
To appear in Adaptive Behavior, 5:317-342, 1997

Incremental Evolution of Complex General Behavior

Faustino Gomez
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
inaki@cs.utexas.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
risto@cs.utexas.edu

June 1, 1996

Abstract

Several researchers have demonstrated how complex action sequences can be learned through neuro-evolution
(i.e. evolving neural networks with genetic algorithms). However, complex general behavior such as evading
predators or avoiding obstacles, which is not tied to speci�c environments, turns out to be very di�cult to
evolve. Often the system discovers mechanical strategies (such as moving back and forth) that help the agent
cope, but are not very e�ective, do not appear believable and would not generalize to new environments.
The problem is that a general strategy is too di�cult for the evolution system to discover directly. This
paper proposes an approach where such complex general behavior is learned incrementally, by starting
with simpler behavior and gradually making the task more challenging and general. The task transitions
are implemented through successive stages of delta-coding (i.e. evolving modi�cations), which allows even
converged populations to adapt to the new task. The method is tested in the stochastic, dynamic task of
prey capture, and compared with direct evolution. The incremental approach evolves more e�ective and
more general behavior, and should also scale up to harder tasks.

1 Introduction

Neuro-Evolution (NE), the training of Arti�cial Neural Networks with Genetic Algorithms, has proven
an attractive alternative to standard learning methods in reinforcement environments (Nol� et al. 1990;
Colombetti and Dorigo 1992a; Yamauchi and Beer 1994; Nol� and Parisi 1995; ?). In NE, strings of
values (chromosomes) representing neural network parameters (e.g. connection weights, thresholds, and
connectivity) are recombined based on the principle of natural selection in order to �nd an optimal network
for a given problem. Many NE systems consist of a mobile agent in a static environment where the agent
must learn a policy that minimizes the travel distance between certain desirable states (Cli� et al. 1992;
Law and Miikkulainen 1994; Nol� and Parisi 1994). These \goal states" are de�ned spatially by unique
coordinates so that it is easy to assess how well the individual is doing by comparing the known optimal
path to the actual path. As tasks require increasingly complex behavior, this type of metric becomes di�cult
to de�ne. Wall-following, obstacle-avoidance, and predator-prey scenarios are examples of such tasks because
they describe a more general, abstract behavior not tied to speci�c spatial locations.

A critical problem in trying to evolve complex behaviors is that the strategies that emerge are often
\mechanical." These strategies yield reasonable performance in terms of maximizing a �tness measure,
but do not exhibit the kind of intelligent responsiveness to the environment that is required to ultimately

1

2

accomplish the objective. Seeming competence in the task is often only a side-e�ect of the \mechanical"
strategy; the agent does not learn the general task, but instead learns a relatively primitive environment-
speci�c behavior. For example, a predator being evolved to capture a prey may exhibit a simple strategy
of moving back and forth or in a circle through the environment. Because this behavior is easy to evolve
and guarantees better �tness than moving very little, the population can easily be lured into a region of
the solution space that manifests this strategy. Once in this pathological region, it is unlikely that a good
solution will be found since the non-mechanical, general behavior required to accomplish the task can be
very di�erent from the mechanical behavior.

Complex behaviors are di�cult to evolve primarily because usually a reactive response to the current
state is not enough; such behaviors require memory{that is, an ability to predict future states based on
information about previous states. For example in prey capture, when the prey goes outside the sensory
range, the agent must remember where it last saw the prey and where it is likely to be in the future. In
terms of neuro-evolution it means that the neural network architectures evolved must be recurrent, which
makes them harder to deal with.

This paper presents a method for evolving complex general behavior incrementally. Instead of evaluating
a population on the same task throughout the course of evolution, it is �rst evaluated on a relatively easy
task and then on increasingly harder tasks, in an e�ort to build towards the goal behavior. There are
two techniques that allow us to do this: (1) Enforced Sub-Populations makes it possible to evolve neural
networks that have memory, and (2) Delta-Coding makes it possible to adapt to each new task. The results
of incremental evolution presented in this article show that it is possible to achieve complex general behavior
with evolutionary neural networks.

2 Prey Capture

Prey Capture, the task used in this paper to demonstrate incremental evolution, is a special case of a class of
problems known as Pursuit and Evasion. Pursuit and Evasion contests consist of an environment containing
a minimum of two entities: a predator and a prey. The predator moves through the environment trying to
capture the prey while the prey attempts to avoid capture by eeing from the predator. Scenarios of this
kind are a particularly interesting arena for the study of adaptive behavior because they are ubiquitous in
natural ecosystems and o�er a relatively simple objective that requires complex sensory-motor coordination
with respect to both the environment and another moving entity (Miller and Cli� 1994). To accomplish the
Prey Capture task, an agent, moving through a simulated environment, must be able to apprehend another
entity, the prey, within a �xed number of time-steps. The agent can detect the prey only within a limited
distance. If the prey moves out of sensor range the agent must remember where it was last detected. Prey
Capture is simple in both description and implementation, yet demands a level of behavioral sophistication
that is susceptible to the emergence of mechanical strategies.

2.1 Environment

The environment consists of a square spatially and temporally discrete grid-world (�gure 1a). Both the
agent and the prey occupy a single grid space and can move in one of four directions fN,S,E,Wg at each
time-step. The agent is considered to have captured the prey when they both occupy the same grid-cell.
The prey moves probabilistically with a tendency to move away from the agent that grows stronger as the
agent gets closer to it (see Appendix A for a de�nition of the enemy algorithm, due to Lin (1992)). The
prey moves at a speed that is set between 0 and 1. This value is the probability of the prey taking an action
each time-step. If the prey has a speed of 0.5 will do nothing 50% of the time. Note that if the environment
were continuous, a speed of 0:5 would make the task quite easy because the prey would always be moving
at the same leisurely rate. In the discrete world of Prey Capture, however, a prey moving at a speed of 0:5

3

is really moving at the same speed as the agent but only part of the time.

This environment provides a non-trivial task with a relatively high complexity. The agent must learn to
move into the grid-cell occupied by the prey by mapping its sensory input to appropriate actions. When
the prey moves outside the sensory range, the agent no longer receives direct sensory stimulus from the prey
and must rely on short-term memory to decide which action will bring the prey closer and ultimately into
sensor range.

More formally, the environment can be described by the sensory-state machine (SSM)(Wilson 1991):

fE(t+ 1)g = f(E(t); A(t)); (1)

where E(t) and A(t) are the agent's sensory stimulus and action at time t, respectively, and f is the mapping
that describes the environmental dynamics from the agent's perspective. For a given sensory stimulus (sense
vector) E(t) and an action A(t) there is a �nite set of sensory stimuli fE(t + 1)g which may result. If
cardinality(fE(t+ 1)g) > 1 for any pair (E(t); A(t)), then the environment is non-deterministic. When the
sense vector E(t) does not denote a unique global state, that is, the agent cannot sense the entire environment
with total accuracy, some form of memory is required to help the agent predict where the prey is located.
In other words, the uncertainty about E(t+1) can be reduced by keeping track of previous sense and action
vectors:

fE(t+ 1)g = f2(E(t); A(t); E(t � 1); A(t� 1):::E(t� k); A(t� k)); (2)

If the environment is deterministic and contains a �nite number of states, then there exists some k for
which cardinality(fE(t + 1)g) = 1 for all possible pairs (E(t); A(t)) and the agent can thereby reliably
predict fE(t+1)g. The Prey Capture environment presented here is particularly di�cult because the prey's
actions are partly random: there does not exist a k for which the non-determinism in (2) is eliminated. The
agent can never learn to predict E(t + 1) exactly, although it can reduce the uncertainty with memory.

2.2 Agent Representation

The agent is controlled by a fully connected recurrent neural network with sigmoidal units (Figure 1b). At
each time step each unit receives input from the input layer and from all other units. Such recurrency allows
the agent to maintain temporal information that is necessary for performing the task.

As the agent moves through the environment it can detect the presence of the prey within a speci�ed
sensor range (�gure 1a). There is one input unit (ii) assigned to each of the 8 sectors in the sensory array.
When the prey is in an area covered by the sensory array, the unit corresponding to that sector is set to
1. An additional unit (C) is set when the prey is within the closer half of the sector. The units i1 through
i8 and C therefore a�ord a coarse encoding of relative enemy position. The radial nature of the sensory
apparatus gives greater sensitivity to prey movement at close range, where it is most crucial. Four more
units are used to detect the walls in the N, S, E and W directions. As a wall comes within sensor range
the corresponding unit is activated to a degree that is proportional to the wall's distance from the agent.
There is one output unit for each of the four possible actions. At each time step the agent selects the action
corresponding to the unit with the highest activation. This representation provides the agent with sensory
input that is both imprecise and of limited range. In order to perform well in Prey Capture, an agent must
learn to associate sensory input with the appropriate pursuit actions and exploit its short-term memory
(recurrent connections) to remember where it last saw the prey if it moves out of sensor range.

3 Incremental Evolution

By attacking a complex general task such as Prey Capture \head-on," from the outset of the evolution process,
conventional evolutionary methods su�er from ine�cient performance. The task can be too demanding

4

 C

i1

i

i

i

i

i

i

i

P

A

2

3

4

5

 7

 8

 6

S
Wall Detectors

E

W

N

Recurrent network

N

W

E

S

(a) Environment (c)(b) Input layer

Figure 1: The Prey Capture environment and the agent network. (a) The grid world occupied by the
agent and the prey. The sectors and circles around the agent represent its sensory array. There are 8 sectors
divided into two levels of proximity. Each sector is represented by a node in the input of the neural network
controlling the agent, as shown in (b). An input unit ii is activated when the prey enters the corresponding
sector. If the agent brings the prey within the inner circle of the array, the C unit will also be activated.
Each of the wall detector units is activated proportional to the agent's distance to the wall in that direction,
provided the wall is within the sensor range. In the situation shown here, the input unit i3 is activated but
C is not, because an enemy is in the far NW area. The E wall-detector unit is also activated by a small
amount because the east wall is just within sensor range. This input is fed into the fully recurrent neural
network along with the network's activation from the previous time-step. In this case, the agent will move
north because the north (N) output unit has the highest activation.

to exert signi�cant selective pressure on the population during the early stages of evolution. All of the
individuals perform poorly and therefore the GA gets trapped in an unfruitful region of the solution space.
If a population is �rst evolved on an easier version t0 of the complex task t, it may be possible to discover
a region of the solution space from which t is more accessible. If this is not the case, it may be possible to
evolve a population on an even easier version t00 from which t0 is more accessible, and so on. In this way, the
ultimate task can be achieved by evolving incrementally on a sequence of tasks starting with a task that can
be evolved directly.

In order to formulate a scheme for incremental evolution, it is necessary to make a distinction between
the evaluation-task, which is used to evaluate the Agent's �tness for reproduction, and the goal-task, which
the agent is ultimately evolved to perform (Nol� and Parisi 1994; task connotes both the environment and
the behavioral objective). The goal-task can then be seen as the culmination of a series of progressively
more demanding evaluation-tasks: ft1; t2; t3; : : : ; tng where n is the total number of evaluation-tasks and tn
is the goal-task. This set of tasks is ordered so that ti is easier than ti+1 for all i: 0 < i � n. The number
of tasks required (n) must be determined experimentally.

Each evaluation-task is derived by transforming a goal-task speci�cation to one where the appropriate
behavior is more readily \evolvable." A task transformation must preserve the underlying structure of the
environment as well as the overall goal-task objective. The following two heuristics can be applied to derive
e�ective evaluation-tasks: (1) Increase the \density" of the relevant experiences within a trial so that a

5

network can be evaluated based on greater information in a shorter amount of time; and (2) Make the
evaluation-task easier so that the acquisition of fundamental goal-task skills is more feasible. A combination
of these two heuristics is used in the evolution of Prey Capture. The evaluation-task environments are
designed to temporally concentrate experience and to facilitate skill acquisition.

Once the set of evaluation-tasks has been derived, evolution of the goal-task behavior can proceed by
evolving on each evaluation-task in succession. First, t1 is evolved until a satisfactory level of performance
is achieved. After t1 is completed, t2 is instantiated and evolution resumes. This process continues until the
goal-task is completed.

A number of researchers have applied task decomposition, or shaping, to make learning complex tasks
tractable (Colombetti and Dorigo 1992b; Lin 1993; Perkins and Hayes 1996; Singh 1992). Typically, in these
approaches the complex task is broken into simpler components or subtasks that are each learned by separate
systems (e.g. GAs or rule-bases) and then combined to achieve the goal task. In contrast, in incremental
evolution as proposed in this paper and also used by Wieland (1990, 1991) and Saravanan and Fogel (1995),
a single system learns a succession of tasks. Such an adaptation process is similar to continual (or lifelong)
learning (Elman 1991; Ring 1994; Thrun 1996), and motivated by learning in real life. If, for instance,
the goal-task is that of driving a Formula-1 race car at Grand Prix level, we can imagine a lattice of tasks
arranged in order of increasing di�culty leading up to the goal-task. Tasks are arranged in a lattice because
there may be many epistemic paths to accomplishing the goal-task. For this particular case, tasks might
include: learning to drive a car safely, learning to drive fast, competing against novice drivers, competing in
stock cars, and competing in rallies. One would not endeavor to drive a Formula-1 car without �rst having
gained competence in other forms of racing and, more importantly, learning how to drive a car in the �rst
place. In the experiments that follow, this general learning principle is exploited in evolution by having an
Agent compete against an environment that becomes more challenging in response to its growing expertise.

4 Neuro-Evolution Method: Enforced Sub-Populations + Delta-Coding.

The Neuro-Evolution method used is similar to Symbiotic, Adaptive Neuro-Evolution (SANE; Moriarty
1997; Moriarty and Miikkulainen 1996a, 1996b). SANE has been shown to be a very powerful reinforcement
learning method for tasks with sparse reinforcement. In order to apply this method to evolving complex
general behavior, two extensions are necessary: Enforced Sub-Populations to build recurrent networks, and
Delta-Coding to assist in transferring to new tasks.

4.1 SANE

SANE di�ers from other NE systems in that it evolves a population of neurons instead of complete networks
(�gure 2). These neurons are combined to form hidden layers of feed-forward networks that are then evaluated
on a given problem.

Evolution in SANE proceeds in the following sequence of steps:

1. Initialization. The number of hidden units u in the networks that will be formed is speci�ed and
a population of neuron chromosomes is created. Each chromosome encodes the input and output
connection weights of a neuron with a random string of binary numbers.

2. Evaluation. A set of u neurons is selected randomly from the population to form a hidden layer of
a feedforward network. The network is submitted to a trial in which it is evaluated on the task and
awarded a �tness score. The score is added to the cumulative �tness of each neuron that participated
in the network. This process is repeated until each neuron has participated in an average of e.g. 10
trials.

6

Task Environment

Figure 2: Symbiotic, Adaptive Neuro-Evolution (SANE). The population consists of hidden neurons,
each with its own input and output connections. The networks are formed by randomly choosing u neurons
for the hidden layer. Networks are evaluated in the task, and the �tness is distributed among all the neurons
that participated in the network. After all neurons are evaluated this way, recombination is performed in
the neuron population.

3. Recombination. The average �tness of each neuron is calculated by dividing its cumulative �tness by
the number of trials in which it participated. Neurons are then ranked by average �tness. Each neuron
in the top quartile is recombined with a higher-ranking neuron using 1-point crossover and mutation
at low levels to create the o�spring to replace the lowest-ranking half of the population.

4. Goto 2.

In SANE, neurons compete on the basis of how well, on average, the networks in which they participate
perform. A high average �tness means that the neuron contributes to forming successful networks and,
consequently, suggests a good ability to cooperate with other neurons. Over time, neurons will evolve that
result in good networks.

The SANE approach has proven faster and more e�cient than other reinforcement learning methods
(Moriarty and Miikkulainen 1996a; Moriarty 1997). The reason is that evolving partial solutions (neurons)
instead of full solutions (networks) automaticallymaintains diversity in the population. If one type of neuron
genotype begins to take over the population, networks will often be formed that contain several copies of
that genotype. Because di�cult tasks usually require several di�erent hidden neurons, such networks cannot
perform well. They incur low �tness, and the dominant genotype will be selected against, bringing diversity
back into the population. As a matter of fact, in the advanced stages of SANE evolution, instead of converging
the population around a single individual like the standard GA approaches, the neuron population clusters
into \species" or groups of individuals that perform specialized functions in the target behavior (Moriarty
1997).

4.2 Enforced Sub-Populations (ESP)

In Enforced Sub-Populations, as in SANE, the population consists of individual neurons instead of full
networks, and a subset of neurons are put together to form a complete network. However, ESP allocates
a separate population for each of the u units in the network, and a neuron can only be recombined with
members of its own sub-population (�gure 3).

ESP speeds up SANE evolution for two reasons: The subpopulations that gradually form in SANE are
already circumscribed by design in ESP. The \species" do not have to organize themselves out of a single
large population, and their progressive specialization is not hindered by recombination across specializations
that usually ful�ll relatively orthogonal roles in the network. Second, because the networks formed by ESP

7

Task Environment

Figure 3: The Enforced Sub-Populations Method (ESP). The population of neurons is segregated into
sub-populations shown here as clusters of circles. The network is formed by randomly selecting one neuron
from each subpopulation.

always consist of a representative from each evolving specialization, a neuron is always evaluated on how well
it performs its role in the context of all the other players. In SANE, networks can contain multiple members
of some specializations and omit members of others, and its evaluations are therefore less consistent.

The main contribution of ESP, however, is that it allows evolution of recurrent networks. A neuron's
behavior in a recurrent network is critically dependent upon the neurons to which it is connected. Since
SANE forms networks by randomly selecting neurons from a single population, a neuron cannot rely on being
combined with similar neurons in any two trials. A neuron that behaves one way in one trial may behave
very di�erently in another, and SANE cannot obtain accurate information about the �tness of recurrent
neurons. The sup-population architecture of ESP makes the evaluation of the neuron more consistent. A
neuron's recurrent connection weight ri will always be associated with neurons from subpopulation Si. As
the sub-populations specialize, neurons evolve to expect, with increasing certainty, the kinds of neurons to
which they will be connected. Therefore, the recurrent connections to those neurons can be adapted reliably.

As evolution progresses, each sub-population will decline in diversity. This is a problem, especially in
incremental evolution, because a converged population cannot easily adapt to a new task. To accomplish task
transfer despite convergence, ESP is combined with an iterative search technique known as Delta-Coding.

4.3 Delta-Coding

The idea of Delta-Coding (Whitley et al. 1991) is to search for optimal modi�cations of the current best
solution. In a conventional single-population GA, when the population of candidate solutions has converged,
Delta-Coding is invoked by �rst saving the best solution and then initializing a population of new individuals
called �-chromosomes. The �-chromosomes have the same length (number of genes) as the best solution
and they consist of values (�-values) that represent di�erences from the best solution. The new population
is evolved by selecting �-chromosomes, adding their �-values to the best solution, and evaluating the result.
Those �-chromosomes that improve the solution are selected for reproduction. Therefore, Delta-Coding
explores the hyper-space in a \neighborhood" around the best previous solution. Delta-Coding can be
applied multiple times, with successive �-populations representing di�erences to the previous best solution.

In the experiments presented in this paper, Delta-Coding is implemented with the ESP sub-population
architecture. Once the neuron sub-populations have reached minimal diversity, the best solution (i.e. the
best network speci�cation) is saved. New sub-populations are then initialized with �-chromosomes so that
each neuron in the best solution has a dedicated sub-population of �-chromosomes that will be evolved to
improve it speci�cally. ESP selects a �-chromosome from each sub-population and adds the �-values to
the connection weights of the neurons in the best-solution. When these sub-populations converge the best

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-10 -5 0 5 10

P
ro

ba
bi

lit
y

Delta value

Figure 4: The Cauchy distribution for � = 0:5. Most of the �-values represent small modi�cations to the
best solution, but large values are also possible.

�-chromosomes are added to the best solution to form the new best solution for the next iteration of the
Delta phase.

Delta-Coding was developed by Whitley et al.(1991) to enhance the �ne local tuning capability of Genetic
Algorithms for numerical optimization. However, its potential for adaptive behavior lies in the facilitation
of task transfer. Delta-Coding provides a mechanism for transitioning the evolution into each progressively
more demanding task:

t1
�
�! t2

�
�! t3

�
�! � � �

�
�! tn (3)

Each ti
�
! ti+1 (Delta transition) involves saving the best network best(ti) from the last generation of the

evaluation task ti, and initializing sub-populations of �-chromosomes that are then evolved to adapt best(ti)
to the next task ti+1. When ti+1 has been evolved, best(ti+1) (the best modi�cation to best(ti)) is formed by
adding the best �-chromosomes to best(ti). The solution best(ti+1) will then be adapted to ti+2, and so on.

In some task transitions, some weights in the best solution may need to change radically. This is especially
true if the new task introduces novel input patterns. Therefore, initial �-values need to be generated using a
probability density function that concentrates most of the values in the local search space while occasionally
permitting values of much larger magnitude. One distribution that has these desirable properties is the
Cauchy distribution (�gure 4):

f(x) =
�

�(�2 + x2)
(4)

With this distribution 50% of the �-values will fall within the interval �� and 99:9% within the interval
318:3� �.

5 Prey Capture Performance

The e�ectiveness of incremental evolution based on ESP and Delta-Coding was tested in the Prey Capture
task and compared to direct evolution. To determine how di�cult tasks could be solved, the prey speed and
short-term memory requirements of the task were varied.

5.1 Simulation Setup

For all simulations the following parameter settings were used:

9

Sup-population size 40

Sensor range 5

Chromosome mutation probability 0.1

Initial random weight range [-6.0,6.0]

Units 5

� (of the Cauchy distribution) 0.3

The networks were fully connected, and neuron chromosomes were encoded as strings of oating point
numbers. Arithmetic crossover was used to generate new neurons. Each chromosome was mutated with
probability 0.1, replacing a randomly chosen weight value with a random value within the range [-6.0, 6.0].
The techniques and parameters were found e�ective experimentally; small deviations from them produce
roughly equivalent results.

At each generation during evolution, 400 networks are constructed and evaluated in the following way:
the agent is placed in the center of a 24 � 24 grid world and the prey is placed in a random position just
within the agent's sensor range. The agent and prey alternate in taking an action each time-step until either
the prey has been captured or a maximum number of time-steps N has been reached. If the agent captures
the prey then the prey is moved to a new initial position just within the sensor range, and the agent is
allowed another N moves to capture the prey. This process continues until the agent fails to capture the
prey within N moves (the value N can thus be interpreted e.g. as the maximum time that the agent can
survive without feeding). The number of times the agent captured the prey is used as its �tness score. For
an agent to receive high �tness, it must be able to catch the prey from many initial states and deal favorably
with the prey's non-deterministic behavior.

The di�culty of the task can be adjusted in two ways: To force the network to follow the prey tighter
and predict its behavior more accurately, the prey speed (i.e. the probability of it making a move) can be
increased. Second, to enforce believable behavior based on short-term memory, the prey can be allowed to
make a greater number of moves before the agent is allowed to make its �rst move. During these m moves
the prey moves with a speed of 1:0. The prey's head start guarantees that each trial will contain situations
that require memory, thereby maximizing the density of task-relevant experiences per trial.

Evaluation-tasks will be referred to by the notation Es
m, where m is the number of initial moves the prey

can take and s is the prey's speed. agents are evolved both directly and incrementally to accomplish E1:0
4

(i.where the prey makes four initial moves before the agent is allowed to move, and then continues to move
at the same speed as the agent). An agent is considered to have accomplished the task if it can capture the
prey more than 100 times in single trial.

5.2 Direct Evolution

For the Direct evolution simulations, the evaluation-task remains constant throughout evolution. In other
words, the networks are subjected to the goal task E1:0

4 from the beginning.

The lower plot in �gure 5 shows the results for direct evolution. As can be clearly seen in this �gure, direct
evolution is not powerful enough to solve E1:0

4 . All of the networks in the �rst generation perform too poorly
to provide adequate di�erentiation for reproduction; the environment is simply too di�cult for any single
individual to perform signi�cantly above average. The networks improve slightly over the �rst 20 generations
but, invariably, become trapped in a region of the weight space where the sub-populations have converged
before basic task skills have been acquired. The best of these individuals move around the environment a
few times in a mechanical fashion. In order for an individual to perform well it must know both how to
chase a fast-moving prey and remember its location. The likelihood of encountering an individual with such
pro�ciency in a random population is extremely low and the direct evolution failed every single time in our
simulations.

10

0

20

40

60

80

100

0 50 100 150 200

F
itn

es
s

Generations

Incremental
Direct

Figure 5: Performance of direct and incremental evolution in the Prey Capture task. The
maximum �tness per generation is plotted for each of the two approaches. The direct evolution (bottom
plot) makes slight progress at �rst but stalls after about 20 generations. The plot is an average of 10
simulations. Incremental evolution, however, proceeds through several task transitions (seen as abrupt drop-
o�s in the plot), and eventually solves the goal-task. The incremental plot is an average of 5 simulations.
Each of these included a di�erent number of generations for each evaluation-task, so time was stretched or
shrank for each so that the transitions could be lined up.

5.3 Incremental Evolution

In incremental evolution the population is �rst evolved on the task E0:0
0 , i.e. capturing a stationary pray

within its sensory range. Once this initial task has been accomplished, the best-performing network is saved
and Delta-Coding invoked to evolve E0:0

2 . After E0:0
2 , the number of initial steps m is further increased to

3 and 4, and then the prey speed from 0.0 to 1.0 in four steps. In other words, the incremental evolution
schedule is:

E0:0
0

�
�! E0:0

2

�
�! E0:0

3

�
�! E0:0

4

�
�! E0:3

4

�
�! E0:6

4

�
�! E0:8

4

�
�! E1:0

4

This sequence of tasks forces the agent to �rst develop its short-term memory and then learn to deal
with a fast moving prey. While other sequences are possible, this is a natural one. To be able to pursue a
pray at all, the agent �rst has to be able to know where it is. Each phase of this evolutionary regime will be
discussed separately in the following subsections. Figure 5 summarizes the results.

11

5.3.1 Capturing an immobile prey (E0:0
0)

This initial stage serves to bootstrap the entire incremental evolution process by presenting a task that can
be evolved from an initial random population. When E0:0

0 is used as the initial evaluation-task, there is
su�cient variation in the performance of networks to direct the genetic search. No memory is needed to
accomplish E0:0

0 so the agent only need to concern itself with the state of its sensory array, and no pursuit
is involved so that the agent only needs to be able to predict the results of its own actions.

In this easier environment, some networks are able to survive signi�cantly longer than others. Importantly,
they survive longer by performing a primitive form of the fundamental skills required for Prey Capture. Some
agent may do well capturing prey from the east, another from the west, while another from the north or south.
Over the course of evolution the genetic recombination of these skills eventually produces a well-adapted
individual that can capture the prey from all directions.

5.3.2 Increasing initial prey moves (E0:0
0

�
! E0:0

2

�
! E0:0

3

�
! E0:0

4)

As the number of initial prey moves m is incremented, the ability of the agent to remember the position of
the prey becomes increasingly important. When the evaluation task is E0:0

2 , the prey will often move out of
sensor range. However, because of its probabilistic policy, the prey will also sometimes remain within the
sensor range after m moves. As m is increased, the probability of the prey moving out of sensor range, and
its distance from the agent, increases.

Because situations that demand memory are introduced gradually, an agent can still capture the prey
most of the time even if it does not have the ability to always remember the prey's position. If the tasks were
rapidly transitioned from E0:0

0 to E0:0
4 , an agent would have to possess a general memory right away. When

E0:0
4 has been completed, the best network can capture the prey regardless of what direction it disappeared,

and how far (within 4 moves).

5.3.3 Increasing prey speed (E0:0
4

�
! E0:3

4

�
! E0:6

4

�
! E0:8

4

�
! E1:0

4)

After evolving an agent that can reliably remember where the prey is and can get to it, the prey is made
mobile. Until now, the prey's position has been encoded in the agent's recurrent network, and when the prey
moves, its sensory inputs do not match its internal representation of the situation and it does not perform
well. However, at �rst the prey moves only one third of the time, and it is still sometimes possible for the
agent to capture it because the prey is unlikely to make many moves during the time it takes the agent
to capture it. Those agents that can follow the prey even just one move will have an advantage and will
be selected for. Over several task transitions, the prey becomes gradually faster, and evolution will favor
networks that pay more attention to the current sensory input in determining the prey's location. Eventually
networks emerge that can pursue and capture the prey even when it is moving every time step, solving the
goal-task.

Throughout incremental evolution, therefore, the changes made in the task are small enough so that the
networks formed from the previous population can occasionally perform well. This makes it possible for
evolution to discriminate between good and bad genotypes, and make progress towards the goal task.

6 Experimental Analysis

Given that general prey capture behavior was evolved, what do the solutions look like? That is, what kind
of networks resulted, and what kind of behaviors they exhibit? Also, the result that incremental evolution
outperforms direct evolution is signi�cant only if the neuro-evolution method involved, ESP+delta-coding,

12

A A
P

Frame 5: 20 Moves

P

P

P

A

A
A

A

P

Frame 1: 0 Moves Frame 2: 4 Moves

Frame 4: 16 Moves Frame 6: 25 Moves

Frame 3: 8 Moves

Figure 6: An example of Prey Capture behavior. The prey gets a head start of 4 moves and moves
outside the sensory array. In 12 moves, however, the agent catches sight of it again, relying on its memory of
where it last saw the prey. Eventually the agent pins the prey down against the wall and captures it. Similar
scenarios occur from virtually all initial states, although the individual moves vary due to the stochastic
nature of the prey.

is a powerful method on its own right. These issues will be examined in the following subsections.

6.1 Prey Capture Behavior

Figure 6 shows a sequence of \snap-shots" that illustrate a typical Prey Capture scenario in the goal task.
In the �rst frame, the agent (denoted by the letter \A") is in its initial position, and the prey (\P") has
been placed in a random position just within sensor range. At this point, the agent can see the prey. Frame
2 is taken four prey moves later. The prey is now outside the agent's sensory array, and the agent has not
yet moved. In Frame 3, the agent has made four moves. The �rst move was selected while the prey was still
in the SE sector. The next three moves, however, had to rely on a recollection of where the agent last saw
the prey.

As the agent approaches the prey, it may not see it for several moves as the prey begins to ee. By move
16 (Frame 4), the agent has re-acquired the prey in its sensory array, and can begin to bear down on it.
Since the prey will move every time-step, the agent can only capture it by trapping it against a wall. This
behavior can be seen in Frame 5: The agent pursues the pray towards the wall, where its moves are limited
and it is captured (Frame 6).

Similar prey capture behavior evolved in all simulations. Although behavior is easy to describe, it involves
sophisticated components: remembering the likely location of the prey for several time steps, driving the

13

Lesioned Neuron 1 2 3 4 5
% Network Performance 63.2 21.9 47.7 48.1 25.1

Table 1: Prey Capture performance of a lesioned network. One of the successful networks was
systematically lesioned by removing the input weights of each of its neurons in turn. The lesioned network
was tested in the Prey Capture task and its performance was compared to that of the original network. For
example, when the �rst neuron of this network was lesioned, it was still able to capture the prey 63.2% as
many times as the complete network in a single trial. The results are averages over 100 trials. Similar results
were obtained for all networks tested.

prey towards a wall, and capturing it by the wall. What is most important, though, is that the successful
agents can perform this strategy from all di�erent initial states, and with a prey that behaves stochastically.
In this sense, the agents display believable and complex general behavior.

6.2 Network analysis

What do the successful Prey Capture networks look like, that is, how do the di�erent specializations con-
tribute and interact in Prey Capture? One way to analyze the contributions of individual neurons is to
perform a lesion study: remove one of the neurons from the network and observe the e�ects on the network's
behavior. The Prey Capture networks, however, are fully recurrent, and 4 out of the 5 units also serve as out-
put units. Such units cannot be completely removed from the network. Removing for example the \north"
output unit would only have the obvious and uninteresting e�ect of preventing the agent from moving north.
Instead, a unit can be lesioned by disabling only its input connections (i.e. the connection from the sensory
array), while still allowing it to receive recurrent signals from the other neurons. The functional role of the
lesioned neuron may then be inferred by observing the behavior of the damaged network in Prey Capture.

The main result of the lesion study is that the networks are quite robust (table 1). When a neuron (any
neuron) is lesioned, the behavior does not completely break down: the agent's tendency to pursue the prey
is preserved to large extent, and it is still able to perform signi�cant Prey Capture. When two neurons are
lesioned simultaneously there is a corresponding double degradation in performance (varying between 38.1%
for neurons 1 and 4 and 5% for 2 and 5).

It is di�cult to attribute a particular behavior to any particular neuron. The coding of behavior seems
to be distributed across the network. These results are in line with those of feedforward SANE networks for
controlling a mobile robot (Moriarty 1997), where elementary behaviors such as advancing and turning and
stopping in front of obstacles were also found to be distributed across multiple units. Recurrency apparently
makes the behaviors even more distributed. Very few of the recurrent weights of a successful network are
close to zero, which means that each neuron modulates the behavior of all other neurons. As a result, the
functions are distributed across the whole network, and the system is very robust against degradations such
as lesions, noise, and inaccurate weights values.

6.3 Pole-balancing

Prey Capture performance results (section 5) showed that incremental evolution is more powerful than
direct evolution. However, ESP could simply be a weak method, in which case the result would have little
signi�cance. The result is important only if shown on a strong neuro-evolution method that could be chosen
for a range of tasks. To this end, ESP was implemented in the standard reinforcement learning task of pole
balancing, and shown that it outperforms the best known neuro-evolution methods.

The basic pole balancing system consists of a pole hinged to a wheeled cart on a �nite stretch of track.
The objective is to apply force to the cart at regular time intervals such that the pole is balanced inde�nitely

14

Method Pole Balance Attempts Failures
Mean Best Worst SD

GENITOR 1846 272 7052 1396 0
SANE 535 70 1910 329 0
ESP 285 11 1326 277 0

Table 2: Performance of ESP on balancing a single pole compared to other neuro-evolution
methods. The results for SANE and GENITOR were obtained by Moriarty and Miikkulainen (1996a), who
also showed that they are faster than the standard temporal di�erence methods of reinforcement learning
such as the Adaptive Heuristic Critic (Anderson 1989; Barto et al. 1983) and Q-learning (Pendrith 1994;
Watkins and Dayan 1989). The results are averages over 50 simulations.

and the cart stays within the track boundaries. The state of this system is de�ned by four variables: the
angle of the pole from vertical �, the angular velocity of the pole _�, the position of the cart on the track x,
and the velocity of the cart _x. In the most common con�guration the force is restricted to be of constant
magnitude (\bang-bang" control), and the pole has a length of 1 meter (see Appendix B for the equations
and parameters used in this task and its variations below).

Table 2 shows a comparison of ESP with two other neuro-evolution methods: the basic SANE system of
Moriarty and Miikkulainen (1996a), and the GENITOR system of Whitley and Kauth (1988). GENITOR is
an agressive search method with adaptive mutation that evolves full neural networks. In these simulations, a
pole-balance attempt consisted of placing the cart in the center of the track with the pole in vertical position
and allowing the network to control the system until � exceeded 12 degrees or the cart moved o� the track.
ESP built 200 feed-forward networks in each generation, each with 5 units, resulting in approximately the
same number of weights per network as in SANE. On average, ESP found solutions with only about half the
pole balance attempts of SANE, and 1/6 of the attempts of GENITOR. It was also the most consistent of
the three methods.

The basic pole balancing setup can be extended in many ways to make the problem more di�cult. First
simple modi�cation is to allow the force to be continuous within a speci�ed range. Second, the controller
may be provided with only x and �, so that it has to use recurrent connections to compute the derivatives _x
and _� in order to balance the pole. Using a conventional NE method on networks with six recurrent units,
Wieland (1990, 1991) was able to evolve a controller for this problem in an average of 10 generations. ESP
solved the same task in as many generations on average (over 10 simulations), but tested less than half as
many networks (200 instead of 512 per generation).

An even more challenging problem is to place a second pole next to the �rst. In this task, Saravanan and
Fogel (1995) used Evolutionary Computation techniques to evolve a feed-forward network with 10 hidden
units to balance the poles (1m and 0.1m) in an average of 800 generations. ESP was able to perform the
same task in an average of 45 generations (averaged over 10 simulations).

These results show that ESP is a very powerful neuro-evolution method. It was able to solve both easy
and di�cult pole balancing tasks faster than the other NE techniques. However, as was seen in section 5.2,
it still cannot solve the Prey Capture task directly. It is therefore likely that complex general behavior can
be achieved with current evolution methods only through incremental evolution.

7 Discussion and Future Work

Prey Capture experiments illustrate the potential of incremental genetic search. The method is applicable to
any problem that can be naturally decomposed into a sequence of increasingly complex tasks. However, the
decomposition must be performed by the user and provided to the system before evolution commences. The
user has to determine the sequence of tasks that will reliably a�ord successful transitions for a population

15

of a given size. This may not always be easy to do: There may not always be a clear way to simplify a
task without decorrelating it completely from the goal-task, and it may not always be easy to tell what the
relative di�culties of the tasks are.

However, at least for Arti�cial Life and robot control, the task sequences are usually easy to come by,
because the goal-task often subsumes natural layers of behavior (Brooks 1986). For example, avoidingmoving
obstacles while following a wall could be evolved incrementally. The robot could �rst be evolved to move
around avoiding stationary obstacles, then obstacles moving at slow speeds. Later, the speed of the obstacles
would be increased, and the robot would be evolved to follow a wall. As long as any two consecutive tasks
are not too distant from each other the system should be able to perform the transition. We have found that
in situations where this is not the case, Delta-Coding can be invoked even within a task when performance
ceases to improve signi�cantly. In other words, if Delta-Coding is used more often, it is not as crucial to
design the task sequence just right.

Once evolved, the controller can always serve as a starting point from which to build increasingly so-
phisticated behavior through continued application of ESP/Delta-Coding. In fact, the ESP/Delta-Coding
approach can be used to modify any neural network regardless of how it was trained. This way it might be
possible to start the evolution with basic behaviors already built in to the initial best network.

Ideally, the system should discover the sequence of evaluation tasks automatically with the user only
providing the dimensions, such as prey speed and number of initial moves. The system could start with
a base-level task where the environmental parameters are set to their trivial values (e.g. speed and initial
moves to 0). When this task is achieved these values would be incremented by a small amount until the
individual that performed best on the initial task can no longer cope with the environment. These parameter
settings would then serve as the next evaluation task for the population. It might also be possible to vary the
environment parameters continuously (from generation to generation) in response to average performance.

The Prey Capture experiments constitute a starting point for research on methods that evolve complex
general behavior. Many extensions to the algorithm are possible, such as automating the task transitions,
and extending the ESP/delta-coding algorithm to networks that vary in architecture. There are many tasks
in the real world that require complex general behavior, including game playing and motor control. A major
direction of future work will be to apply incremental evolution to these tasks.

8 Conclusion

This paper shows that even when a task is too di�cult to evolve directly, Neuro-Evolution can be applied
incrementally to achieve the desired complex behavior. In this approach, Enforced Sub-Populations allows
evolution of recurrent networks, which are necessary for tasks that require memory. The Delta-Coding
technique allows evolution to transition between tasks even when the population has lost diversity during
the previous task. The approach should be applicable to many real world domains such as game playing and
robot control, as well as Arti�cial Life , where often a natural hierarchy of behaviors from simple to complex
exists.

Acknowledgments

Special thanks to Oliver Gomez for help in preparing the illustrations. This research was supported in part
by National Science Foundation under grant #IRI-9504317.

16

Appendix A: The prey movement algorithm
The prey's actions are chosen stochastically. On each step, (1 � v)% of the time (where v 2 [0; 1] is

user-de�ned) the prey will not move, and v% of the time it will choose one of the four actions, A0 (north),
A1 (south), A2 (east), and A3 (north), according to the following distribution:

prob(Ai) = Pi=(P0 + P1 + P2 + P3);

where

Pi = exp(0:33 �W (angle) � T (dist))

angle = angle between the direction of action Ai and the direction from the prey to the agent,

dist = distance between the prey and the agent,

W (angle) = (180� janglej)=180;

T (dist) =

8<
:

15� dist if dist � 4,
9� dist=2 if dist � 15,
1 otherwise.

17

Appendix B: Pole-balancing parameters

The equations of motion for N unjointed poles balanced on a single cart are

�x =
F � �csgn(_x) +

PN

i=1
~Fi

M +
PN

i=1 ~mi

��i = �
3

4li
(�x cos �i + g sin �i +

�pi _�i
mili

)

Where ~Fi is the e�ective force from the ith pole on the cart

~Fi = mili
_�2i sin �i +

3

4
mi cos �i(

�pi _�i
mili

+ g sin �i)

and ~mi is the e�ective mass of the ith pole

~mi = mi(1�
3

4
cos2 �i)

Parameters for basic single pole problem (i=1).

Sym. Description Value

x Position of cart on track [-2.4,2.4] m
� Angle of pole from vertical [-12,12] deg.
F Force applied to cart -10,10 N
g Gravitational acceleration -9.8m/s2

l Half length of pole 0.5m
M Mass of cart 1.0 kg
m Mass of pole 0.1 kg

Parameters for the double pole problem.

18

Sym. Description Value

x Position of cart on track [-2.4,2.4] m
� Angle of pole from vertical [-15,15] deg.
F Force applied to cart [-10,10] N
g Gravitational acceleration -9.8m/s2

li Half length of ith pole l1 = 0.5m
l2 = 0.05m

M Mass of cart 1.0 kg
mi Mass of ith pole m1 = 0.1 kg

m2 = 0.01 kg
�c Coe�cient of friction 0.0005

of cart on track
�p Coe�cient of friction 0.000002

if ith pole's hinge

19

References

Anderson, C. W. (1989). Learning to control an inverted pendulum using neural networks.
IEEE Control Systems Magazine, 9:31{37.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements that
can solve di�cult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13:834{846.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(10).

Cli�, D., Harvey, I., and Husbands, P. (1992). Incremental evolution of neural network
architectures for adaptive behavior. Technical Report CSRP256, School of Cognitive
and Computing Sciences, University of Sussex, Brighton, UK.

Colombetti, M., and Dorigo, M. (1992a). Learning to control an autonomous robot by
distributed genetic algorithms. In Meyer, J. A., Roitblat, H. L., and Wilson, S. W.,
editors, From Animals to Animats 2, Proceedings of the 2nd International Conference
on Simulation of Adaptive Behavior. MIT Press.

Colombetti, M., and Dorigo, M. (1992b). Robot shaping: developing situated agents through
learning. Technical Report TR-92-040, International Computer Science Institute, Berke-
ley,CA.

Elman, J. L. (1991). Incremental learning, or The importance of starting small. In Proceed-
ings of the 13th Annual Conference of the Cognitive Science Society, 443{448. Hillsdale,
NJ: Erlbaum.

Law, D., and Miikkulainen, R. (1994). Grounding robotic control with genetic neural net-
works. Technical Report AI93-223, Department of Computer Sciences, The University
of Texas at Austin.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, planning,
and teaching. Machine Learning, 8:293{321.

Lin, L.-J. (1993). Hierarchical learning of robot skills by reinforcement. In Proceedings of
the International Joint Conference on Neural Networks. IEEE.

Miller, G., and Cli�, D. (1994). Co-evolution of pursuit and evasion i: Biological and game-
theoretic foundations. Technical Report CSRP311, School of Cognitive and Computing
Sciences, University of Sussex, Brighton, UK.

Moriarty, D. E. (1997). Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. PhD thesis, Department of Computer Sciences, The University of Texas at Austin,
Austin, TX. Technical Report UT-AI97-259.

Moriarty, D. E., and Miikkulainen, R. (1996a). E�cient reinforcement learning through
symbiotic evolution. Machine Learning, 22:11{32.

20

Moriarty, D. E., and Miikkulainen, R. (1996b). Evolving obstacle avoidance behavior in
a robot arm. In Maes, P., Mataric, M., Meyer, J.-A., and Pollack, J., editors, From
Animals to Animats: The Fourth International Conference on Simulation of Adaptive
Behavior (SAB96).

Nol�, S., Elman, J. L., and Parisi, D. (1990). Learning and evolution in neural networks.
Technical Report 9019, Center for Research in Language, University of California, San
Diego.

Nol�, S., and Parisi, D. (1994). Good teaching inputs do not correspond to desired responses
in ecological neural networks. Neural Processing Letters, 1(2):1{4.

Nol�, S., and Parisi, D. (1995). Learning to adapt to changing environments in evolving
neural networks. Technical Report 95-15, Institute of Psychology, National Research
Council, Rome, Italy.

Pendrith, M. (1994). On reinforcement learning of control actions in noisy and non-
Markovian domains. Technical Report UNSW-CSE-TR-9410, School of Computer Sci-
ence and Engineering, The University of New South Wales, Sydney, Australia.

Perkins, S., and Hayes, G. (1996). Robot shaping{principles, methods, and architectures.
Technical Report No. 795, Department of Arti�cal Intelligence, University of Edinburgh.

Ring, M. B. (1994). Continual Learning in Reinforcement Environments. PhD thesis, De-
partment of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712.

Saravanan, N., and Fogel, D. B. (1995). Evolving neural control systems. IEEE Expert,
23{27.

Singh, S. (1992). Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning, 8:323{339.

Thrun, S. (1996). Explanation-Based Neural Network Learning: A Lifelong Learning Ap-
proach. Kluwer Academic Publishers.

Watkins, C. J. C. H., and Dayan, P. (1989). Q-learning. Machine Learning, 8:279{292.

Whitley, D., and Kauth, J. (1988). Genitor: A di�erent genetic algorithm. In Proceedings
of the 1988 Rocky Mountain Conference on Arti�cial Intelligence. Computer Science
Department, Colorado State University.

Whitley, D., Mathias, K., and Fitzhorn, P. (1991). Delta-coding: An iterative search strategy
for genetic algortihms. In Proceedings of the Fourth International Conference on Genetic
Algorithms. Los Altos, CA: Morgan Kaufmann.

Wieland, A. (1990). Evolving controls for unstable systems. In Touretzky, D. S., Elman, J. L.,
and Sejnowski, T. J., editors, Proceedings of the 1990 Connectionist Models Summer
School, 91{102. San Mateo, CA: Morgan Kaufmann.

21

Wieland, A. (1991). Evolving neural network controllers for unstable systems. In Proceedings
of the International Joint Conference on Neural Networks (Seattle, WA), vol. II, 667{673.
Piscataway, NJ: IEEE.

Wilson, S. W. (1991). The animat path to AI. In Meyer, J., and Wilson, S., editors,
Proceedings of the First International Conference on Simulation of Adaptive Behavior,
15{21. MIT Press/Bradford Books.

Yamauchi, B., and Beer, R. (1994). Integrating reactive, sequential, and learning behavior
using dynamical neural networks. In Cli�, D., Husbands, P., Meyer, J. A., and Wilson,
S., editors, From Animals to Animats 3, Proceedings of the 3rd International Conference
on Simulation of Adaptive Behavior. MIT Press/Bradford Books.

