
Datalog Programs and Their Stable Models

Vladimir Lifschitz

Department of Computer Science
University of Texas at Austin, USA

Abstract. This paper is about the functionality of software systems
used in answer set programming (ASP). ASP languages are viewed here,
in the spirit of Datalog, as mechanisms for characterizing intensional
(output) predicates in terms of extensional (input) predicates. Our ap-
proach to the semantics of ASP programs is based on the concept of a
stable model defined in terms of a modification of parallel circumscrip-
tion.

1 Introduction

This paper is about the functionality of software systems used in answer set pro-
gramming (ASP) [Marek and Truszczyński, 1999, Niemelä, 1999, Baral, 2003,
Lifschitz, 2008]. ASP languages are viewed here, in the spirit of Datalog, as mech-
anisms for characterizing intensional (output) predicates in terms of extensional
(input) predicates.

Example 1. The ASP program

q(X,Y) :- p(X,Y).
q(X,Z) :- q(X,Y), q(Y,Z).

can be viewed as a definition of the output predicate q in terms of the input
predicate p; it tells us that q is the transitive closure of p. To illustrate this
assertion, consider what happens when we extend the program above by a set
of ground atoms defining p, such as

p(a,b). p(b,c).

Given the file consisting of these three lines, an ASP system such as clingo1 or
dlv2 returns the transitive closure of p:3

{q(a,b), q(a,c), q(b,c)}.

Example 2. Take the disjunctive ASP program consisting of one rule
1 http://potassco.sourceforge.net
2 http://www.dlvsystem.com
3 To be precise, the set of atoms generated by these systems includes also the atoms

defining p.



q(X) ; r(X) :- p(X).

It can be thought of as a description of all possible ways to partition an input p
into disjoint4 (and possibly empty) subsets q, r. Consider, for instance, what
happens when we combine this rule with a set of ground atoms defining p, such
as

p(a). p(b). p(c).

Given this file, dlv returns the list of 8 partitions:

{r(a), r(b), r(c)},
{q(a), r(b), r(c)},
{r(a), q(b), r(c)},
{q(a), q(b), r(c)},
{r(a), r(b), q(c)},
{q(a), r(b), q(c)},
{r(a), q(b), q(c)},
{q(a), q(b), q(c)}.

Example 3. The choice rule

{q(X)} :- p(X).

describes all possible ways to choose a subset q of a given set p. Given this one-
rule program and the same input as in Example 2, clingo generates all subsets
of {a, b, c}:

{ },
{q(a)},
{q(b)},
{q(b), q(a)},
{q(c)},
{q(c), q(a)},
{q(c), q(b)},
{q(c), q(b), q(a)}.

We describe here a declarative semantics for a class of ASP programs that
includes many examples of this kind. Our approach is based on the concept of
a stable model [Gelfond and Lifschitz, 1988] generalized as proposed in [Ferraris
et al., 2010]. We will see, for instance, that the stable models of the program
from Example 1 are arbitrary interpretations (in the sense of first-order logic)
of the language with binary predicate constants p, q in which q is the transitive
closure of p. The stable models of the program from Example 3 are arbitrary
interpretations of the language with unary predicate constants p, q in which q
is a subset of p.
4 Disjunction in the head of an ASP rule often behaves as exclusive disjunction, but

there are exceptions. See Remark 3 in Section 4.



2 A Few More Examples

We will now extend the program from Example 2 by adding a “constraint”—a
rule with the empty head. The effect of adding a constraint to an ASP program
is to weed out the solutions satisfying the body of the constraint.

Example 4. The program

q(X) ; r(X) :- p(X).
:- q(a).

describes the partitions of the input p into subsets q, r such that a is not in q.
Given this program and the same input as in Example 2, dlv returns

{r(a), r(b), r(c)},
{r(a), q(b), r(c)},
{r(a), r(b), q(c)},
{r(a), q(b), q(c)}.

Example 5. If p is the set of vertices of a directed graph, and q is the set of its
edges, then the program

r(X) :- q(X,Y).
s(X) :- p(X), not r(X).

describes the set s of terminal vertices. It uses the auxiliary symbol r, represent-
ing the complement of s. Given this program and the input

p(a). p(b). q(a,b).

both clingo and dlv return

{r(a), s(b)}.

Example 6. For p and q as in the previous example, the program below defines
the sets of vertices of out-degrees 0, 1, and 2:

r0(X) :- p(X), #count{Y:q(X,Y)}=0.
r1(X) :- p(X), #count{Y:q(X,Y)}=1.
r2(X) :- p(X), #count{Y:q(X,Y)}=2.

In particular, r0 has the same meaning as s from Example 5. The “aggregate”
symbol #count used in these rules represents the cardinality of a set. Given this
program and the input

p(a). p(b). p(c). q(a,b). q(a,c).

dlv returns

{r0(b), r0(c), r2(a)}.



Logic programming notation First-order formula

1 q(X,Y) :- p(X,Y). ∀xy(p(x, y) → q(x, y))
2 q(X,Z) :- q(X,Y), q(Y,Z). ∀xyz(q(x, y) ∧ q(y, z) → q(x, z))
3 q(X) ; r(X) :- p(X). ∀x(p(x) → q(x) ∨ r(x))
4 {q(X)} :- p(X). ∀x(p(x) → q(x) ∨ ¬q(x))
5 :- q(a). q(a) → ⊥
6 r(X) :- q(X,Y). ∀xy(q(x, y) → r(x))
7 s(X) :- p(X), not r(X). ∀x(p(x) ∧ ¬r(x) → s(x))
8 r0(X) :- p(X), #count{Y:q(X,Y)}=0. ∀x(p(x) ∧ ¬(∃y)q(x, y) → r0(x))
9 r1(X) :- p(X), #count{Y:q(X,Y)}=1. ∀x(p(x) ∧ (∃y)q(x, y) ∧ ¬(∃2y)q(x, y) → r1(x))

10 r2(X) :- p(X), #count{Y:q(X,Y)}=2. ∀x(p(x) ∧ (∃2y)q(x, y) ∧ ¬(∃3y)q(x, y) → r2(x))

Fig. 1. Rules as formulas

Remark 1. Each of the two systems, clingo and dlv, has limitations that
restrict its applicability to the examples above. The currently available Ver-
sion 3.0.1 of clingo does not handle disjunctive rules, and it does not understand
the #count construct. (Its language includes a similar but different construct,
“cardinality constraints.”) On the other hand, the language of dlv does not have
choice rules.

Remark 2. The system smodels5 and other ASP systems that use the grounder
lparse have a limitation of a different kind: they cannot process “weakly re-
stricted” rules, such as the second rule of Example 1.

3 Rules and Programs

In first-order formulas, we take the symbols ¬, ∧, ∨, →, ∀, ∃ to be primitives,
along with the 0-place connectives > (truth) and ⊥ (falsity).

A first-order sentence is a rule if it has the form

∀̃(F → G) (1)

and has no occurrences of → other than the one explicitly shown.6 Formula F
is the body of rule (1), and G is its head. The expressions that were called rules
in Examples 1–6 can be viewed as rules in the sense of this definition written in
“logic programming notation,” as shown in Figure 1. In the last two lines, we
use the abbreviation ∃nxF (x) for

∃x1 · · ·xn

 ∧
1≤i≤n

F (xi) ∧
∧

1≤i<j≤n

xi 6= xj

 .

Note that ¬r(x) in line 7 of the table corresponds to not r(X) in logic pro-
gramming notation. When we write a rule as a formula, the negation symbol ¬
5 http://www.tcs.hu.fi/Software/smodels
6 ∀̃F stands for the universal closure of F .



corresponds to “negation as failure,” and not to “classical” (or “strong”) nega-
tion in the sense of [Gelfond and Lifschitz, 1991]. (To represent rules containing
strong negation as first-order formulas, we would have to eliminate strong nega-
tion from them in favor of additional predicate constants.)

In this paper, a (Datalog) program is a pair (F,p), where F is a conjunction
of rules, and p is a tuple of distinct predicate constants.7 The members of p are
called the intensional predicates of the program. The other predicate constants
occurring in F are its extensional predicates. In many cases, including Exam-
ples 1–6, p is the list of all predicate constants occurring in the heads of the
rules of F .

We will define the semantics of Datalog programs by specifying which models
of F are considered “stable models” of (F,p). The definition of a stable model is
based on a syntactic transformation that turns any Datalog program (F,p) into
a second-order sentence, denoted by SMp[F ]. We will define the stable models
of (F,p) as the models of SMp[F ] in the sense of second-order logic.8

4 Positive Programs

Consider first the simpler case of rules and programs that do not contain inten-
sional predicates in the scope of negation. We will call them positive. In Figure 1,
the only rules that are not positive are those in lines 4 and 7. In the special case
of positive programs, SMp is the well-known parallel circumscription operator
[McCarthy, 1986], [Brewka et al., 2008, Section 6.4.2].

The definition of parallel circumscription uses the following notation. If p
and q are predicate constants of the same arity then p ≤ q stands for the formula
∀x(p(x)→ q(x)), where x is a tuple of distinct object variables. If p and q are
tuples p1, . . . , pn and q1, . . . , qn of predicate constants then p ≤ q stands for the
conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn).

Furthermore, p < q stands for (p ≤ q)∧¬(q ≤ p). This formula expresses that
each pi is a subset of the corresponding qi, and at least one of these subsets is
proper. In second-order logic, we apply the same notation to tuples of predicate
variables.

For any positive Datalog program (F,p), we define SMp[F ] as the sentence

F ∧ ¬∃u((u < p) ∧ F (u)), (2)

where u is a list of distinct predicate variables of the same length as p, and
F (u) is the formula obtained from F by substituting the variables u for the
constants p.

7 In this paper, equality is not considered a predicate constant, so that it is not allowed
to be a member of p.

8 The semantics of second-order formulas is described, for instance, in [Lifschitz et al.,
2008, Section 1.2.3].



The second conjunctive term of (2) expresses the minimality of the extents
of the predicates p (with respect to set inclusion) subject to constraint F . Thus
the stable models of a positive program (F,p) are the models of F in which p
cannot be made smaller without making F false.

Example 1, continued. Let F be the conjunction of the first-order formulas
in lines 1 and 2 of Figure 1. These formulas express that q is a superset of p, and
that q is a transitive relation. The formula SMq[F ] says in addition that q cannot
be made smaller without violating property F . Consequently the stable models
of the program from Example 1 can be characterized as the interpretations in
which q is the transitive closure of p.

Example 2, continued. Let F be the first-order formula in line 3 of Figure 1.
It expresses that the union of q and r covers p. The formula SMqr[F ] says
in addition that this property will be lost if we change the interpretation by
replacing q and r with their subsets. It is clear that this condition is equivalent
to the first-order formula

∀x(p(x)→ q(x) ∨ r(x)) ∧ ¬∃x(q(x) ∧ r(x)).

The stable models of the program from Example 2 represent arbitrary partitions
of p into disjoint subsets q, r.

Remark 3. Consider the result of addings the facts

q(a). r(a).

to the program from Example 2. The corresponding first-order formula is

∀x(p(x)→ q(x) ∨ r(x)) ∧ (> → q(a)) ∧ (> → r(a)),

and the result of applying SMqr to this formula is equivalent to

∀x(p(x)→ q(x) ∨ r(x)) ∧ ∀x(q(x) ∧ r(x)↔ x = a).

In the presence of the additional facts shown above, minimizing q and r does
not make these sets disjoint, and it does not make the disjunction exclusive.

Example 4, continued. Let F be the conjunction of the first-order formulas
in lines 3 and 5 of Figure 1. These formulas express that the union of q and r
covers p, and that a does not belong to q. The formula SMqr[F ] says in addition
that the extents of q and r cannot be made smaller without violating property F .
This condition is equivalent to

∀x(p(x)→ q(x) ∨ r(x)) ∧ ¬q(a) ∧ ¬∃x(q(x) ∧ r(x)).

The stable models of the program from Example 4 represent arbitrary partitions
of p into disjoint subsets q, r such that a is not in q.

Example 6, continued. Let F be the conjunction of the first-order formulas
in lines 8–10 of Figure 1. These formulas express that r0 contains all terminal



vertices, that r1 contains all vertices of out-degree 1, and that r2 contains all
vertices of out-degree 2. The result of applying the operator SMr0r1r2 to this
formula expresses that the sets ri are minimal subject to these conditions. In
the stable models of the program from Example 6, r0 is the set of terminal
vertices, r1 is the set of vertices of out-degree 1, and r2 is the set of vertices of
out-degree 2.

5 General Definition of a Stable Model

Sentence (2) can be formed even if the Datalog program (F,p) is not positive.
But for a nonpositive program the models of that sentence usually match neither
the intended meaning of the program nor the behavior of ASP solvers.

This discrepancy can be resolved by modifying (2) as follows. Let p1, . . . , pn

be the members of the list p, and let u1, . . . , un be the corresponding mem-
bers of u. By F �(u) we denote the formula obtained from F by replacing each
part pi(t) that does not belong to the scope of any negation with ui(t); here t
is an arbitrary tuple of terms. For any Datalog program (F,p), SMp[F ] stands
for the sentence

F ∧ ¬∃u((u < p) ∧ F �(u)). (3)

It is clear that if (F,p) is positive then F �(u) is identical to the result F (u)
of substituting u for p in F . Consequently the new definition of SMp is a gen-
eralization of the definition from Section 4.

Example 3, continued. Let F be the first-order formula in line 4 of Figure 1.
Then SMq[F ] is

∀x(p(x)→ q(x) ∨ ¬q(x)) ∧ ¬∃u((u < q) ∧ ∀x(p(x)→ u(x) ∨ ¬q(x))). (4)

Note the disjunction u(x)∨¬q(x) at the end of the formula; the occurrence of q
in the second disjunctive term is not replaced with u because it is in the scope
of a negation. The first conjuctive term of (4) is logically valid, so that it can be
dropped. The second term says that the intersection of p and q is not contained
in any proper subset of q. This is equivalent to saying that this intersection is
itself not a proper subset of q, that is, to the formula q ≤ p. In the stable models
of the program from Example 3, q is an arbitrary subset of p.

Example 5, continued. Let F be the conjunction of the first-order formulas
in lines 6 and 7 of Figure 1. Then SMrs[F ] is

∀xy(q(x, y)→ r(x)) ∧ ∀x(p(x) ∧ ¬r(x)→ s(x))
∧¬∃uv(((u, v) < (r, s)) ∧ ∀xy(q(x, y)→ u(x)) ∧ ∀x(p(x) ∧ ¬r(x)→ v(x))).

(5)
Note that r(x) in the second line did not become u(x): it is in the scope of a
negation. Since the subformula ∀xy(q(x, y)→ u(x)) does not contain v, and the
subformula ∀x(p(x)∧¬r(x)→ v(x)) does not contain u, (5) can be rewritten as

∀xy(q(x, y)→ r(x)) ∧ ∀x(p(x) ∧ ¬r(x)→ s(x))
∧¬∃u((u < r) ∧ ∀xy(q(x, y)→ u(x)))
∧¬∃v((v < s) ∧ ∀x(p(x) ∧ ¬r(x)→ v(x))).



This formula expresses, first, that each nonterminal vertex belongs to r, and
that r is the smallest set with this property; second, that s contains the comple-
ment of r, and that s is the smallest set with this property. In the stable models
of the program from Example 5, r is the set of nonterminal vertices, and s is its
complement—the set of terminal vertices.

Remark 4. The definition of a stable model above looks very different from the
definition proposed in [Gelfond and Lifschitz, 1988], which involves grounding,
constructing the reduct, and checking a fixpoint condition. But it is actually a
generalization of the 1988 definition (limited to finite programs); see [Ferraris et
al., 2010, Corollary 1]. The 1988 definition corresponds to the special case when

– the head of each rule is an atom,
– the body of each rule is a conjunction of literals,
– all predicate constants are intensional,
– we are interested in Herbrand interpretations only.

Remark 5. The definition above differs from the definition of a stable model
from [Ferraris et al., 2010] in two ways. It is limited to “Datalog programs”—
conjuctions of rules; the definition due to Ferraris et al. is applicable to arbitrary
first-order sentences. On the other hand, it uses the transformation F 7→ F �(u)
instead of the more complex transformation F 7→ F ∗(u) from that paper. (This
complexity is the price that one has to pay for the additional generality—for
allowing arbitrary first-order sentences as arguments of SMp.) In application to
Datalog programs, the two definitions are equivalent.

6 Equivalent Transformations of Datalog Programs

Recall that the definition of SMp[F ] for positive F given in Section 4 uses the
notation F (u) for the formula obtained from F by substituting the predicate
variables u for the predicate constants p. It is clear that if formulas F1 and F2

are equivalent to each other then the formulas F1(u) and F2(u) are equivalent
to each other as well. It follows that for any positive and equivalent F1, F2,
the formula SMp[F1] is equivalent to SMp[F2]. More generally, if F1 and F2

are equivalent to each other and positive then SMp[F1 ∧ G] is equivalent to
SMp[F2 ∧ G] for any conjunction G of rules. In other words, replacing a group
of positive rules within a Datalog program with an equivalent group of positive
rules does not affect the class of stable models of the program.

But without the assumption that the rules involved in the replacement are
positive this assertion would be incorrect. For instance, replacing the fact

p(a).

where p is an intensional predicate with the constraint

:- not p(a).



can change the stable models of the program, even though these rules, written
as first-order formulas

> → p(a), ¬p(a)→ ⊥, (6)

are equivalent to each other. The reason is that the transformation F 7→ F �(u),
applied to two equivalent formulas, may produce non-equivalent formulas. For in-
stance, in application to formulas (6) this transformation gives the non-equivalent
formulas

> → u(a), ¬p(a)→ ⊥.

The results of [Pearce, 1997, Lifschitz et al., 2001, Lifschitz et al., 2007,
Ferraris et al., 2010] show, on the other hand, that replacing a group of rules
within a Datalog program with another group of rules does not affect the class
of stable models whenever the two sets of rules are intuitionistically equivalent.9

(Formulas (6) are equivalent to each other classically, but not intuitionistically.)
We can say even more: Datalog programs (F1,p) and (F2,p) have the same

stable models if F1 ↔ F2 is intuitionistically entailed by the “excluded middle”
sentences

∀̃(F ∨ ¬F ) (7)

for formulas F that do not contain members of the list p.10

Compare, for instance, the rule

q(X) ; r(X) :- p(X).

from Example 2 and the rule

q(X) :- p(X), not r(X).

The corresponding formulas

∀x(p(x)→ q(x) ∨ r(x)), ∀x(p(x) ∧ ¬r(x)→ q(x)) (8)

are not intuitionistically equivalent to each other; it is not surprising then that re-
placing one rule by the other within a Datalog program usually changes the class
of stable models. But the rules above are interchangeable if r is an extensional
predicate, because the equivalence between formulas (8) is intuitionistically en-
tailed by

∀x(r(x) ∨ ¬r(x)).

9 See [Moschovakis, 2008] for an introduction to intuitionistic logic.
10 This assertion will remain true if we allow F in (7) to have occurrences of intensional

predicates as long as each of them is in the scope of a negation or in the antecedent
of an implication.



7 Discussion

The definition of a stable model based on a modification of the circumscription
operator provides a declarative semantics for several constructs used in answer
set programming, including choice and negation as failure.

Two classes of constructs are conspicuously absent, however, from the ex-
amples studied in this paper. One is built-in functions and predicates, such as
operations on integers. The other includes aggregates other than #count, such
as #sum (the sum of a set of integers). It appears that such “difficult” aggregates
can be handled by extending the operator SM to expressions more general than
first-order formulas [Ferraris and Lifschitz, 2010].

Acknowledgements

I am grateful to Paolo Ferraris, Joohyung Lee, Yuliya Lierler, and Fangkai Yang
for useful discussions related to the topic of this paper. This work was partially
supported by the National Science Foundation under grant IIS-0712113.

References

[Baral, 2003] Chitta Baral. Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press, 2003.

[Brewka et al., 2008] Gerhard Brewka, Ilkka Niemelä, and Miros law Truszczyński.
Nonmonotonic reasoning. In Frank van Harmelen, Vladimir Lifschitz, and Bruce
Porter, editors, Handbook of Knowledge Representation. Elsevier, 2008.

[Ferraris and Lifschitz, 2010] Paolo Ferraris and Vladimir Lifschitz. The stable model
semantics for first-order formulas with aggregates11. In Proceedings of International
Workshop on Nonmonotonic Reasoning (NMR), 2010.

[Ferraris et al., 2010] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable
models and circumscription12. Artificial Intelligence, 2010. To appear.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Proceedings of International Logic Programming Conference and Symposium,
pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical nega-
tion in logic programs and disjunctive databases. New Generation Computing, 9:365–
385, 1991.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin Valverde.
Strongly equivalent logic programs. ACM Transactions on Computational Logic,
2:526–541, 2001.

[Lifschitz et al., 2007] Vladimir Lifschitz, David Pearce, and Agustin Valverde. A char-
acterization of strong equivalence for logic programs with variables. In Procedings
of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), 2007.

11 http://userweb.cs.utexas.edu/users/vl/papers/smaf.pdf
12 http://peace.eas.asu.edu/joolee/papers/smcirc.pdf



[Lifschitz et al., 2008] Vladimir Lifschitz, Leora Morgenstern, and David Plaisted.
Knowledge representation and classical logic. In Frank van Harmelen, Vladimir Lifs-
chitz, and Bruce Porter, editors, Handbook of Knowledge Representation, pages 3–88.
Elsevier, 2008.

[Lifschitz, 2008] Vladimir Lifschitz. What is answer set programming? In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 1594–1597. MIT Press, 2008.

[Marek and Truszczyński, 1999] Victor Marek and Miros law Truszczyński. Stable
models and an alternative logic programming paradigm. In The Logic Programming
Paradigm: a 25-Year Perspective, pages 375–398. Springer Verlag, 1999.

[McCarthy, 1986] John McCarthy. Applications of circumscription to formalizing com-
mon sense knowledge. Artificial Intelligence, 26(3):89–116, 1986.

[Moschovakis, 2008] Joan Moschovakis. Intuitionistic logic. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy. Fall 2008 edition, 2008.
http://plato.stanford.edu/archives/fall2008/entries/logic-intuitionistic.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable model semantics as a con-
straint programming paradigm. Annals of Mathematics and Artificial Intelligence,
25:241–273, 1999.

[Pearce, 1997] David Pearce. A new logical characterization of stable models and an-
swer sets. In Jürgen Dix, Luis Pereira, and Teodor Przymusinski, editors, Non-
Monotonic Extensions of Logic Programming (Lecture Notes in Artificial Intelligence
1216), pages 57–70. Springer, 1997.


