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Abstract

The ability to understand natural-language instructions is crit-
ical to building intelligent agents that interact with humans.
We present a system that learns to transform natural-language
navigation instructions into executable formal plans. Given
no prior linguistic knowledge, the system learns by simply
observing how humans follow navigation instructions. The
system is evaluated in three complex virtual indoor environ-
ments with numerous objects and landmarks. A previously
collected realistic corpus of complex English navigation in-
structions for these environments is used for training and test-
ing data. By using a learned lexicon to refine inferred plans
and a supervised learner to induce a semantic parser, the sys-
tem is able to automatically learn to correctly interpret a rea-
sonable fraction of the complex instructions in this corpus.

1 Introduction

An important application of natural language processing is _. . . .
the interpretation of human instructions. The ability togga.~ -'9ure 1: This is an example of a route in our virtual world.
instructions and perform the intended actions is essential | "€ world consists of interconnecting hallways with vary-
smooth interactions with a computer or a robot. Some recent iNg floor tiles and paintings on the wall (butterfly, fish, or
work has explored how to map natural-language instructions Eiffél Tower.) Letters indicate objects (e.g. 'C' is a chait
into actions that can be performed by a computer (Branavan & location.

et al. 2009; Lau, Drews, and Nichols 2009). In particular, we
focus on the task of navigation (MacMahon, Stankiewicz,
and Kuipers 2006; Shimizu and Haas 2009; Matuszek, Fox,
and Koscher 2010; Kollar et al. 2010; Vogel and Jurafsky

“Go towards the coat rack and take a left at the coat
rack. go all the way to the end of the hall and this is 4.”

2010). “Position 4 is a dead end of the yellow floored hall with
The goal of the navigation task is to take a set of natural-  fish on the walls.”
language directions, transform it into a navigation plaat th “turn so that the wall is on your right side. walk forward

can be understood by the computer, and then execute that  5nce. turn left. walk forward twice.”
plan to reach the desired destination. Route direction is ] ) ) .,
a unique form of instructions that specifies how to get  ‘foward to the fish. first left. go tot [sic] the end.

from one place to another and understanding them depends  «pjace your back to the wall of the 'T’ intersection.

heavily on the spatial context. The earliest work on in-  Tyrn right. Go forward one segment to the intersection
terpreting route directions was by linguists (Klein 1982;  wjth the yellow-tiled hall. This intersection contains a
Wunderlich and Reinelt 1982). While this domain is re-  hatrack. Turn left. Go forward two segments to the end
stricted, there is considerable variation in how diffengs- of the hall. This is Position 4.”

ple describe the same route. Below are some examples from , )
our test corpus of instructions given for the route shown in ~ AS S€en in these examples, people may describe routes
Figure 1: using landmarks (e.gellow floored hall or specific actions

(e.g.walk forward oncg They may describe the same object
Copyright(© 2011, Association for the Advancement of Artificial ~ differently (e.g.coat rackvs. hatrack. They also differ in
Intelligence (www.aaai.org). All rights reserved. the amount of detail given, from just information about the



destination (e.gPosition 4 is a dead end) to step-by-step
instructions along with verification steps (eTdnis intersec-
tion contains a hatrack Thus, even ignoring spelling and
grammatical errors as well as logical errors (e.g. confusin
left and right), navigation instructions can be quite déeer
and contain different information which makes interpregtin
them a challenging problem.

In this paper we introduce a general framework for learn-
ing to interpret navigation instructions given only sample
observations of humans following such instructions. The
system first infers a formal navigation plan for each instruc
tion based on the observed actions. Using this as supervi-
sion, it then learns a semantic parser that can map novel in-
structions into navigation plans executable by a (simdlate
robot. Using a learned lexicon to refine the plans is shown to
help correctly infer more complex navigation plans. This is
vital in successfully following long instructions where@r
recovery is necessary.

The rest of the paper is organized as follows. We first re-
view relevant work in the area of learning natural language
instructions and grounded language acquisition in Se@ion
We then formally define our learning problem and the virtual
environment we use to test our navigation system in Sec-
tion 3. Details of our system are described in Section 4. We
present experimental results in Section 5. Finally, weudisc
possible future work in Section 6 and conclude in Section 7.

2 Related Work

Building systems that learn to interpret navigation instru
tions has recently received some attention due to its appli-
cation in building mobile robots. Our work is the most sim-
ilar to that of Matuszek et al. (2010). Their system learns
to follow navigation instructions from example pairs of in-
structions and map traces with no prior linguistic knowl-

world. Moreover, both systems used lists of predefined spa-
tial terms. In contrast, we do not assume any existing lin-
guistic knowledge or resource.

Besides navigation instructions, there has also been work
on learning to interpret other kinds of instructions. Refyen
there has been some interest in learning how to interpret En-
glish instructions describing how to use a particular web-
site or perform other computer tasks (Branavan et al. 2009;
Lau, Drews, and Nichols 2009). These systems learn to pre-
dict the correct computer action (pressing a button, cimgpsi
a menu item, typing into a text field, etc.) corresponding to
each step in the instructions.

Our work also fits into the broader areagrbunded lan-
guage acquisitionin which language is learned by sim-
ply observing its use in some naturally occurring percep-
tual context (see Mooney (2008) for a review). Unlike most
work in statistical NLP which requires annotating large-cor
pora with detailed syntactic and/or semantic markup, s a
proach tries to learn language without explicit supervisio
a manner more analogous to how children acquire language.
This approach also grounds the meaning of words and sen-
tences in perception and action instead of arbitrary samant
tokens. One of the core issues in grounded language acqui-
sition is solving the correspondence between language and
the semantic context. Various approaches have been used
including supervised training (Snyder and Barzilay 2007),
iteratively retraining a semantic parser/language geoera
to disambiguate the context (Kate and Mooney 2007; Chen,
Kim, and Mooney 2010), building a generative model of the
content selection process (Liang, Jordan, and Klein 2009;
Kim and Mooney 2010), and using a ranking approach (Bor-
des, Usunier, and Weston 2010). Our work differs from these
previous approaches in that we explicitly model the refatio
ships between the semantic entities rather than treatérg th

edge. They used a general-purpose semantic parser learne@s individual items.

WAsP (Wong and Mooney 2006) to learn a semantic parser
and constrain the parsing results with physical limitagion
imposed by the environment. However, their virtual world is
relatively simple with no objects or attribute informatias
it is constructed from laser sensors.

Similarly, Shimizu and Haas (2009) built a system that
learns to parse navigation instructions. They restrict the

3 Problem Definition and Evaluation Data
The goal of the navigation problem is to build a system that
can understand free-form natural-language instructiols a
follow them to move to the desired destination. In particu-
lar, we approach the problem assuming no prior linguistic
knowledge: syntactic, semantic, or lexical. This means we

space of possible actions to 15 labels and treat the parsing have to learn the meaning of every word, including object

problem as a sequence labeling problem. This has the advan-

tage that context of the surrounding instructions are taken
into account. However, their formal language is very lidite
in that there are only 15 possible parses for an instruction.
There is some recent work that explores direction fol-
lowing in more complex environments. Vogel and Jurafsky
(2010) built a learning system for the HCRC Map Task cor-
pus (Anderson et al. 1991) that uses reinforcement learning
to learn to navigate from one landmark to another. The envi-
ronment consists of named locations laid out on a map. Kol-

names, verbs, spatial relations, as well as the syntax and
compositional semantics of the language. The only super-
vision we receive is in the form of observing how humans
behave when following sample navigation instructions.
Formally, the system is given training data in the form:
{(e1,a1,w1), (e2,a2,wa),..., (€n,an, w,)}, Wheree; is a
natural language instructiom, is an observed action se-
quence, andv; is a description of the current state of the
world including the patterns of the floors and walls and po-
sitions of any objects. The goal is then to build a system

lar et al. (2010) presented a system that solves the naviga-that can produce the correg} given a previously unseen

tion problem for a real office environment. They use LIDAR
and camera data collected from a robot to build a seman-
tic map of the world and to simulate navigation. However,
both of these systems were directly given object names or
required other resources to learn to identify objects in the

(e, w;) pair.

The main challenge of this problem is that the navigation
plans described by the instructions are not directly oleskrv
As the example in Section 1 showed, several different plans
can be used to navigate the same route. In other words, there



Instruction: “Go away from the lamp to the intersection of the red brick
Learning system for parsing and wood

Observation
i i i : Basic: Turn (),
World State navigation lnstructions Travel ( steps: 1)
:ﬁ Navigation Plan ConstructorJ Landmarks: Turn ()
Verify ( left: WALL, back: LAMP , back: HATRACK , front: BRICK HALL),
\ Travel ( steps: 1),
3 B Plan Refinement | | Verify ( side: WOGD HALL )
Training \‘E Semantic Parser Learner J Figure 3: Examples of automatically generated plans.
Testing
[ nstruction —— Semantic Parser | on the instructior;. The resulting paite;, p;) is then used
as supervised training data for learning a semantic parser.
World State Execution Module (MARCO) | During testing, the semantic parser maps new instructions
/ e; into formal navigation plang; which are then carried

out by the execution module.
) ) While we built the top two components that are respon-
Figure 2: An overview of our system sible for creating the supervised training déta, p;), we

use existing systems for building semantic parsers and for
_ ) executing navigation plans. Since the plans inferred by the
is not always a direct correspondence betwegand a;. system are not always completely accurate representations
Rather,e; corresponds to an unobserved pjarthat when of the instructions, we chose a semantic-parser learner,
executed inw; will producea;. Thus, we need to firstinfer  Krisp, that has been shown to be particularly robust to
the correcp; from the training data and then build a seman-  nojsy training data (Kate and Mooney 2006). Nevertheless,

tic parser that can translate framto p;. other general-purpose supervised semantic-parser tsarne
To train and test our system, we use the data and virtual (Zettlemoyer and Collins 2005; Wong and Mooney 2006;
environments assembled by MacMahenal. (2006). The Lu et al. 2008) could also be used. To carry out the plans,

data was collected for three different virtual worlds cstsi we use MARCO's execution module developed by MacMa-
ing of interconnecting hallways. An overview map of one of hon et al. (2006) for executing navigation plans in our test
the worlds is shown in Figure 1. Each world consists of sev- environments.

eral short concrete hallways and seven long hallways each

with a different floor pattern (grass, brick, wood, gravel, 4.1 Constructing navigation plans

blue, flower, and yellow octagons). The worlds are divided A simple way to generate a formal navigation plan is to
into three areas, each with a different painting on the walls mgdel only the observed actions. In our case, this means
(butterfly, fish, and Eiffel Tower). There is also furniture  forming plans that consist of only turning left and rightdan
placed at various intersections (hatrack, lamp, chaim,sof alking forward a certain number of steps. This is often suf-
barstool, and easel). The three worlds contain the same el-ficient if the instruction directly refers to the specificiact

ements but in different configurations. Each world also has (g pe taken (e.gurn left, walk forward two steps We refer

seven chosen positions labeled 1 thorough 7. to these navigation plans which capture such direct instruc
MacMahoret al.collected both humaninstructor dataand  tjons asbasic plans
human follower data. The instructors first familiarizedrthe To capture more complex instructions that refer to objects

selves with the environment and the seven positions. They and locations in the environment (efgce the pink flower
were then asked to give a set of written instructions on how hallway, go to the sofs we simulate executing the given

to get from a particular position to another. Since they did actions in the environment. We collect sensory data during
not have access to the overview map, they had to rely on the execution and formlandmarks plarthat adds interleav-
their explorations of the environments. These instrution ing verification steps to theasic plan The verification steps
were then given to several human followers whose actions specify the landmarks that should be observed after execut-

were recorded as they tried to follow the instructions. On ing each basic action. Examples of bothasic planand a
average, each instruction was 5 sentences long. However, tojandmarks plarare shown in Figure 3.

simplify the learning problem, we manually split the action
sequences and aligned them with their corresponding sen-4.2 Plan refinement

tences. All the actions are discrete and consist of turrgfig | While landmarks plansapture more of the meaning of the
turning right, and moving from one intersection to another.  ngiryctions, they can also contain a lot of extraneousrinfo
o mation. Thus, we employ a lexicon learning algorithm to
4 System Description learn the meanings of words and short phrases. The learned
lexicon is then used to try to identify and remove the extra-

Figure 2 shows our system’s general framework. Given the neous details in thiandmarks plan

observationw;, a;, e;), we first construct a formal naviga-
tion planp; based on the action sequenceand the world Learning a lexicon We build a semantic lexicon by find-
statew;. An optional step refines this navigation plan based ing the common parts of the formal representations associ-



Algorithm 1 LEXICON LEARNING
input Navigation instructions and the corresponding navi-

gation planielapl)a ) (enapn)
output Lezicon, a set of phrase-meaning pairs
1: main

2:  for n-gramw that appears ie = (eq,...,e,) do
3: for instructione; that containsv do
4: Add navigation plam; to meanings(w)
5: end for
6: repeat
7: for every pair of meanings imeanings(w) do
8: Add intersections of the pair tacanings(w)
9: end for
10: Keepk highest-scoring entries ateanings(w)
11 until meanings(w) converges
12: Add entries ofmeanings(w) with scores higher
than threshold to Lexicon
13:  end for
14: end main

ated with different occurrences of the same word or phrases
(Siskind 1996). More specifically, we represent the naviga-
tion plans in graphical form and compute common parts
by taking intersections of the two graphs (Thompson and
Mooney 2003). Pseudo-code for the approach is shown in
Algorithm 1. Initially, all navigation plans whose instiign
contains a particulat-gramw are added teneanings(w),
the set of potential meanings of. Then, the algorithm re-
peatedly computes the intersections of all pairs of paénti
meanings and adds them#eeanings(w) until further in-
tersections do not produce any new entries. The intersec-
tion operation is performed by greedily removing the latges
common subgraph from both graphs until the two graphs
have no overlapping nodes. The output of the intersection
process consists of all the removed subgraphs. An example
of the intersection operation is shown in Figure 4. Each po-
tential word-meaning pair is givenszore(described below)
that evaluates its quality. Aftencanings(w) converges, its
members with scores higher than a given threshold are added
as lexical entries fow. In all our experiments, we consider
only unigrams and bigrams, and use threshoid 0.4 and
maximum meaning set size= 1000.

We use the following scoring function to evaluate a pair
of ann-gramw and a graply:

Score(w, g) = p(glw) — p(g|—w)

Intuitively, the score measures how much more likely a
graphg appears whemw is present compared to when it is
not. A good(w, ¢g) pair means that should be indicative of

g appearing (i.ep(g|w) should be close to 1), assuming

is monosemous However, the reverse is not true since an
object or action may often be referred to using other expres-
sions or omitted from an instruction altogether. Thus, the a
sence of a wordv wheng occursp(—w|g), is not evidence
againstg being the meaning ofs.. To penalizeg's that are

!Notice that the actual magnitude pfg|w) matters. Thus, us-
ing odds ratios as the scoring function did not work as well.
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Figure 4: Example of computing the intersections of two
graph representations of navigation plans.
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ubiquitous, we subtract the probability gfoccurring when

w IS not present. We estimate all the probability measures
by counting how many examples contain the words or the
graphs, ignoring multiple occurrences in a single example.

Refining navigation plans using the lexicon The learned
lexicon is then used to remove extraneous components from
the landmarks plansldeally, a refined plan only contains
actions and objects referred to in the instructions. Howeve
we want to be conservative in pruning nodes so that impor-
tant information is not removed from the data given to the
semantic-parser learner. Therefore, nodes are only reanove
if it is quite certain they are not mentioned in the instranti
since they do not correspond to the meaning of some word
in the instruction.

To refine(e;, p;), we first select the highest-scoring lexi-
cal entry(w, g) such thatv andg appear ire; andp;, respec-
tively. We then removev from e; and mark all occurrences
of g in p;, ignoring any redundant markings. This process is
repeated until no words remain i or no more lexical en-
tries can be selected. Finally, we remove all nodes itnat
were not marked and the remaining graph becomes the new
refined plany;.

4.3 Learning a semantic parser

Once we obtain the supervised data in the forniegfp; ),

we use KRIsp(Kate and Mooney 2006) to learn a semantic
parser that can transform novel instructiengnto naviga-
tion plansp; (i.e. transformturn to face the sofanto Turn(),
Verify(front: SOFA).)

KRIsPis a publicly available learning algorithm for train-
ing parsers that translate from natural language strings to
formal language defined by a context-free grammar (CFG).
Given parallel training data in the form of natural language
strings with their corresponding formal meaning represen-
tations, it learns a set of string classifiers that decide how
to construct meaning representations. In particular, ésus
support vector machines (SVM) classifiers with string ker-



Original | Single-sentence Precision| Recall| F1
# instructions 706 3236 Basic plans 81.46 55.88 | 66.27
Vocabulary size 660 629 Landmarks plans 4542 | 85.46 | 59.29
Avg. # sentences 5.0 (2.8) 1.0(0) Refined landmarks plans 78.54 | 78.10 | 78.32

Avg. # words 37.6 (21.1) 7.8(5.1)
Avg. # actions 10.4 (5.7) 2.1(2.4)

Table 2: Partial parse accuracy of how well the inferred nav-
igation plans match the human annotations.

Table 1: Statistics about the original corpus collected by

MacMahon et al. as well as the segmented version of it that

we use for learning. The average statistics for each instruc lowers as they progress. Thus, to create our training data,

tion are shown with standard deviations in parentheses. we first segmented the instructions into individual sergsnc
Then for each sentence, we paired it with an action se-
guence based on the majority of the followers’ actions and

nels to decide when a word or phrase is indicative of a pro- our knowledge of the map. During this process, close to 300

duction rule of the CFG being applied. When semantically sentences that could not be matched to any actions were dis-

parsing a sentence, each classifier estimates the prapabili carded. Most of them were of the form “This is positioh

of each production rule covering different substrings @& th  Statistics for the original and segmented data can be seen in

sentence. This information is then used to compositionally Table 1. We use the single-sentence version of the corpus for

build a complete string in the formal language for the sen- training and both versions for testing.

tence. Given the partial matching provided by string kesnel

and the over-fitting prevention provided by SVMsRisp 5.1 Generating navigation plans

has been shown to be robust to noisy training data (Kate and

Mooney 2006). We first examine how well our system infers the correct

navigation plans from the observed actions. To do this, we
P ; hand-annotated each instruction in the single-sentenee co
4.4 Executing instructions pus with the correct navigation plans and compared the in-
After semantically parsing the instruction, we need to ex- ferred plans to these gold-standard plans. We used a partial
ecute the navigation plan to reach the intended destina- correctness metric to measure the precision and recaleof th
tion. We use the execution module inA®co (MacMahon, inferred plans. To calculate precision, each step in the in-
Stankiewicz, and Kuipers 2006) for this purposeaitoiis ferred plan receives one point if it matches the type of the
a system that is designed to follow free-form natural lan- corresponding step in the gold-standard plan. An additiona
guage route instructions in our test environment. Using a point is then awarded for each matching argument. Precision
syntactic parser and hand-engineered transformatioss rule s computed as the sum of the points divided by the total
for encoding knowledge about object names, verbs and spa- number of possible points. Since the two plans may contain
tial relationships, raw text is first translated intocam- different number of steps, we used a dynamic programming
pound action specificatioThe executor then carries outthe  algorithm to find a order-preserving mapping of steps from
specification by interleaving actions and perceptionsto ga  one plan to the other such that precision is maximized. Re-
knowledge of the environment and to execute the actions. call is computed similarly with the roles of the inferred and
It has error recovery mechanisms for reconciling conflgtin gold-standard plans swapped. We also compute F1 score, the
specifications (e.qg. if the instructionugalk two steps to the harmonic mean of precision and recall.
chair when the chair is actually three steps away) and for  The results are shown in Table 2. Sinceblasicandland-
inferring implicit commands. marks plansdo not require training, their results are sim-
To execute a navigation plan, we first transform it from ply the average accuracy of the generated plans for all the
our formal representation into@mpound action specifica-  examples. For theefined landmarks planghe lexicon is
tion and then use MRCO's executor to carry out the actions  trained on examples from two of the three maps and used

in the virtual worlds. to refine plans from the same two maps. The results are av-
_ _ eraged over the three experiments. Compared td#sic
5 Experimental Evaluation plans landmarks plansave better recall but considerably

To evaluate our approach, we use the instructions and fol- It_)wer precision. However, if we use the '?XiCO“ to _help re-
lower data collected by MacMahoet al. (2006) to train fine these plans then we retain both the high precision of the

and test our system. The data contains 706 non-trivial route P@SIC plansand the high recall of thiandmarks plansThis

instructions for three virtual worlds. The instructionsrere !ndicates the system is inferring fairly accurate plansolvhi
produced by six instructors for 126 unique starting and end- N tUrn produces reasonably accurate supervised examples
ing position pairs spread evenly across the three worlds, fOF training the semantic parser.
There were 1 to 15 human followers for each instruction. . .

Since this data was originally collected only for testing 5.2 Building a semantic parser
purposes and not for learning, each instruction is quitg lon Next, we evaluated the performance of the semantic parsers
with an average of 5 sentences. However, for learning, it is trained on these inferred plans as well as semantic parsers
more natural to observe the instructors interact with tihe fo  trained on human-annotated plans. We used a leave-one-



Precision| Recall| F1
Basic plans 86.68 48.62 | 62.21
Landmarks plans 50.40 31.10 | 38.39
Refined landmarks plans 90.22 55.10 | 68.37
Human annotated plang 88.24 71.70 | 79.11

Table 3: Partial parse accuracy of how well the semantic
parsers trained on the different navigation plans perfdrme
on test data.

Single-sentence Complete
Simple generative model 11.08 2.15
Basic plans 56.99 13.99
Landmarks plans 21.95 2.66
Refined landmarks plans 54.40 16.18
Human annotated plans 58.29 26.15
MARCO 77.87 55.69
Human followers N/A 69.64

Table 4: Experimental results comparing different version
of our system and several baselines on following both the
single-sentence and complete instructions. The numbers ar
the percentages of trials reaching the correct destimation

map-out approach where the semantic parser is trained on
examples from two maps and tested on instructions from the

third, unseen map. The parse outputs are compared to human

annotations using partial correctness as before. Thetsesul

are shown in Table 3. As expected, semantic parsers trained

with cleaner data performed better. However, one thing to
note is that precision of the training data is more important
than recall. In particular, semantic parsers trainedaoil-
mark plansperformed the worst in all aspects despite the
plans having relatively high recall. This suggests the amou
of noise exceeded what could be handled w1$® and the
system fails to learn to generalize properly. Thus, our re-
finement step is vital in keeping the plans relatively clean i
order for KrRispto learn effectively.

5.3 Executing navigation plans

Next, we tested our end-to-end system by executing the
parsed navigation plans to see if they reach the desired dest

nations. We evaluated on both the single-sentence and com-

plete (multi-sentence) versions of the corpus. We employ a
strict metric in which a trial is successful if and only if the
final position (and orientation for the single-sentence ver
sion) exactly matches the intended position. This makes the
experiments on the complete instructions especially diffic
sinceany error parsingany of the sentences in the instruc-
tion can lead to a failure on the task. We again performed
leave-one-map-out cross-validation. For each plan, we ex-
ecuted it 10 times since the execution component is non-
deterministic when the plan is underspecified (e.g. the plan
specifies a turn, but does not specify any directions or post-
conditions). The average results are shown in Table 4.

In addition to evaluating the trained semantic parsers, we

Instruction: “Place your back against the wall of the ‘T’ intersection.
Turn left. Go forward along the pink-flowered carpet
hall two segments to the intersection with the brick hall.
This intersection contains a hatrack. Turn left. Go
forward three segments to an intersection with a bare

concrete hall, passing a lamp. This is Position 5.”

Turn (),

Verify ( back: WALL ),

Turn ( LEFT ),

Travel (),

Verify ( side: BRICK HALLWAY ),
Turn ( LEFT ),

Travel ( steps: 3),

Verify ( side: CONCRETE HALLWAY )

Parse:

Figure 5: A plan produced by the semantic parser trained on
refined landmarks pland/Vhile the parser misses some of
the redundant information, the plan contains sufficient de-
tails to lead to the correct destination.

constructed a lower baseline that does not utilize any of the
linguistic information in the instructions. Instead, itilois a
simple generative model of the actions in the training data.
During testing, the generative model first selects the numbe
of actions to perform for each instruction, and then stochas
tically generates the action type and arguments. The low per
formance of this baseline indicates that the task is namtri
even though there are only few available actions (turnirt an
walking forward).

For the upper baselines, we compared to three different
performances. First, we compare the performance of the
semantic parser trained on human-annotated plans as be
fore. This represents what could be achieved if we recon-
structed the navigations plans in the training examples per
fectly. Both thebasic plansand refined landmarks plans
approach this performance on the simpler, single-sentence
task. To better understand what could be achieved in an en-
gineered (non-learning) system, we also compared to the
full M ARCO system that parses and executes instructions.
Finally, we also compared to the performance of human fol-
lowers who tried to follow these instructions. While none
of our systems perform as well asA¥co, it is impor-
tant to note that our system must learn the complete lan-
guage interpreter just from observations. Moreover, ogf Sy
tem could be easily adapted to other languages and envi-
ronments with different objects and landmarks. On the other
hand, MARcoO was fully manually-engineered for this en-
vironment and hand-tuned on this data to achieve the best
performance. As expected, human followers performed the
best, although even they were only able to complete 70% of
the task, indicating the difficulty of the complete task.

Of the different versions of our systetandmarks plans
performed the worst as expected because it failed to learn an
effective semantic parser. The systems traineblasic plans
andrefined landmarks plankoth perform similarly on this
final execution task, wittbasic plansperforming slightly
better on the single-sentence task aefined landmarks

2Sometimes the instructions were wrong to begin with, since

also compare to several other lower and upper baselines. Wethey were recreated from memory by the instructors.



plans performing better on the complete task. The better
performance of théasic planson the single-sentences task
shows that for these shorter instructions, directly maodgli
the low-level actions is often sufficient. The additionahbe
efit of modeling landmarks is not seen until testing on com-
plete instructions. In this case, landmarks are often fatal
recovering from small mistakes in the instructions or the
parsing, or both. The system usirgfined landmarks plans
performed the best out of the three variations in this sgttin

matching the trend observed in the parse-accuracy experi-

ments (Table 3). A sample parse for this system is shown in
Figure 5. While the plan is not a perfect representation of the
instruction, it contains sufficient details to complete tifagk
successfully in all trials.

6 Future Work

Currently, our system goes through the various stages of
learning in a pipelined manner. Consequently, a mistake
made in earlier steps will propagate to later stages. A bet-
ter approach would be to build feedback loops to iteratively

improve the estimates in each stage. Moreover, since these
are executable actions, we can test our understanding of the

language in the environment itself to receive additioni-re
forcements. However, it should be remembered that reach-
ing the correct destination is not necessary indicative of a
good plan (e.glandmarks planslways lead to the correct
destinations but do not correspond to the actual instmst)o
Semantic parsing is only half of what is required for lan-
guage acquisition. The other half is language generation.
Since our work is focused on resolving referential ambi-
guity, there is no inherent limitation to extending our ap-
proach to language generation as well. Similar to Géteat.

(2010), we can use the supervised training data we have es-

timated as input to a supervised learning algorithm fontrai
ing a language generator.

7 Conclusions
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