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Abstract

While it has been realized for quite some time

within AI that abduction is a general model

of explanation for a variety of tasks, there

have been no empirical investigations into the

practical feasibility of a general, logic-based

abductive approach to explanation. In this

paper we present extensive empirical results

on applying a general abductive system, Ac-

cel, to moderately complex problems in plan

recognition and diagnosis. In plan recogni-

tion, Accel has been tested on 50 short nar-

rative texts, inferring characters' plans from

actions described in a text. In medical di-

agnosis, Accel has diagnosed 50 real-world

patient cases involving brain damage due to

stroke (previously addressed by set-covering

methods). Accel also uses abduction to ac-

complish model-based diagnosis of logic cir-

cuits (a full adder) and continuous dynamic

systems (a temperature controller and the

water balance system of the human kidney).

The results indicate that general purpose ab-

duction is an e�ective and e�cient mecha-

nism for solving problems in plan recognition

and diagnosis.

1 INTRODUCTION

Finding explanations for events and actions is an im-

portant aspect of general intelligent behavior. A di-

verse set of intelligent activities, including natural lan-

guage understanding, diagnosis, scienti�c theory for-

mation, and image interpretation, requires the abil-

ity to construct explanations for observed phenomena.

For instance, in text understanding, a reader infers the

high-level goals and plans of the characters in a text in

order to explain the events and actions described in the

text. Such inference is called plan recognition, which

is known to be an important component of text under-

standing

[

Allen, 1987

]

. Similarly, in medical diagnosis,

based on the observed symptoms of a patient, a physi-

cian infers the possible diseases that may explain the

symptoms. In physical device diagnosis, based on the

observed misbehavior of a physical device, a diagnos-

tician infers the possible faults that may explain the

misbehavior.

In this paper, we view explanation as abduction. The

standard logical de�nition of abduction is: given a set

of axioms T (the domain theory) and a conjunction

of atoms O (the observations), �nd minimal sets of

atoms A (the assumptions) such that A [ T j= O and

A [ T is consistent

[

Charniak and McDermott, 1985;

Levesque, 1989

]

.
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While it has been realized for quite some time within

AI that abduction is a general model for explanation

[

Charniak and McDermott, 1985

]

, there have been no

empirical investigations into the practical feasibility

of such a general abductive approach to explanation.

Many important questions remain unexplored. For

example, is it possible to have a general-purpose yet

e�cient algorithm that can be used for making use-

ful abductive inference and solving moderately com-

plex problems in reasonable time in all the various do-

mains? Do we need special-purpose control heuristics

separately tailored for each domain to achieve e�cient

abduction? Do the criteria for selecting the best expla-

nations vary according to the domain? How di�cult is

it to encode the knowledge necessary for constructing

explanations in the various domains?

This paper attempts to address these important issues.

Towards this end, we have built a domain-independent

system called Accel (Abductive Construction of

Causal Explanations in Logic). In our system, knowl-

edge about a variety of domains is uniformly encoded

in �rst-order Horn-clause axioms. A general-purpose

abduction algorithm, AAA (ATMS-based Abduction

Algorithm), e�ciently constructs explanations in these

1

In this paper, the terms \abduction" and \abductive"

are used to refer to this speci�c logical formulation as op-

posed to the more general notion of any method for infer-

ring cause from e�ect.



domains. We have applied our abductive system to

two general tasks: plan recognition in text understand-

ing, and diagnosis of medical diseases, logic circuits,

and dynamic systems. In plan recognition, Accel has

been tested on 50 narrative texts, where each text con-

sists of 1{4 short sentences. The system infers the

high-level plans of characters based on the actions de-

scribed in a text. In medical diagnosis, Accel diag-

noses 50 real-world patient cases using a sizable knowl-

edge base with over six hundred symptom-disease

rules. The disorders are damaged regions of a human

brain due to stroke. These cases have been previously

used to test set covering methods

[

Tuhrim et al., 1991;

Peng and Reggia, 1990

]

. Accel also achieves model-

based diagnosis via abduction, and has successfully di-

agnosed a full adder (an example of discrete, combina-

tional logic circuits), a temperature controller, and the

water balance system of the human kidney (examples

of continuous dynamic systems).

The rest of this paper is organized as follows. Sec-

tion 2 gives a brief overview of Accel. Section 3,

4, and 5 present empirical results for plan recognition,

set-covering-based diagnosis, and model-based diagno-

sis, respectively. Section 6 discusses the results and

presents the conclusions.

2 OVERVIEW OF ACCEL

Given an existentially quanti�ed conjunction of atoms

that encodes the input observations, and a set of �rst-

order Horn clauses that encodes the domain theory,

the algorithm AAA computes abductive explanations

by backward-chaining on the observations, much like

Prolog. However, even when there is no fact or conse-

quent of a rule that uni�es with a subgoal in the cur-

rent proof attempt, instead of failing, the algorithm

has the choice of making the subgoal an assumption

if it is consistent to do so. The requirement for con-

sistency means that abduction is in general undecid-

able. In Accel, inconsistency is detected using a pre-

determined list of nogoods, and by procedural code (for

e�ciency reasons). A nogood is a set of assumptions

that implies falsity, and consistency checking ensures

that an assumed set of atoms is not subsumed by any

nogoods.

Accel can be used to compute all minimal sets of ab-

ductive assumptions; however, minimality is generally

too unrestrictive and even in the propositional case,

the number of minimal explanations can grow expo-

nentially

[

Selman and Levesque, 1990

]

. Consequently,

beam-search is generally used to limit computation to

a �xed-sized subset of the currently best partial expla-

nations according to a user-de�ned evaluation func-

tion. In a further attempt to improve e�ciency, Ac-

cel performs ATMS-like caching of partial explana-

tions. Empirical results have shown that caching can

achieve more than an order of magnitude speedup in

run time. More details on Accel and the AAA algo-

rithm are given in

[

Ng, 1992

]

. (A previous version of

Accel is described in

[

Ng and Mooney, 1991

]

.)

3 ABDUCTIVE PLAN

RECOGNITION

Given a logical representation of the literal meaning

of a narrative text in terms of an existentially quanti-

�ed conjunction of input atoms, Accel infers an \em-

bellished" interpretation by constructing an abductive

proof in which a set of higher-level plans is assumed

and the assumed plans logically entail the characters'

observed actions. An abductive proof is considered

an interpretation of the input sentences. We do not

focus on the parsing aspect of natural language under-

standing, andAccel does not accept natural language

input.

Examples of the 50 narrative texts processed by Ac-

cel include: \Bill went to the liquor-store. He pointed

a gun at the owner."; \Bill took a bus to a restaurant.

He drank a milkshake. He pointed a gun at the owner.

He got some money from him."; \Fred got a gun. He

went to the restaurant. He packed a suitcase."; etc.

The knowledge base axioms are formulated such that

higher-level plans (like shopping and robbing) together

with appropriate role-�ller assumptions (like someone

is the shopper of a shopping plan or the robber of a

robbing plan) imply the input atoms representing the

observed actions (like going to a store and pointing a

gun).

In the plan recognition domain, explanations are eval-

uated by a criterion called explanatory coherence

[

Ng

and Mooney, 1990; Ng, 1992

]

. This criterion attempts

to capture the notion that natural language text is

coherently structured and therefore explanations that

better \tie together" various parts of the input sen-

tences are to be preferred. Hence, evaluating expla-

nations based on explanatory coherence takes into ac-

count the well known \Grice's conversational maxims"

[

Grice, 1975

]

, which are principles governing the pro-

duction of natural language utterances, such as \be

relevant", \be informative", etc.

Speci�cally, the coherence metric C is de�ned as fol-

lows:

C =

X

1�i<j�l

N

i;j

l(l � 1)=2

where l = the total number of input atoms; and N

i;j

= 1 if there is some node n in the proof graph such

that there is a (possibly empty) sequence of directed

edges from n to n

i

and a (possibly empty) sequence

of directed edges from n to n

j

, where n

i

and n

j

are

input atoms. Otherwise, N

i;j

= 0.

2

More details of

2

The de�nition of coherence given in this paper is a



the coherence metric are described in

[

Ng and Mooney,

1990; Ng, 1992

]

.

In the domain of plan recognition, we have tested Ac-

cel on 50 short narrative texts. To facilitate compar-

ison between di�erent approaches, the �rst 25 texts

were taken from Goldman's PhD thesis

[

Goldman,

1990

]

, where they were used to test a probabilistic ap-

proach to text understanding. An additional set of 25

similar narrative texts were created by Ray Mooney

unbeknown to the system developer (Hwee Tou Ng).

The intent is that the additional 25 examples will test

for other novel combinations and sequences of actions

that the knowledge base constructed for the initial 25

examples in principle should be able to handle. We will

call the �rst set of 25 examples the training examples,

and the second set of 25 examples the test examples.

The plans in the knowledge base include shopping, rob-

bing, restaurant dining, traveling in a vehicle (bus,

taxi, or plane), partying, and jogging. Each of these

plans in turn has subplans, and some of the plans con-

tain recursive subplans. For instance, traveling by

plane includes the subplan of traveling (in some ve-

hicle) to the airport to catch a plane. For each ex-

ample, a set of input atoms representing the sentences

is given to Accel. To give a sense of the size of our

examples and the knowledge base used, there is a to-

tal of 107 KB rules and 70 taxonomy-sort symbols.

Every taxonomy-sort symbol p will add an axiom (in

addition to the 107 KB rules) of the form inst(X; p)

! inst(X; supersort-of -p). The average number and

maximum number of input atoms per example are 12.6

and 26 respectively. The knowledge base and the 50

examples are included in

[

Ng, 1992

]

.

For each example, the correct explanation was deter-

mined based on the authors' intuition before running

the example. To measure the quality of an explanation

computed by Accel, we compared it to the correct

explanation and recorded three error rates: the recall

error rate R = the number of missing assumptions di-

vided by the number of assumptions in the correct ex-

planation, the precision error rate P = the number of

excess assumptions divided by the number of assump-

tions in the computed explanation, and the overall er-

ror rate O = the average of the recall and precision

error rates. (We used similar quality measures and

terminology as in

[

Lehnert and Sundheim, 1991

]

.) If

more than one best explanations are computed for an

example, we take the error rates for the example to be

the average of the error rates over all the best expla-

nations.

We ran Accel on the 50 examples using two di�er-

ent evaluation metrics: the coherence metric (break-

slight modi�cation of the one given in

[

Ng and Mooney,

1990

]

. The new de�nition remedies the anomaly reported

in

[

Norvig and Wilensky, 1990

]

of occasionally preferring

spurious interpretations of greater depths.

Table 1: Empirical Results Comparing Coherence and

Simplicity.

Example Coherence Simplicity

type R P O R P O

Training 0.2% 0% 0.1% 26% 25% 25%

Test 2% 2% 2% 39% 38% 38%

All 1.1% 1% 1% 32% 31% 32%

ing ties based on simplicity, de�ned as the number of

assumptions made in an explanation) and the simplic-

ity metric. The empirical results are summarized in

Table 1, which shows the average recall (R), precision

(P), and overall (O) error rates for the training ex-

amples, test examples, and all examples. The average

run time per example is 1.83 minutes on a Sun Sparc

2 workstation.

The empirical results demonstrate that Accel can ef-

�ciently process these narrative texts, and it is su�-

ciently general to be able to handle similar plan recog-

nition problems not known to the system developer

in advance. Furthermore, coherence consistently per-

forms better than simplicity on the examples tested.

Even though our knowledge base does not contain any

probabilistic or likelihood information, the results on

the training examples achieved by Accel are the same

as those of Goldman' system which uses a probabilis-

tic approach to language understanding. In the proba-

bilistic approach, the primary purpose of a priori prob-

abilities is to select a most likely explanation when

there are otherwise multiple competing explanations.

In Accel, we accomplish an analogous e�ect by writ-

ing axioms that only explain some input atom in terms

of a high-level plan but not the other competing plans.

More details are given in

[

Ng, 1992

]

.

4 DIAGNOSIS BASED ON SET

COVERING

Over the past decade, Reggia and his colleagues have

developed an increasingly sophisticated theory of di-

agnosis based on set covering and applied the theory

primarily to medical disease diagnosis

[

Peng and Reg-

gia, 1990

]

. The basic diagnostic problem in the Gen-

eralized Set Covering (GSC) model is de�ned by four

sets, (D;M;C;M

+

), whereD is a �nite set of potential

disorders, M is a �nite set of potential manifestations

(symptoms), C � D�M is a causation relation where

(d;m) 2 C means \d may cause m", and M

+

� M is

the set of observed manifestations for the current case.

E � D is called a cover of M

+

i� for each m 2 M

+

there exists d 2 E such that (d;m) 2 C. A cover is

said to be minimum if its cardinality is the smallest

among all covers and irredundant (minimal) if none of

its proper subsets is also a cover. Depending on the



domain, one may consider all minimum or all minimal

covers of the observed symptoms as the best diagnoses.

We can map a GSC diagnostic problem into an ab-

duction problem in Accel as follows: Let the domain

theory T be the set of axioms fd ! mj(d;m) 2 Cg,

and let the input atoms O =

V

m2M

+

m. Suppose

only atoms d 2 D are assumable (i.e., we use pred-

icate speci�c abduction

[

Stickel, 1988

]

in which only

atoms with certain predicates are assumable). It can

be easily proved that the set of covers of GSC is the

same as the set of explanations in Accel

[

Ng, 1992

]

.

3

The logical abduction approach, being based on a

more expressive representation language, can accom-

modate more naturally \causal chaining"

[

Peng and

Reggia, 1990

]

, incompatible disorders, and symptoms

caused by combinations of disorders. As GSC diagnos-

tic problems can be nicely represented as abduction

problems, the remaining question is whether a general

logic-based abductive system can solve such problems

e�ciently. Further, because the GSC diagnostic prob-

lem is NP-hard

[

Reggia et al., 1985

]

, the issue then

becomes whether a logical abductive system can solve

real problems in reasonable time and is competitive

with existing set-covering algorithms. To address this

issue, we tested Accel on the medical problem studied

in

[

Tuhrim et al., 1991

]

, which speci�es 25 brain areas

(e.g. right frontal lobe) whose damage can explain 37

basic symptom types (e.g. impaired gag re
ex). The

knowledge base is quite large, consisting of 648 rules

of the form d! m. We were only able to obtain 50 of

the original 100 cases from the authors of the initial

study, each consisting of an average of 8.56 symptoms.

Accel e�ciently computed all of the minimal (w.r.t.

subset) explanations in an average of 2.4 seconds per

case on a Sun Sparc 2 workstation. Unfortunately,

we could not compare this result to that obtained in

the original study, since no information on run time

was provided. However, the empirical results strongly

suggest that a general abductive system can solve real

diagnostic problems in reasonable time.

Since abduction computes the same explanations as set

covering when given the same evaluation criteria, Ac-

cel should replicate the accuracy results of the origi-

nal study. As discussed in the original study, minimal-

ity is too unrestrictive to produce useful results (Ac-

cel returned an average of 26.6 minimal diagnoses per

case). With minimum cardinality,Accel produced an

average of only 4.6 diagnoses per case. In 44% of the

cases, one of these diagnoses matches the expert's ex-

actly; and in another 46% of the cases, one of the sys-

tem's diagnoses was a subset or superset of the expert's

(called a \close match" in

[

Tuhrim et al., 1991

]

). The

3

Actually, that all minimal covers of GSC are all min-

imal explanations in abduction also follows as a corollary

of two published theorems, Theorem 7.1 in

[

Reiter, 1987

]

and Theorem 4.2 in

[

Poole, 1988

]

.

remaining 10% of the cases have a diagnosis that either

partially matches the expert's (2%) or all of the diag-

noses are totally wrong (8%). These results are slightly

better than those reported in the original study: 6.5

diagnoses/case with 40% exact, 38% close, 5% partial,

17% wrong. This is presumably due to the fact that

our results are based on only 50 of the original 100

cases. Two other evaluation metrics reported in the

original study, most-probable and minimum-collapsed,

performed even better. In

[

Tuhrim et al., 1991

]

, it is

claimed that, although there have been no direct com-

parisons, the results from any of the covering metrics

appear more promising than those obtained from stan-

dard rule-based approaches to this problem.

5 MODEL-BASED DIAGNOSIS VIA

ABDUCTION

Accel also performs model-based diagnosis, which

concerns inferring faults from �rst principles given

knowledge about the correct structure and behavior

of a system. Much research in model-based diagno-

sis has taken the consistency-based approach and has

been applied primarily to devices with static, persis-

tent states such as combinational logic circuits

[

Davis,

1984; de Kleer and Williams, 1987; Reiter, 1987;

de Kleer andWilliams, 1989

]

. In the consistency-based

approach, a diagnosis is a set of normality and abnor-

mality assumptions about device components that are

consistent with the observations and the system de-

scription. This is in contrast to the abductive approach

of diagnosis used in Accel, where normality and ab-

normality assumptions about device components to-

gether with the system description must imply or ex-

plain the observations.

Poole has proved that the consistency-based and ab-

ductive approaches are equivalent for propositional

theories

[

Poole, 1988

]

, and Konolige has extended the

conditions under which equivalence holds to general

�rst-order causal theories allowing for correlations, un-

certainty, and acyclicity in the causal structure

[

Kono-

lige, 1992

]

.

4

In view of such formal equivalence re-

sults, issues such as ease of representation and compu-

tational e�ciency are most important. Our empirical

results suggest that a number of diagnostic problems,

ranging from combinational logic circuits to continu-

ous dynamic systems such as a proportional temper-

ature controller and the water balance system of the

human kidney, can be e�ectively represented and e�-

ciently diagnosed using an abductive approach.

Research in model-based diagnosis can also be clas-

4

Abduction appears to be better in some cases, as Kono-

lige has reported that \the utility of the consistency based

method is open to question", since in explanatory diagnos-

tic tasks, \the answers it produces may have elements that

are not relevant to a causal explanation"

[

Konolige, 1992,

page 257

]

.



si�ed according to whether information about fault

models is utilized in diagnosis. The normality-based

approach of

[

Reiter, 1987; de Kleer and Williams,

1987

]

does not utilize fault models and any misbehav-

ior di�ering from the correct functioning of a device

can be diagnosed. However, the lack of fault mod-

els may result in hypothesizing implausible faults

[

de

Kleer and Williams, 1989; Struss and Dressler, 1989

]

.

On the other hand, the work of

[

Dvorak and Kuipers,

1989

]

is fault-based in that the fault models are a priori

determined and given to the diagnostic system. Hence,

unanticipated faults are not detected. Accel com-

bines both normality-based and fault-based diagnosis

in that information about fault models is used in di-

agnosis and any deviation from the correct behavior

can be diagnosed. The diagnostic systems Sherlock

[

de Kleer and Williams, 1989

]

and GDE+

[

Struss and

Dressler, 1989

]

have similar capability.

In the model-based diagnosis domain, Accel uses

predicate speci�c abduction, where the assumable

atoms include component behavioral mode assump-

tions of three types: (1) a component is normal; (2)

a component is in some known fault mode; or (3) a

component is abnormal (but not necessarily in any

known fault mode). Other assumable atoms are \aux-

iliary" assumptions including assumptions that the in-

put values of a device are as given, and in dynamic

system diagnosis, that some qualitative magnitude

is positive/negative, that two qualitative values obey

some corresponding value constraint, etc. (More de-

tails about these auxiliary assumptions will be pro-

vided later.) Explanations in this domain are evalu-

ated based on simplicity, where the best explanation is

one with the least number of components that are not

normal, which include components that are in some

known fault mode and those that are not. Normality

assumptions and auxiliary assumptions are \free" and

do not a�ect the simplicity metric of an explanation.

If two explanations have the same number of compo-

nents that are not normal, then the one with the most

number of components that are in some known fault

mode is preferred.

5.1 DIAGNOSING LOGIC CIRCUITS

In this section, we describe how the abductive ap-

proach ofAccel is used to diagnose a full adder which

is representative of standard, combinational logic cir-

cuits. Figure 1 shows a full adder which consists of

2 exclusive-or gates (x1, x2), two and gates (a1, a2),

and one or gate (o1). We assume that each gate has

4 behavioral modes: normal (the output bit re
ects

the correct gate behavior at all times), stuck-at-0 (the

output bit is stuck at 0 regardless of the input bits),

stuck-at-1 (the output bit is stuck at 1 regardless of the

input bits), and abnormal (the behavior of the gate is

unconstrained).

The knowledge base axiom that describes the correct

x1

a2

a1

x2

o1

Figure 1: Full Adder

behavior of an exclusive-or gate is:

out(X;W; T )  xorg(X) ^ in1(X;U; T ) ^

in2(X;V; T ) ^ norm(X) ^

xor(U; V;W )

The axiom asserts that if X is an exclusive-or gate

(xorg(X)), the �rst input of X is U at time T

(in1(X;U; T )), the second input of X is V at time

T (in2(X;V; T )), X is normal (norm(X)), and the

exclusive-or of U and V is W (xor(U; V;W )), then

the output of X is W at time T (out(X;W; T )). In

addition we have the facts xor(0; 0; 0), xor(0; 1; 1),

xor(1; 0; 1), and xor(1; 1; 0). The axioms for and gates

and or gates are similar.

The following axiom describes the fault mode stuck-

at-0 for all gates:

out(X; 0; T )  in1(X;U; T ) ^ in2(X;V; T ) ^

stuck-at-0(X)

The axiom for the fault mode stuck-at-1 is similar.

Note that when a gate is assumed to be abnormal, no

prediction can be made about its output bit. However,

abduction requires that the observations be proved

from the component behavioral mode assumptions (in-

cluding the abnormality assumptions). To overcome

this problem, we employ a technique used by Poole to

\parameterize" the abnormality assumption as follows

[

Poole, 1989b

]

:

out(X;W; T )  in1(X;U; T ) ^ in2(X;V; T ) ^

ab(X;U; V;W; T )

The antecedent ab(X;U; V;W; T ) in the rule is to be

interpreted as \X is abnormal in such a way that at

time T , given input bits U and V , its output bit isW".

Note that for any input bits U and V , and any output



bit W , the above axiom always allows us to assume

that the component is abnormal by making the as-

sumption ab(X;U; V;W; T ). This axiom achieves our

objective of being able to prove the output observa-

tions from the parameterized abnormality assumption

ab(X;U; V;W; T ).

So far, the axioms given are not speci�c to the

full adder; they are used to model the behavior of

exclusive-or gates, and gates, and or gates. We also

need axioms that specify the connections among the

gates in the given adder, such as

in1(a1; X; T ) in1(x1; X; T )

as well as facts that identify the �ve components:

xorg(x1); xorg(x2), etc. Furthermore, in order to al-

low backward-chaining to terminate at the terminal

input values of the full adder (these terminal input val-

ues cannot be further explained in terms of the other

gate values), we need the axiom

in1(x1; X; T ) given-in1(x1; X; T )

and two other similar axioms for the second input of

x1 and the �rst input of a2. We let given-in1(: : :) (and

given-in2(: : :)) be assumable. They are the auxiliary

assumptions, and do not a�ect the simplicity metric

of an explanation.

To assess the performance ofAccel, we randomly gen-

erated 10 scenarios by assuming that the various be-

havioral modes of each gate occur with the following

probabilities: norm 65%, stuck-at-0 15%, stuck-at-1

15%, and ab 5%. Each of the 10 scenarios that was ac-

tually generated had one or two gates that were faulty,

and the scenarios included some where a gate was ab-

normal (ab). For each scenario, we gave Accel I/O

tuples where the input-output bits of the adder dif-

fered from those of a correctly functioning adder. (By

an I/O tuple, we mean a particular combination of

input and output values of the full adder.) For each

I/O tuple, we �rst gave the three input bits and the

two output bits of the adder, and then the output bits

of the three gates x1, a1, and a2, in that order. For

each scenario, we stopped as soon as the best diagnosis

found by Accel is the correct diagnosis. We recorded

the number of I/O tuples needed to converge on the

correct diagnosis for each scenario. On a Sun Sparc 2

workstation, Accel took an average of 17 seconds to

identify the correct diagnosis for each of the 10 scenar-

ios tested. The average number of I/O tuples needed

before the correct diagnosis was found is 2.1.

5.2 DIAGNOSING DYNAMIC SYSTEMS

Much research in model-based diagnosis has focused

on diagnosing static, discrete devices like logic circuits.

However, many devices and biological systems are

continuous and dynamic and require reasoning about

changes in behavior over time. Although there has
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Figure 2: Temperature Controller

been a great deal of research on modeling and simulat-

ing such systems

[

Kuipers, 1986; Forbus, 1984

]

, there

have been few attempts to apply general, model-based

diagnostic methods to them. The work of

[

Ng, 1991;

Ng, 1990

]

attempts to address this de�ciency by diag-

nosing dynamic systems using the consistency-based

approach. In this section, we present an abductive

approach to diagnosing continuous, dynamic systems.

We adopt the representation of continuous dynamic

systems used in the work of Kuipers' qualitative sim-

ulation (QSIM)

[

Kuipers, 1986

]

. The continuously

changing behavior of a dynamic system over time is

represented as a sequence of qualitative states, where

a qualitative state consists of the qualitative values of

the variables of the system. A qualitative value has

two components: a qualitative magnitude (qmag) and

a qualitative direction (qdir). A qualitative magnitude

can either be a landmark value or an open interval be-

tween two landmark values, where a landmark value

is a value of special signi�cance that a variable takes

on at some point in time. A qualitative direction can

be one of increasing (inc), decreasing (dec), or steady

(std).

The behavior of each dynamic system is governed by

a set of qualitative constraints. The qualitative con-

straints on the temperature controller (Figure 2) are

as follows (each constraint is preceded by a name iden-

tifying that constraint):

1. S : T

ob

i

= T

i

;

2. K : T

ob

s

= T

s

;

3. C

1

: T

s

� T

i

= e;

4. C

2

: m

+

0

(e) = a;



5. O : P

ob

�W = P ; and

6. E : a � P = HF

in

The m

+

0

(e) = a constraint asserts that there is a

strictly monotonically increasing function between e

and a. However, the exact form of this monotonic

function is unspeci�ed. This accounts for the quali-

tative nature of the constraint. The purpose of this

device is to control the temperature T

ob

i

in the room,

so that if the device is connected to a power source

with power P

ob

, the power switch is turned on (rep-

resented as W = on), and the temperature T

ob

s

set by

the temperature control knob di�ers from the temper-

ature T

ob

i

in the room, heat 
ow HF

in

(in the form of

hot air or cold air, depending on the direction of tem-

perature di�erence) will be generated. Furthermore,

the amount of heat 
ow generated is proportional to

the temperature di�erence T

ob

s

� T

ob

i

.

We have successfully represented QSIM's knowl-

edge about the various qualitative constraints (=

;�; �; =; d=dt;m

+

0

) in Horn-clause axioms in a way

suitable for logic-based abductive diagnosis. Since

these Horn-clause axioms encode general knowledge

about QSIM constraints, they are needed in the di-

agnosis of every dynamic system. These axioms en-

code the various qualitative constraints by de�ning

a \holds.constraint-type" predicate for each type of

qualitative constraint. For example, one of the 9 ax-

ioms that encode the m

+

0

constraint is:

holds:m

+

0

(F;G;M1; inc;M2; inc)

 

pos(M1) ^ pos(M2) ^ corr-mag:m

+

0

(F;G;M1;M2)

The predicate holds:m

+

0

(F;G;M1;D1;M2;D2) as-

serts that m

+

0

(F ) = G holds with the qualitative

value of the variable F = hM1; D1i and the quali-

tative value of the variable G = hM2; D2i. The pred-

icate pos(M1) (neg(M1)) asserts that the qualitative

magnitude M1 is positive (negative). The predicate

corr-mag:m

+

0

(F;G;M1;M2) asserts that m

+

0

(F ) = G

holds with the qualitative magnitude of F = M1 and

the qualitative magnitude of G = M2. In QSIM,

(M1;M2) are referred to as corresponding values. The

9 axioms for the m

+

0

constraint cover all the distinct

possibilities in which m

+

0

(F ) = G holds since the qual-

itative magnitude of F can be positive, negative, or

zero, and its qualitative direction can be inc, std,

or dec. The other \holds.constraint-type" predicates,

holds:�, holds:�, holds:=, and holds:d=dt, are de�ned

by 39, 97, 70, and 9 axioms, respectively. The ax-

ioms for holds: � (F;G;H;M1; D1;M2;D2;M3;D3)

ensure that, among other things, the �rst-order deriva-

tive constraint F �G

0

+F

0

�G = H

0

is obeyed. The exact

axioms for all the qualitative constraints are listed in

[

Ng, 1992

]

.

Besides the axioms that encode general QSIM con-

straints, there are also Horn-clause axioms that en-

code knowledge about a speci�c dynamic system. We

assume in this paper that a dynamic system malfunc-

tions because of one or more violated constraints, and

that the task of mapping from violated constraints to

the a�ected components is done by some other module

external to Accel. The following axioms describe the

normal behavior:

qval(ti;M1; D1; T )

 

norm(s) ^ qval(ti-ob;M1; D1; T )

qval(e;M3; D3; T )

 

norm(c1)^ qval(ts;M1; D1; T )^ qval(ti;M2; D2; T )^

holds:� (ts; ti; e;M1; D1;M2;D2;M3;D3)

The predicate qval(ti;M1; D1; T ) asserts that the

qualitative value of the variable ti is hM1; D1i at time

(qualitative state) T . The �rst axiom asserts that if

constraint s is normal, and the qualitative value of

ti-ob is hM1; D1i at time T , then the qualitative value

of ti is also hM1; D1i at time T . This encodes the

equality constraint between the variables ti-ob and ti.

The second axiom asserts that if constraint c1 is nor-

mal, the qualitative value of ts is hM1; D1i at time

T , the qualitative value of ti is hM2; D2i at time

T , and ts � ti = e holds with ts = hM1; D1i; ti =

hM2; D2i; e = hM3; D3i, then the qualitative value of

e is hM3; D3i at time T . Similar axioms encode the

other constraints.

Note that atoms with the predicate qval are not as-

sumable. As such, in order to allow backward-chaining

to terminate at the terminal input values of a dynamic

device (these terminal input values cannot be further

explained), we also need the axiom

qval(ti-ob;M1; D1; T ) given-qval(ti-ob;M1; D1; T )

and three other similar axioms for ts-ob, p-ob, and w.

We let given-qval be assumable. They are part of the

\auxiliary" assumptions in an abductive explanation.

Note the directionality in which one qualitative value

is explained in terms of other qualitative values. Since

abductive diagnosis requires that the input observa-

tions (which consists of the qualitative values of the

variables of a dynamic system) be proved, the axioms

are formulated in such a way that the output val-

ues (e.g., qval(hfin; : : :)) of a dynamic system can be

proved from normality assumptions (e.g., norm(s)),

fault mode assumptions, and auxiliary assumptions

about the input values (e.g., given-qval(ti-ob; : : :)) and

the qualitative magnitudes and corresponding values

of the variables (these are introduced when Accel at-

tempts to prove the holds.constraint-type atoms).

We also assume that the components corresponding

to the various constraints exhibit the following fault

modes: stuck-at-0-std (S;K;C

1

; C

2

; O;E), stuck-at-

roomtemp-std (S), stuck-at-1st-in (C

1

; O), and stuck-



at-2nd-in (C

1

). Under the fault mode stuck-at-0-std

(stuck-at-roomtemp-std), the output of a component

is h0; stdi (hroom-temp; stdi) regardless of the input

values. Under the fault mode stuck-at-1st-in (stuck-

at-2nd-in), the output of a component is stuck at its

�rst (second) input. One Horn-clause axiom is used to

encode one fault mode, as follows:

qval(ti; 0; std; T )  stuck-at-0-std(s) ^

qval(ti-ob;M1; D1; T )

qval(e;M1; D1; T )  stuck-at-1st-in(c1) ^

qval(ts;M1; D1; T ) ^

qval(ti;M2; D2; T )

The Horn-clause axioms in Accel that represent the

qualitative constraints capture the knowledge that

QSIM uses to propagate qualitative values across con-

straints in order to complete the qualitative values of

variables in a qualitative state. In Accel, such knowl-

edge is used for the purpose of diagnosis. However,

since the knowledge is now encoded declaratively, it

can also be used for simulation purpose by a forward-

chaining inference procedure. In fact, QSIM can be

viewed as a special-purpose theorem prover for pre-

dicting the behavior of dynamic systems described by

qualitative constraints. However, not all of QSIM's

knowledge in simulation has been captured in Accel.

Speci�cally, knowledge of state transition that QSIM

uses to generate the next qualitative state(s) from an

initial qualitative state is not encoded in Accel, since

such knowledge is not needed in diagnosis.

We randomly generated 10 scenarios for the temper-

ature controller where each scenario contains one to

two faults and in which no heat 
ow was generated

into the room. For each scenario, we gave the input

atoms representing the qualitative values of the vari-

ables in the following order: T

ob

s

; T

ob

i

; P

ob

;W;HF

in

at

the initial qualitative state (t

1

); T

ob

s

; T

ob

i

; P

ob

;W;HF

in

at the next distinguished time-point qualitative state

(t

2

); and the intermediate variables T

s

; T

i

; e; a; P at

state t

2

.

In 9 out of the 10 scenarios, Accel found the cor-

rect diagnosis as its best diagnosis. The one scenario

that Accel failed to �nd the best diagnosis has two

faults fstuck-at-0-std(c1); stuck-at-0-std(c2)g. In this

case, the best diagnosis that Accel found after pro-

cessing all the intermediate variables is fstuck-at-0-

std(c1)g. This is as it should be, since when c1 is

stuck at h0; stdi, the correct behavior of c2 if it is nor-

mal is to output a = h0; stdi at all times, which is

indistinguishable from the behavior of c2 if it is in the

fault mode stuck-at-0-std. That c2 is in fact faulty

would be detected when c1 is replaced by a normal,

working component and the controller is still found

to be malfunctioning. Overall, the average run time

per scenario is 4.24 minutes, and the average number

of measurements of intermediate variables needed to

arrive at the correct diagnosis is 4.4.

We also tested Accel on 10 faulty scenarios of the

kidney water balance system, a QSIM model of which

is given in

[

Kuipers, 1985; Kuipers, 1991

]

. The sys-

tem has 7 qualitative constraints and 10 qualitative

variables. Two of the scenarios tested correspond to

the disorders Diabetes Insipidus and the Syndrome

of Inappropriate Secretion of Anti-Diuretic Hormone

(SIADH), which are disorders found in real patients.

Accel found the correct diagnosis as its best diag-

nosis in all the 10 scenarios. The average run time

per scenario is 6.98 minutes, and the average number

of measurements of intermediate variables needed to

arrive at the correct diagnosis is 3.7.

6 DISCUSSIONS AND

CONCLUSIONS

In this paper, we have presented a general-purpose

yet e�cient system for making useful abductive infer-

ence and solving moderately complex problems in plan

recognition and diagnosis. The comprehensive empir-

ical results presented span the tasks of abductive plan

recognition, set-covering-based diagnosis, and model-

based diagnosis of both discrete and continuous dy-

namic systems. We believe our approach represents

a good trade-o� between generality and e�ciency |

Accel is a general-purpose system capable of per-

forming all of the above tasks, yet e�cient enough to

be of practical utility.

Although Accel provides a declarative approach to

the generation of explanatory hypotheses, it is often

necessary that axioms be formulated carefully so that

the system will perform the desired task correctly and

e�ciently. As in traditional logic programming, it is

frequently insu�cient to just \state the correct knowl-

edge" and expect the desired answers to be inferred.

Appropriate programming methodologies must be de-

veloped so that a user knows how to axiomatize a prob-

lem to correctly and e�ciently compute the desired

answers

[

Poole, 1989a

]

. This is also true in \abductive

logic programming". By successfully applying Accel

to the tasks of plan recognition and diagnosis, we have

demonstrated via many examples how a general ab-

ductive system can be used to achieve these tasks.

Our empirical results suggest that the best criterion

for evaluating explanations varies according to the do-

main. In diagnosis, the simplicity metric (de�ned as

making the least number of assumptions in an abduc-

tive explanation) su�ces, whereas in plan recognition

for text understanding, because of the need to take

into account the importance of text coherence, our co-

herence metric is a better criterion than simplicity.

Our results in set-covering-based diagnosis show that

a general-purpose, logic-based abductive system can

e�ectively represent and e�ciently solve large realistic

problems previously solved by the set covering method.



Consequently, the desirability of the existing special-

purpose approach for such problems is lessened. The

logic-based approach is more general and 
exible, yet

capable of e�ciently solving problems in this more re-

strictive class.

Our empirical results in model-based diagnosis indi-

cate that Accel's abductive approach can diagnose

devices and systems previously solved by consistency-

based methods. Although the work of

[

Poole, 1988;

Poole, 1989b; Konolige, 1992

]

has revealed some in-

teresting relationships between consistency-based and

abductive diagnosis, the extent to which the two ap-

proaches coincide and di�er, especially in practical

terms such as ease of representation and diagnostic

e�ciency, requires further investigation. In addition,

our research does not focus on intelligently gathering

additional measurements to further di�erentiate and

narrow the diagnostic candidates. Future work needs

to extend Accel to incorporate intelligent experimen-

tation.

In summary, this paper has demonstrated via an im-

plemented system that general and e�cient abduction

for the tasks of plan recognition and diagnosis is in-

deed possible, and the future holds much promise for

such a general abductive approach to explanation.
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