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Understanding high-dimensional real-world data usually requires learning the structure

of the data space. The structure may contain high-dimensional clusters that have im-

portant topological relationships. Methods such as merge clustering and self-organizing

maps are designed to aid the visualization of such data. However, these methods often

fail to capture critical structural properties of the input. Although self-organizing maps

capture high-dimensional topology, they do not represent cluster boundaries or discontinu-

ities. Merge clustering extracts clusters, but it does not capture local or global topology.

This thesis presents an algorithm that combines the topology-preserving characteristics of

self-organizing maps with a exible, adaptive structure that learns cluster boundaries in

the data. It also proposes a method for analyzing the quality of such visualizations, and

outlines how it could be used for automatic parameter tuning.
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Chapter 1

Introduction

1.1 The problem

Real world data is often very high-dimensional, and often has a structure that is di�cult

both to recognize and describe. When presented as a set of high-dimensional vectors in

tabular form, the relationships between data items may be di�cult to fathom. For instance,

human blood can be tested for the presence or absence of hundreds of inherited traits

such as blood types, HLA factors, proteins, and DNA markers (Cavalli-Sforza et al. 1994).

Similarity between blood samples is an indication of genetic similarity between individuals.

On a larger scale, the structure of a set of samples from populations around the world

reects the global organization of human genetics. Learning the structure of such a data

set would yield knowledge of how human populations are related (�gure 1.1). The domains

of experimental psychology, marketing analysis and cognitive science also rely heavily on

techniques for visualizing the statistical properties of high-dimensional data.

1.2 Standard tools

Because the complicated relationships in real world data are di�cult to perceive, tools for

visualizing high-dimensional data are crucial in discovering patterns in the data. Visualiza-

tion involves mapping an unknown high-dimensional space (the data set) onto a drawable

structure for inspection by the data analyst. Standard visualization tools generally fall into

two categories: tree-based methods and dimension reduction methods. Popular tree-based

methods include the merge clustering algorithm and the minimum spanning tree algorithm.

The merge clustering algorithm represents cluster properties of the data in a 2-dimensional

merge tree, such that the leaves and branches under each merge node are closer to each

other than to any other cluster in the tree. The algorithm begins by making the data pair

with the smallest distance the lowest split in the cluster tree. These two vectors are aver-
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aged into a single vector representing the split, and this average replaces the two vectors in

the data set. This process is repeated until only the last data item to be merged and an

average vector representing all the other data items are left (see �gure l.l).

The minimum spanning tree algorithm is another tree-based approach. This method

constructs a lowest cost graph of the data, where the cost of a link is de�ned as the distance

between two linked data vectors. This method produces a less constrained 2-D structure

than the clustering methods just mentioned, and primarily exposes the closest pairwise

relationships between items. However, the MST algorithm does not explicitly look for

clustering patterns in the data.

Both of these tree-based methods, however, su�er from the same drawback: the

high-dimensional topology of the data set is lost or unrecognizable (�gure 1.2b). There may

be important relationships between branches that are not represented because of the �xed

structure or limited connectivity of the tree. In �gure 1.1, for instance, one would expect

the Lapp population to be genetically similar to the Finnish and Swedish populations, but

such a relationship is not immediately apparent in the merge cluster tree. Similarly, in

�gure 1.2b the E1 data item is as closely related to C0 as it is to E0, but the merge tree

does not reect this.

While clusters in the data set are important, the overall topology of the data set

is equally so. Dimension reduction techniques are designed to capture high-dimensional

topology in lower-dimensional spaces (sub-manifolds). If the technique can be used to

reduce the dimensionality to two, then it can be used for visualization. Such dimension

reduction techniques include principal component analysis and multidimensional scaling,

both popular methods for visualization. In principal component analysis, a new coordinate

basis for the data is derived such that the coordinate axes are orthogonal and account for

the data variance in decreasing order of magnitude. That is, when the data is projected

onto the �rst principal component, this axis exhibits the maximum variance. The second

principal component has maximum variance subject to being orthogonal to the �rst, and

so on. In this way, the principal components account for the variance in the data set in

descending order. Thus each principal component represents something about the data,

and subsequent principal components recover some of the information lost in the previous

reduced representations. For visualization purposes, only two or at most three such axes

are useful. Generally the �rst and second components are used to account for as much

of the data variance as possible. Note that when only two components are used, any

information present in the other components is lost. Plotting the data along these two axes

results in a scatter plot in which clustering of data items may be apparent. However, since

there is no connectivity between individual data items, cluster boundaries are not explicitly

represented.

Multidimensional scaling is another dimension-reduction technique that is often used
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Figure 1.1: Illustration of visualization task to be performed. Genetics data tends to be
extremely high-dimensional and complicated. No single visualization tool is su�cient to discover the
structure of the data set. Hence such data sets must be examined by a combination of tools, each
of which captures di�erent properties of the data. (a) The merge clustering representation captures
clusters. (b) The principal component representation shows topology. IGG is designed to capture
both the clustering of merge tree and the topology of PCA in a single representation. No other
visualization methods are capable of this. (From Cavalli-Sforza 1993)
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for visualization. The goal here is to map the data onto a lower-dimensional space such

that the N-dimensional distances between each pair of data items in the input are preserved

to some user-de�ned level of acceptability in the lower dimension. In metric MDS, the

goal is to approximate (to some scale factor) the actual distances between each data item.

In non-metric MDS, the goal is to reproduce the distance rankings between each pair of

data items in the lower-dimensional con�guration. All MDS algorithms have two basic

components: a) some criterion for deciding when a lower-dimensional con�guration is good

enough, and b) a procedure for moving each point in the low-dimensional space so that

the con�guration improves according to the criterion in (a). For visualization, the result

must be a 2-D or 3-D drawing in which the N-dimensional distances or distance rankings

between each pair of data items in the input are explicitly represented. However, no MDS

algorithm can be guaranteed to �nd a stable 2-D or 3-D con�guration. Also, as in PCA,

there is no connectivity between data items in the 2-D or 3-D map. Without connectivity,

the within-cluster structure of the data is lost.

More recently, self-organizing neural networks have been added to the list of dimension-

reduction techniques. Kohonen's (1989, 1990) self-organizing map algorithm maps high-

dimensional data onto a �xed network of nodes. Vectors nearby in the high-dimensional

input space are mapped onto nearby nodes of the network. The network structure preserves

the topology of the data set as much as possible. However, the network cannot learn or

represent discontinuities in the data due to its �xed grid connectivity (�gure 1.2b).

Thus it seems each of the above methods for visualization is limited in some way.

Either they focus on extracting information about clusters in the data without considering

topology, or on capturing topology without any explicit clustering. The shortcomings of

both tree-based techniques and self-organizing networks originate from the �xed represen-

tation strategy: the drawable structure is not exible, and therefore cannot adapt itself to

the input space. On the other hand, techniques that have no connectivity (PCA, MDS),

fail to encode information about local cluster topology in their 2-D representations. As a

result, each of the above methods often fails to discover important patterns in the data.

1.3 Self-organizing map tools

Self-organizing map algorithms have recently been developed that can potentially overcome

the above limitations. These methods incrementally grow and prune a network (Fritzke

1991a, l991b, 1992; Jockusch 1990; Kangas et al. 1990; Martinetz and Schulten 1991; Ritter

1991; Rodriques and Almeida 1990; Xu and Oja 1990). The algorithms employ heuristics to

ensure that nodes are added only where the network needs them to represent the input space,

and that nodes are deleted only when they do not represent any part of the input space.

Most of the resulting networks, however, have arbitrary dimensionality and connectivity.
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Figure 1.2: Capturing cluster boundaries in a 2-D input space. (a) The input space consists
of 36 two-dimensional vectors uniformly distributed in the shaded regions. The vectors were labeled
A through E according to the region and numbered. A represents the separated cluster, B, C, and D
the connected arms and E the area connecting B, C, and D. (b) The merge clustering representation.
The tree structure has captured the clusters in the data, but the overall topology of the data set is
not apparent. (c) The self-organizing map representation. The black dots indicate the locations of
the network's weight vectors after the map has been organized. Lines indicate network connectivity.
Although the map has captured the overall 2-D topology, its connections span the cluster boundaries.
Note also that nodes have been allocated to areas where there is no input, representing the structure
of the data set inaccurately. (d) A more desirable 2-D network visualization that might be obtained
with incremental grid growing. This network has 4 clusters: 3 are connected through a small number
of nodes, and the fourth is separate from the others. Note that neither PCA nor MDS is represented
here: for 2-D input, these algorithms are not useful.
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There is no guarantee the �nal network structure can be easily drawn in two dimensions.

Therefore these new methods are not ideally suited for visualization of high-dimensional

data.

1.4 Incremental Grid Growing

This thesis presents an incremental self-organizing algorithm called Incremental Grid Grow-

ing (IGG) that captures both complicated topology and high-dimensional cluster bound-

aries. The network is strictly 2-dimensional, but incrementally adapts its shape and con-

nectivity to the structure of the data set (�gure 1.2d). The local and global structure of

the input is automatically embedded in the 2-D drawing.

1.5 Outline of thesis

The organization of the thesis is as follows. Chapter 2 discusses Kohonen's self-organizing

map (SOM) algorithm in detail. In chapter 3, the IGG algorithm, which is built around

Kohonen's self-organizing map algorithm, is described in detail. Chapter 4 demonstrates

how IGG represents the topology of various high-dimensional spaces. For illustration, the

results of applying IGG to 2-D and 4-D spaces are presented. Chapter 4 also demonstrates

how IGG captures the clustering and topology of a 5-D data set with graph-like, hierar-

chical structure (the minimum spanning tree task). Finally, IGG is demonstrated on a

240-D semantic data set derived from Webster's online thesaurus. Chapter 5 discusses a

real-world application of IGG in the domain of population genetics, where visualization is

essential to understanding the data. The application comes from the research presented in

L. Cavalli-Sforza et al. The History and Geography of Human Genes. After describing the

domain context, chapter 5 concludes with a comparison of merge cluster, PCA and IGG

representations of high-dimensional genetics data taken directly from the book. Chapter 6

discusses the practical issues in implementing and using the IGG algorithm, such as param-

eter tuning and map quality assessment. Chapter 6 also proposes a measure for determining

how well high-dimensional topology is captured in a two-dimensional map. Quantifying the

degree of topology preservation is an important research topic, and future work with IGG

will concentrate on this area. Chapter 7 concludes the thesis with a summary of the main

goals and results of the research.
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Chapter 2

The self-organizing map and

related neural network techniques

Kohonen's self-organizing map algorithm (SOM) maps items from an arbitrary input dis-

tribution onto a planar network of neurons. The algorithm causes a 2-D neural network

to develop topological patterns that are similar to those present in the input space (�gure

2.1). If the input space is of dimension greater than 2, the self-organizing map thus performs

a dimensionality reduction from the higher-dimensional input space to the 2-dimensional

network (�gure 2.3). As mentioned in the introduction, such a dimensionality reduction

can be a great aid to visualizing and understanding the data.

2.1 SOM algorithm

The SOM planar network can be of any geometry (usually rectangular). Each node is

connected only to its direct neighbors (�gure 2.1). Each item in the input is represented

by an N-dimensional vector, and each node in the planar network is associated with an

N-dimensional weight vector. During organization, each item in the input is presented to

the network a number of times in random order. When an item in the input is presented to

the network, the node whose weight vector most closely matches the input vector is chosen

as the winner. The weight vector of the winning node is then modi�ed so that the di�erence

between it and the input decreases by a fraction �winner (the learning rate). In addition, the

weight vectors of any neurons within a certain 2-D neighborhood Nc of the winner are tuned

toward the input by a fraction �ngb (generally less than �winner). Each \epoch" of training

consists of presenting, in random order, each input vector to the network, determining the

winning unit, and modifying the winner's weight vectors and those of its neighbors. The

neighborhood function de�nes how far from the best matching unit nodes are to be tuned.

Usually it is constant or Gaussian. Thus the core learning rule of the self-organizing map
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Figure 2.1: Kohonen's 2-dimensional self-organizing map. The uniform 2-D input space is
de�ned by the outline. The position in 2-D space of the weight vectors in the map is indicated by
intersecting lines|the lines represent the connections of the network. The weight vectors organize
themselves in a way that closely resembles in the input space. Note that in the case of convex input
(c), the mapping is less accurate. (From Hertz, Krogh and Palmer 1991)

is as follows:

Given the current input vector x, let i be the winning node chosen such that

jwi � xj � jwj � xj; 8j 6= i (2.1)

where wk denotes the weight vector of node k. Then for each input vector x, the network

is updated such that:

wi = wi + �winner(x� wi) and

wn = wn + �ngb(x� wn) 8n 2 Nc(i): (2.2)

The parameters to be selected by the user are the learning rates (�winner and �ngb),

the neighborhood function (Nc) and the number of epochs to train for. In practice, the

neighborhood function must allow the neighborhood to be large initially (on the order of

half of the largest dimension in the map), and decrease to 0 over the number of epochs the

map is trained for. As a result of applying this learning rule over many epochs, the weight

vectors in the network become ordered such that similar items in the input are mapped

onto near neighbors in the 2-D network.

The algorithm performs a topology-preserving mapping in the sense that vectors

close in the input space are mapped onto neighboring nodes in the network. A classic

SOM example is the so-called robot arm example. In this example, a robot arm's position

is described by the combination of angles de�ned by its many joints. The problem to be

solved is this: given a position in 2-D space, what are the joint angles that must be used

to place the robot's hand there? If one trains a 2-D SOM on example combinations of

the robot arm's joints, the map will capture the topology of the joint space in its weight

vectors. When the map has been fully trained, one can choose a position in the 2-D map

8



(a) 0 samples (b) 30 samples

(c) 100 samples (d) 10,000 samples

Figure 2.2: Time evolution of the SOM weight vectors for 2-D input. The uniform 2-D
input space is indicated by the outline. Initially the nodes are given random weight vectors. As
organization proceeds, the topology of the weight vectors begins to resemble the topology of the
input. By 100 epochs, a gross, global order has emerged. At 10000 epochs, the weight vectors have
settled into an excellent representation of the input space. (From Miikkulainen 1993)

and obtain the desired angle combinations by examining the node's weight vector. The

topology preserving property of the SOM algorithm makes this possible.

2.2 SOM theory

Most of the theoretical work on Kohonen's algorithm has focused on the ordering and conver-

gence of 1-dimensional input mapped onto a 1-dimensional network (Kohonen 1989, Cottrell

and Fort 1987). In addition, the stability and convergence properties of 2-dimensional maps

given a speci�c input distribution (uniform) has also been analyzed (Ritter and Schulten

1988). Generally, stochastic methods are used to analyze the self-organizing algorithm as a

9



Figure 2.3: Dimension reduction with Kohonen's SOM. The uniform 3-D input space is
indicated by the bounding box. The network weights organize themselves to cover the entire input
space while preserving the topology of the input space. The fact that none of the network connections
must cross another indicates that local topology is preserved in the map|nearby points in the input
space are mapped onto neighbors of the map. (From Ritter and Schulten 1988)

Markov process. The weight vectors of the map constitute the states of the Markov process,

and the state transitions are de�ned by the self-organizing learning rule above. Transitions

are triggered by random selection of input vectors. Modeling the 1-D self-organizing map

(�gure 2.4) as a Markov chain, Kohonen (1989) proved that his algorithm converges to an

ordered, stable state in the case of 1-D input and 1-D map. De�ning an ordered state of

the 1-D map to be a state such that the ordering of the weight vectors mirrors exactly

the ordering of the input values, and using a measure of disorder that describes the total

amount of node misplacements, Kohonen ex mined the possible transitions for the 1-D map

case-by-case. He showed that if the input is randomly selected, this measure of disorder

is more likely to decrease than increase, and can be expected to converge to 0 and stay

there. With this result, Kohonen showed for the 1-D case that: a) once the weight vectors

become ordered, they never become disordered, and b) the point density of the nodes will

�nally approximate that probability density of the input. Ritter (1989) later quanti�ed the

relationship more exactly. He showed that given an input probability density P , the map's

point density approaches P (2=3).

Unfortunately, the theoretical work on the 1-D map case is not immediately exten-

sible to the 2-D case because in 2-D the vectors are not as clearly ordered as in the case

of the linear array. Several researchers have applied Markov methods to the analysis of the

2-D map. Most notably Ritter and Schulten showed that given uniform input, there are 2

equilibrium states possible corresponding to two absorbing states for the Markov process

(1988). They then showed that convergence to one of these states is guaranteed if one

imposes certain conditions on the neighborhood function. Ritter and Schulten also derived

a Fokker-Planck equation describing the time evolution of the map's point density function

during the �nal convergence phase. Careful analysis of this function reveals that statistical

10



Figure 2.4: The 1-D Kohonen SOM. The 2-D input is mapped onto a 1-D linear array of nodes.
Again the nodes are randomly initialized, and proceed quickly to gross topological order. The array
is lower dimensional than the input, so its nodes must curve around in order for the weight vectors
to cover the whole input space. As a result, the overall topology of the array is somewhat disturbed.
(From Hertz, Krogh and Palmer 1991)

uctuations can occur in the weight vectors during convergence, and that their character

can depend on the time dependence of the learning rate. So far this type of analysis has only

been carried out for the case of 3-D uniform input (Ritter and Schulten 1988). Extension

to more general input spaces should provide important clues to predicting the �nal state of

the map for arbitrary input.

In practice, it is possible for twists and other distortions to appear in the network

topology (�gure 2.5). Predicting the �nal topological state of the 2-D map is one of the pri-

mary yet most elusive goals of the theoretical analysis of SOM. Another goal is determining

how the �nal state depends on the time evolution and shape of the neighborhood function

and learning rates. Several researchers have proposed order de�nitions to quantify how

well the 2-D map preserves the topology of the input space (Demartines 1992, Zrehen and

Blayo 1992). These de�nitions of topology preservation are then used to study the e�ect

of neighborhood size and shape on convergence of the 2-D map. For example, Lo, Fujita

and Bavarian (1991) use a de�nition of order localized to the neighborhood of winner units.

For this de�nition they are able to show that convergence to a state where neighborhoods

11



Figure 2.5: 2-D Kohonen map with twist. The SOM algorithm is not guaranteed to achieve
correct global order. Here the weight vectors have organized themselves into a distorted shape. The
topology is disturbed and the weight vectors do not fully cover the input space. Because the input
here is 2-D, simply plotting the weight vectors of the network reveals the poor topology. However,
if the weight vectors were high dimensional, they could not be plotted. In that case, the twisted
topology might go undetected. (From Lo, Fujita and Bavarian 1991)

never become disordered proceeds r faster when the neighborhood function more closely

resembles the \Mexican hat" of lateral interaction pro�les.

The inability to provide a clear mathematical formalism which describes the function

computed by the self-organizing process has frustrated many researchers. Without such a

formalism, it is di�cult to predict how changes in algorithm parameters a�ect the outcome,

or to determine how parameters interact to produce a �nal level of order preservation in the

mapping. The result is that the exact mapping that is produced depends to some extent on

how the experimenter tunes the parameters. Therefore the map may reect some subjective

quality that the experimenter wants to see in the 2-D representation of the data. Because

the researcher is the only judge of the �nal quality of the map, he/she must know a priori

what structure the map should develop. If the map quality cannot be de�ned quantitatively,

then the algorithm cannot be judged objectively. In chapter 6, a measure for quantifying

the map's topological order is proposed. Preliminary results suggest it will be useful for

analyzing map quality.

Judging the quality of the map is further complicated by the fact that the �xed

12



geometry and connectivity of the network can misrepresent the high-dimensional structure

of the input. The input may have high-dimensional clusters, but cluster boundaries are

not represented in an ordinary self-organizing map. In a network where each node is con-

nected to all of its direct neighbors, discontinuities will appear bridged, and nodes may

acquire weight vectors situated within a discontinuity where the input probability is 0 (�g-

ure 2.1c). An SOM application that depends on an accurate representation of neighborhood

boundaries would need to perform further analysis to determine if discontinuities have been

inaccurately spanned in the map. For instance, in the robot arm example, there may be

obstacles in the 2-D space or illegal joint combinations. The SOM needs to capture this

property explicitly in order to guarantee the obstacles are avoided and the illegal joint

combinations never attempted

2.3 Incremental SOM approaches

Self-organizing map algorithms have recently been developed that attempt to overcome the

representation di�culties associated with the standard SOM (Fritzke l991a, l991b, 1992;

Jockusch 1990; Kangas et al. 1990; Martinetz and Schulten 1991; Ritter 1991; Rodriques

and Almeida 1990; Xu and Oja 1990). These algorithms are generally incremental in nature,

adapting their network structure to the input space dynamically. These methods employ

heuristics to ensure that nodes are added only where the network needs them to represent

the input space, and that nodes are deleted only when they do not represent any part of the

input space. The idea is that in order to develop an accurate representation of the topology,

an algorithm must either recognize and correct misrepresentations that develop in the map,

or else prevent such incorrect topology from being encoded in the �rst place. Completely

preventing the development of inaccurate structure is impossible without a priori knowledge

of the input space. On the other hand, fully organizing a map and then modifying it so

that unwanted structures are removed may require much extra computational e�ort. Thus

an algorithm must be equipped with e�ective heuristics to accomplish both ends: to guide

the development of structure actually present in the data set and to detect and correct any

false topology in the map as early as possible during organization.

For example, Fritzke's growing cell structure algorithm incorporates heuristics for

both adding to and removing from the network nodes and connections. These heuristics

allow the algorithm to build a network that captures the high dimensional structure of the

input and to correct inaccurate network features. In Fritzke's algorithm, the basic 2-D grid

of SOM has been abandoned and replaced with nodes whose connectivity at all times de�ne

a system of triangles. The algorithm results in a network graph structure G = (V;E), where

V is the set of nodes and E is the set of connections between them. In the case of 2-D

input, it is easy to verify that the network structure accurately represents the input space
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by plotting the weight vectors in 2-D. When the input is high dimensional however, such an

arbitrary structure may not be easily drawable in 2-D. Fritzke presents a drawing method

that works reasonably well when the input space is of comparatively low dimension (e.g.

3-D). However, when the input is truly high-dimensional, the resulting drawing cannot be

guaranteed to be planar. Thus Fritzke's self-organizing algorithm is not well-suited to the

problem of visualization.

Most of the algorithms that grow and prune network structures result in networks of

arbitrary dimensionality and connectivity. There is no guarantee the �nal structures can be

easily visualized in two dimensions. The incremental self-organizing algorithm described in

this thesis avoids the di�culties of an arbitrarily connected network by retaining a regular,

2-D grid structure at all times. At any point during the organization, the map has a simple 2-

dimensional description, and topological relations are easily visualized. The IGG algorithm

incorporates the adaptive, structure-enhancing heuristics of the above approaches into an

incremental version of the standard SOM algorithm. This results in a 2-D map that captures

both complicated topology and high-dimensional cluster boundaries. The network is strictly

2-dimensional, but incrementally adapts its shape and connectivity to the structure of the

data set. The local and global structure of the input is automatically embedded in the 2-D

drawing.
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Chapter 3

Incremental Grid Growing

The incremental grid growing algorithm is designed to overcome the limitation of the �xed

grid in self-organizing maps. IGG embeds the cluster boundaries directly in its 2-D network

structure (�gure 3.1). IGG builds the network incrementally, dynamically adapting its

structure and connectivity according to the input data.

3.1 The IGG algorithm

Initially, the grid consists of four connected nodes with weight vectors chosen at random

from the input space (�gure 3.2). The following three steps are then iterated:

1. Adapting the current grid to the input distribution through the self-organizing map

process,

2. Adding new nodes to the perimeter of the grid where the network is exhibiting a large

errors in representation (�gure 3.2a-d);

3. Examining the vectors of neighboring nodes to determine whether a connection be-

tween the nodes should be deleted from the map, or a new connection added (�gures

3.2e-h).

The core of the learning of IGG, therefore, consists of the self-organizing map algo-

rithm. The additional techniques of growing new nodes and adding and deleting connections

allow the network to evolve a 2-D structure that reects the relationships in the data. These

techniques are described in detail below.
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Figure 3.1: IGG network for the 2-D cross-shaped input from �gure 1.2a. The input
space structure is embedded in the 2-D network. Thus the structure of the input space is apparent
in the network, without the necessity of plotting any weight vectors.

3.2 Growing new nodes

A boundary node is de�ned as any node in the grid that has at least one directly neighboring

position in the 2-D grid space not yet occupied by a node �gure 3.2). Each boundary node

in the current network maintains an error value E over each organizational pass. Whenever

an input vector is mapped onto a boundary node, the square of the distance between the

input vector and the node's weight vector is added to the error value:

E(t) = E(t� 1) +
X
k

(xk � wk)
2; (3.1)

where E is the cumulative error, w the weight vector of the winning unit, and x is the input

vector.

Large cumulative error values occur at nodes that have too many input vectors

mapped onto them. Their weight vectors fail to adequately represent all of the input

vectors in that area. Therefore, new nodes are added to the grid in the areas that have

high cumulative error. New nodes are only added on the boundary, so that the structure

remains 2-D and drawable at all times. During self-organization, these new nodes on the

perimeter develop weight vectors for those areas of the input space that were previously
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Figure 3.2: Growing the map grid. Figure (a) shows the initial structure after the �rst organi-
zation stage; the boundary node with the highest error value is marked. (b) New nodes are \grow"
into any open grid location that is an immediate neighbor of the error node. (c) After organizing
the new structure with the standard self-organization process, a new error node is found. (d) Again,
new nodes are grown into any open grid location that is an immediate neighbor of the error node.
(e) During self-organization of this new structure, the algorithm detects that the circled nodes have
developed weight vectors very close in Euclidean distance. (f) These \close" nodes are connected.
(g) After further organization, the algorithm discovers connected neighboring nodes whose weight
vectors occupy distant areas of the input (i.e. the nodes have a large Euclidean distance). (h) These
\distant" nodes are then disconnected in the grid.
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inadequately represented. The new nodes are directly connected to the error node. If any

other directly neighboring grid spots are occupied (as in �gure 3.2d), the new node's weight

vector is initialized to be the average value of all the neighboring weight vectors:

wNEW;k = 1=n
X
i2N

wi;k; (3.2)

where wNEW;k is the kth component of the new unit's weight vector and N is the set of the

n neighboring nodes of the new unit. Otherwise (as in �gure 3.2b), the new node's weight

vector is initialized so that the weight vector of the error node is the average of the new

node's vector and the vectors of any already existing neighbors of the error node:

wERR;k = 1=(m+ 1)

 
wNEW;k +

X
i2M

wi;k

!
; (3.3)

where wERR;k is the kth component of the error node's weight vector and M is the set of

the m already existing neighbor units of the error node.

Because new nodes are added only to areas that need them, each node in the struc-

ture always represents some region of the input space that lies inside a cluster. Therefore,

node deletion is not necessary in incremental grid growing.

3.3 Adding and deleting connections

Initially, the new nodes are connected to the structure only through the high error node.

During organization, the new weight vectors may become similar to the weight vectors of

neighbors to which they are not connected. In this case, a new connection is added joining

these nodes. An adjustable threshold parameter is used to decide if such a new connec-

tion should be grown. After each organizational pass, the similarity metric (e.g. Euclidean

distance) between unconnected neighboring nodes is examined. If the value is below the

connect threshold, a connection is added (see �gures 3.2e-f). Similarly, a disconnect thresh-

old is used to determine if there are two nodes in the map that are connected although

they have evolved into separated areas of the input space. Exceeding such a threshold may

indicate that a connection crosses a cluster boundary, and should be deleted from the grid

(�gures 3.2g-h).

Adding nodes only at the perimeter ensures that the map remains drawable at

all times. The dynamic addition and deletion of connections allows the grid to learn

high-dimensional cluster boundaries in the input, avoiding the limitation of standard self-

organizing maps. As a result, the grid-growing algorithm is a exible, dynamic tool for

discovering the structure of complicated high-dimensional data.
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3.4 Complexity

Because the central organizing step is based on the standard self-organizing algorithm, which

spends most of its time computing the Euclidean distance between every network node and

every input vector for tens of epochs, IGG's time complexity can be combinatorial in the

number of inputs, number of dimensions, and network size. Little can be done about the

properties of the input, but the running time can be reduced to linear in the network

size by making the search for the closest weight vector for each input vector more local.

By searching only a small neighborhood around the node that was closest to the current

input in the previous epoch, the search time becomes constant for all epochs, regardless

of the current network size. This optimization is possible because the network fully learns

the input space during each organizational phase, making a local search su�cient. As an

example, in our implementation we saw a speedup factor of 7 when the search was localized

to a 1� 1 neighborhood of the map. This is a promising result, and suggests that building

large maps for very large data sets should be tractable.
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Chapter 4

Testing IGG

This chapter presents the results of applying IGG to di�erent examples of input spaces.

First, a simple 2-D input example is presented for illustrative purposes, then expanded

to a 4-D example. Then the minimum spanning tree of Kohonen (1990) is presented for

purposes of comparing IGG to other visualization methods. Finally, the results of applying

IGG to high-dimensional real world semantic data derived from Webster's thesaurus is

presented as a demonstration of the algorithm's capabilities. Chapter 5 will present a

real world population genetics application. Both this chapter and chapter 5 are devoted

to demonstrating the algorithm's capabilities, without any discussion of IGG parameter

settings. In the chapter 6, the problem of experimentally determining the best parameter

settings will be discussed.

4.1 Illustration of IGG: 2-D and 4-D uniform random input

The topology of an arbitrary high-dimensional space is di�cult to visualize without a

dimensionality-reducing tool such as a feature map. On the other hand, the topology

of a 2-dimensional data set is trivial to visualize. To illustrate IGG and demonstrate that

it captures input space topology more accurately than SOM, IGG has been applied to a

simple 2-D cross-shaped input space (�gure 4.1). The 2-dimensional vectors were chosen

with uniform probability from the cross-shaped shaded area. The grid developed four arms

connected through an area that represents the central portion of the cross (�gure 4.1). Each

arm is represented by approximately the same number of nodes, and the central region is

represented by a proportionately lower number of nodes. The clusters in this input space are

joined in the central region; this structure is duly reected by the continuity of the resulting

grid. Note that the grid structure itself, even without any labeling of nodes, follows the

overall topology of the input space. The structure of the data set and its overall probability

density are encoded in the structure of the map.
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Figure 4.1: Snapshots of the grid evolution for a 2 dimensional cross input. On the left,
the weight vectors are plotted on the 2-D input space. On the right, the corresponding grid structure
is shown. Shading of the area around a node indicates the arm of the cross where that node's weight
vector is located. The four arms are separated in the grid, with a common center.
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Let us now extend this example to higher-dimensional input. Consider the case

where each of the arms is a 4-dimensional \box" along one of 4 coordinate axes. Three of

these arms are connected in a 4-dimensional area surrounding the origin, while the fourth

region is separated from the origin by a gap. That is, the input vectors (w; x; y; z) are

uniformly distributed within the 4-dimensional area de�ned by the union of these 4 areas:

region 1 = f(w; x; y; z) : 0 � w < 5; 0 � x < 1; 0 � y < 1; 0 � z < 1g

region 2 = f(w; x; y; z) : 0 � w < 1; 0 � x < 5; 0 � y < 1; 0 � z < 1g

region 3 = f(w; x; y; z) : 0 � w < 1; 0 � x < 1; 0 � y < 5; 0 � z < 1g

region 4 = f(w; x; y; z) : 0 � w < 1; 0 � x < 1; 0 � y < 1; 2 � z < 6g

The �nal map representing this structure is shown in �gure 4.2. As in the 2-

dimensional case above, the �rst three regions are connected through a central region,

and 3 arms extend outward. The fourth region is fully separated from the �rst three. The

relative numbers of nodes throughout the structure reect the uniform distribution of the

input. Again, the overall topology and distribution of the input space is apparent in the

simple 2-dimensional structure of the grid. Note that the SOM cannot accurately reect

the convex, discontinuous nature of the input. Because each node is connected to each of its

direct neighbors, the convex boundaries and discontinuities are smoothed out in the SOM

weight vectors. The IGG representation, on the other hand, directly embeds the convexi-

ties and discontinuities in its 2-D structure. Thus the structure of the input is evident by

inspection, without the necessity of examining weight vectors.

4.2 Comparison using minimum spanning tree data

To illustrate how the grid-growing algorithm di�ers from the standard visualization methods

such as merge clustering and self-organizing maps, consider the minimum spanning tree

example of Kohonen (1990). In this example, the input consists of the 5-dimensional vectors

listed in �gure 4.3. A super�cial look at the input indicates that there are clusters of similar

vectors in the data, as well as relationships between the clusters. The high-dimensional

topology of this data set is di�cult to describe, but a minimum spanning tree is one 2-D

structure that in this particular case captures the hierarchical nature of the data quite well.

Conventional 2-D visualizations fail to represent the essential properties of the span-

ning tree. When merge clustering is applied to this data set (�gure 4.4a), clustering is

apparent in the resulting tree. However, the merge tree does not make the global and local

relationships between elements clear. For example, the cluster 1-2-3-4-5-6 is split in a way

that implies 1-2-3-4 is a single cluster, and 5-6 is a separate one. On the other hand, the

hexagonally connected self-organizing map learned both the global and local topology of

22



weight vectors f(w;x;y; z) : 0 � w < 1; 0 � x < 1; 0 � y < 1; 0 � z < 1g

weight vectors f(w;x;y; z) : 1 � w < 5; 0 � x < 1; 0 � y < 1; 0 � z < 1g

weight vectors f(w;x;y; z) : 0 � w < 1; 1 � x < 5; 0 � y < 1; 0 � z < 1g

weight vectors f(w;x;y; z) : 0 � w < 1; 0 � x < 1; 1 � y < 5; 0 � z < 1g

weight vectors f(w;x;y; z) : 0 � w < 1; 0 � x < 1; 0 � y < 1; 2 � z < 6g

Figure 4.2: Final grid structure for 4-dimensional, disjoint input space. The common
center (the �rst area listed) and the �rst three arms are connected, while the fourth arm is fully
separated.

the data; however, it has no way of representing the cluster boundaries (�gure 4.4b). For

instance, the S-T-U-V cluster appears to be equally related to most of the other clusters.

Both representations are therefore incomplete.

The incremental grid growing algorithm applied to the same data set results in a

structure that captures both the cluster boundaries and the topology of the data (�gure

4.5). The arms of the spanning tree are clustered in delineated regions of the map. Also,

the relationships between the clusters are narrowly speci�ed by the limited connectivity

between clusters. For example, the S-T-U-V cluster is clearly related to the M-N portion

of the K-L-M-N-O-P-Q-R backbone, and it is clearly not very well related to the other

clusters. Similarly, the F-G-H-I-J cluster is related to the A-B-C-D-E cluster near the B-
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Figure 4.3: (a) The input vectors of Kohonen (1990). (b) The minimal spanning tree of
the data. The example was designed to illustrate the self-organizing map's capacity to represent
the general topology of hierarchical data. In this case, the minimal spanning tree is one relational
description that happens to capture the structure quite well.

C region, and to the K-L-M-N-O-P-Q-R backbone nearby K. Clearly, the algorithm has

evolved a network that visualizes the underlying structure in the data.

4.3 Demonstration using real world semantic data

The spanning tree example is a good illustration of the properties of visualization techniques,

but it is still a toy problem. Real world data is usually more challenging to visualize in 2-D.

Each vector may contain hundreds of features, and the data set may contain thousands of

such vectors. Very complex relationships between data elements are possible. In addition,

real world data sets often contain a signi�cant amount of noise. Minimum spanning trees

(and other such simple structures) are usually insu�cient to represent the complicated

relationships in unknown, high-dimensional data.

Consider for example word semantics. The variety and complexity of relationships

between word meanings overwhelms simple representation schemes. New learning and rep-

resentation methods are often demonstrated using such semantic data (Miikkulainen 1993;
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Figure 4.4: 2-D representations of the spanning tree data. (a) The merge tree derived by the
merge clustering algorithm. Cluster boundaries are apparent in the structure, but the global and
local topology is not. (b) Map derived by the standard self-organizing algorithm (Kohonen 1990).
The map is hexagonally connected. The spanning tree structure is clearly present in the map;
however, the full connectivity makes it di�cult to extract exact neighborhood relations between
units.

Ritter and Kohonen 1989; Schutze 1993; Scholtes 1993).

To demonstrate visualization with IGG, a high-dimensional semantic data set was

compiled from the Webster online thesaurus. In this thesaurus, relationships among words

are represented explicitly as lists, where each list indicates a di�erent type of relationship.

However, only the most direct relations between words are immediately apparent to the

user. Less obvious relationships require a search through all the intervening lists. In an

e�ort to visualize the global structure of such semantic data, IGG was applied to a subset

of the thesaurus words.

In the online thesaurus, words appear in alphabetical order. Each word is accom-

panied by its part of speech, de�nition, and any idiomatic expressions it is used in, along

with its cross reference lists. These lists include synonyms, related words, contrasted words,

and antonyms. In order to apply IGG, feature vector representations for the words were

created based on the cross-reference lists. The features are words, and each main entry in

the thesaurus is represented by a feature vector indicating the presence or absence of each

of the words in its lists. A value of l.O for a feature indicates that word (feature) is present

in the related list; a value of -l.O indicates that the feature appears in the contrasted or
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Figure 4.5: IGG representation of the spanning tree data. The limited connectivity between
clusters in the map closely resembles the structure of the spanning tree. This map was produced
using 4 organization phases for each incremental structure. In phase 1, the best matching unit was
moved toward the input with an � of 0.18 (�bmu); the neighbors were moved by 0.13 (�ngb); the
structure was trained for 25 epochs (nepochs). In phase 2, �bmu = 0:14, �ngb = 0:1, nepochs =
15. In phase 3, �bmu = 0:09, �ngb = 0:06, nepochs = 15. In phase 4, �bmu = 0:05, �ngb = 0:0,
and nepochs = 15. The neighborhood size was a function of the number of nodes in the current
structure. Where there were as many or fewer than 36 nodes in the map, the neighborhood size
began at I and decreased to 0 by phase 4. If there were greater than 36 nodes, the neighborhood
began at 2 and decreased to 0. Connections were added or deleted after phase 4: a connection was
added between 2 nodes if their distance was less than 2.6 times the average distance in the map
(tconnect). A connection was deleted if the distance between the 2 nodes was more than 2.9 times
the average distance in the map (tdelete). The parameter settings were determined experimentally,
but serve as good starting points for other IGG experiments.

antonym lists. A value of O.O indicates that the two words are not directly related by their

lists.

For brevity, the example described here uses only verb entries from the thesaurus.

Synonyms have been collapsed into single entries and single features. Also, only those verbs

that appear most often are represented in the input set, and only those verbs that are used

most often in the cross-reference lists are used as features. The resulting data set contains

197 verbs, each represented by 240 features. Because the data source is obtained from the

real world, and because a very simple method for reducing its size was employed, the data
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Figure 4.6: The reduced Webster's thesaurus verb set. The full verb set contains 1477 1477-
dimensional vectors; here it has been reduced to 197 240-dimensional vectors for clarity. (a) A sample
of the online thesaurus text. Only direct relations between words are explicitly represented, and
looser relationships must be deduced by chasing word entries. (b) The IGG grid encodes semantic
similarities as well as semantic boundaries. The simulation parameters were the same as in the
minimum spanning tree example (�gure 4.5), except nepochs for the 4 phases were 10, 6, 6, and 4,
tconnect was 2.8 and tdelete was 33.

set is very noisy, and therefore rather di�cult to describe and visualize.

The �nal grid derived by IGG is shown in �gure 4.6. Semantic similarities have been

captured in the 2-D topology of the grid to the extent possible with this data. Semantic

dissimilarities are implicit in the map boundaries. Note that although the vector repre-

sentation scheme is very simple, the data is not synthetic or contrived. The vectors were

generated from the straight text of the thesaurus, and the full data set reduced only for

brevity. The grid has captured the relationships to the extent they exist in the reduced set,

and has placed the noise words in areas where there are similar vectors.

In the top left arm of the map, verbs that connote a retarding function are clustered

27



(e.g. hamper, ward, suppress, stultify). This arm merges into the top central arm, which

contains verbs suggesting deterioration (deteriorate, weaken, depreciate). This arm joins an

area that contains words implying lessening (decrease, wither). This area in turn blends into

the top right arm, which contains words connoting a decreasing or removal function (fall,

droop, slip, retire). The bottom two arms contain words that have more positive connota-

tions. The bottom right contains words suggesting increase (skyrocket, raise, increase). This

area merges into an area connoting improvement and promotion (improve, speed, help). To

the left, this area blends with an arm connoting accumulation or gathering (absorb, group,

heap, accumulate). In the central area connecting the more positive arms with the more

negative arms, there is a gradation of meaning from bottom to top: urge, incite, o�end,

attack, overwhelm, shatter, maim, revolt, demur. The gathering region also merges into the

negative region: handle, keep, monopolize, dictate, demand, overwhelm.

Two other arms are present in the grid, containing words that do not support the

general positive-negative gradation. On the left, words that imply giving (distribute, grant)

blend with words that suggest giving in (lose, fawn). These in turn merge into the more

negative areas of the grid (sprain, yield, decay). On the right, words that connote success

and encouragement (coax, succeed, reach, push) blend with words connoting support (base,

correct, stabilize). This area in turn gradually blends with the positive region (incite, urge,

assert).

The thesaurus data demonstrates the ability of IGG to represent complicated high-

dimensional data, which is often both incomplete and noisy. Note that thesauruses exist

for exactly this reason: the cognitive and intuitive similarities and dissimilarities between

words are very hard to de�ne or describe, and are often context dependent. To the extent

possible, the network has learned the structure present in the input. The results support

the idea that IGG can be used as a visualization tool for very complicated, unknown data.

Chapter 5 explores the application of IGG to a real-world task in which visualization is an

essential tool for data analysis and understanding.

28



Chapter 5

Application: human genetics data

The study of human evolution requires the analysis of the complicated relationships between

human populations. To understand evolution, one must study the migration patterns of

populations. To understand migration, one must examine how the similarities between

populations diverge geographically. Similarities between human populations can be judged

genetically, linguistically, and culturally. This chapter looks at the problem of discovering

the how populations are related genetically. Visualization of high-dimensional genetic data

is essential to the analysis of such relationships.

5.1 Studying human genetics

Over the last 30 years, L. Cavalli-Sforza and his colleagues have collected genetic informa-

tion from native populations in virtually every inhabited area of the planet. The genetic

information is derived from blood samples taken from individuals of a population inhabiting

a geographic area. Individual blood samples can be tested for the presence or absence of

various genes. Thus each individual can be described by the set of genes present in his/her

blood.

If a large enough number of individuals is thus described, one can obtain an average

description of the whole population. For example, if 50% of the individuals sampled in a

population test positive for a certain gene, then the population has a gene frequency of

O.5 for that gene. A whole population can be described by a set of gene frequencies in the

same way that an individual can be described by a set of genes. If one describes a set of M

populations with a set of N gene frequencies, then one obtains an N-dimensional data set

of M populations. In order to discover the genetic relationships between these populations,

one must visualize this data set.
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5.2 The data set

Cavalli-Sforza et al. (Cavalli-Sforza, Menozzi and Piazza 1994) tested thousands of popula-

tions for hundreds of genes over 30 years. The sheer volume of the data is clearly an obstacle

to analysis. Therefore, in order to discover the most general global trends, they �rst reduced

the amount of data to a manageable level. They �rst averaged the gene frequency vectors

of many populations chosen for linguistic, cultural and geographical similarity. In this way,

they reduced the data set to 42 populations \aggregates". In addition, they reduced the

dimensionality of the data by considering only those genes for which a majority of the

populations had appreciable frequencies. The resulting data set consists of 42 population

aggregates, each described by 120 gene frequencies. In �gure 5.1, the populations and their

general geographic locations are indicated.

Cavalli-Sforza et al. analyzed the 42 population aggregates and their relationships

using standard visualization techniques, including merge clustering (�gure 5.2) and principal

component analysis (�gure 5.3). Note that visualization, like all data analysis, depends on

the method for calculating the distance between vectors. The Euclidean distance is one

such measure. The distance metric they used is similar to Euclidean distance, but it is not

the same. The Fst measure is designed speci�cally to measure genetic distances between

populations. For instance, the calculation involves a form of normalization to account

for the fact that gene frequencies are not normally distributed. Also, special terms are

added to correct for sampling error when the sample sizes are small. In the cases where

populations are missing information about certain genes, these genes are left out of the

distance calculation. Thus this measure is a much more accurate description of the genetic

distance between two populations than is the Euclidean distance. This is the measure that

Cavalli-Sforza et al. used to obtain the merge tree in �gure 5.2 and the PCA map in �gure

5.3.

5.3 Visualizing the 42 populations

Figure 5.2 shows the merge cluster tree for the 42 populations using the Fst distance.

Examining the tree top to bottom, one �rst �nds a cluster for African populations (San,

Mbuti, Bantu, Nilotic, W. African, Ethiopian). This is followed by a cluster than contains

mostly European groups (Lapp, Sardinian, Greek, Basque, Italian, Danish, English), plus

two Indian (S.E. Indian, Indian), one Persian (Iranian) and one African group (Berber).

This is followed by a cluster consisting mostly of Asian and North Asian groups (Samoyed,

Mongol, Tibetan, Korean, Japanese, Ainu, N. Turkic, Chukchi) with one American group

(Eskimo). This is followed by a cluster of American groups (S. Amerind, C. Amerind, N.

Amerind, N.W. American). The next cluster contains mostly Paci�c island populations

(Indonesian, Philippine, Malaysian, Polynesian, Micronesian, Melanesian) along with a
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Population name Geographic location

Bantu South and Central Africa
EastAfrican East Africa
NiloSaharan Central Africa
WestAfrican West Africa
San Northeast Africa (Bushmen)
Berber North Africa
Mbuti Central Africa (Pygmies)
Indian India
Iranian Persia
NearEast East Europe, West Russia
Uralic North Asia, Northeast Europe
Ainu East Asia
Japanese Japan
Korean Korea
MonKhmer Vietnam
Thai Thailand
Dravidian Southeastern India
MongolTungus Mongolia
Tibetan Tibet
Indonesian Indonesia
Filipino Philippines
NorthTurkic North Turkey
SouthChinese South China
Basque France and Spain
Lapp Northern Scandinavia
Sardinian Sardinia
Dane North Central Europe
English United Kingdom
Greek Greek Islands
Italian Italy
CentralAmerind Central America
Eskimo Alaska, Aleutian Islands
NaDene Western North America
NorthAmerican Central and Eastern North America
SouthAmerican South America
Chukchi Extreme Northeastern Asia
Melanesian Islands northeast of Australia
Micronesian Islands west of the Philippines
Polynesian Islands northeast of New Zealand
Malay New Guinea
NewGuinean Australia
Australian Malaysia

Figure 5.1: The 42 population aggregates and general geographic regions.
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Figure 5.2: Merge tree for the 42 populations using Fst distance. The clusters are mainly
geographic in nature. From the top to bottom, one sees clusters for African, European, Non h Asian
and Asian, American, and Paci�c island populations. Note that some populations end up mixed
into unlikely clusters. For example, the Indian, Iranian and Berber populations are mixed into the
European cluster. (From Cavalli-Sforza et al. 1994)

sub-cluster of Asian groups (S. Chinese, Mon Khmer, Thai). The �nal cluster consists of

more Paci�c island populations (New Guinean, Australian).

Figure 5.3 displays the PCA plot for the same data. For the most part, the PCA

plot mirrors the organization of the merge tree. Note that in the upper left region, North

Asian populations (Mongol Tungus, Tibetan, Uralic, N. Turkic) are mixed with American

populations (N. American, NaDene, C. Amerind, S. American) and some Asian populations

(Japanese, Korean, Ainu). These populations are not individually clustered, as they tend

to be in the merge tree. Note also that the PCA plot seems to indicate a closer relationship
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Figure 5.3: PCA map of the 42 populations using Fst distance. Here again the clustering
follows mainly geographic boundaries. Note that the Indian populations (Indian, S. Dravidian) are
not mixed into the European population as they are in the merge tree. Also note that there is little
structure to the populations in the upper right. (From Cavalli-Sforza et al. 1994)

between the two Indian groups (Indian, S. Dravidian).

Using the merge tree and the PCA plots, along with other non-visual data analysis

tools, they divide the 42 populations into nine clusters. After averaging the members of

each cluster, they derive a summary merge tree that describes the overall structure of the

42 population data set (�gure 5.4). The summary tree makes it clear that the genetic data

is organized along mainly geographic lines.

In this application, it is clear that both merge clustering and PCA capture aspects

of the data that the other does not. Because IGG is designed to combine the best properties

of both techniques, the application is ideally suited to demonstrating IGG's potential. Also,

Cavalli-Sforza notes that it would be instructive to have a method that allows links between

branches of the cluster trees. IGG is such a method.

33



Figure 5.4: Summary tree. This tree obtained by averaging the 42 populations into nine cluster
summarizes the structure of the data set. (From Cavalli-Sforza 1994)

5.4 Applying IGG to the task

Unfortunately, our best understanding of the Fst calculation has failed to reproduce the

distance values published in the book, and we have been unsuccessful at gaining more

insight through private communication with Cavalli-Sforza and his colleagues. For the

demonstration and comparison for this thesis, the standard Euclidean distance was used for

all algorithms. The data was normalized such that the variance for all frequencies is unity,

which prevents any single gene frequency dominating the distance. Note that because a

di�erent metric has been used, the results presented here cannot be compared directly with

the results presented in the book.

Using the Euclidean distances, both merge cluster and principal component analysis

were applied to the data (�gures 5.5 and 5.6). The IGG map of the data is shown in �gure

5.7. It is apparent that the IGG representation incorporates the dominant relations present

in the merge cluster and PCA representations in the same way that �gure 5.4, de�ned

manually, summarizes information in the corresponding Fst visualizations.

In the merge cluster representation (�gure 5.5), several main trends are evident.

Starting at the bottom right, one sees clustering for European populations (English, Dane,

Italian, Greek, Basque), Asian populations (Thai, SouthChinese, MonKhmer, Korean, Ti-

betan, Filipino, Japanese), and Paci�c island populations (NewGuinean, Melanesian, Mi-

cronesian, Malay). In addition, the upper part of the tree has a general trend toward the

African populations (San, Mbuti, Berber, East African), mixed with North Asian popula-

tions (Lapp, Chukchi, Ainu, MongolTungus, Uralic, NorthTurkic). However, the upper part

of the map does not have a very clear cluster structure, and has several misrepresentations.

For instance, Sardinian and Lapp are both European populations, but they are mixed in
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Figure 5.5: The merge tree for the 42 populations using Euclidean distance. How closely
the populations are related is indicated by how close their merge points are. Several recognizable
groups are present. At the lower right, some European populations are merged together (Dane,
English, Italian, Creek, Basque). Below this group, Asian populations are clustered (Japanese,
Tibetan, Korean, MonKhmer, Thai, SouthChinese). Below that, some Paci�c islands are represented
(Micronesian, Melanesian, NewGuinean). All of these groups are missing some members, which
appear merged nearby unrelated populations. Note also, the African, North Asian and American
populations are not clearly recognizable.
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Figure 5.6: The PCA map for the 42 populations using Euclidean distance. The clustering
structure is a little more apparent than in the merge cluster tree. The European populations are
clustered together in the upper right (Italian, English, Dane, Sardinian, Basque). The African
populations are clustered in the lower region (NiloSaharan, EastAfrican, San, WestAfrican, Bantu,
Mbuti. The Paci�c populations are at left (Australian, Micronesian, NewGuinean, Melanesian,
Polynesian, Malay, Filipino, Indonesian). Unfortunately, the Asian, North Asian and American
groups are mixed together in the top left central region.
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with the �rst few African populations. In addition, an African cluster (Bantu,WestAfrican,

NiloSaharan) merges into the tree near the North Asian area (Ainu,MongolTungus, Uralic,

NorthTurkic), but far from the �rst African area. Polynesian and Indonesian are both Pa-

ci�c island populations, but both appear in the map separated from each other and from

the other Paci�c groups. Australian is also clearly a Paci�c group, although it joins the

merge tree far from any geographic relatives.

In the PCA representation (�gure 5.6), the clustering is a little better. The Euro-

pean populations are close in the upper right (Italian, English, Dane, Sardinian, Basque,

NearEast, Lapp, Greek). The African populations are clustered in the lower right (NiloSa-

haran, EastAfrican, San, WestAfrican, Bantu, Mbuti). The Paci�c groups are cluster on

the left (Australian, Micronesian, NewGuinean, Melanesian, Polynesian, Malay, Filipino,

Indonesian). The North Asian and Asian groups appear mixed in the top region, just left

of center (Chukchi, NorthTurkic, Japanese, Korean, Tibetan, Thai, Uralic, SouthChinese,

MonKhmer,MongolTungus). As in the merge cluster tree, there are some mis�t populations

mixed into the general clusters. The Indian, Iranian and Dravidian populations occur near

the European populations. This also occurs in the merge cluster tree, so it is likely that this

is simply the best place for the populations. Also, the American populations (SouthAmer-

ican, NorthAmerican, CentralAmerind, NaDene, Eskimo) populations are mixed into the

middle of the Asian-North Asian group. This is di�erent from the merge cluster representa-

tion, so it is unclear where these groups really belong in the general scheme of things. The

PCA representation seems more clear than the cluster tree; however, one should be careful

and note that only the �rst two principal components are included, and therefore the graph

does not incorporate all of the information in the data into the 2-D representation.

The IGG map (�gure 5.7) combines the best of both worlds. Clusters are clearly

present, as well as the global topology of the data set. The European populations occupy

the top arm, and blend, through the Iranian, Indian and Dravidian populations to the

North Asian populations in the center of the map (MongolTungus, NorthTurkic, Chukchi,

Uralic, Tibetan). This suggests that these \mis�ts" are genetically somewhere between Eu-

ropean and North Asian populations. The North Asian populations, in turn, blend into the

Asian populations in the lower center portion of the map (MonKhmer, Thai, Korean, Ainu,

Japanese, SouthChinese). The lower Asian groups are nearby the Paci�c groups in the lower

arm (Filipino,Malay, Indonesian,Micronesian, Polynesian,Melanesian,NewGuinean, Aus-

tralian). The North Asian groups also blend into the right arm, which contains the American

groups (NorthAmerican, Eskimo, SouthAmerican, CentralAmerind,NaDene). All the major

geographic clusters (European, North Asian, Asian, African, Paci�c, American) are present

in the IGG map, and the mis�t populations now seem to �t into the overall topology. It

therefore improves upon both the cluster tree and the PCA plot.

The human genetics application is ideally suited for studying visualization algo-
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Figure 5.7: The IGG network for the 42 populations using Euclidean distance. The struc-
ture of the network reects the structure of the data. The main geographic clusters of the data are
present in the arms and central region of the map. The top arm contain the European populations
(Basque, Lapp, NearEast, English, Dane, Italian, Greek, Sardinian). The left arm has the African
groups (Mbuti, San, NiloSaharan, Bantu, WestAfrican, EastAfrican, Berber), The lower arm con-
tains the Paci�c groups (Australian, NewGuinean,Melanesian, Polynesian,Micronesian, Indonesian,
Malay, Filipino). The American populations are in the left arm (NorthAmerican, SouthAmerican,
CentralAmerind, NaDene, Eskimo). The central region contains the North Asian populations in
the upper-right central area (Chukchi, MongolTungus, NorthTurkic, Uralic, Tibetan), and the Asian
populations in the lower central area (MonKhmer, Thai, Korean, SouthChinese, Ainu, Japanese).
Each of the arms blends into the Asian regions in a reasonable way: the northern African (Berber)
blends into more southern Asia areas and northern American (NorthAmerican, Eskimo) populations
blend into the North Asian area. The Paci�c populations blend into the Asian populations. As in
both the merge cluster and PCA representations, the mis�t Indian/Persian populations (Iranian,
Indian, Dravidian) seem to be genetically between the North Asian groups and the European groups.
The fact that this occurs for all the representations suggests that it is a proper feature. Thus IGG
is able to capture all the most important information present in both the merge tree and PCA.
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rithms. The data is very high-dimensional and noisy, and the individual data items are

interrelated in complex ways. Also, human populations can be related linguistically and

culturally as well as genetically. Visualizing data from each of these domains can yield im-

portant insight into how genetic interchange di�ers from linguistic and cultural interchange.

Preliminary results seem to indicate that IGG performs well on this data. Further work

with the full population genetics data set, along with linguistic data for the same popula-

tions, should not only yield insight into this domain, but also help to expose the strengths

and weaknesses of IGG.
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Chapter 6

Discussion and future work

The quality of the �nal organization of the map can be de�ned as the degree to which

the map captures the input topology. Maps are considered qualitatively similar when they

capture the same topological properties of the input. Given this de�nition of quality, there

are three important questions to be asked:

1. How do the algorithm's parameters e�ect the �nal quality of the map?

2. Is there a way to quantify this de�nition of map quality?

3. Is there a way to automatically adjust the parameters based on monitoring the map

quality?

6.1 IGG parameters

The original SOM algorithm forms the core of the IGG algorithm. However, the IGG

organizational strategy can be varied along a number of lines. IGG includes, of course,

all the basic parameters associated with SOM|the number of epochs to train for, learning

rates, neighborhood size and shape and a schedule for changing them. In addition, IGG must

include parameters for the total number of nodes to be included, as well as the disconnect

and reconnect thresholds. Also, the incremental nature of IGG supports restricting for the

total number of nodes to be included, as well as the disconnect and reconnect thresholds.

Also, the incremental nature of IGG supports restricting the search for the best matching

weight vector to a small neighborhood around the winner during the last epoch to speed up

computation. Thus the neighborhood search size is another parameter to be set. Finally,

because the algorithm is incremental and its structure changes every time it undergoes

growth, every one of the organization parameters might be changed as a function of the

number of nodes in the current structure. It is vital to understand how changing these

variables, both individually and in combination, e�ects the �nal organization of the map.
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6.2 Parameter sensitivity

Without a formal mathematical function de�ning how the algorithm parameters and vari-

ables a�ect the �nal state of the map, one can only judge the algorithm's sensitivity to

parameters experimentally. The algorithm's sensitivity to a given parameter is de�ned as

the degree to which the quality of the map depends on a certain setting of that parameter.

For instance, the standard SOM algorithm will almost always converge to qualitatively the

same map so long as the neighborhood function starts large and tends to O, and the learning

rates are initialized between O.1 and 0.2 and tend to O.O over the course of organization.

Thus SOM is relatively insensitive to its parameter settings, within those constraints. An

obvious question to ask is, does IGG exhibit the same sort of insensitivity to parameter

settings?

Because IGG is incremental, it does not converge to an asymptotic state as does

SOM. For each intermediate structure, IGG's neighborhood and learning rates tend to

zero. However, every time the IGG map grows, both global ordering and �ne-tuning must

occur in order for the new nodes to be incorporated into the map properly. Thus these

parameters must be reset to their initial values whenever new nodes are added. As a result,

IGG tends to be more sensitive to these parameter settings than is SOM. In addition, the

connectivity of the map is constantly changing as connections are added and deleted. Thus

IGG tends also to be sensitive to the connection threshold settings.

In addition to the connection thresholds, the IGG algorithm appears to be sensitive

to the number of epochs organized for a given neighborhood size. At larger neighborhoods,

distortions in the local and global topology are more likely to be introduced, and IGG must

constantly return to larger neighborhoods in order to fully incorporate new nodes. If a

distortion is introduced during one random organization epoch, it may take tens of epochs

to overcome it. But there is no guarantee it will ever be overcome. With no way to tell

whether the map seems to be correcting the disorder or making it worse, there is no way to

tell when more epochs is too many.

In summary, because the structure and connectivity of the IGG map is always chang-

ing, the quality of the map does not converge to a �nal state, as with SOM. To obtain good

quality in the �nal map, IGG must aim at a constantly moving target. It thus tends to

be much more sensitive to the parameters that de�ne how that target moves|i.e. the con-

nection thresholds and the amount of training. Getting good quality maps thus depends

on setting these parameters such that no distortions are introduced into the map that can

adversely e�ect the quality of the result.
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6.3 IGG distortions

The primary qualitative distortion that must be avoided during IGG evolution is the cluster

split. A cluster split occurs when nearby nodes in the map that have become tuned to data

items in the same high-dimensional cluster become separated by a node or nodes that

have become tuned to data items in a di�erent cluster. When this situation occurs, the

cluster may remain split, and the \strain" on the inter-cluster connections will increase,

causing these connections to be cut. Once the connections are cut, the map has no chance

of recovery. Such splits are di�cult to detect if one does not a priori know the cluster

structure of the input, and therefore may go uncorrected. If a split is not corrected during

organization, the error will be reinforced, connections will be cut, and the map will be

pulled apart.

6.4 Avoiding distortions

Is it possible to develop heuristics for setting parameters that will guarantee cluster splits

are avoided during organization? The preliminary experimental answer appears to be \no".

The incremental nature of IGG seems to exaggerate the e�ects of any disorderings that

occur. In general, getting good quality IGG maps depends on balancing two opposing

considerations. On the one hand, the map must have su�cient connectivity so that proper

order is developed in the map and splits will have maximum opportunity to be corrected.

On the other hand, the algorithm must cut enough connections so that speci�c cluster

structure is built into the map incrementally. Experimentally, it has proven somewhat

di�cult to balance these considerations. In practice, when the structure of the data set

is unknown, it is best to set the disconnection and reconnection thresholds to the lowest

values that still ensure that no clusters break free from the map during evolution. (This

is a reasonable constraint, since it is reasonable to assume that all items in the data set

are related to each other in some way, and therefore must be allowed to inuence the

global cluster structure of the 2-D representation). Once the map has grown to its full size,

connections may be examined again to determine which clusters are truly separable.

In summary, the behavior of the IGG algorithm is controlled primarily through the

connection thresholds and the number of epochs parameters, and these must generally be

tuned for each separate data set. By tuning these parameters appropriately, one can achieve

a faithful 2-D representation of complex high-dimensional data. Selecting appropriate values

would be simpli�ed if the quality of the map could be quanti�ed for every structure after

every epoch. If there were a measure for how well the current structure captures the high-

dimensional order in the data, it would be possible to determine when distortions have been

introduced, and whether each epoch was worsening or improving the situation. Such an

order measure would not only make it possible for the algorithm to tune its parameters
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automatically, but would also allow quantitative comparisons between maps. In the next

section, a method for measuring how closely the topology of the map mirrors the topology

of the input is proposed. Although this research is still in the experimental phase, the

proposed measure of map quality appears promising.

6.5 Measuring quality

Self-organizing maps are topology preserving to the extent that the high dimensional rela-

tions in the data are preserved in the 2-D maps \as much as possible". The goal is for the

2-D map to capture the most important relations in the data, such that the closest items in

the input space will exhibit small distances on the map. Obviously it may not be possible

to preserve all close high-dimensional relationships when the dimensionality of the data set

is reduced to two. To what extent then does the 2-D representation capture the topological

order of the original data set? How can the order preservation be quanti�ed? How can the

quality of the mapping be judged objectively?

Kohonen (1987) successfully tackled this issue for the 1-D map case. However,

that work has not yet been successfully extended to 2 dimensions and arbitrary input.

Several authors have discussed the necessity for developing some kind of \goodness" measure

for 2-D maps (Blayo and Demartines l99O, Zrehen 1992). There has been some research

into the evolution of easily calculable map quantities (e.g. the input mapping error and

standard deviation, and the similarity between map's point density and input's probability

distribution). However, the amount of error between each input and the weight vector to

which it is mapped does not provide any information about the topological order of the

map. A few researchers have proposed quality measures for SOM designed to quantify how

well the map captures the input topology. The research in this area is still preliminary.

So far, there has been no investigation of how parameters e�ect map quality as judged by

these measures. Also, the measures are not generally applicable to all 2-D representations,

so they are not well-suited for comparisons between di�erent representation methods.

An order measure that permits in-depth investigation of the functional relationship

between map quality and parameter settings would signi�cantly increase the overall state

of knowledge about SOM algorithms. The next section proposes such a measure. The

proposed quantity measures the extent to which the input topology is present in the 2-D

map, and is similar to the �tness measures used in non-metric multi-dimensional scaling.

The proposed measure has the potential to:

1. indicate when a distorted relation exists in the map,

2. provide a exible constraint for tuning organization parameters, and
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3. allow direct quantitative comparisons between di�erent 2-D representations of high-

dimensional data.

6.6 Ranking relationships

Each data item in the input space stands in some relationship to every other input item.

The similarity between any two items is measured by calculating some distance (usually

Euclidean) between the input vectors representing the items. Items whose distance is smaller

are judged to be more similar to each other than are items whose distance is larger. For

each individual data item, one can calculate how close it is to every other item. Obviously,

it will be closer to some items and further from others. If one orders the distances from

smallest to largest, one can see immediately which vectors the data item is closest to, and

which vectors are further away. Using this partially ordered set of distances one can rank

the item's relation to every other item. Vectors with a ranking of 1, for instance, are the

data item's closest relatives. Vectors with a ranking of 2 are very close relatives of the

data item indeed, but not quite so close as rank 1 relatives, and so on. The goal of the

self-organizing map is to represent the relations in the data whenever possible. The degree

to which it captures the rankings between every data pair is a good indication of the quality

of the map.

To determine the degree to which the rankings are present in the map, one needs

only to calculate the pairwise distances in the 2-D map space. That is, for each node whose

weight vector represents an input item, calculate the distance on the map to every other

node whose weight vector represents an input item. Given the set of distances in 2-D space,

then for each data item one can order its distances to every other item. Again, one can use

this partially ordered set to determine how each data item is related to every other data

item. One can rank the 2-D relationships for each data item and compare the result with

the high-dimensional rankings. The degree to which the 2-D map has captured the pairwise

rankings is a measure of the topological order of the map.

6.7 Rankings as a measure of topological order

In general, one cannot expect a perfectly order preserving mapping from the high-dimensional

input space to two dimensions. Therefore, one must quantify the error induced in the map-

ping. One way the global error might be indicated is by counting the misrankings that

occur in the 2-D map. Let a rank i inclusion error be an instance when for some input

item, the 2-D map gives an i ranking to an element which does not have such a ranking in

the input space. Similarly, let a rank i exclusion error be an instance when for some input

item, the 2-D map does not give an i ranking to an element which has such a ranking in the
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input. By counting the number of inclusion and exclusion errors at each rank, one obtains

an estimate of how well the map is representing each relationship rank. Because the lowest

order-ranks represent the nearest-neighbor relationships in the data, one would expect the

lowest order ranks to contain the fewest errors if the map is capturing the most important

relationships in the data.

Such a method for quantifying order preservation has a number of advantages. It

can be calculated for any lower-dimensional mapping, including SOM, minimum spanning

tree, principal component analysis and multi-dimensional scaling. Thus it can be used to

compare the quality of these representations for a given data set. Also, it can be calculated

at any point during organization, yielding an estimate on-the-y of how organization is

progressing. It can also be used to examine disorder in the map. When close relatives from

the input have a large ranking discrepancy, one can generally assume a distortion that needs

investigation has been introduced into the map. In addition, the measure is exible. One

can relax the strictness of the rank relationships, thus allowing the map to have a certain

degree of error. For example, one might choose to make no distinction between rank 1 and

rank 2 neighbors. In this case, the map is allowed to consider rank 1 and rank 2 neighbors

as equals, and does not need to encode their distinction in order to be considered correct.

By examining how the order measure changes during organization, one gets a much

clearer picture of how the algorithm behaves. This is essential to determining how parameter

settings a�ect the evolution and �nal result of the mapping. An in-depth study of how

order develops as a function of parameter settings could lead to heuristics that would allow

the algorithm to tune its parameters dynamically. Already, a preliminary study of order

evolution in the IGG algorithm has led to a heuristic for determining a good point to stop

organizing at each phase for each structure. Since the IGG algorithm is particularly sensitive

to the number of epochs parameter, this result is quite promising. Automatic parameter

tuning is the Holy Grail of all self-organizing methods. The fact that the IGG algorithm can

use the order measure to dynamically determine even one of its parameters is signi�cant.

It suggests that the proposed measure can be used to enhance all SOM techniques.

6.8 Future work: Automatic parameter tuning

It seems clear that IGG has the potential to exceed the topology-preserving characteristics

of other visualization techniques. Quantifying this property with a measure that might help

guide the algorithm's organization will enhance IGG's usefulness as a knowledge discovery

tool. Consequently, future work on the algorithm will focus on studying how the order

measure is e�ected by di�erent organization strategies and parameter choices. Like any

neural network algorithm, IGG would bene�t from a method for setting all parameters

automatically. An in-depth study of how order evolves in the map will yield information
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essential for pursuing automatic parameter tuning. In addition, it will be studied how to

use the order measure to improve the �nal quality of the mapping. For instance, because

IGG is incremental, it may be possible to restrict organization to only those areas of the

map showing poor order. Similarly, it may be possible to localize parameter settings based

on local quality of order in the map. Speci�cally, future work will investigate whether the

measure can be used to:

1. guide dynamic tuning of connection parameters,

2. detect and correct local distortions in the map when they occur,

3. localize organization only to those areas of the map that need better order, and

4. localize the tuning of connection and learning rate parameters based on the local order

in the map.

This thesis demonstrates that IGG can extract and represent important relationships

in high-dimensional data given the right set of organization parameters. These organization

parameters were determined experimentally for all of the examples presented here. Having

established the algorithm's potential as a visualization tool, the next step is to automate

parameter selection. The above research is designed to achieve this goal.
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Chapter 7

Conclusion

The research reported in this thesis has concentrated on developing an algorithm based

on Kohonen's self-organizing map speci�cally to be used for the task of visualization. The

Incremental Grid Growing algorithm (IGG) automatically embeds cluster boundaries into

a regular, 2-D topology-preserving network using an incremental, self-organizing approach.

The result is a 2-D map that represents both the high-dimensional topology of the input

space and the cluster boundaries that de�ne the high-dimensional structure. The algorithm

thus addresses the shortcomings of popular visualization tools. No single visualization tool

is able to capture both the clustering and topology together in a single representation.

Merge clustering only extracts clusters, whereas principal component analysis and the self-

organizing map only represent topology. Since discovering patterns in the data requires

both types of knowledge, analysts must use some combination of these techniques. IGG is

able to combine both types of information into a single 2-D representation. Consequently,

it is a promising new tool for discovering relationships in unknown, complex real-world data

sets.

The results on the example data sets demonstrate how well IGG extracts informa-

tion about both topology and clustering in high-dimensional input spaces. The minimum

spanning tree data set illustrates that the algorithm can capture graph-like structures. The

thesaurus example demonstrates how IGG can extract both clusters and topology from an

extremely noisy, real-world semantic data set. The human genetics application shows that

IGG is able to combine the best properties of two standard visualization techniques in a

single 2-D representation. IGG captures the cluster structure of merge trees in the �nal

structure of the network. In addition, the topology of the IGG map generally contains all

of the topological properties captured in a PCA map. All of these results suggest that IGG

is well-suited to the task of visualizing complex, high-dimensional data.

This thesis has also presented a promising new method for measuring how well

visualization techniques represent the high-dimensional structure of the data. The degree
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of topology-preservation in the representation is de�ned as the degree to which the map

captures the ranked pairwise relationships between all of the input items. The search for

the best possible mapping can clearly bene�t from quantifying order-preservation. Further,

this order measure may prove useful in the task of automatic parameter tuning for self-

organizing algorithms. For instance, using the proposed measure, the time evolution of

order in IGG maps was examined. Analysis of the behavior of the order measure suggested

a heuristic rule for automatically determining one of IGG's parameters. Preliminary results

indicate that this heuristic is indeed a useful guide to organization. This is a signi�cant

result, and future work will focus on extending the experiments to other parameters of the

algorithm.

This research will continue to concentrate on discovering the unknown structure

of large high-dimensional data sets. Speci�cally, the full genetics data set from Cavalli-

Sforza consisting of 491 populations described by 128 gene frequencies, will be investigated.

IGG will also be applied to high-dimensional linguistics data for the same populations

(Nichols 1992) for comparison. Clearly, the relationships and interactions between human

populations are complex. Visualizing the relationships within and between genetic and

linguistic clusters may aid in understanding the evolution and migration of populations.

Incremental Grid Growing was designed with just this kind of application in mind.
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