T]E[f(xt)] mirror descent yields an upper bound to match the lower bound
of TheorenTL(a).
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