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Abstract

Undirected graphical models, also known as Markov networks, enjoy popularity
in a variety of applications. The popular instances of these models such as Gaus-
sian Markov Random Fields (GMRFs), Ising models, and multinomial discrete
models, however do not capture the characteristics of data in many settings. We
introduce a new class of graphical models based on generalized linear models
(GLMs) by assuming that node-wise conditional distributions arise from expo-
nential families. Our models allow one to estimate multivariate Markov networks
given any univariate exponential distribution, such as Poisson, negative binomial,
and exponential, by fitting penalized GLMs to select the neighborhood for each
node. A major contribution of this paper is the rigorous statistical analysis show-
ing that with high probability, the neighborhood of our graphical models can be
recovered exactly. We also provide examples of non-Gaussian high-throughput
genomic networks learned via our GLM graphical models.

1 Introduction

Undirected graphical models, also known as Markov random fields, are an important class of sta-
tistical models that have been extensively used in a wide variety of domains, including statistical
physics, natural language processing, image analysis, and medicine. The key idea in this class of
models is to represent the joint distribution as a product of clique-wise compatibility functions; given
an underlying graph, each of these compatibility functions depends only on a subset of variables
within any clique of the underlying graph. Such a factored graphical model distribution can also be
related to an exponential family distribution [1], where the unnormalized probability is expressed
as the exponential of a weighted linear combination of clique-wise sufficient statistics. Learning a
graphical model distribution from data within this exponential family framework can be reduced to
learning weights on these sufficient statistics. An important modeling question is then, how do we
choose suitable sufficient statistics? In the case of discrete random variables, sufficient statistics can
be taken as indicator functions as in the Ising or Potts model. These, however, are not suited to all
kinds of discrete variables such as that of non-negative integer counts. Similarly, in the case of con-
tinuous variables, Gaussian Markov Random Fields (GMRFs) are popular. The multivariate normal
distribution imposed by the GMRF, however, is a stringent assumption; the marginal distribution of
any variable must also be Gaussian.

In this paper, we propose a general class of graphical models beyond the Ising model and the GMRF
to encompass variables arising from all exponential family distributions. Our approach is motivated
by recent state of the art methods for learning the standard Ising and Gaussian MRFs [2, 3, 4].
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The key idea in these recent methods is to learn the MRF graph structure by estimating node-
neighborhoods, which are estimated by maximizing the likelihood of each node conditioned on
the rest of the nodes. These node-wise fitting methods have been shown to be both computationally
and statistically attractive. Here, we study the general class of models obtained by the following
construction: suppose the node-conditional distributions of each node conditioned on the rest of the
nodes are Generalized Linear Models (GLMs) [5]. By the Hammersley-Clifford Theorem [6] and
some algebra as derived in [7], these node-conditional distributions entail a global distribution that
factors according to cliques defined by the graph obtained from the node-neighborhoods. Moreover,
these have a particular set of potential functions specified by the GLM. The resulting class of MRFs
broadens the class of models available off-the-shelf, from the standard Ising, indicator-discrete, and
Gaussian MRFs.

Beyond our initial motivation of finding more general graphical model sufficient statistics, a broader
class of parametric graphical models are important for a number of reasons. First, our models pro-
vide a principled approach to model multivariate distributions and network structures among a large
number of variables. For many non-Gaussian exponential families, multivariate distributions typi-
cally do not exist in an analytical or computationally tractable form. Graphical model GLMs provide
a way to “extend” univariate exponential families of distributions to the multivariate case and model
and study relationships between variables for these families of distributions. Second, while some
have proposed to extend the GMRF to a non-parametric class of graphical models by first Gaussian-
izing the data and then fitting a GMRF over the transformed variables [8], the sample complexity of
such non-parametric methods is often inferior to parametric methods. Thus for modeling data that
closely follows a non-Gaussian distribution, statistical power for network recovery can be gained
by directly fitting parametric GLM graphical models. Third, and specifically for multivariate count
data, others have suggested combinatorial approaches to fitting graphical models, mostly in the con-
text of contingency tables [6, 9, 1, 10]. These approaches, however, are computationally intractable
for even moderate numbers of variables.

Finally, potential applications for our GLM graphical models abound. Networks of call-times, time
spent on websites, diffusion processes, and life-cycles can be modeled with exponential graphical
models; other skewed multivariate data can be modeled with gamma or chi-squared graphical mod-
els. Perhaps the most interesting motivating applications are for multivariate count data such as from
website visits, user-ratings, crime and disease incident reports, bibliometrics, and next-generation
genomic sequencing technologies. The latter is a relatively new high-throughput technology to mea-
sure gene expression that is rapidly replacing the microarray [11]. As Gaussian graphical models are
widely used to infer genomic regulatory networks from microarray data, Poisson and negative bino-
mial graphical models may be important for inferring genomic networks from the multivariate count
data arising from this emerging technology. Beyond next generation sequencing, there has been a
recent proliferation of new high-throughput genomic technologies that produce non-Gaussian data.
Thus, our more general class of GLM graphical models can be used for inferring genomic networks
from these new high-throughput technologies.

The construction of our GLM graphical models also suggests a natural method for learning such
models: node-wise neighborhood estimation by fitting sparsity constrained GLMs. A main contri-
bution of this paper is to provide a sparsistency analysis for the recovery of the underlying graph
structure of this new class of MRFs. The presence of non-linearities arising from the GLM poses
subtle technical issues not present in the linear case [2]. Indeed, for the specific cases of logistic, and
multinomial respectively, [3, 4] derive such a sparsistency analysis via fairly extensive arguments
which were tuned to those specific cases. Here, we generalize their analysis to general GLMs, which
requires a slightly modified M-estimator and a more subtle theoretical analysis. We note that this
analysis might be of independent interest even outside the context of modeling and recovering graph-
ical models. In recent years, there has been a trend towards unified statistical analyses that provide
statistical guarantees for broad classes of models via general theorems [12]. Our result is in this vein
and provides structure recovery for the class of sparsity constrained generalized linear models. We
hope that the techniques we introduce might be of use to address the outstanding question of sparsity
constrained M-estimation in its full generality.
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2 A New Class of Graphical Models

Problem Setup and Background. Suppose X = (X1, . . . , Xp) is a random vector, with each
variable Xi taking values in a set X . Suppose G = (V,E) is an undirected graph over p nodes
corresponding to the p variables; the corresponding graphical model is a set of distributions that
satisfy Markov independence assumptions with respect to the graph. By the Hammersley-Clifford
theorem, any such distribution also factors according to the graph in the following way. Let C be
a set of cliques (fully-connected subgraphs) of the graph G, and let {φc(Xc) c ∈ C} be a set of
clique-wise sufficient statistics. With this notation, any distribution of X within the graphical model
family represented by the graph G takes the form:

P (X) ∝ exp

{∑
c∈C

θcφc(Xc)

}
, (1)

where {θc} are weights over the sufficient statistics. With a pairwise graphical model distribution,
the set of cliques consists of the set of nodes V and the set of edges E, so that

P (X) ∝ exp

{∑
s∈V

θsφs(Xs) +
∑

(s,t)∈E

θstφst(Xs, Xt)

}
. (2)

As previously discussed, an important question is how to select the class of sufficient statistics, φ, in
particular to obtain as a multivariate extension of specified univariate parametric distributions? We
next outline a subclass of graphical models where the node-conditional distributions are exponential
family distributions, with an important special case where these node-conditional distributions are
generalized linear models (GLMs). Then, in Section 3, we will study how to learn the underlying
graph structure, or infer the edge set E, providing an M-estimator and sufficient conditions under
which the estimator recovers the graph structure with high probability.

Graphical Models via GLMs. In this section, we investigate the class of models that arise from
specifying the node-conditional distributions as exponential families. Specifically, suppose we are
given a univariate exponential family distribution,

P (Z) = exp(θ B(Z) + C(Z)−D(θ)),

with sufficient statistics B(Z), base measure C(Z), and D(θ) as the log-normalization constant.

Let X = (X1, X2, . . . , Xp) be a p-dimensional random vector; and let G = (V,E) be an undi-
rected graph over p nodes corresponding to the p variables. Now suppose the distribution of Xs

given the rest of nodes XV \s is given by the above exponential family, but with the canonical expo-
nential family parameter set to a linear combination of k-th order products of univariate functions
{B(Xt)}t∈N(s). This gives the following conditional distribution:

P (Xs|XV \s) = exp
{
B(Xs)

(
θs +

∑
t∈N(s)

θstB(Xt) +
∑

t2,t3∈N(s)

θs t2t3 B(Xt2)B(Xt3)

+
∑

t2,...,tk∈N(s)

θs t2...tk

k∏
j=2

B(Xtj )
)

+ C(Xs)− D̄(XV \s)
}
, (3)

whereC(Xs) is specified by the exponential family, and D̄(XV \s) is the log-normalization constant.

By the Hammersley-Clifford theorem, and some elementary calculation, this conditional distribution
can be shown to specify the following unique joint distribution P (X1, . . . , Xp):
Proposition 1. Suppose X = (X1, X2, . . . , Xp) is a p-dimensional random vector, and its node-
conditional distributions are specified by (3). Then its joint distribution P (X1, . . . , Xp) is given by:

P (X) = exp

{∑
s

θsB(Xs) +
∑
s∈V

∑
t∈N(s)

θstB(Xs)B(Xt)

+
∑
s∈V

∑
t2,...,tk∈N(s)

θs...tk B(Xs)

k∏
j=2

B(Xtj ) +
∑
s

C(Xs)−A(θ)

}
, (4)

where A(θ) is the log-normalization constant.
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An important question is whether the conditional and joint distributions specified above have the
most general form, under just the assumption of exponential family node-conditional distributions?
In particular, note that the canonical parameter in the previous proposition is a tensor factorization
of the univariate sufficient statistic, with pair-wise and higher-order interactions, which seems a bit
stringent. Interestingly, by extending the argument from [7] and the Hammersley-Clifford Theorem,
we can show that indeed (3) and (4) have the most general form.
Proposition 2. Suppose X = (X1, X2, . . . , Xp) is a p-dimensional random vector, and its node-
conditional distributions are specified by an exponential family,

P (Xs|XV \s) = exp{E(XV \s)B(Xs) + C(Xs)− D̄(XV \s)}, (5)

where the function E(XV \s) (and hence the log-normalization constant D̄(XV \s)) only depends on
variablesXt inN(s). Further, suppose the corresponding joint distribution factors according to the
graph G = (V,E), with the factors over cliques of size at most k. Then, the conditional distribution
in (5) has the tensor-factorized form in (3), and the corresponding joint distribution has the form in
(4).

The proposition thus tells us that under the general assumptions that (a) the joint distribution is a
graphical model that factors according to a graph G, and has clique-factors of size at most k, and
(c) its node-conditional distribution follows an exponential family, it necessarily follows that the
conditional and joint distributions are given by (3) and (4) respectively.

An important special case is when the joint distribution has factors of size at most two. The condi-
tional distribution then is given by:

P (Xs|XV \s) = exp

θsB(Xs) +
∑

t∈N(s)

θstB(Xs)B(Xt) + C(Xs)− D̄(XV \s)

 , (6)

while the joint distribution is given as

P (X) = exp

∑
s

θsB(Xs) +
∑

(s,t)∈E

θstB(Xs)B(Xt) +
∑
s

C(Xs)−A(θ)

 . (7)

Note that when the univariate sufficient statistic function B(·) is a linear function B(Xs) = Xs,
then the conditional distribution in (6) is precisely a generalized linear model [5] in canonical form,

P (Xs|XV \s) = exp

θsXs +
∑

t∈N(s)

θstXsXt + C(Xs)− D̄(XV \s; θ)

 , (8)

while the joint distribution has the form,

P (X) = exp

∑
s

θsXs +
∑

(s,t)∈E

θstXsXt +
∑
s

C(Xs)−A(θ)

 . (9)

In the subsequent sections, we will refer to the entire class of models in (7) as GLM graphical
models, but focus on the case (9) with linear functions B(Xs) = Xs.

Examples. The GLM graphical models provide multivariate or Markov network extensions of uni-
variate exponential family distributions. The popular Gaussian graphical model and Ising model can
thus also be represented by (7). Consider the latter, for example, where for the Bernoulli distribution,
we have thatB(X) = X , C(X) = 0, andA(θ) is the log-partition function; plugging these into (9),
we have the form of the Ising model studied in [3]. The form of the multinomial graphical model,
an extension of the Ising model, can also be represented by (7) and has been previously studied in
[4] and others.

It is instructive to consider the domain of the set of all possible valid parameters in the GLM graph-
ical model (9); namely those that ensure that the density is normalizable, or equivalently, so that the
log-partition function satisfies A(θ) < +∞. The Ising model imposes no constraint on its param-
eters, {θst}, for normalizability, since there are finitely many configurations of the binary random
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vectorX . For other exponential families, with countable discrete or continuous valued variables, the
GLM graphical model does impose additional constraints on valid parameters. Consider the example
of the Poisson and exponential distributions. The Poisson family has sufficient statistic B(X) = X
and base measure C(X) = −log(X!). With some algebra, we can show that A(θ) < +∞ implies
θst ≤ 0 ∀ s, t. Thus, the Poisson graphical model can only capture negative conditional relationships
between variables. Consider the exponential distribution with sufficient statistic B(X) = −X , base
measure C(X) = 0. To ensure that the density is finitely integrable, so that A(θ) < +∞, we then
require that θst ≥ 0 ∀ s, t. Similar constraints on the parameter space are necessary to ensure proper
density functions for several other exponential family graphical models as well.

3 Statistical Guarantees

In this section, we study the problem of learning the graph structure of an underlying GLM graphical
model given iid samples. Specifically, we assume that we are given n samples Xn

1 = {X(i)}ni=1,
from a GLM graphical model:

P (X; θ∗) = exp

 ∑
(s,t)∈E∗

θ∗stXsXt +
∑
s

C(Xs)−A(θ)

 . (10)

We have removed node-wise terms for simplicity, noting that our analysis extends to the general
case. The goal in graphical model structure recovery is to recover the edges E∗ of the underlying
graph G = (V,E∗). Following [3, 4], we will approach this problem via neighborhood estimation,
where we estimate the neighborhood of each node individually, and then stitch these together to
form the global graph estimate. Specifically, if we have an estimate N̂ (s) for the true neighborhood
N ∗(s), then we can estimate the overall graph structure as:

Ê = ∪s∈V ∪t∈N̂ (s) {(s, t)}. (11)

In order to estimate the neighborhood of any node, we consider the sparsity constrained conditional
MLE. Given the joint distribution in (10), the conditional distribution of Xs given the rest of the
nodes is given by:

P (Xs|XV \s) = exp

Xs

( ∑
t∈N(s)

θ∗stXt

)
+ C(Xs)−D

( ∑
t∈N(s)

θ∗stXt

) . (12)

Let θ∗\s = {θ∗st}t∈V \s ∈ Rp−1 be a zero-padded vector, with entries θ∗st for t ∈ N(s) and θ∗st = 0,
for t 6∈ N(s). Given n samples Xn

1 = {X(i)}ni=1, we can write the conditional log-likelihood of the
distribution (12) as:

`(θ\s;X
n
1 ) := − 1

n
log

n∏
i=1

P
(
X(i)
s |X

(i)
\s , θ\s

)
=

1

n

n∑
i=1

−X(i)
s 〈θ\s, X

(i)
\s 〉+D

(
〈θ\s, X

(i)
\s 〉
)
.

We can then solve the `1 regularized conditional log-likelihood loss for each node Xs:

min
θ\s∈Rp−1

`(θ\s;X
n
1 ) + λn‖θ\s‖1. (13)

Given the solution θ̂\s of the M-estimation problem above, we then estimate the node-neighborhood
of s as N̂(s) = {t ∈ V \s : θ̂st 6= 0}. In the following when we focus on a fixed node s ∈ V ,
we will overload notation, and use θ ∈ Rp−1 as the parameters of the conditional distribution,
suppressing the dependence on s.

In the rest of the section, we first discuss the assumptions we impose on the GLM graphical model
parameters. The first set of assumptions are standard irrepresentable-type conditions imposed for
structure recovery in high-dimensional statistical estimators, and in particular, our assumptions mir-
ror those in [3]. The second set of assumptions are key to our generalized analysis of the class of
GLM graphical models as a whole. We then follow with our main theorem, that guarantees structure
recovery under these assumptions, with high probability even in high-dimensional regimes.
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Our first set of assumptions use the Fisher Information matrix, Q∗s = ∇2`(θ∗s ;Xn
1 ), which is the

Hessian of the node-conditional log-likelihood. In the following, we will simply use Q∗ instead of
Q∗s where the reference node s should be understood implicitly. We also use S = {(s, t) : t ∈ N(s)}
to denote the true neighborhood of node s, and Sc to denote its complement. We use Q∗SS to denote
the d× d sub-matrix indexed by S. Our first two assumptions , and are as follows:
Assumption 1 (Dependency condition). There exists a constant λmin > 0 such that λmin(Q∗SS) ≥
λmin. Moreover, there exists a constant λmax <∞ such that λmax(Ê[X\sX

T
\s]) ≤ λmax.

Assumption 2 (Incoherence condition). We also need an incoherence or irrepresentable condition
on the fisher information matrix as in [3]. Specifically, there exists a constant α > 0, such that
maxt∈Sc ‖Q∗tS(Q∗SS)−1‖1 ≤ 1− α.

A key technical facet of the linear, logistic, and multinomial models in [2, 3, 4] and used heavily in
their proofs, is that the random variables {Xs} there were bounded with high probability. Unfortu-
nately, in the general GLM distribution in (12), we cannot assume this explicitly. Nonetheless, we
show that we can analyze the corresponding regularized M-estimation problems, provided the first
and second moments are bounded.
Assumption 3. The first and second moments of the distribution in (10) are bounded as follows. The
first moment µ∗ := E[X] , satisfies ‖µ∗‖2 ≤ κm; the second moment satisfies maxt∈V E[X2

t ] ≤ κv .

We also need smoothness assumptions on the log-normalization constants :
Assumption 4. The log-normalization constant A(·) of the joint distribution (10) satisfies:
maxu:‖u‖≤1 λmax(∇2A(θ∗ + u)) ≤ κh.

Assumption 5. The log-partition function D(·) of the node-conditional distribution (12)
satisfies: There exist constants κ1 and κ2 (that depend on the exponential family) s.t.
max{|D′′(κ1 log η)|, |D′′′(κ1 log η)|} ≤ nκ2 where η = max{n, p}, κ1 ≥ 9

2‖θ
∗‖2 and κ2 ∈

[0, 1/4].

Assumptions 3 and 4 are the key technical conditions under which we can generalize the analyses
in [2, 3, 4] to the general GLM case. In particular, we can show that the statements of the following
propositions hold, which show that the random vectors X following the GLM graphical model in
(10) are suitably well-behaved:
Proposition 3. Suppose X is a random vector with the distribution specified in (10). Then, for any
vector u ∈ Rp such that ‖u‖2 ≤ c′, any positive constant δ, and some constants c > 0,

P
(
|〈u,X〉| ≥ δ log η

)
≤ cη−δ/c

′
.

Proposition 4. Suppose X is a random vector with the distribution specified in (10). Then, for
δ ≤ min{2κv/3, κh + κv}, and some constant c > 0,

P

(
1

n

n∑
i=1

(
X(i)
s

)2 ≥ δ) ≤ 2 exp
(
−c n δ2

)
.

Putting these key technical results and assumptions together, we arrive at our main result:
Theorem 1. Consider a GLM graphical model distribution as specified in (10), with true parameter
θ∗ and associated edge set E∗ that satisfies Assumptions 1-5. Suppose that min(s,t)∈E∗ |θ∗st| ≥
10
λmin

√
dλn where d is the maximum neighborhood size. Suppose also that the regularization pa-

rameter is chosen such that λn ≥ M (2−α)
α

√
log p
n1−κ2 for some constant M > 0. Then, there exist

positive constants L,K1 andK2 such that if n ≥ L
{
d2 log p(max{log n, log p})2

} 1
1−3κ2 , then with

probability at least 1− exp(−K1λ
2
nn)−K2 max{n, p}−5/4, the following statements hold:

(a) (Unique Solution) For each node s ∈ V , the solution of the M-estimation problem in (13) is
unique, and

(b) (Correct Neighborhood Recovery) The M-estimate also recovers the true neighborhood exactly,
so that N̂(s) = N(s).

6



400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

n

S
u
c
c
e
s
s
 p

ro
b
a
b
ili

ty

 

 

p = 64

p = 100

p = 169

p = 225

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

β

S
u
c
c
e
s
s
 p

ro
b
a
b
ili

ty

 

 

p = 64

p = 100

p = 169

p = 225

Figure 1: Probabilities of successful support recovery for a Poisson grid structure (ω = −0.1). The
probability of successful edge recovery vs. n (Left), and the probability of successful edge recovery
vs. control parameter β = n/(c log p) (Right).

Note that if the neighborhood of each node is recovered with high probability, then by a simple
union bound, the estimate in (11), Ê = ∪s∈V ∪t∈N̂ (s) {(s, t)} is equal to the true edge set E∗ with
high-probability.

Also note that κ2 in the statement is a constant from Assumption 5. The Poisson family has one
of the steepest log-partition function: D(η) = exp(η). Hence, in order to satisfy Assumption 5,
we need ‖θ∗‖2 ≤ 1

18
logn
log p with κ2 = 1/4. On the other hand, for the binomial, multinomial or

Gaussian cases studied in [2, 3, 4], we can recover their results with κ2 = 0 since the log-partition
function D(·) of these families are upper bounded by some constant for any input. Nevertheless, we
need to restrict θ∗ to satisfy Assumption 4 so that the variables are bounded with high probability in
Proposition 3 and 4 for any GLM case.

4 Experiments

Experiments on Simulated Networks. We provide a small simulation study that demonstrates the
consequences of Theorem 1 when the conditional distribution in (12) has the form of Poisson distri-
bution. We performed experiments on lattice (4 nearest neighbor) graphs with identical edge weight
ω for all edges. Simulating data via Gibbs sampling, we solved the sparsity-constrained optimization

problem with a constant factor of
√

log p
n for λn. The left panel of Figure 1 shows the probability of

successful edge recovery for different numbers of nodes, p = {64, 100, 169, 225}. In the right panel
of Figure 1, we re-scale the sample size n using the “control parameter” β = n/(c log p) for some
constant c. Each point in the plot indicates the probability that all edges are successfully recovered
out of 50 trials. We can see that the curves for different problem sizes are well aligned with the
results of Theorem 1.

Learning Genomic Networks. Gaussian graphical models learned from microarray data have often
been used to study high-throughput genomic regulatory networks. Our GLM graphical models will
be important for understanding genomic networks learned from other high-throughput technologies
that do not produce approximately Gaussian data. Here, we demonstrate the versatility of our model
by learning two cancer genomic networks, a genomic copy number aberration network (from aCGH
data) for Glioblastoma learned by multinomial graphical models and a meta-miRNA inhibitory net-
work (from next generation sequencing data) for breast cancer learned by Poisson graphical models.
Level III data, breast cancer miRNA expression (next generation sequencing) [13] and copy number
variation (aCGH) Glioblastoma data [14], was obtained from the the Cancer Genome Atlas (TCGA)
data portal (http://tcga-data.nci.nih.gov/tcga/), and processed according to standard techniques. Data
descriptions and processing details are given in the supplemental materials.

A Poisson graphical model and a multinomial graphical model were fit to the processed miRNA
data and aberration data respectively by performing neighborhood selection with the sparsity of the
graph determined by stability selection [15]. Our GLM graphical models, Figure 2, reveal results
consistent with the cancer genomics literature. The meta-miRNA inhibitory network has three major
hubs, two of which, mir-519 and mir-520, are known to be breast cancer tumor suppressors [16, 17].
Interestingly, let-7, a well-known miRNA involved in tumor metastasis [18], plays a central role
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Figure 2: Genomic copy number aberration network for Glioblastoma learned via multinomial
graphical models (left) and meta-miRNA inhibitory network for breast cancer learned via Poisson
graphical models (right).

in our network, sharing edges with the five largest hubs; this suggests that our model has learned
relevant negative associations between tumor suppressors and enhancers. The Glioblastoma copy
number aberration network reveals five major modules, color coded on the left panel in Figure 2,
and three of these modules have been previously implicated in Glioblastoma: EGFR in the yellow
module, PTEN in the purple module, and CDK2A in the blue module [19].

5 Discussion

We have introduced a new class of graphical models that arise when we assume that node-wise
conditional distributions follow an exponential family distribution. We have also provided simple
M-estimators for learning the network by fitting node-wise penalized GLMs that enjoy strong sta-
tistical recovery properties. Our work has broadened the class of off-the-shelf graphical models to
encompass a wide range of parametric distributions. These classes of graphical models may be of
further interest to the statistical community as they provide closed form multivariate densities for
several exponential family distributions (e.g. Poisson, exponential, negative binomial) where few
currently exist. Furthermore, the statistical analysis of our M-estimator required subtle techniques
that may be of general interest in the analysis of sparse M-estimation.

Our work outlines the general class of graphical models for exponential family distributions, but
there are many avenues for future work in studying this model for specific distributional families.
In particular, our model sometimes places restrictions on the parameter space. A question remains,
can these restrictions be relaxed for specific exponential family distributions? Additionally, we have
focused on families with linear sufficient statistics (e.g. Gaussian, Bernoulli, Poisson, exponential,
negative binomial); our models can be studied with non-linear sufficient statistics or multi-parameter
distributions as well. Overall, our work has opened the door for learning Markov Networks from
a broad class of distributions, the properties and applications of which leave much room for future
research.
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