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Abstract

Both environmental and genetic factors interact to produce the orientation maps found in the primary vi-
sual cortex of adult mammals. However, it is not clear how this interaction occurs during development, or
whether both factors are crucial. Previous computational models have focused on either environmentally
driven or genetically driven development alone. In contrast, we show that a two-stage model of devel-
opment can account for a wider range of experimental data. The model explains how environmental and
genetic information can be incorporated into the same neural hardware, using a common set of learning
mechanisms. Our results suggest that while either environmental or genetically driven development is
sufficient for maps and selectivity to form, prenatal activity speeds up early development and makes it
more robust against environmental variation.
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1 Introduction

Experiments in mammals such as cats, ferrets, and monkeys have shown that the orientation
map patterns and receptive fields in primary visual cortex (V1) are produced by an interaction
between environmental and genetic factors. Genetic influences are clear when measuring neural
responses in newborns, before any visual experience. Even at or before natural eye opening,
orientation-selective cells and orientation maps can be detected in newborn kittens and ferrets
[5, 8, 9, 11, 12]. The overall shape of the orientation map changes very little during subsequent
normal visual experience [9, 11]. Based on this evidence, one might conclude that orientation
maps are largely genetically specified.

At the same time, it is clear that altering the visual environment can have dramatic effects on
how orientation-selective neurons and maps develop. For instance, if kittens are raised in en-
vironments consisting of only one orientation of contour (e.g. vertical lines) during a critical
period, an abnormally large number of their V1 neurons become responsive to vertical orien-
tations [4]. Kittens raised in this way develop orientation maps that with larger area devoted
to the overrepresented orientation [14]. Cats whose visual environment was even more abnor-
mal, e.g. with eyelids sutured shut during development, have few orientation-selective neurons
at all in V1 [5, 11]. Even in normal adult animals, the distribution of orientation preferences is
slightly biased towards horizontal and vertical [7, 10], mirroring the distribution of orientations
in normal visual environments [17]. Such a bias is consistent with neurons learning orientation
selectivity from the environment. Orientation selectivity also improves greatly after birth, and
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Fig. 1. HLISSOM model of orientation map development.
The model is a hierarchy of sheets of neural units, modeling
the early visual pathway. There are two sheets of LGN units.
Each unit receives input from its circular receptive fields (RF)
on the photoreceptors. Connections to a sample photoreceptor
RF are plotted for two units. Similarly, neurons in V1 have cir-
cular RFs on both LGN sheets; connections to two of the RFs
are shown. V1 neurons also have lateral excitatory (small dotted
circle) and lateral inhibitory (large dashed circle) connections to
their neighbors. Input patterns are drawn in a grayscale bitmap
on the photoreceptor sheet, and the ON and OFF LGN units
compute their activity. Once all LGN units have been activated,
initial V1 activity is computed from the LGN responses, and
the activity then spreads laterally within V1. Both afferent and
lateral V1 weights are adapted when the activity settles.

the maps become smoother and more well organized [9, 11]. Based on the postnatal experi-
ments, one might conclude that orientation maps develop through visual experience alone.

Taken together, the evidence indicates that both genetic and environmental influences interact to
produce the adult orientation map. However, important questions remain. How does this inter-
action actually occur? Could adult-like maps develop from environmental or genetic cues alone,
or are both necessary? These questions are difficult to answer through biological experiments.
Computational modeling, however, can lead to valuable insights, because it is easy to separate
environmental and genetic influences in computational experiments. Existing models have been
used to simulate how orientation maps can develop from visual input alone (e.g. natural images;
[6]) or genetic factors alone, such as spontaneous neural activity (e.g. noise [13]; for review
of existing models of each type, see [16].) However, models have not yet shown how V1 can
have an initial map at birth that becomes smoother and more selective due to postnatal visual
experience, while retaining the original map shape. The visually driven and internally driven
models also differ in many ways besides the source of activity, and thus it has been difficult to
determine whether the activity patterns alone account for any differences between the results.

In this paper we construct a single model to show how an initial map can develop from sponta-
neous neural activity, then be refined through visual experience to reflect the environment. The
model develops orientation maps and selective neurons for a very wide range of training pat-
terns. This result suggests that the processing implemented in orientation maps is very general,
and does not need to be encoded specifically in the genome. The role of spontaneous activity
may primarily be to speed up development so that even newborns have functional neural pro-
cessing. This ability may make development more predictable in unusual environments, and
allow higher levels to organize sooner.

2 HLISSOM model

The simulations are based on the HLISSOM model [1], a version of the LISSOM model [15]
extended to support natural images by modeling the LGN. The architecture is shown in figure 1,
and will be briefly reviewed below. (For more details, see [3].) The model consists of a hierarchy
of two-dimensional sheets of neural units modeling different areas of the visual system: a sheet
of retinal photoreceptors, a pair of sheets of LGN units (ON-center and OFF-center), and a sheet
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of cortical units (“neurons”) representing V1. Because the focus is on the two-dimensional orga-
nization of V1, each neuron corresponds to a vertical column of cells through the six anatomical
layers of the cortex.

The input to the model consists of a series of activity patterns on the sheet of photoreceptors,
such as grayscale photographic images. Each LGN unit(i, j) computes its responseηij as a
scalar product of a fixed weight vector and its receptive field (RF) on the photoreceptor sheet:

ηij = σ
(∑

ρab γρXρabwij,ρab

)
, (1)

whereσ is a piecewise linear sigmoid activation function,Xρab is the activation of input unit
(a, b) in RFρ at timestept, wij,ρab is the corresponding weight value, andγρ is a constant scaling
factor. Each V1 neuron computes its initial response like that of an LGN unit, except thatρ takes
two values, specifying the RFs on the ON and OFF LGN sheets. After the initial response, the
V1 activity settles through short-range excitatory and long-range inhibitory lateral interaction:

ηij(s) = σ
(∑

ρab γρXρab(s− 1)wij,ρab

)
, (2)

whereρ specifies one of the afferent RFs on the LGN sheets or the lateral excitatory or inhibitory
weights to V1,γρ is a constant scaling factor for eachρ (negative for inhibitory lateral weights),
andXρab(s − 1) is the activation of input unit(a, b) during the previous settling step. The V1
activity pattern starts out diffuse, but within a few iterations of equation 2, converges into a small
number of stable focused patches of activity, or activity bubbles. After the activity has settled,
the connection weights of each V1 neuron are modified. All V1 weights adapt according to the
Hebb rule, normalized so that the sum of the weights from each type of RFρ is constant for
each neuron(i, j):

wij,ρab(f + 1) =
wij,ρab(f) + αρηijXρab∑

ab [wij,ρab(f) + αρηijXρab]
, (3)

whereηij stands for the activity of neuron(i, j) in the final activity bubble,wij,ρab(f) is the
connection weight from the previous fixation,α is the learning rate for each type of connection,
andXρab is the presynaptic activity. The larger the product of the pre- and post-synaptic activity
ηijXρab, the larger the weight change. At long distances, few neurons have correlated activity, so
most long-range connections eventually become weak. The weakest connections are eliminated
periodically, resulting in patchy lateral connectivity similar to that observed in V1.

For the experiments reported in this paper, the36× 36 ON-center and the36× 36 OFF-center
LGN sheets received input from a54× 54 photoreceptor sheet. Each ON/OFF unit had a fixed
difference-of-Gaussians RF within the photoreceptor array. Initially, the afferent weights of the
96×96 V1 neurons were random, and the lateral weights had a smooth circular Gaussian profile.
The learning parameters were the same as in our earlier V1 orientation model [2], scaled for this
cortex size and input patterns (see [1] for more details).

3 Experiments

To study how prenatal and postnatal learning together produce the adult organization, we sim-
ulated a two-stage process of development. In the prenatal phase of 1000 input presentations,
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(a) Noisy Disks (b) Nature (c) Disks (d) Noise (e) Landscapes (f ) Faces

Fig. 2.Training patterns. The network was trained prenatally on 1000 noisy, disklike activity patterns,
as in (a), followed by 9000 images of natural objects and natural scenes, as in (b). The prenatal training
is intended to model retinal waves, which have spatially coherent patches. We also tested a series of
control patterns, including the disks alone (c), random noise alone (d), horizontally biased images (e),
and vertically biased images (f ). Results with these other patterns show what features of the prenatal and
postnatal activity are most important.

input patterns consisted of noisy patterns of neural activity (figure 2a). These patterns were
chosen to match retinal waves, which are the best-characterized source of spontaneous activity
in early development. However, they can also represent any other spontaneous activity that in-
cludes large patches that are spatially coherent. The patterns consisted of uniform random noise
added to a large “disk” of activity representing a local patch of highly responding neurons (a
retinal wave). Figure 2a shows an example. For the 9000 iterations in the postnatal phase, we
used images of natural objects and scenes, modeling postnatal visual experience (see example
image in figure 2b).

Figure 3 shows that this network first develops an orientation map through spontaneous activity,
then gradually refines it based on experience with natural images, without changing the overall
shape of the map. The orientation preference distribution is also biased towards horizontal and
vertical, as seen in ferret visual cortex [10]. These results are the main novel component of this
work. To our knowledge, only one other computational model has been tested in this way; the
postnatal training was found to entirely rearrange the map in that model [6], unlike in animals.

In further experiments, we explored how different pattern types can change the map organiza-
tion. These three experiments act as controls for the main results, helping to determine what
features of the model are crucial. Details are presented in [1], but the results are summarized
here. First, we tested different postnatal training conditions, to see how different environments
can change the outcome. Skewed data sets were indeed reflected in the maps, as found for ferrets
[14]. For instance, for the Landscapes dataset (figure 2e), containing many horizontal contours,
the orientation histogram became biased towards horizontal. For the Faces dataset (figure 2f ),
more neurons became tuned to vertical orientations. These findings replicate the experimental
results from animals raised in biased environments, and suggest that the postnatal component of
training is important because it allows the map to adapt to the actual environment of the animal.

Second, we tested different patterns of prenatal training activity, to determine what features of
the noisy disks were crucial. Both the disks alone (figure 2c) and random noise alone (2d) re-
sulted in orientation maps with locally coherent patches of orientation-selective neurons. How-
ever, the receptive fields in the Disks case were much more selective than in typical newborn
neurons. Thus including noise was crucial for obtaining realistic RFs. Yet for uniform random
noise alone, the RFs were poorly selective, and primarily included RF types rarely reported in
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(a) Newborn RFs (b) Adult RFs

0◦ 45◦ 90◦ 135◦ 180◦

(c) Initial map
0◦ 45◦ 90◦ 135◦ 180◦

(d) Newborn map
0◦ 45◦ 90◦ 135◦ 180◦

(e) Adult map

Fig. 3. Two-stage development of the orientation map.These plots show receptive fields (RFs) and
orientation maps at the different developmental stages in the model. The RFs of each neuron were ini-
tially random, but by the end of prenatal training, neurons have multi-lobed receptive fields, as found
in animals. Plot (a) shows RFs for every sixteenth neuron in the newborn map (a6 × 6 array), with
black areas indicating net OFF-cell preference, white areas indicating net ON preference, and medium
gray indicating no preference. The RFs become smoother and more selective with visual experience,
but many of them keep the same overall shape (b). The remaining plots summarize these RFs for the
entire network as orientation maps, at the start of the simulation, (c), after prenatal training (d), and
after postnatal training (e). In each orientation map, each neuron is colored using grayscale coding of
its preferred orientation, according to the key between (a) and (c). (Color versions of these figures are
available athttp://nn.cs.utexas.edu .) At first, the orientation preferences are random and very
weak, due to the random RFs. After prenatal training, an orientation map has emerged, consisting of
patches of neurons that prefer each orientation (d). As subsequent training with natural images increases
the number of selective neurons, the positions of many of the orientation-selective patches are preserved
(e). The orientation histograms below each map show that the initial and newborn maps have approxi-
mately flat distributions, but that the adult map has significantly more units that prefer horizontal (0◦ and
180◦) and vertical (90◦), as in animals and in the visual environment. These results show how genetic and
environmental factors could interact to produce adult orientation maps and orientation-selective neurons.

experimental studies of V1 (e.g. crosses). The orientation map was also less well organized than
typical newborn maps. These results suggest that both spatially uncorrelated noise and spatially
correlated activity determine how the prenatal map develops.

Third, we tested whether the prenatal training was crucial for developing orientation maps and
selectivity, by training an initially random map only on natural images. Although the details of
the final map organization differed from the normal case, the overall properties were similar.
Thus prenatal training is not required for a functional map to develop from natural image input.

4 Discussion and future work

The results presented in this paper show how environmental and genetic factors can interact to
produce adult-like orientation maps. Both factors are crucial for explaining the experimental
data, but the development of orientation maps and selectivity is very robust, and maps can
develop from a wide range of possible input patterns. The specific distribution of orientation
preferences in the adult map reflects the distribution of orientations in the activity patterns,
allowing the map to adapt to the environment.

Interestingly, prenatal training does not appear to be crucial for obtaining a well-organized final
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map, at least in normal environments. Thus it is not yet clear what roles the spontaneous activity
and the maps found in newborns perform. They may help ensure, however, that maps develop
normally in a wider range of possible environments. Prenatal training may also allow V1 to
mature more quickly, which could be important for organizing higher levels of the visual system.
Future studies will focus on how to distinguish between different types of internally generated
activity from the resulting maps, in hopes of narrowing down the specific patterns responsible
for the initial orientation maps in newborns.

5 Conclusion

The HLISSOM model shows how environmental and genetic factors can interact to produce
adult orientation maps. Either factor alone is sufficient for developing the maps, but both are
necessary to explain how newborns can have maps initially yet adapt to the environment. Ori-
entation maps and selectivity appear to be very robust outcomes of developmental processes,
and prenatal activity may be important primarily as an optimization for development speed and
predictability.
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