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Abstract— Unlike most other robots, autonomous personal
transports must be designed with a passenger user in mind. This
paper examines the integration of three necessary technologies
for a robotic transport—in particular, a robotic wheelchair.
First, local motion to a nearby goal pose needs to be safe and
comfortable for the human passenger. Second, 3D overhangs,
drop-offs, steep inclines, and stairs (in addition to pedestrians
and walls) need to be accurately modeled and avoided, while
curb cuts, drivable ramps, and flat ground should be seen
as traversable. Third, the spatial representation of the robot
should facilitate infrequent requests for human directions
and allow “natural” directional commands. Furthermore, the
sensorimotor system that facilitates spatial reasoning, planning,
and motion needs to be cost efficient. As a result, our goal is to
create a system that ultimately uses inexpensive wheel encoders
and off-the-shelf stereo cameras. In this paper, we overview the
three technologies listed above. We then discuss the successes
and the current failures of the integration task, both of which
motivate future work.

I. INTRODUCTION

The Intelligent Wheelchair is designed to serve as a mo-
bility aid for a human driver. It is also an autonomous robotic
agent that learns the spatial structure of its environment
from its own experience and is able to act autonomously
in pursuit of goals set by the human. The robot acts as a
chauffeur for the human. The current physical instantiation
of the Intelligent Wheelchair is shown in Figure 1.

The Intelligent Wheelchair’s cognitive architecture uses
the Hybrid Spatial Semantic Hierarchy (HSSH) [1], [2],
which integrates four different representations for knowledge
of space. By using multiple spatial knowledge representa-
tions, the wheelchair supports different modes of interaction
and different levels of autonomy. In this paper, we deal with
the inference and control at the lowest level of the HSSH
hierarchy, which in turn affects the higher levels. Section II
briefly overviews the HSSH.

Previous HSSH implementations used planar lidar sensors
for reliable detection of obstacles at a fixed height from the
ground plane. This allowed straight-forward SLAM (simulta-
neous localization and mapping) inference using 2D metrical
maps in the HSSH Local Metrical level. For the Intelligent
Wheelchair, we wish to overcome the need for expensive
and/or bulky sensors like lidar.
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Fig. 1. The current Intelligent Wheelchair platform. A human “driver”
can either use the joystick or GUI interfaces via a laptop. There is a
stereo camera on a pan-tilt unit, one horizontal lidar, and one vertical lidar
(currently unused). The horizontal lidar is used for efficient SLAM; however,
future platform configurations should eliminate expensive lidar sensors and
utilize visual SLAM [3] along with the visual 3D modeling discussed below.

Additionally, we wish for our robot to handle common
non-planar situations, including drop-offs, inclines, and over-
hangs; thus motion planning algorithms need good models
of the 3D local surround. This work demonstrates how the
HSSH Local Metrical representation can be created using
off-the-shelf stereo cameras. The representation facilitates
safe navigation in non-planar environments. Section III
overviews the process of creating a 3D hybrid model of
small-scale space (space immediately surrounding the robot)
and discusses how this is transformed into the 2D Local
Perceptual Map of the HSSH Local Metrical level.

The grid-based Local Perceptual Map (LPM) is useful
for efficient planning around obstacles, while avoiding drop-
offs and overhangs. Previous HSSH implementations dealt
with control at this lowest level in a quite ad hoc fashion,
simply following a piecewise linear plan at a constant
velocity; however, for a passenger transport, comfortable yet
safe trajectories must be created. Section IV demonstrates
fast planning of trajectories that result in motion that is
comfortable for the human passenger.

Section V discusses the integration successes of the 3D
vision-based model and the comfortable trajectory algorithm
into the HSSH. We show examples of environments that
the robot was unable to navigate with lidars, but can now
successfully navigate using the vision-based model. How-
ever, like all integration challenges, there are some failures
and/or unexpected degradations compared to previous HSSH
implementations based on planar lidar maps and linear plans.
These problems motivate interesting short-term and long-
term future work, which is outlined in Section VI.

II. HSSH OVERVIEW

The Spatial Semantic Hierarchy (SSH) [4] is a spatial
representation framework inspired by the multiple layers
of knowledge that humans utilize in navigating large-scale
spaces. This framework is extended to the Hybrid Spatial

WORKSHOP ON PLANNING, PERCEPTION AND NAVIGATION FOR INTELLIGENT VEHICLES, ST. LOUIS, MISSOURI, 2009



interaction, e.g., Turn
right at intersection

Local Topology basedLocal Topology
Level

Global Metrical
Level

Level
Local Metrical

Observations

Place Layouts

Communication with

LPM with

Commands
Motor

Robot Pose

commands; safety
queries, e.g., Go
forward 5 meters

Global Topology/

e.g., Take me to my
office

Global metrical map
based interaction, e.g,
Take me to the spot
clicked on the map

Low level motion

Path Hazards/Metrical Annotations

Place LPM, Small Scale Star

Last Gateway, Action Type

Topological Map,

Metrical Annotations

LPMs of all Places,

Commands
Motion

Place

Human Interface:

Control Flow:

Data Flow:

Control

Effectors, Sensors

Hardware

Global Topology
Level

Likelihood of

Place interaction,

Travel, Turn

Human User

LPM Pose

Pose
LPM

Fig. 2. The cognitive architecture of the Intelligent Wheelchair is based
on the HSSH. The rightmost column shows the interface modes we are
currently investigating for each representational level.

Semantic Hierarchy (HSSH) by incorporating knowledge of
local (small-scale) perceptual space. The Intelligent Wheel-
chair’s cognitive architecture, which is the HSSH, is illus-
trated in Figure 2.

The HSSH has four major levels of representation. At the
Local Metrical level, the agent builds and localizes itself in
the Local Perceptual Map (LPM), a metrically accurate map
of the local space within a bounded sensory horizon. The
LPM is used for local motion planning and hazard avoidance.
At the Local Topology level, the agent identifies discrete
places (e.g., corridor intersections, rooms, etc.) in the LPM
discretization of the small-scale environment, and qualita-
tively describes the configuration of the paths through the
place—its local decision structure. At the Global Topology
level, the agent resolves large-scale structural ambiguities
(e.g., loop closing) and determines how the environment is
best described as a graph of places, paths, and regions. The
Global Metrical level specifies the layout of places, paths,
and obstacles within a single global frame of reference. It
can be built on efficiently using the loop-closing constraints
provided by the topological map [2]. It is useful when
available, but is often unnecessary for large-scale navigation.

The human-robot interaction levels for the Intelligent
Wheelchair correspond with the distinct representations in
the Hybrid Spatial Semantic Hierarchy. The higher levels of
interaction require more intelligence on the part of the wheel-
chair, but they also require less effort for communication and
supervision by the human driver. In order to maximize human
autonomy, the driver can shift freely between the different
levels at any time.

A. Local Metrical Modeling

Humans have relatively reliable metrical models of their
nearby, local surroundings. Likewise, the Intelligent Wheel-
chair builds and maintains a fixed-size Local Perceptual
Map (LPM) that is centered on the wheelchair and follows
its motion while describing the wheelchair’s small-scale
surroundings. The frame of reference of the LPM may drift
with respect to the global frame, but this is resolved in the
Global Topological and Global Metrical levels.

Regions in the LPM can be classified as free space,
obstacles, or unknown space. Obstacles in the LPM can be
further classified as static or non-static, making it possible to
identify dynamic hazards such as pedestrians and structures
such as doors (that change the apparent topology of places).
Previous versions of the HSSH represented the LPM as a
fixed-size occupancy grid map built using lidar sensors using
existing methods for simultaneous localization and mapping
(SLAM) [5]. The current implementation of the HSSH uses
vision to build the LPM as discussed in Section III.

B. Local Place Topology

Humans generate symbolic descriptions of the naviga-
tional affordances of the local space, and therefore un-
derstand its qualitative decision structure. An Intelligent
Wheelchair should understand terms the human driver finds
useful and comfortable, including navigation commands that
presuppose knowledge of the local decision structure, such
as “Turn right” or “Take the second left”. Fortunately, these
terms correspond well with the HSSH Local Topology level.

As the Intelligent Wheelchair moves through the environ-
ment, it maintains the LPM as an accurate metrical model
of local small-scale space. From the LPM it describes the
local topology of nearby space in terms of local paths and
gateways (see Figure 3(a)). Local paths are the navigation
affordances provided by the motion control laws that sup-
port travel across the boundary of the LPM. Gateways are
divisions across those local paths, separating the core of the
local region from its boundaries. Details on the current robust
gateway algorithm are provided in previous work [1]. For the
experiments in this paper, the wheelchair creates a 140x140
cell LPM, which means gateways can be computed at ∼8 Hz.

Local paths in small-scale space correspond to the locally
visible portions of topological paths in large-scale space.
When the LPM contains exactly two gateways, and they align
sufficiently well to lie on a single, unique local path, the
agent describes itself as between places, traveling along a
path. Any other configuration of gateways and local paths
requires a navigation decision, so the local neighborhood
defines a topological place.

The local place topology is described as a circular order of
directed local paths and gateways, which translates directly
to the large-scale space description of a place as a node in a
graph, connected to paths (see Figure 3(c)). In previous work,
we discussed the formal mapping between small-scale and
large-scale ontologies [2]. In large-scale space (where most
route planning takes place), a command such as “Turn left”
selects an outgoing directed path, given the incoming one.
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Fig. 3. (a) From a snapshot of the current LPM, local paths π̃ and gateways
g are found and aligned. (b) Based on gateway alignment, a symbolic
circular ordering of the local space is created. (c) In large scale space,
places are abstracted to 0D points with 1D circular orderings of paths.

In small-scale space (where motion control actually takes
place), the same command translates to a specific gateway.
This, in turn, gets translated into a goal location in the LPM
frame of reference, which seeds planning and local motion.

By instructing the wheelchair at the Local Topology level,
the human driver is delegating the autonomy for hazard-
avoiding travel between places, for recognizing the decision
structures of places, and for selecting the intended option at
that place. Thus, at the Local Topology interaction level, both
the driver and the Intelligent Wheelchair represent the space
as a graph of decision points. In the current implementation,
the available commands are Forward, Right, Left, and Turn
Around as indicated by the GUI window shown in Figure 2.

C. Global Topological and Metrical Maps

People tend to solve way-finding problems primarily based
on their topological knowledge of the environment. The
HSSH builds a global topological map from the agent’s
travel experience, expressed as a sequence of places with
local topologies, linked by travel actions. People also often
find it helpful to use metrically accurate graphical maps. A
global metrical map in a single frame of reference can be
built efficiently using the global topological layout and stored
metrical displacements from the Local Metrical Level [2].
In this paper, we ignore the Global Topology and Global
Metrical Levels, as they remain unchanged given quality
abstractions of local topology from the LPM.

III. MODELING 3D SURFACES

This section gives an overview of the stereo vision-based
algorithm for 3D modeling of the robot’s surround. The
algorithm and its quantitative evaluation are detailed in other
work [6]. The goal of this algorithm is to create a drop-in
replacement for the traditional lidar-based occupancy grid
Local Perceptual Map (LPM). If successful, the vision-
based Local Perceptual Map should facilitate safe control
at the Local Metrical level as well as support inference and
control at the Local Topology level (and the global levels)

of the HSSH—even in non-planar environments. Section V
details progress in integrating the vision-only LPMs with the
existing HSSH codebase.

As the robot explores its local surroundings, it receives a
constant stream of stereo images. Each time the robot gets
a new stereo image pair, it processes the images to update
its current knowledge of the world. The following steps are
involved in processing each frame in order to produce an
LPM at the Local Metrical level of the HSSH.

1) A disparity map relative to the left image is computed
using the camera’s built-in correlation stereo method [7]
(Figures 4(a) & 4(b)). The range readings obtained are trans-
formed into the LPM frame of reference using localization.

2) A 3D model consisting of a 3D grid (Figure 4(c)) and
a 3D point cloud (Figure 4(d)), is updated with the range
readings obtained above using an occupancy grid algorithm.
The 3D point cloud is obtained by maintaining a list of the
range points that fall in each occupancy grid voxel.

3) Planes are fit to potentially traversable ground regions in
the 3D model using a novel plane fitting algorithm consisting
of two steps. First, ground regions are found by segmenting
the 3D grid based on the heights of voxels columns—
Figure 4(e) shows the segments identified. Second, planes
are fit using linear least squares to points corresponding to
the segments (Figures 4(f) & 4(g)).

4) Finally, the segments and planes are analyzed for safety
to yield an annotated 2D grid map called the local safety map
(Figure 4(h)) that tells the robot which regions are known to
be safe (or unsafe) at the current time. Each cell in the map is
annotated with one of four labels: Level: implying the region
in the cell is level and free of obstacles; Inclined: the cell
region is inclined; Non-ground: the cell has an obstacle or
overhang or is lower in height (drop-off) than nearby ground
regions; Unknown: there is insufficient or no information
about the region.

This safety map is then used by the Local Metrical level
as its LPM, by having Level and Inclined cells in the safety
map correspond to free space in the LPM and Non-ground
cells correspond to obstacles. For a 3D grid 14x14x3 meters
in size, with 10 cm resolution, the current implementation
can update an LPM at ∼4 Hz.

Assumptions

We use the horizontal lidar on the wheelchair robot to
keep the robot localized with respect to a lidar-based LPM.
This is done using a 3-DOF SLAM algorithm. Visual SLAM
techniques are currently too computationally intensive to
run concurrently with the 3D modeling and traversability
abstraction. Therefore, for the experiments reported in this
paper our robot is restricted to traveling only on near-level
surfaces.

In the future we intend to replace 3-DOF method with a
camera-based 6-DOF SLAM algorithm [3]. The 3D model-
ing algorithm is general and applicable without modification
to the case when the robot knows its 6-DOF pose in the local
3D model.
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Fig. 4. (Best viewed in color) (a) Left image from the stereo camera
showing a typical non-planar scene, with a drop-off to the left, and a ramp
to the right, of the railing. (b) Disparity map computed for the stereo pair
(brighter regions closer). (c) 3D occupancy grid of the above environment
(voxels colored according to height) constructed from a collection of
stereo images. (For clarity, the viewpoint of this figure is different from
the viewpoint of the left image above.) (d) 3D point cloud that built
the occupancy grid. (e) Potentially traversable ground regions found by
segmenting the 3D grid. (Obstacles are gray.) (f) The planes obtained for
each of the potential ground segments. (g) A cross-sectional view of the
planes. (h) The final safety map obtained after analyzing the segments
and fitted planes for safety: black for Non-ground regions; white for Level
regions; yellow for Inclined regions; light gray for Unknown regions; dark
gray for unexamined regions; and blue for denoting Potential Drop-off Edges
that might be present in the Level and Inclined regions. (i) A hybrid 3D
model can also be constructed at this point. The planes are used to represent
traversable ground regions (green for Level and yellow for Inclined regions).
The grid is used to represent Non-ground regions that are not modeled easily
using planes.

IV. COMFORTABLE MOTION FOR A WHEELCHAIR

A robot transporting a human passenger not only needs to
plan obstacle-free paths, but it also needs to compute how to
move on the path such that the motion is comfortable. That is,
it needs to find a trajectory—a time parameterized function
of robot pose. Below we give an overview of our formulation
of trajectory planning as a variational minimization problem
(described and quantitatively evaluated in previous work [8]).

We then discuss particular issues in integrating this work
with the existing HSSH path planner.

Fig. 5. Tangent and
Normal to a curve.

Given boundary conditions on pose,
velocity, and acceleration at both end-
points, our objective is to find a tra-
jectory that satisfies the boundary con-
ditions and minimizes the discomfort.
The discomfort is modeled by a cost
functional J, which is a function of
the total travel time and motion as
parameterized by time.

For a robot moving on a planar curve, r(t) = (x(t),y(t))
denotes the position vector at time t. The unit tangent
and normal vectors to the curve are given by T and N
respectively. The angle θ that the tangent makes with the
x axis is given by: θ = atan2(ẏ, ẋ). The robot is modeled as
a rigid body moving in a plane subject to the nonholonomic
constraint ẋsinθ − ẏsinθ = 0. To ensure that this constraint
is satisfied, we assume that the x axis of the body-centered
coordinate frame is always tangent to the curve r(t).

The discomfort measure is the following cost functional:

J = τ+wT

∫
τ

0
(
...r ·T)2 dt +wN

∫
τ

0
(
...r ·N)2 dt+

w
θ̇

∫
τ

0
θ̇

2 dt +w
θ̈

∫
τ

0
θ̈

2 dt

τ represents the total travel time, and
...r represents the jerk....r ·T and

...r ·N are the tangential and normal components
of jerk respectively. θ̇ is the angular velocity, and θ̈ is the
angular acceleration. We assume that r(t) is smooth enough
for the cost functional to be well-defined. This means that the
acceleration vector is continuous and normal and tangential
components of jerk are square integrable.

The term τ is necessary. If it is not included in the
functional, the optimal solution is to reach the destination
at τ = ∞ traveling at essentially zero speed in the limit
(except perhaps at the end-points where the speed is already
specified). Thus, minimizing just the integral terms will not
lead to a good solution.

The weights (wT , wN , w
θ̇

, w
θ̈

) are non-negative, real
numbers. The weights serve two purposes. First, they act
as scaling factors for dimensionally different terms. Second,
they determine the relative importance of the terms. The
weights provide the ability to adjust the performance ac-
cording to user preferences. For example, on a wheelchair,
some users may not tolerate high jerks and prefer traveling
slowly while others could tolerate higher jerks if they reach
their destination quickly. The weights are determined via
dimensional analysis of the cost functional so that discomfort
is independent of boundary conditions. For this work, we
utilize the “characteristic weights”, which were previously
determined [8].

The optimization problem is to find a function r and a
scalar τ that minimize J given the boundary conditions:

r(0) = r0, r(τ) = rτ ,
θ(0) = θ0, θ(τ) = θτ ,
ṙ(0) = v0q0, ṙ(τ) = vτ qτ ,

r̈(0) ·T(0) = aT 0 , r̈(τ) ·T(τ) = aT τ
.

(1)



Here q0 = (cosθ0,sinθ0) and qτ = (cosθτ ,sinθτ), v is the
speed and aT is the tangential acceleration. In the following
discussion, the subscripts T and N stand for the tangential
and normal components of a quantity respectively.

The variational optimization problem of Equation 1 is
posed in an infinite dimensional space of vector-valued func-
tions r(t). We minimize J in a finite-dimensional subspace
by discretizing x(t) and y(t).

For J to be well-defined in this subspace, θ and its first
and second derivatives need to be well-defined. θ is not an
independent variable but is determined by θ = atan2(ẏ, ẋ)
when the tangential speed is non-zero. Different expressions
for θ have to be derived when the tangential speed is
zero. For the robot to move in the “forward” direction, the
speeds v0 and vτ should be non-negative. Since the optimal
trajectory tries to keep the travel time small, it is clear that for
the optimal trajectory the tangential speed will never be zero.
Thus, θ will always be well-defined in the interior (0,τ).
The only trouble can arise at the two end-points, where the
specified tangential speed may be zero. Previous analysis [8]
shows that there are two types of boundary conditions where
speed is zero: (i) v = 0,aT 6= 0, (ii) v = 0,aT = 0. For the
second type of boundary condition, the expression for θ can
be specified in terms of the third derivatives of x(t) and y(t).
Thus, for θ to be well-defined, the discretization of x(t) and
y(t) should be such that their third-derivatives exist.

Thus, in order to completely define the problem we
need to specify 4 boundary conditions per end-point per
space dimension—position and three derivatives. Hence, we
choose heptic interpolating splines as the basis functions.
Heptic splines are degree seven piecewise polynomials with
continuous derivatives up to order six. As a function, each
spline x(t) and y(t) (M + 1 polynomial pieces) can be
uniquely determined from 8 boundary conditions and its
value on M interior nodes. In addition to the travel time
τ , these nodal function values {xi,yi}M

i=1 are the parameters
that are found by optimization. In the input specification of
Equation 1, only derivatives of up to second order (position,
velocity and acceleration) are given. The values of normal
acceleration aN , tangential jerk jT , and normal jerk jN are left
as unknown parameters for the optimization problem. These
are determined along with the optimal trajectory.

Figures 6(a) & 6(b) illustrate the paths corresponding to
the optimal trajectory for two cases with different boundary
conditions.

Avoiding Obstacles

Above, we discussed an algorithm for generating trajecto-
ries between an initial and a final pose, given the velocity and
acceleration at both end-points, such that the resulting motion
is comfortable for a human passenger. Noticeably lacking
is any notion of safety. As part of the integration task, we
combine the existing HSSH Local Metrical planner together
with the above algorithm to compute safe trajectories. The
result is a geometric path that (in practice) does not intersect
obstacles, while the motion on the path is comfortable.
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Fig. 6. Optimal paths for two examples. The circles are drawn at
equal intervals of time; thus, lesser spacing between circles implies higher
speed. (a) Start pose (x,y,θ)0 = (0,0,0), End pose (x,y,θ)τ = (0,0,−π/4).
Velocity and acceleration at both ends are zero. The boundary conditions on
orientation can be imposed at end-points even when speed and acceleration
are both zero. As expected, the path is almost a straight line. The robot starts
moving slowly, accelerates to maximum velocity, and then slowly comes to
a stop. (b) Start pose (x,y,θ)0 = (0,0,0), End pose (x,y,θ)τ = (0,5,π/2).
The initially velocity is 1 m/s to the right. The normal and angular jerk
terms in J ensure that the robot does not turn too fast resulting in a gently
curved path.

(a) (b)

Fig. 7. (a) A real world example of a comfortable trajectory. This trajectory
is composed of several sub-goals, given by a trivial RRT planner. (b) Actual
path of the robot. A static feedback linearization controller [10] is used to
compute the control commands necessary to follow the trajectory.

At the Local Topology level, the robot uses the forward-
facing gateway (and the underlying Voronoi skeleton used to
find gateways [1]) to continually chose a new goal point at
the edge of the LPM. This facilitates navigation down hall-
ways. At places, the gateways themselves are used as goals to
facilitate large-scale turn actions. At the Local Metrical level,
the driver may click a position to travel to in the LPM. The
integration task here is to transform the continually computed
goal locations into safe and comfortable trajectories from the
robot’s current location.

The HSSH utilizes an efficient Rapidly-expanding Ran-
dom Tree (RRT) [9] planner (see Figure 7(a)) to compute
piecewise linear plans from goal points. Given a plan of safe
waypoints, a trajectory must be computed. The boundary
conditions are: zero velocity and acceleration at the goal
point, the robot’s current velocity and acceleration at the start
point, and a specified velocity at all intermediate points. In
the current implementation, the magnitude of this velocity
is specified as the desired average speed of the wheelchair;
however, in future, the boundary conditions at the interme-
diate points will be found by optimization. Figure 7 shows
a path corresponding to an optimal comfortable trajectory.
The piecewise linear path produced by the RRT planner is
also shown. The RRT planner is capable of running very fast,
but is only rerun as the LPM is updated (often 10 Hz with
a lidar-based LPM). A trajectory can be computed from a
plan at ∼5 Hz.

In theory, this method does not ensure trajectories that



completely avoid obstacles. However, in practice, we rarely
see the optimal trajectory come too close to an obstacle.
When it does, the robot’s control avoids collisions, and a new
plan ultimately moves the robot away from the obstacle.

V. INTEGRATION PROGRESS AND RESULTS

In this section we show that the 3D depth information
from a stereo camera can reliably disambiguate between
drivable surfaces and non-traversable stairs or curbs in indoor
and certain outdoor environments. We illustrate situations
where the vision-based Local Perceptual Map (LPM) is safer
than lidar-based models, though occasionally stereo vision
fails to detect textureless surfaces. We also demonstrate the
local topology and trajectory generation algorithms working
successfully with the vision-based LPM.

The vision-based LPM we use in our system is 14 meters
wide with a cell resolution of 10 cm, resulting in a 140x140
cell grid. In order for the full system to run smoothly and
reliably, components cannot run at full speed, even on mod-
ern multiprocessor machines. As such, we throttle the system
components: the vision-based LPM is updated at ∼2 Hz (the
lidar-based LPM that is currently used for localization is run
synchronously); the gateways, local topology, and travel goal
points are updated at ∼1 Hz; thus, new paths and trajectories
to LPM goal points are generated at ∼1 Hz.

A. Integration Successes

The new HSSH implementation that integrates stereo vi-
sion LPMs and comfortable trajectories has shown promising
results in various situations that were not well handled in
previous HSSH implementations.

Figure 8 illustrates how the vision-based LPM finds dif-
ferent places than a lidar-based LPM. The wheelchair is in
a large region that is basically a large + shaped intersection
with curved walls and a circular railing in the middle
with stairs. When using a lidar-based LPM, the robot will
hypothesize a single place with gateways at the edges of the
actual hallways, a (potential) + intersection. This is because
the gateway algorithm removes “island” obstacles (in this
case the thin railings) from the LPM prior to its analysis of
the local structure. The vision-based LPM clearly detects the
thin metal rails as belonging to single a continuous obstacle,
and instead parses the large region into a set of smaller
places.

At first, the HSSH local topology algorithm hypothesizes
a potential place with four ways out using the vision-based
LPM (see Figure 8(a)). Before deciding that it really is at a
place, the robot moves to a point near the center of the place
neighborhood and spins around to get more information.1

Upon moving closer to the stairwell, the robot detects
the drop-off (see Figure 8(b)); thus, an obstacle is created
at this location in the 2D LPM representation of the local
region. Consequently, the gateway algorithm finds only three
gateways (see Figure 8(c)), which align to form a circular

1The idea of rotating in place as exploration of a potential place is
historical. It works well with a small, circular robot but is not ideal for
a robot with a human passenger. This will be addressed in future work.
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Fig. 8. (a) The robot begins mapping a large open intersection. Using
the vision-based LPM, it hypothesizes four ways out of the current region.
(b) Upon further examination, a drop-off due to a downward stairwell is
detected. (c) The robot verifies that it is indeed at a topological place; how-
ever, the final symbolic local topology describes a simpler Y intersection,
with only three (safe) ways out—the red arrow in image (a) corresponded
to the drop-off. (d) The lidar-based LPM does not see the drop-off, which
could be catastrophic. (The green blobs represent dynamic obstacles, which
occur due to the lasers not seeing the poles consistently.)

ordering corresponding to a Y intersection. The wheelchair
decides that this is definitely a place and waits for the user
to select the gateway to leave through.

Figure 9 illustrates the successful integration between the
trajectory planner and the vision-based LPM—the trajecto-
ries are similar to those obtained with the lidar-based map in
Figure 7. The vision-based LPM allows the robot to avoid the
bench (shown in Figures 9(a) & 9(d)) that has an overhang
that is too high to be seen by the horizontal lidar.

Figure 10(a) shows an outdoor area that the wheelchair can
only navigate using the vision-based LPM. The 3D hybrid
model detects a difference between the sidewalk height and
height of the road to the left. The retaining wall on the right
is also easily detected. These height differences appear as
obstacles in the LPM, and the Local Topology level of the
HSSH detects this as a single path. The robot chooses a
goal point ahead on the path (green dot on the right of
Figure 10(b)), and plans a trajectory. Figure 10(d) shows that
the cars to the left create obstacles even in the lidar-based
LPM. However, at empty parking spots, the lidar-based LPM
creates large regions of free space that lead to false positive
detections of L intersections, and (as in Figure 8(d)) provide
the robot with an unsafe model of the local surround.

B. Integration Drawbacks/Failures

Despite the successes discussed above, there are certain
limitations of each component discussed in this paper. Some
of these only become obvious upon integration into a larger
system and lead to novel problems to tackle in future work.

One issue is the amount of stereo vision data needed
to build the hybrid 3D model (due to the noisy nature of



(a) (b)

(c) (d)

Fig. 9. (a,b) The stereo camera is able to detect an overhanging bench
top that cannot be seen by the wheelchair’s horizontal lidar. Thus, in this
scenario the vision-based LPM provides a useful model for safe planning.
(c) The wheelchair computes a trajectory that results in a smooth path and
comfortable motion by using the vision-based LPM. (d) A snapshot from
the robot’s camera as it navigates around the bench.

stereo data). This can be seen by comparing the LPMs in
Figures 8(c) and 8(d), generated from the exact same motion
of the robot. The vision-based LPM cannot adequately model
the environment beyond about 4 meters whereas the lidar
sensor can detect obstacles up to 80 meters. This affects the
speed at which the wheelchair can drive, as it needs to move
slow enough to reliably detect the ground, obstacles, and,
drop-offs, etc. It also means dynamic obstacles are generally
undetected, which is why slow re-planning (at 1 second
intervals) is currently acceptable.

Vision also requires good lighting to work properly. In
poor lighting, surfaces lose texture and the stereo camera has
difficulty computing disparity information. Figure 11 shows
a situation where the robot is navigating a hallway and turns
into a hall with low lighting. As it approaches unknown
(gray) space in the LPM, the lack of depth information
about the floor means that the safety properties of this region
remain unknown. The detected local topology represents a
dead end (Figure 11(b)). Because of this, the robot does not
attempt to drive over unknown terrain (an invisible floor
appears the same as a bottomless pit in the vision-based
LPM). This is a useful feature of the integrated system.

Low textured environments are also problematic for stereo
vision due to the lack of salient features. Figures 12(a) &
12(b) show a common situation where a featureless wall
leads to a (false negative) region of no obstacles in the
LPM. Free space (corresponding to the ground) is next to
unknown space in the LPM. The gateway algorithm sees
this as an opening to be explored, and a false positive place
is generated with a T local topology structure. One possible
method to handle this is to put virtual obstacles at unknown
cells in the LPM that border free cells. However, this creates

(a) (b)

(c) (d)

Fig. 10. (a) The wheelchair navigates down a cluttered sidewalk. It
senses a drop-off (and cars) on the left and a small wall on the right.
(b) These changes in height create boundaries in the LPM that allow the
Local Topology level to easily determine gateways that define a path and an
aim point ahead along the path. (c) The trajectory is such that the wheelchair
comes to rest at the goal. (d) The lidar-based LPM does not see the drop-off,
and cannot be used in these situations.

(a) (b)

Fig. 11. Low light causes floors to appear texture-less leading to poor
stereo distance information. (a) The robot arrives at the T intersection in
Figure 12(a). The right (downwards facing) hallway is poorly lit. (b) As
the wheelchair travels down this hallway it quickly arrives at the “frontier”
of free space since the dark floor remains unseen (and incorrect distance
information leads to phantom obstacles). This results in no gateways facing
down the hall causing the wheelchair to believe it is at a dead end.

obstacles at the true frontiers of experience and at real-world
occlusions, inhibiting the gateway algorithm from working
at all. Figures 12(c) & 12(d) show an extreme example of a
textureless wall immediately outside our robot lab.

In addition to the perceptual issues above, there are
several planning and control issues. The vision-based LPMs
are noisier than lidar-based LPMs and as a result, narrow
hallways and paths that the wheelchair could navigate when
using a lidar map, do not yield safe paths in the fuzzier
vision-based LPMs.

In traveling down hallways, the robot uses the forward-
facing gateway to continually chose a new goal point at the
edge of the LPM. In curved hallways, the RRT plan can be
quite different for each new goal point. Since the trajectories
are dependent on the nodes of the RRT plan, this can lead
to large changes in the robot’s heading at the start of a new



(a) (b)

(c) (d)

Fig. 12. (a) Texture-less walls (e.g., the solid wall at the right of this
image) often lead to poor distance information from the stereo camera.
(b) This causes gaps in the wall when it is modeled in the vision-based
LPM. This leads to incorrect gateways and to false positive place detections
in the environment. (c) A particular wall that is often completely invisible
to stereo. (d) This leads to an LPM with a large boundary between free
and unknown regions, which results in no gateways being found. Thus, the
wheelchair has no way to autonomously travel down this hallway in the
current implementation.

trajectory. The result is that the robot’s heading noticeably
oscillates as it moves down the hallway. This can be fixed
by using a slower, but more stable planner in the future.

VI. CONCLUSION

This paper demonstrated successful integration of the
three technologies needed for an inexpensive, usable robotic
wheelchair: comfortable motion generation, safe models of
common non-planar situations from vision sensing, and
natural, infrequent navigation commands. The 3D hybrid
model created purely from stereo vision (assuming accurate
localization) is sufficient for safe planning in environments
with potentially dangerous drop-offs, overhanging obstacles,
or ramps. Trajectories can be computed on top of safe plans,
which result in motion that minimizes the discomfort of
the human passenger. On top of this, the HSSH framework
provides place detection, qualitative descriptions of the place
structure, and a causal interface for large-scale commands.
Although we have discussed some integration problems
(mainly due to perception issues), we feel these are solvable
in the near future.

The integration demonstrated here is only an initial
stage towards a complete implementation of the Intelligent
Wheelchair—an intelligent mobility aid for people with
mobility, perception, communication, and cognitive disabil-
ities. Though the wheelchair is specifically aimed towards
disabled users, we envision this technology generalizing to
personal transports of various sizes and domains, used by
large portions of future populations.

Future Work

The integration process and our results show several
directions for further work. The most obvious direction is
the need to improve the computational efficiency of the
vision-based LPM. Another important problem is that of low
texture. We want to develop an algorithm that distinguishes
between (and annotates) true unknown space in the visual
LPM and unknown space arising due to low texture. This
will allow the local topology algorithm to treat unknown
cells arising due to low texture as virtual obstacles when
finding gateways. A longer term solution is to use color
models and/or other image features to hypothesize disparities
in low texture regions.

A problem of more immediate importance is accounting
for obstacles when generating trajectories. It might be pos-
sible to include obstacles as constraints in the optimization
formulation for trajectory generation allowing for seamless
integration with the current system. Other pieces of future
work include: detecting and describing outdoor places not de-
fined by path boundaries, using color and texture in addition
to geometry to determine traversability, designing an intuitive
user interface for tuning comfortable motion parameters,
and full integration with the HSSH global topological and
metrical levels.
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