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Many real-world problems involve data that both have complex struc-

tures and uncertainty. Statistical relational learning (SRL) is an emerging

area of research that addresses the problem of learning from these noisy struc-

tured/relational data. Markov logic networks (MLNs), sets of weighted first-

order logic formulae, are a simple but powerful SRL formalism that generalizes

both first-order logic and Markov networks. MLNs have been successfully ap-

plied to a variety of real-world problems ranging from extraction knowledge

from text to visual event recognition. Most of the existing learning algo-

rithms for MLNs are in the generative setting: they try to learn a model

that is equally capable of predicting the values of all variables given an ar-

bitrary set of evidence; and they do not scale to problems with thousands of

examples. However, many real-world problems in structured/relational data
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are discriminative—where the variables are divided into two disjoint sets in-

put and output, and the goal is to correctly predict the values of the output

variables given evidence data about the input variables. In addition, these

problems usually involve data that have thousands of examples. Thus, it is

important to develop new discriminative learning methods for MLNs that are

more accurate and more scalable, which are the topics addressed in this thesis.

First, we present a new method that discriminatively learns both the

structure and parameters for a special class of MLNs where all the clauses

are non-recursive ones. Non-recursive clauses arise in many learning problems

in Inductive Logic Programming. To further improve the predictive accuracy,

we propose a max-margin approach to learning weights for MLNs. Then,

to address the issue of scalability, we present CDA, an online max-margin

weight learning algorithm for MLNs. Ater that, we present OSL, the first

algorithm that performs both online structure learning and parameter learning.

Finally, we address an issue arising in applying MLNs to many real-world

problems: learning in the presence of many hard constraints. Including hard

constraints during training greatly increases the computational complexity of

the learning problem. Thus, we propose a simple heuristic for selecting which

hard constraints to include during training.

Experimental results on several real-world problems show that the pro-

posed methods are more accurate, more scalable (can handle problems with

thousands of examples), or both more accurate and more scalable than existing

learning methods for MLNs.
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Chapter 1

Introduction

A lot of data in the real world are in the form of structured/relational

data such as sequences, graphs, multi-relational data, etc. These structured

data contain a lot of entities (or objects) and relationships among the entities.

For example, biochemical data contain information about various atoms and

their interactions, social network data contain information about people and

relationships between them, and so on. Moreover, there are a lot of uncertain-

ties in these data: uncertainty about the attributes of an object, the type of an

object, as well as relationships between objects. Statistical relational learning

(SRL) (Getoor & Taskar, 2007) which combines ideas from rich knowledge rep-

resentations, such as first-order logic, with those from probabilistic graphical

models is an emerging area of research that addresses the problem of learning

from these noisy structured/relational data.

A variety of different SRL models have been proposed in the last

two decades. Among them, Markov Logic Networks (MLNs) (Richardson &

Domingos, 2006; Domingos & Lowd, 2009), sets of weighted first-order logic

formulae, are an elegant but powerful formalism. It generalizes both first-

order logic and Markov networks. MLNs are capable of representing all pos-
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sible probability distributions over a finite number of objects (Richardson &

Domingos, 2006). Moreover, MLNs also subsume other SRL representations

such as Probabilistic Relational Models (Koller & Pfeffer, 1998) and Rela-

tional Markov Networks (Taskar, Abbeel, & Koller, 2002). MLNs have been

successfully applied to a variety of real-world problems ranging from extrac-

tion knowledge from text (Kok & Domingos, 2008) to visual event recognition

(Tran & Davis, 2008). Therefore, in this thesis, we have chosen MLNs as the

model for doing research.

Currently, most of the existing learning algorithms for MLNs are in the

generative setting: they try to learn a model that is equally capable of pre-

dicting the values of all variables given an arbitrary set of evidence. However,

most of the learning problems in relational data are discriminative—where the

variables are divided into two disjoint sets input and output, and the goal is to

correctly predict the values of the output variables given evidence data about

the input ones. For example, in many problems in biochemistry, the goal

is to learn a model that discriminates the active chemical compounds from

the inactive ones based on their molecular structures. This task is called the

structure activity relationship prediction, and it is an important task in drug

design and discovery (King, Sternberg, & Srinivasan, 1995). Another example

is structured prediction problems (Bakir, Hoffman, Schölkopf, Smola, Taskar,

& Vishwanathan, 2007) where the output variables are interdependent. For

example, in field segmentation (Grenager, Klein, & Manning, 2005), one is

given a text document represented as a sequence of tokens and the goal is to
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segment the document into fields (i.e. to label each token in the document

with a field label). Note that, there are dependencies between tokens’ labels

such as consecutive tokens usually have the same field label. It is, therefore,

an important research problem to develop discriminative learning methods for

MLNs that have high predictive accuracies on these discriminative tasks.

On the other hand, all existing methods for learning the structure (i.e.

logical clauses) of an MLN (Kok & Domingos, 2005; Mihalkova & Mooney,

2007; Biba, Ferilli, & Esposito, 2008; Kok & Domingos, 2009, 2010) are batch

algorithms that are effectively designed for training data with relatively few

mega-examples (Mihalkova, Huynh, & Mooney, 2007). A mega-example is a

large set of connected facts, and mega-examples are disconnected and inde-

pendent from each other. For instance, in WebKB (Slattery & Craven, 1998),

there are four mega-examples, each of which contains data about a particular

university’s computer-science department’s web pages of professors, students,

courses, research projects and the hyperlinks between them. Previous work

has found that there are a lot of repeated patterns in each mega-example and

exploited this characteristic to develop efficient structure learning methods for

MLNs on those problems (Kok & Domingos, 2009, 2010). However, there are

many real-world problems with a different character — involving data with

thousands of smaller structured examples. For example, a standard dataset

for semantic role labeling consists of 90, 750 training examples where each ex-

ample is a verb and all of its semantic arguments in a sentence (Carreras &

Màrquez, 2005). In addition, each example does not contain a lot of repeated
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patterns, but the patterns are repeated across examples. On the other hand,

most existing methods for learning the parameters (i.e. clauses’ weights) of an

MLN employs batch training where the learner must repeatedly run inference

over all training examples in each iteration, which becomes computationally

expensive on datasets with thousands of training examples. Thus, it is neces-

sary to develop new discriminative learning methods for MLNs that can handle

data with a large number of examples.

1.1 Thesis Contributions

This thesis addresses two important issues in discriminative learning

for MLNs: accuracy and scalability. We presents new discriminative learning

methods that are more accurate, more scalable (can handle problems with

thousands of examples), or both.

First, we describe a new method that discriminatively learns both the

structure and parameters for a special class of MLNs where all the clauses

are non-recursive ones which arise in many benchmark problems in Inductive

Logic Programming (ILP). Most existing learning methods for non-recursive

clauses in ILP are purely logical approaches, which cannot handle uncertainty.

So, the idea is to use those ILP methods to construct a large number of poten-

tially useful clauses, and then use l1-regularized parameter learning methods

to properly weight them, preferring to assign zero weights to clauses that do

not contribute significantly to overall predictive accuracy, thereby eliminating

them. The proposed approach outperforms existing ones in term of predictive
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accuracy and achieves state-of-the-art results on a benchmark problem in drug

design.

Second, existing discriminative methods for learning the weights of an

MLN attempt to maximize the conditional log likelihood, which is suitable

when the goal is to predict accurate probabilities. However, in many applica-

tions, the actual goal is to maximize an alternative performance metric such

as classification accuracy or F-measure. Max-margin methods are a compet-

ing approach to discriminative training that are well-founded in computational

learning theory and have demonstrated empirical success in many applications

(Cristianini & Shawe-Taylor, 2000). They also have the advantage that they

can be adapted to maximize a variety of performance metrics in addition to

classification accuracy (Joachims, 2005). Thus, we present a max-margin ap-

proach to learning weights for an MLN. We show how to formulate the weight

learning problem for MLNs as a max-margin optimization problem. In order

to solve the optimization problem, we develop a new approximate inference

algorithm for MLNs based on Linear Programming relaxation. Experimental

results on several problems show that our max-margin weight learner gener-

ally has better and more stable predictive accuracy than the previously best

discriminative MLN weight learner.

However, like other existing weight learners for MLNs, the above max-

margin weight learner does not scale to problems with thousands of training ex-

amples. To address this issue, we develop CDA, an online max-margin weight

learning algorithm for structured prediction, and apply it to learn weights for
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an MLN. The algorithm is derived from the primal-dual framework (Kakade &

Shalev-Shwartz, 2009), a general framework for deriving online algorithms that

have low regret. Since CDA processes one example at a time, it can handle

problems with thousands of training examples where existing batch learning

methods for MLNs cannot. On the other hand, CDA generally achieves better

accuracy than existing online methods for structured prediction.

The above CDA online algorithm only updates the parameters of an

input MLN and assumes the structure of the input MLN is complete or perfect.

Nevertheless, it is usually impossible or infeasible to specify a complete or

perfect model’s structure at the beginning. So it would be useful to have

an algorithm that enhances the model’s initial structure along with updating

the model’s parameters. Therefore, we present OSL, the first algorithm that

performs both online structure and parameter learning. At each step, based

on the model’s wrong predictions, OSL finds new clauses that fix these errors,

then uses an adaptive subgradient method with l1-regularization to update

weights for both old and new clauses. Experimental results on two real-world

datasets show that OSL outperforms systems that only do online parameter

learning. In addition, OSL also performs well when starting from scratch (i.e.

no input structure).

Finally, we address an issue arising in applying MLNs to many real-

world problems: learning in the presence of many hard constraints. Including

hard constraints during training greatly increases the computational complex-

ity of the learning problem. Thus, we propose a simple heuristic for selecting
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which hard constraints to include during training. Experimental results on the

task of bibliographic citation segmentation show that the proposed approach

achieves the best predictive accuracy while still allowing for efficient training.

1.2 Thesis Outline

The remainder of the thesis is organized as follows.

• Chapter 2 reviews our terminology and notation, and presents back-

ground on MLNs, max-margin structured prediction, the primal-dual

framework, and some standard evaluation metrics.

• Chapter 3 describes our discriminative structure and parameter learning

algorithm for MLNs with non-recursive clauses.

• Chapter 4 presents the max-margin approach to learning weights for

MLNs. Chapter 5 discusses our online max-margin weight learning al-

gorithm for MLNs.

• Chapter 6 describes OSL, an online algorithm that updates both the

structure and parameters of an MLN.

• Chapter 7 presents our work on learning with hard constraints.

• Chapter 8 discusses future work and chapter 9 concludes the thesis.

We note that the material presented in Chapter 3 has appeared in our previous

publication (Huynh & Mooney, 2008), the material in Chapter 4 has appeared

7



in (Huynh & Mooney, 2009) and the material in Chapter 5 has appeared in

(Huynh & Mooney, 2011).
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Chapter 2

Background

2.1 Terminology and Notation

There are four types of symbols in first-order logic: constants, variables,

predicates, and functions (Genesereth & Nilsson, 1987). Here, we assume that

the domains contain no functions. Constants are objects in the domain and can

have types. Variables range over objects in the domain. Predicates represent

relations in the domain. Each predicate has a number of arguments. Each

argument can have a type that specifies the type of constant that can be

used to ground it. We denote constants by strings starting with upper-case

letters, and variables by strings starting with lower-case letters. A term is a

constant or a variable. An atom is a predicate applied to terms. A ground

atom is an atom all of whose arguments are constants. A positive literal is an

atom, and a negative literal is a negated atom. A ground literal is a literal

containing only constants. A possible world is an assignment of truth values

to all ground atoms in a domain. A formula consists of literals connected by

logical connectives (i.e. ∨ and ∧). A formula in clausal form, also called a

clause, is a disjunction of literals. A ground clause is a clause containing only

ground literals. A clause with at most one positive literal is called a Horn

clause. A Horn clause with exactly one positive literal is a definite clause.
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For mathematical terms, we use lower case letters (e.g. η, λ) to denote

scalars, bold face letters (e.g. x, y, w) to denote vectors, and upper case

letters (e.g. W, X) to denote sets. The inner product between vectors w and

x is denoted by 〈w,x〉. The [a]+ notation denotes a truncated function at 0,

i.e. [a]+ = max(a, 0)

2.2 Inductive Logic Programming and Aleph

Traditional Inductive Logic Programming (ILP) systems discrimina-

tively learn logical Horn-clause rules (logic programs) for inferring a given

target predicate given information provided by a set of background predi-

cates. These purely logical definitions are induced from Horn-clause back-

ground knowledge and a set of positive and negative tuples of the target pred-

icate. For more information about ILP, please see (Dzeroski, 2007).

Aleph is a popular and effective ILP system primarily based on Pro-

gol (Muggleton, 1995). The basic Aleph algorithm consists of four steps.

First, it selects a positive example to serve as the “seed” example. Then, it con-

structs the most specific clause, the “bottom clause”, that entails that selected

example. The bottom clause is formed by conjoining all known facts about

the seed example. Next, Aleph finds generalizations of this bottom clause by

performing a general to specific search. These generalized clauses are scored

using a chosen evaluation metric, and the clause with the best score is added

to the final theory. This process is repeated until it finds a set of clauses that

covers all the positive examples. Aleph allows users to customize each of
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these steps, and thereby supports a variety of specific algorithms.

2.3 MLNs and Alchemy

An MLN consists of a set of weighted first-order logic formulae. It

provides a way of softening first-order logic by making situations in which

not all formulae are satisfied less likely but not impossible (Richardson &

Domingos, 2006; Domingos & Lowd, 2009). More formally, let X be the set

of all ground atoms, C be the set of all clauses in the MLN, wi be the weight

associated with clause ci ∈ C, Gci be the set of all possible groundings of

clause ci. Then the probability of a possible world x is defined as (Richardson

& Domingos, 2006):

P (X = x) =
1

Z
exp

∑
ci∈C

wi
∑
g∈Gci

g(x)


=

1

Z
exp

(∑
ci∈C

wini(x)

)
where g(x) is 1 if g is satisfied and 0 otherwise, ni(x) =

∑
g∈Gci

g(x) is the number

of true groundings of ci in the possible world x, and Z =
∑
x∈X

exp
(∑

ci∈Cwini(x)
)

is the normalization constant. In many applications, we know a priori which

predicates are evidence predicates and which predicates are query ones, and

the goal is to correctly predict query atoms given evidence atoms. If we par-

tition the ground atoms in the domain into a set of evidence atoms X and a

set of query atoms Y, the conditional probability of y given x is:

P (Y = y|X = x) =
1

Zx

exp

(∑
ci∈C

wini(x,y)

)
(2.1)
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where ni(x,y) is the number of true groundings of ci in the possible world

(x,y) and Zx =
∑
y∈Y

exp
(∑

ci∈Cwini(x,y)
)

is the normalization constant.

There are two main inference tasks in MLNs. The first one is to infer

the Most Probable Explanation (MPE) or the most probable truth values for a

set of unknown literals y given a set of known literals x, provided as evidence

(also called MAP inference in some other work). This task is formally defined

as follows:

arg max
y

P (y|x) = arg max
y

1

Zx
exp

(∑
ci∈C

wini(x,y)

)
= arg max

y

∑
ci∈C

wini(x,y)

MPE inference in MLNs is therefore equivalent to finding the truth assign-

ment that maximizes the sum of the weights of satisfied clauses, a Weighted

MAX-SAT problem. This is an NP-hard problem for which a number of ap-

proximate solvers exist, of which the most commonly used is MaxWalkSAT

(Kautz, Selman, & Jiang, 1997). Recently, Riedel (2008) proposed a more

efficient method to solve the MPE inference problem called Cutting Plane In-

ference (CPI), which does not require grounding the whole MLN. The CPI is

a meta inference algorithm that incrementally constructs some parts of a large

and complex Markov network and then uses some MPE inference algorithm

to find the MPE solution on the constructed network. The main idea is that

we don’t need to ground the whole Markov network to find the MPE solution

since there is a lot of redundant information in the whole network. However,
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the CPI method only works well when the separation step returns a small set

of constraints. In the worst case, it also constructs the whole ground MLN.

The second inference task in MLNs is marginal inference whose goal

is to compute the marginal probabilities of some unknown query literals y.

Computing these probabilities is also intractable, but there are good approxi-

mation algorithms such as MC-SAT (Poon & Domingos, 2006) and lifted belief

propagation (Singla & Domingos, 2008).

Learning an MLN consists of two tasks: structure learning and weight

learning. The weight learner can learn weights for clauses written by a hu-

man expert or automatically induced by a structure learner. There are two

approaches to weight learning in MLNs: generative and discriminative. In dis-

criminative learning, we know a priori which predicates will be used to supply

evidence and which ones will be queried, and the goal is to correctly predict the

latter given the former. Several discriminative weight learning methods have

been proposed, all of which try to find weights that maximize the Conditional

Log Likelihood (CLL) (equivalently, minimize the negative CLL). In MLNs,

the derivative of the negative CLL with respect to a weight wi is the difference

of the expected number of true groundings Ew[ni] of the corresponding clause

fi and the actual number according to the data ni. However, computing the

expected count Ew[ni] is intractable. The first discriminative weight learner

(Singla & Domingos, 2005) uses the structured perceptron algorithm (Collins,

2002) where it approximates the intractable expected counts by the counts in

the MPE state computed by the MaxWalkSAT. Later, Lowd and Domingos
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(2007) presented a number of first-order and second-order methods for opti-

mizing the CLL. These methods use samples from MC-SAT to approximate

the expected counts used to compute the gradient and Hessian of the CLL.

Among them, the best performing is preconditioner scaled conjugate gradient

(PSCG) (Lowd & Domingos, 2007). This method uses the inverse diagonal

Hessian as the preconditioner.

Regarding structure learning, there are currently two main approaches

for learning clauses for MLNs. The first one is a top-down approach (Kok &

Domingos, 2005; Biba et al., 2008). These algorithms can start from an empty

network or from an existing knowledge base. So they can be used for learning a

new MLN or revising an existing MLN. The algorithms usually start from the

set of unit clauses, and iteratively add new clauses to the model. In each step,

they try to find the best clause to add to the current MLN by adding, delet-

ing, or flipping the sign of a literal (Kok & Domingos, 2005) or performing a

stochastic local search (Biba et al., 2008). The weight of each candidate clause

is set to optimize the weighted pseudo log-likelihood (WPLL) (Kok & Domin-

gos, 2005) through an optimization procedure. Then each candidate structure

is scored by the WPLL (Kok & Domingos, 2005) or by the CLL (Biba et al.,

2008), and the best candidate clause is add to the learnt MLN. The other

approach is the bottom-up one (Mihalkova & Mooney, 2007; Kok & Domin-

gos, 2009, 2010). Mihalkova and Mooney (2007) proposed the first bottom-up

structure learner for MLNs called Busl. It first constructs Markov network

templates from the data and then generates candidate clauses from these net-
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work templates. All candidate clauses are also evaluated using WPLL, and

added to the final MLN in a greedy manner. Later, Kok and Domingos (2009)

proposed a new bottom-up structure learner for MLNs called LHL. The main

idea of this algorithm is based on the observation that a relational database

can be viewed as a hypergraph with constants as nodes and relations as hy-

peredges. Then a clause can be constructed from a path in the hypergraph.

However, a hypergraph usually contains an exponential number of paths. So

to make it tractable, the algorithm first lifts the hypergraph by jointly cluster-

ing all the constants in the relational database to form higher-level concepts,

then finds paths in the lifted hypergraph. Recently, Kok and Domingos (2010)

proposed LSM, another bottom-up MLN structure learner that can learn long

clauses (more than 5 literals). The key insight of LSM is that relational data

usually contain repeated patterns of densely connected objects called struc-

tural motifs. By limiting the search to each unique motif, LSM is able to find

good clauses in an efficient manner.

Alchemy (Kok, Singla, Richardson, & Domingos, 2005) is an open

source software package for MLNs. It includes implementations for all of the

major existing algorithms for structure learning, generative weight learning,

discriminative weight learning, and inference. Our proposed algorithms are

implemented using Alchemy.
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2.4 Max-margin structured prediction

In this section, we briefly review the max-margin structured prediction

problem and an algorithmic schema for solving it efficiently. For more detail,

see Tsochantaridis, Joachims, Hofmann, and Altun (2005), Joachims, Finley,

and Yu (2009). In structured prediction, we want to learn a function h :

X→ Y, where X is the space of inputs and Y is the space of multivariate and

structured outputs, from a set of training examples S:

S = ((x1,y1), ..., (xn,yn)) ∈ (X× Y)n

The goal is to find a function h that has low prediction error. This can be

accomplished by learning a discriminant function f : X× Y → R, then maxi-

mizing f over all y ∈ Y for a given input x to get the prediction:

hw(x) = arg max
y∈Y

fw(x,y)

The discriminant function fw(x,y) takes the form of a linear function:

fw(x,y) = wTφ(x,y)

where w ∈ Rn is a parameter vector and φ is a feature vector relating an input

x and output y. The features need to be designed for a given problem so that

they capture the dependency structure of y and x and the relations among

the outputs y . Then, the goal is to find a weight vector w that maximizes

the margin which is the difference between the model’s score for the correct

label and the model’s score for the closest incorrect one:

γ(xi,yi;w) = wTφ(xi,yi)− max
y′i∈Y\yi

wTφ(xi,y
′
i)

16



The max-margin problem above can be formulated as an optimization

problem called structural SVM (Tsochantaridis, Joachims, Hofmann, & Altun,

2004; Tsochantaridis et al., 2005) as follows:

Optimization Problem 1 (OP1): Structural SVM

min
w,ξ≥0

1

2
wTw +

C

n

n∑
i=1

ξi

s.t. ∀i,∀y ∈ Y \ yi : wT [φ(xi,yi)− φ(xi,y)] ≥ 1− ξi

The slack variables are used to allow some errors in the training data,

and the scalar C ≥ 0 is a hyper-parameter that controls the trade-off between

minimizing the training error and maximizing the margin. This formulation

implicitly imposes a zero-one loss on each constraint which is inappropriate for

most kinds of structured output since it treats a prediction that is very close

to the correct one as the same as a prediction that is completely different from

the right one. To take into account this problem, Taskar, Guestrin, and Koller

(2004) proposed to re-scale the margin by the Hamming loss of the wrong

label. This margin-rescaling approach also works for other loss functions as

well (Tsochantaridis et al., 2005). The resulting optimization problem is as

follows:

Optimization Problem 2 (OP2): Structural SVM with

Margin-Rescaling

min
w,ξ≥0

1

2
wTw +

C

n

n∑
i=1

ξi

s.t. ∀i, ∀y ∈ Y : wT [φ(xi,yi)− φ(xi,y)] ≥ ∆(yi,y)− ξi
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Note that, the OP1 is the OP2 with zero-one label loss. Recently,

Joachims et al. (2009) proposed a reformulation of the above optimization,

called “1-slack” structural SVMs which combines all training examples into

one big training example and has only slack variable for the new mega example:

Optimization Problem 3 (OP3): 1-Slack Structural SVM with

Margin-Rescaling

min
w,ξ≥0

1

2
wTw + Cξ

s.t. ∀(ȳ1, ..., ȳn) ∈ Yn :
1

n
wT

n∑
i=1

[φ(xi,yi)− φ(xi, ȳi)] ≥
1

n

n∑
i=1

∆(yi, ȳi)− ξ

The 1-slack reformulation leads to a faster and more scalable training algorithm

whose running time is provably linear in the number of training examples

(Joachims et al., 2009).

In each iteration, the algorithm 2.1 solves a Quadratic Programming

(QP) problem (line 4) to find the optimal weights corresponding to the cur-

rent set of constraints W and a separation oracle (line 6), also called a loss-

augmented inference problem (Taskar, Chatalbashev, Koller, & Guestrin, 2005),

to find the most violated constraint to add to W. The QP problem in line 4 can

be solved by any general QP solver. In contrast, for each representation (such

as Markov networks or weighted context free grammars) a specific algorithm

is needed for solving the loss-augmented inference problem.

To enforce a sparse solution on the learned weights, we can replace the

square 2-norm, wTw, on these formulations by the 1-norm, ||w||1 =
∑n

i=1 |wi|,
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Algorithm 2.1 Cutting-plane method for solving the “1-slack structural
SVMs” (Joachims et al., 2009)
1: Input: S = ((x1,y1), ..., (xn,yn)), C, ε
2: W← ∅
3: repeat
4:

(w, ξ)← min
w,ξ≥0

1
2
wTw + Cξ

s.t. ∀(ȳ1, ..., ȳn) ∈W :
1
n
wT

n∑
i=1

[φ(xi,yi)− φ(xi, ȳi)] ≥
1
n

n∑
i=1

∆(yi, ȳi)− ξ

5: for i = 1 to n do
6: ŷi ← arg maxŷ∈Y{∆(yi, ŷ) + wTφ(xi, ŷ)}
7: end for
8: W←W ∪ {(ŷ1, ..., ŷn)}
9: until 1

n

n∑
i=1

∆(yi, ŷi)− 1
nwT

n∑
i=1

[φ(xi,yi)− φ(xi, ŷi)] ≤ ξ + ε

10: return (w, ξ)

like previous work on 1-norm SVMs (Bradley & Mangasarian, 1998; Zhu, Ros-

set, Hastie, & Tibshirani, 2003) for binary classification. Using the substitu-

tion wi = w+
i −w−i and |wi| = w+

i +w−i with w+
i , w

−
i ≥ 0 (Fung & Mangasarian,

2004), we can cast the 1-norm minimization problem as a Linear Programming

(LP) problem and use the algorithm 2.1 to solve the LP problem by replacing

the QP problem in line 4 by the transformed LP problem. A special case of

the 1-norm structural SVM for the case of Markov Networks is presented in

Zhu and Xing (2009).

In summary, to apply structural SVMs to a new problem, one needs

to choose a representation for model, design a corresponding feature vector

function φ(x,y), select a label loss function ∆(y, ȳ), and design algorithms to

solve the two argmax problems:
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Prediction: arg maxy∈Y wTφ(x,y)

Separation Oracle: arg maxȳ∈Y{∆(y, ȳ) + wTφ(x, ȳ)}

2.5 The Primal-Dual Algorithmic Framework for On-
line Learning

In this section, we briefly review the primal-dual framework for strongly

convex loss functions (Kakade & Shalev-Shwartz, 2009) which is the latest

framework for deriving online algorithms that have low regret, the difference

between the cumulative loss of the online algorithm and the cumulative loss

of the optimal offline solution. Considering the following primal optimization

problem:

inf
w∈W

Pt+1(w) = inf
w∈W

(
(σt)f(w) +

t∑
i=1

gi(w)

)
(2.1)

where f : W → R+ is a function that measures the complexity of the weight

vectors in W , gi : W → R is a loss function, and σ is non-negative scalar. For

example, if W = Rd, f(w) = 1
2 ||w||

2
2,

and gi(w) = maxy∈Y [∆(yt,y)− 〈w, (φ(xt,yt)− φ(xt,y)〉]+ then the above opti-

mization problem is the max-margin structured prediction problem described

in previous section. We can rewrite the optimization problem in Eq. 2.1 as

follows:

inf
w0,w1,...,wt

(
(σt)f(w0) +

t∑
i=1

gi(wi)

)
s.t. w0 ∈W, ∀i ∈ 1...t,wi = w0
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where we introduce t new vectors w1, ...,wt and constrain them to all be equal

to w0. The dual of this problem is:

sup
λ1,...,λt

Dt+1(λ1, ...,λt)

= sup
λ1,...,λt

[
−(σt)f ∗

(
− 1

(σt)

t∑
i=1

λi

)
−

t∑
i=1

g∗i (λi)

]

where each λt is a vector of Lagrange multipliers for the equality constraint

wt = w0, and f ∗, g∗1, ..., g
∗
t are the Fenchel conjugate functions of f, g1, ..., gt.

A Fenchel conjugate function of a function f : W → R is defined as f∗(θ) =

supw∈W (〈w,θ〉 − f(w)). See (Kakade & Shalev-Shwartz, 2009) for details on

the steps to derive the dual problem.

From the weak duality theorem (Boyd & Vandenberghe, 2004), we know

that the dual objective is upper bounded by the optimal value of the primal

problem. Thus, if an online algorithm can incrementally ascend the dual

objective function in each step, then its performance is close to the performance

of the best fixed weight vector that minimizes the primal objective function

(the best offline learner), since by increasing the dual objective, the algorithm

moves closer to the optimal primal value.

Based on this observation, Kakade et. al. (Kakade & Shalev-Shwartz,

2009) proposed the general online incremental dual ascent algorithm (Algo-

rithm 2.2), where ∂gt(wt) = {λ : ∀w ∈ W, gt(w)− gt(wt) ≥ 〈λ, (w −wt)〉} is the

set of subgradients of gt at wt. The condition ∃λ′ ∈ ∂gt s.t. Dt+1(λt+1
1 , ...,λt+1

t ) ≥

Dt+1(λt1, ...,λ
t
t−1,λ

′) ensures the dual objective is increased in each step. The
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Algorithm 2.2 A general incremental dual ascent algorithm for σ-strongly convex
loss function (Kakade & Shalev-Shwartz, 2009)

Input: A strongly convex function f , a positive scalar σ
for t = 1 to T do

Set: wt = ∇f∗
(
− 1
σt

∑t−1
i=1 λ

t
i

)
Receive: lt(wt) = σf(wt) + gt(wt)
Choose (λt+1

1 , ...,λt+1
t ) that satisfy the condition:

∃λ′ ∈ ∂gt(wt) s.t. Dt+1(λt+1
1 , ...,λt+1

t ) ≥ Dt+1(λt1, ...,λ
t
t−1,λ

′)
end for

regret of any algorithm derived from Algorithm 2.2 is O(log T ) (Kakade &

Shalev-Shwartz, 2009), where T is the number of examples seen so far.

A simple update rule that satisfies the condition in Algorithm 2.2 is

to find a subgradient λ′ ∈ ∂gt(wt) and set λt+1
t = λ′ and keep all other λi’s

unchanged (i.e. λt+1
i = λti, ∀i < t). However, the gain in the dual objective

for this simple update rule is minimal. To achieve the largest gain in the dual

objective, one can optimize all the λi’s at each step. But this approach is

usually computationally prohibitive to use since at each step, we need to solve

a large optimization problem:

(λt+1
1 , ...,λt+1

t ) ∈ arg max
λ1,...,λt

Dt+1(λ1, ...,λt)

A compromise approach is to fully optimize the dual objective function at each

time step t but only with respect to the last variable λt:

λt+1
i =

{
λti if i < t

arg maxλt
Dt+1(λt1, ...,λ

t
t−1,λt) if i = t

This is called the Coordinate-Dual-Ascent (CDA) update rule. If we can find

a closed-form solution of the optimization problem with respect to the last
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variable λt, then the computational complexity of the CDA update is similar

to the simple update but the gain in the dual objective function is larger.

Previous work (Shalev-Shwartz & Singer, 2007b) showed that algorithms which

more aggressively ascend the dual function have better performance.

2.6 Evaluation Metrics

In this section, we briefly review some standard metrics for evaluating

the predictions produced by a model. For MLNs, all the query literals are

binary (i.e either true or false). So, there are only four outcomes which are

shown in Table 2.1:

Table 2.1: Confusion matrix

Actual Values
True False

Predicted Values
True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

Below are definitions of some standard evaluation metrics:

• Accuracy: the proportion of corrected predictions.

Accuracy =
TP + TN

TP + FP + TN + FN

• Precision: the proportion of correted true predictions.

Precision =
TP

TP + FP
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• Recall: the proportion of true literals that are correcly predicted.

Precision =
TP

TP + FN

• F1: the harmonic mean of precision and recall.

F1 = 2
Precision · Recall

Precision + Recall
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Chapter 3

Discriminative Structure and Weight Learning

for MLNs with Non-recursive Clauses

3.1 Introduction

In this chapter, we look at a special class of MLNs where all the clauses

are non-recursive clauses which contain only one non-evidence literal. Non-

recursive clauses arise in many learning problems in ILP such as the struc-

ture activity relationship prediction (SAR) problem mentioned in chapter 1.

For those problems, there is a specific target predicate that must be inferred

given evidence data about other background predicates used to describe the

input data. We have found that existing structure learning algorithms for

MLNs (Kok & Domingos, 2005; Mihalkova & Mooney, 2007) perform very

poorly when tested on several benchmark ILP problems since they are non-

discriminative.

Thus, we present a new method that discriminatively learns both the

structure and parameter for MLN with non-recursive clauses. The proposed

approach first uses an off-the-shelf ILP system to generate a large set of good

candidate clauses, then utilizes l1-regularization with exact inference to learn

weights for those candidate clauses.
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The remainder of the chapter is organized as follows. Section 3.2

presents the proposed method. Section 3.3 reports experimental evaluation.

Section 3.4 discusses related work and section 3.5 summarizes the chapter.

3.2 The Proposed Method

3.2.1 Discriminative Structure Learning

Ideally, the search for discriminative MLN clauses would be directly

guided by the goal of maximizing their contribution to the predictive accuracy

of a complete MLN. However, this would require evaluating every proposed

refinement to the existing set of learned clauses by relearning weights for all of

the clauses and performing full probabilistic inference to determine the score of

the revised model. This process is computationally expensive and would have

to be repeated for each of the combinatorially large number of potential clause

refinements. Evaluating clauses in standard ILP is quicker since each clause

can be evaluated in isolation based on the accuracy of its logical inferences

about the target predicate. Consequently, we take the heuristic approach of

using a standard ILP method to generate clauses; however, since the logical

accuracy of a clause is only a rough approximation of its value in a final

MLN, we generate a large number of candidates whose accuracy is at least

markedly greater than random guessing and allow subsequent weight learning

to determine their value to an overall MLN.

In order to find a set of potentially good clauses for an MLN, we use

a particular configuration of Aleph. Specifically, we use the induce cover
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command and m-estimate evaluation function. The induce cover command

implements a variant of Progol’s MDIE greedy covering algorithm (Muggle-

ton, 1995) which does not remove previously covered examples when scoring

a new clause. The normal Aleph induce command scores a clause based

only on its coverage of currently uncovered positive examples. However, this

scoring is not reflective of its use in a final MLN, and we found that the

induce cover approach produces a larger set of more useful clauses that sig-

nificantly increases the accuracy of our final learned MLN. The m-estimate

(Džeroski, 1991) is a Bayesian estimation of the accuracy of a clause (Cussens,

2007). The m parameter defining the underlying prior distribution is automat-

ically set to the maximum likelihood estimate of its best value. The output of

induce cover is a theory, a set of high-scoring clauses that cover all the pos-

itive examples. However, these clauses were selected based on an m-estimate

of their accuracy under a purely logical interpretation, and may not be the

best ones for an MLN. Therefore, in addition to these clauses, we also save all

generated clauses whose m-estimate is greater than a predefined threshold (set

to 0.6 in our experiments). This provides a large set of clauses of potential

utility for an MLN. We use the name Aleph++ to refer to this version of

Aleph.

3.2.2 Discriminative Weight Learning

Compared to Alchemy’s previously best discriminative weight learn-

ing method (Lowd & Domingos, 2007), our method embodies two important
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modifications: exact inference and l1-regularization. This section describes

these two modifications.

First, given the restricted nature of the clauses constructed by Aleph,

we can use an efficient exact probabilistic inference method when learning the

weights instead of the approximate inference algorithm that is used to handle

the general case. Since these clauses are non-recursive clauses in which the

target predicate only appears once, a grounding of any clause will contain

only one grounding of the target predicate. For MLNs, this means that the

Markov blanket of a query atom only contains evidence atoms. Consequently,

the query atoms are independent given the evidence. Let Y be the set of query

atoms and X be the set of evidence atoms, the conditional log likelihood of Y

given X in this case is:

logP (Y = y|X = x) = log
n∏
j=1

P (Yj = yj|X = x)

=
n∑
j=1

logP (Yj = yj|X = x)

and,

P (Yj = yj|X = x) =

exp(
∑

i∈CYj
wini(x, y[Yj=yj ]))

exp(
∑
i∈CYj

wini(x, y[Yj=0])) + exp(
∑
i∈CYj

wini(x, y[Yj=1]))

where CYj
is the set of all MLN clauses with at least one grounding containing

the query atom Yj, ni(x, y[Yj=yj ]) is the number groundings of the ith clause

that evaluate to true when all the evidence atoms in X and the query atom Yj
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are set to their truth values, and similarly for ni(x, y[Yj=0]) and ni(x, y[Yj=1])

when Yj is set to 0 and 1 respectively. Then the gradient of the CLL is:

∂
∂wi

logP (Y = y|X = x) =

n∑
j=1

[ni(x, y[Yj=yj ])− P (Yj = 0|X = x)ni(x, y[Yj=0])

−P (Yj = 1|X = x)ni(x, y[Yj=1])]

Notice that the sum of the last two terms in the gradient is the expected

count of the number of true groundings of the i’th formula. In general, com-

puting this expected count requires performing approximate inference under

the model. For example, Singla and Domingos (2005) ran MPE inference and

used the counts in the MPE state to approximate the expected counts. How-

ever, in our case, using the standard closed world assumption for evidence

predicates, all the ni’s can be computed without approximate inference since

there is no ground atom whose truth value is unknown. This is a result of

restricting the structure learner to non-recursive clauses. In fact, this result

still holds even when the clauses are not Horn clauses. The only restriction is

that the target predicates appear only once in every clause. Note that given

a set of weights, computing the conditional probability P (y|x), the CLL, and

its gradient requires only the ni counts. So, in our case, the conditional prob-

ability P (Yj = yj|X = x), the CLL, and its gradient can be computed exactly.

In addition, these counts only need to be computed once, and Alchemy pro-

vides an efficient method for computing them. Alchemy also provides an
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efficient way to construct the Markov blanket of a query atom, in particular it

ignores all ground formulae whose truth values are unaffected by the value of

the query atom. In our case, this helps reduce the size of the Markov blanket

of a query atom significantly since many ground clauses are satisfied by the

evidence. As a result, our exact inference is very fast even when the MLN

contains thousands of clauses.

Given a procedure for computing the CLL and its gradient, standard

gradient-based optimization methods can be used to find a set of weights

that optimizes the CLL. However, to prevent overfitting and select only the

best clauses, we follow the approach suggested by Lee, Ganapathi, and Koller

(2007) and introduce a Laplacian prior with zero mean, P (wi) = (β/2) ·

exp(−β|wi|), on each weight, and then optimize the posterior conditional log

likehood instead of the CLL. The final objective function is:

logP (Y |X)P (w) = logP (Y |X) + logP (w)

= logP (Y |X) + log(
∏
i

P (wi))

= CLL+
∑
i

log (
β

2
· exp(−β|wi|))

= CLL− β
∑
i

|wi|+ constant

There is now an additional term β
∑

i |wi| in the objective function, which

penalizes each non-zero weight wi by β|wi|. So, the larger β is (corresponding

to a smaller variance of the prior distribution), the more we penalize non-zero

weights. Therefore, placing a Laplacian prior with zero mean on each weight
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is equivalent to performing an l1-regularization of the parameters. An impor-

tant property of l1-regularization is its tendency to force parameters to zero

by strongly penalizing small terms (Lee et al., 2007). In order to learn weights

that optimize the l1-regularized CLL, we use the OWL-QN package which

implements the Orthant-Wise Limited-memory Quasi-Newton algorithm (An-

drew & Gao, 2007).

This approach to preventing over-fitting contrasts with the standard

l2-regularization used in previous work on learning weights for MLNs, which

is equivalent to assuming a Guassian prior with zero mean on each weight and

does not penalize non-zero weights as severely. Since Aleph++ generates a

very large number of potential clauses, l1-regularization encourages eliminat-

ing the less useful ones by setting their weights to zero. In agreement with

prior results on l1-regularization (Ng, 2004; Dud́ık, Phillips, & Schapire, 2007),

our experiments confirm that it results in simpler and more accurate learned

models compared to l2-regularization.

3.3 Experimental Evaluation

In this section, we present experiments that were designed to answer

the following questions:

1. How does our method compare to existing methods, specifically:

(a) Extant learning methods for MLNs.

(b) Traditional ILP methods, viz. Aleph.
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(c) “Advanced” ILP methods, viz. kFOIL (Landwehr, Passerini, Raedt,

& Frasconi, 2006), tFOIL (Landwehr, Kersting, & Raedt, 2007),

and Rumble (Rückert & Kramer, 2007).

2. How does each of our system’s major novel components below contribute

to its performance:

(a) Generation of a larger set of potential clauses by using Aleph++

instead of Aleph.

(b) Exact MLN inference for non-recursive clauses instead of general

approximate inference.

(c) l1-regularization instead of l2.

3.3.1 Data

We employed four benchmark data sets previously used to evaluate a

variety of ILP and relational learning algorithms. They concern predicting

the relative biochemical activity of variants of Tacrine, a drug for Alzheimer’s

disease (King et al., 1995). The data contain background knowledge about the

physical and chemical properties of substituents such as their hydrophobicity

and polarity, the relations between various physical and chemical constants,

and other relevant information. The goal is to compare various drugs on four

important biochemical properties: low toxicity, high acetyl cholinesterase

inhibition, good reversal of scopolamine-induced memory impairment, and

inhibition of amine re-uptake. For each property, the positive and negative
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Table 3.1: Some background evidence and examples from the Alzheimer toxic
dataset.

Background evidence Examples
r subst 1(A1,H), r subst 1(B1,H), r subst 1(D1,H), less toxic(B1,A1)
x subst(B1,7,CL), polar(CL,POLAR3), size(CL,SIZE1), less toxic(A1,D1)
alk groups(A1,0), alk groups(B1,0), alk groups(D1,0) less toxic(B1,D1)

examples are pairwise comparisons of drugs. For example, less toxic(d1, d2)

means that drug d1’s toxicity is less than d2’s. These ordering relations are

transitive but not complete (i.e. for some pairs of drugs it is unknown which

one is better). Therefore, this is a structured (a.k.a. collective) prediction

problem since the output labels should form a partial order. However, previous

work has ignored this structure and just predicted the examples separately as

distinct binary classification problems. In this work, in addition to treating

the problem as independent classification, we also use an MLN to perform

structured prediction by explicitly imposing the transitive constraint on the

target predicate. Table 3.1 shows some background facts and examples from

one of the datasets, and Table 3.2 summarizes information about all four

datasets.

Table 3.2: Summary statistics for Alzheimer’s data sets.

Data set #Examples % Positive # Predicates
Alzheimer acetyl 1326 50% 30
Alzheimer amine 686 50% 30
Alzheimer memory 642 50% 30
Alzheimer toxic 886 50% 30
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3.3.2 Methodology

To answer the above questions, we ran experiments with the following

systems:

Alchemy: Uses the structure learning algorithm MSL (Kok & Domingos,

2005) in Alchemy and the most accurate existing discriminative weight

learning PSCG (Lowd & Domingos, 2007) with the “ne” (non-evidence)

parameter set to the target predicate.

Busl: Uses Busl (Mihalkova & Mooney, 2007) and PSCG discriminative

weight learning with the “ne” (non-evidence) parameter set to the target

predicate.

Aleph: Uses Aleph’s standard settings with a few modifications. The max-

imum number of literals in an acceptable clause was set to 5. The mini-

mum number of positive examples covered by an acceptable clause was

set to 2. The upper bound on the number of negative examples cov-

ered by an acceptable clause was set to 300. The evaluation function

was set to auto m, and the minimum score of an acceptable clause was

set to 0.6. The induce cover command was used to learn the clauses.

We found that this configuration gave somewhat better overall accuracy

compared to those reported in previous work.

AlephPSCG: Uses the discriminative weight learner PSCG to learn MLN

weights for the clauses in the final theory returned by Aleph. Note that

PSCG also uses l2-regularization.
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AlephExactL2 : Uses the limited-memory BFGS algorithm (Liu & Nocedal,

1989) implemented in Alchemy to learn discriminative MLN weights

for the clauses in the final theory returned by Aleph. The objective

function is CLL with l2 regularization. The CLL is computed exactly as

described in Section 3.2.2.

Aleph++PSCG: Like AlephPSCG, but learns weights for the larger set of

clauses returned by Aleph++.

Aleph++ExactL2: Like AlephExactL2, but learns weights for the larger

set of clauses returned by Aleph++.

Aleph++ExactL1: Our full proposed approach using exact inference and

l1-regularization to learn weights on the clauses returned by Aleph++.

To force the predictions for the target predicate to properly constitute

a partial ordering, we also tried adding to the learned MLNs a hard constraint

(i.e. a clause with infinite weight) stating the transitive property of the target

predicate, and used the MC-SAT algorithm to perform prediction on the test

data. This exploits the ability of MLNs to perform collective classification for

the complete set of test examples.

In testing, only the background facts are provided as evidence to en-

sure that all predictions are based on the chemical structure of a drug. For

all systems except Aleph, a threshold of 0.5 was used to convert predicted

probabilities into boolean values. The predictive accuracy of these algorithms
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Table 3.3: Average predictive accuracies and standard deviations for all sys-
tems. Bold numbers indicate the best result on a data set.

Data set Alchemy BUSL Aleph Aleph Aleph Aleph++ Aleph++ Aleph++
PSCG ExactL2 PSCG ExactL2 ExactL1

Alzheimer amine 50.1 ± 0.5 51.3 ± 2.5 81.6 ± 5.1 64.6± 4.6 83.5 ± 4.7 72.0± 5.2 86.8± 4.4 89.4 ± 2.7
Alzheimer toxic 54.7 ± 7.4 51.7 ± 5.3 81.7 ± 4.2 74.7± 1.9 87.5 ± 4.8 69.9± 1.2 89.5± 3.0 91.3 ± 2.8
Alzheimer acetyl 48.2 ± 2.9 55.9 ± 8.7 79.6 ± 2.2 78.0± 3.2 79.5 ± 2.0 76.5± 3.7 82.1± 2.1 85.1 ± 2.4
Alzheimer memory 50 ± 0.0 49.8 ± 1.6 76.0 ± 4.9 60.3± 2.1 72.6 ± 3.4 65.6± 5.4 72.9± 5.2 77.6 ± 4.9

Table 3.4: Average AUC-ROC and standard deviations for all systems. Bold
numbers indicate the best result on a data set.

Data set Alchemy BUSL Aleph Aleph Aleph++ Aleph++ Aleph++
PSCG ExactL2 PSCG ExactL2 ExactL1

Alzheimer amine .483 ± .115 .641 ± .110 .846 ± .041 .904 ± .027 .777 ± .052 .935 ± .032 .954 ± .019
Alzheimer toxic .622 ± .079 .511 ± .079 .904 ± .034 .930 ± .035 .874 ± .041 .937 ± .029 .939 ± .035
Alzheimer acetyl .473 ± .037 .588 ± .108 .850 ± .018 .850 ± .020 .810 ± .040 .899 ± .015 .916 ± .013
Alzheimer memory .452± .088 .426 ± .065 .744 ± .040 .768 ± .032 .737 ± .059 .813 ± .059 .844 ± .052

for the target predicate were compared using 10-fold cross-validation. The

significance of the results were evaluated using a two-tailed paired t-test test

with a 95% confidence level. To compare the quality of the predicted prob-

abilities, we also report the average area under the ROC curve (AUC-ROC)

(Provost, Fawcett, & Kohavi, 1998) for all probabilistic systems by using the

AUCCalculator package (Davis & Goadrich, 2006).

3.3.3 Results and Discussion

Tables 3.3 and 3.4 show the average accuracy and AUC-ROC with

standard deviation for each system running on each data set. Our complete

system (Aleph++ExactL1) achieves significantly higher accuracy than both

Alchemy and Busl on all 4 data sets and significantly higher than Aleph
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Table 3.5: Average predictive accuracies and standard deviations for MLN
systems with transitive clause added.

Data set Alchemy BUSL Aleph Aleph Aleph++ Aleph++ Aleph++
PSCG ExactL2 PSCG ExactL2 ExactL1

Alzheimer amine 50.0 ± 0.0 52.2 ± 5.3 61.4 ± 3.6 87.0 ± 3.3 72.9± 3.5 91.7± 3.5 90.5 ± 3.6
Alzheimer toxic 50.0 ± 0.0 50.1 ± 0.8 73.3 ± 1.8 88.8 ± 4.8 68.4± 1.5 91.4± 3.6 91.9 ± 4.1
Alzheimer acetyl 53.0 ± 6.2 54.1 ± 4.9 80.4 ± 2.7 84.1 ± 3.1 83.3± 2.5 88.7± 2.1 87.6 ± 2.7
Alzheimer memory 50.0 ± 0.0 50.1 ± 0.5 58.9 ± 2.3 76.5 ± 3.5 70.1± 5.2 81.3± 4.8 81.3 ± 4.1

Table 3.6: Average number of clauses learned

Data set Aleph++ Aleph++ Aleph++
ExactL2 ExactL1

Alzheimer amine 7061 5070 3477
Alzheimer toxic 2034 1194 747
Alzheimer acetyl 8662 5427 2433
Alzheimer memory 6524 4250 2471

on all except the memory data set, answering questions 1(a) and 1(b). In

turn, Aleph has been shown to give higher accuracy on these data sets than

other standard ILP systems like Foil (Landwehr et al., 2007). Both MSL and

BUSL find only a few (3–5) simple clauses. Two of them are unit clauses for

the target predicate, such as great ne(a1,a1) and great ne(a1,a2); the others

capture the transitive nature of the target relation. Therefore, even after they

are discriminatively weighted, their predictions are not significantly better

than random guessing.

The ablations that remove components from our overall system demon-

strate the important contribution of each component. Regarding question

2(b), the systems using general approximate inference (AlephPSCG and
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Table 3.7: Average predictive accuracies and standard deviations of our best
results and other “advanced” ILP systems.

Data set Our best results tFOIL kFOIL Rumble

Alzheimer amine 91.7± 3.5 87.5 ± 4.4 88.8 ± 5.0 91.1
Alzheimer toxic 91.9 ± 4.1 92.1 ± 2.6 89.3 ± 3.5 91.2
Alzheimer acetyl 88.7± 2.1 82.8 ± 3.8 87.8 ± 4.2 88.4
Alzheimer memory 81.3 ± 4.1 80.4 ± 5.3 80.2 ± 4.0 83.2

Aleph++PSCG) perform much worse than the corresponding versions that

use exact inference (AlephExactL2 and Aleph++ExactL2). Therefore,

when there is a target predicate that can be accurately inferred using non-

recursive clauses, exploiting this restriction to perform exact inference is a

clear win.

Regarding question 2(a), Aleph++ExactL2 performs significantly

better than AlephExactL2, demonstrating the advantage of learning a large

set of potential clauses and combining them with learned weights in an overall

MLN. Across the four datasets, Aleph++ returns an average of 6, 070 clauses

compared to only 10 for Aleph.

Table 3.5 presents average accuracies with standard deviations for the

MLN systems when we include a transitivity clause for the target predicate.

This constraint improves the accuracies of AlephExactL2, Aleph++ExactL2,

and Aleph++ExactL1, but sometimes decreases the accuracy of other sys-

tems, such as AlephPSCG. This can be explained as follows. Since most

of the predictions of Aleph++ExactL1 are correct, enforcing transitivity

can correct some of the wrong ones. However, AlephPSCG produces many
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wrong predictions, so forcing them to obey transitivity can produce additional

incorrect predictions.

Regarding question 2(c), using l1-regularization gives significantly higher

accuracy and AUC-ROC than using standard l2-regularization. This compar-

ison was only performed for Aleph++ since this is when the weight-learner

must choose from a large set of candidate clauses by encouraging zero weights.

Table 3.6 compares the average number of clauses learned (after zero-weight

clauses are removed) for l1 and l2 regularization. As expected, the final

learned MLNs are much simpler when using l1-regularization. On average,

l1-regularization reduces the size of the final set of clauses by 26% compared

to l2-regularization.

Regarding question 1(c), several researchers have tested “advanced”

ILP systems on our datasets. Table 3.7 compares our best results to those re-

ported for tFOIL (a combination of FOIL and tree augmented naive Bayes),

kFOIL (a kernelized version of FOIL), and Rumble (a max-margin approach

to learning a weighted rule set). Our results are competitive with these recent

systems. Additionally, unlike MLNs, these methods do not create “declara-

tive” theories that have a well-defined possible worlds semantics.

3.4 Related Work

Using an off-the-shelf ILP system to learn clauses for MLNs is not a new

idea. Richardson and Domingos (2006) used Claudien, an non-discriminative

ILP system that can learn arbitrary first-order clauses, to learn MLN structure
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and to refine the clauses from a knowledge base. Kok and Domingos (2005)

reported experimental results comparing their MLN structure learner to learn-

ing clauses using Claudien, FOIL, and Aleph. However, since this previous

work used the relatively small set of clauses produced by these unaltered ILP

systems, the performance was not very good. ILP systems have also been used

to learn structures for other SRL models. The Sayu system (Davis, Burnside,

de Castro Dutra, Page, & Costa, 2005) used Aleph to propose candidate

features for a Bayesian network classifier. Muggleton(Muggleton, 2000) used

Progol, another popular ILP system, to learn clauses for Stochastic Logic

Programs (SLPs).

When restricted to learning non-recursive clauses for classification, our

approach is equivalent to using Aleph to construct features for use by l1-

regularized logistic regression. Under this view, our approach is closely re-

lated to Maccent (Dehaspe, 1997), which uses a greedy approach to induce

clausal constraints that are used as features for maximum-entropy classifica-

tion. One difference between our approach and Maccent is that we use a

two-step process instead of greedily adding one feature at a time. In addition,

our clauses are induced in a bottom-up manner while Maccent uses top-

down search; and our weight learner employs l1-regularization which makes

it less prone to overfitting. Unfortunately, we could not compare experimen-

tally to Maccent since “only an implementation of a propositional version of

MACCENT is available, which only handles data in attribute-value (vector)

format” (Landwehr et al., 2007). Additionally, MLNs are a more expressive
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formalism that also allows for structured prediction, as demonstrated by our

results that include a transitivity constraint on the target relation.

3.5 Chapter Summary

We have found that existing methods for learning Markov Logic Net-

works perform very poorly when tested on several benchmark ILP problems in

drug design. We present a new approach to discriminatively learns both the

structure and parameter of an MLN with non-recursive clauses. The proposed

approach uses a variant of an existing ILP system (Aleph) to construct a large

number of potential clauses and then effectively learns their parameters by al-

tering existing discriminative MLN weight-learning methods to utilize exact

inference and l1 regularization. Experimental results show that the resulting

system outperforms existing MLN and ILP methods and gives state-of-the-art

results for the Alzheimer’s-drug benchmarks.
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Chapter 4

Max-Margin Weight Learning for MLNs

4.1 Introduction

In the previous chapter, we aim to learn a model that maximizes the

CLL of the data. If the goal is to predict accurate target-predicate proba-

bilities, that approach is well motivated. However, in many applications, the

actual goal is to maximize an alternative performance metric such as classifi-

cation accuracy or F-measure. Max-margin training provides a framework for

maximizing a variety of performance metrics (Joachims, 2005). In this chapter,

we present a max-margin approach to weight learning in MLNs based on the

general framework of max-margin training for structured prediction (section

2.4).

The remainder of the chapter is organized as follows. Section 4.2 for-

mulates the max-margin weight learning problem. Section 4.3 discusses ap-

proximate inference for MLNs based on Linear Programming (LP) relaxation.

Section 4.4 reports experimental evaluation. Section 4.5 discusses related work

and section 4.6 summarizes the chapter.
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4.2 Max-Margin Formulation

All of the current discriminative weight learners for MLNs try to find

a weight vector w that optimizes the conditional log-likelihood P (y|x) of the

query atoms y given the evidence x. However, an alternative approach is to

learn a weight vector w that maximizes the ratio:

P (y|x)

P (ŷ|x)

between the probability of the correct truth assignment y and the closest

competing incorrect truth assignment ŷ = arg maxȳ∈Y\y P (ȳ|x). Applying

equation 2.1 and taking the log, this problem translates to maximizing the

margin:

γ(x,y; w) = wTn(x,y)−wTn(x, ŷ)

= wTn(x,y)− max
ȳ∈Y\y

wTn(x, ȳ)

Note that, this translation holds for all log-linear models (Collins, 2004). For

example, if we apply it to a CRF (Lafferty, McCallum, & Pereira, 2001) then

the resulting model is an M3N (Taskar et al., 2004). Similarly, when changing

the objective of MLNs to maximize the margin, we create a max-margin version

of MLNs, abbreviated as M3LNs.

In turn, the max-margin problem above can be formulated as a “1-

slack” structural SVM as described in section 2.4:
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Optimization Problem 4 (OP4): Max-Margin Markov Logic Networks

min
w,ξ≥0

1

2
wTw + Cξ

s.t. ∀ȳ ∈ Y : wT [n(x,y)− n(x, ȳ)] ≥ ∆(y, ȳ)− ξ

So for MLNs, the number of true groundings of the clauses n(x,y) plays

the role of the feature vector function φ(x,y) in the general structural SVM

problem. In other words, each clause in an MLN can be viewed as a feature

representing a dependency between a subset of inputs and outputs or a relation

among several outputs.

As mentioned, in order to apply Algorithm 2.1 to MLNs, we need al-

gorithms for solving the following two problems:

Prediction: arg maxy∈Y wTn(x,y)

Separation Oracle: arg maxȳ∈Y {∆(y, ȳ) + wTn(x, ȳ)}

The prediction problem is just the (intractable) MPE inference problem dis-

cussed in section 2.3. We can use MaxWalkSAT to get an approximate so-

lution, but we have found that models trained with MaxWalkSAT have very

low predictive accuracy. On the other hand, recent work (Finley & Joachims,

2008) has found that fully-connected pairwise Markov random fields, a special

class of structural SVMs, trained with overgenerating approximate inference

methods (such as relaxation) preserves the theoretical guarantees of structural

SVMs trained with exact inference, and exhibits good empirical performance.

Based on this result, we sought a relaxation-based approximation for MPE in-

ference. We first present an LP-relaxation algorithm for MPE inference, then
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show how to modify it to solve the separation oracle problem for some specific

loss functions.

4.3 Approximate Inference

4.3.1 Approximate MPE inference for MLNs

MPE inference in MLNs is a special case of MAP inference in Markov

networks with binary variables, and there has been a lot of work on approx-

imation algorithms for solving MAP inference using convex relaxation, see

Kumar, Kolmogorov, and Torr (2009) for more details. However, these meth-

ods are not suitable for MLNs. First, most of them are for Markov networks

with unary and pairwise potential functions while a ground MLN may contain

many high-order cliques. The algorithms can be extended to handle high-

order potential functions (Werner, 2008), but they become computationally

expensive. Second, they do not handle deterministic factors, i.e. potential

functions with some entries are zero. On the other hand, MPE inference in

MLNs is equivalent to the Weighted MAX-SAT problem, and there are also

significant work on approximating this NP-hard problem using LP-relaxation

(Asano & Williamson, 2002; Asano, 2006). The existing algorithms first re-

lax and convert the Weighted MAX-SAT problem into a linear or semidefinite

programming problem, then solve it and apply a randomized rounding method

to obtain an approximate integral solution. These methods cannot be directly

applied to MLNs, since they require the weights to be positive while MLN

weights can be negative or infinite. However, we can modify the conversion
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used in these approaches to handle the case of negative and infinite weights.

Based on the evidence and the closed world assumption, a ground MLN

contains only ground clauses of the unknown ground atoms after removing all

trivially satisfied and unsatisfied clauses. The following procedure translates

the MPE inference in a ground MLN into an Integer Linear Programming

problem.

1. Assign a binary variable yi to each unknown ground atom. yi is 1 if

the corresponding ground atom is TRUE and 0 if the ground atom is

FALSE.

2. For each ground clause Cj with infinite weight, add the following linear

constraint to the Integer Linear Programming problem:

∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ 1

where I+
j , I−j are the sets of positive and negative ground literals in

clause Cj respectively.

3. For each ground clause Cj with positive weight wj, introduce a new aux-

iliary binary variable zj, add the term wjzj to the objective function, and

add the following linear constraint to the Integer Linear Programming

problem: ∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ zj

zj is 1 if the corresponding ground clause is satisfied.
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4. For each ground clause Cj with k ground literals and negative weight

wj, introduce a new auxiliary boolean variable zj, add the term −wjzj

to the objective function and add the following k linear constrains to the

Integer Linear Programming problem:

1− yi ≥ zj, i ∈ I+
j

yi ≥ zj, i ∈ I−j

The final Integer Linear Programming has the following form:

Optimization Problem 5 (OP5):

max
yi,zi

∑
Cj∈C+

wjzj +
∑

Cj∈C−
−wjzj

s.t.
∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ 1 ∀ Cj where wj =∞

∑
i∈I+j

yi +
∑
i∈I−j

(1− yi) ≥ zj ∀Cj ∈ C+

1− yi ≥ zj ∀ i ∈ I+
j and Cj ∈ C−

yi ≥ zj ∀ i ∈ I−j and Cj ∈ C−

yi, zj ∈ {0, 1}

where C+ and C− are the set of clauses with positive and negative weights

respectively. This Integer Linear Programming problem can be simplified by

not introducing an auxiliary variable zj for unit clauses, where we can use

the variable yi directly. This reduces the problem considerably, since ground

MLNs typically contain many unit clauses (Alchemy combines all the non-

recursive clauses containing the query atom into a unit clause whose weight
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is the sum of all the clauses’ weights). Note that our mapping from a ground

MLN to an Integer Linear Programming problem is a bit different from the one

presented by Riedel (2008) which generates two sets of constraints for every

ground clause: one when the clause is satisfied and one when it is not. For

a clause with positive weight, our mapping only generates a constraint when

the clause is satisfied; and for a clause with negative weight, the mapping only

imposes constraints when the clause is unsatisfied. The final Integer Linear

Programming problem has the same solution with the one in (Riedel, 2008),

but it has fewer constraints since our mapping does not generate unnecessary

constraints. We then relax the integer constraints yi, zj ∈ {0, 1} to linear

constraints yi, zj ∈ [0, 1] to obtain an LP-relaxation of the MPE problem.

This LP problem can be solved by any general LP solver. If the LP

solver returns an integral solution, then it is also the optimal solution to the

original Integer Linear Programming problem. In our case, the original Integer

Linear Programming problem is an NP-hard problem, so the LP solver usually

returns non-integral solutions. Therefore, the LP solution needs to be rounded

to give an approximate Integer Linear Programming solution. We first tried

some of the randomized rounding methods in (Asano, 2006) but they gave

poor results since the LP solution has a lot of fractional components with

value 0.5. We then adapted a rounding procedure called ROUNDUP (Boros

& Hammer, 2002), a procedure for producing an upper bound binary solution

for a pseudo-Boolean function, to the case of pseudo-Boolean functions with

linear constraints (algorithm 4.1), which we found to work well. In each step,
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Algorithm 4.1 The modified ROUNDUP procedure
1: Input: The LP solution y = {y1, ..., yn}
2: F ← ∅
3: for i = 1 to n do
4: if yi is integral then
5: Remove all the ground clauses satisfied by assigning the value of yi to the

corresponding ground atom
6: else
7: add yi to F
8: end if
9: end for

10: repeat
11: Remove the last item yi in F
12: Compute the sum w+ of the unsatisfied clauses where yi appears as a positive

literal
13: Compute the sum w− of the unsatisfied clauses where yi appears as a negative

literal
14: if w+ > w− then
15: yi ← 1
16: else
17: yi ← 0
18: end if
19: Remove all the ground clauses satisfied by assigning the value of yi to the

corresponding ground atom
20: until F is empty
21: return y

this procedure picks one fractional component and rounds it to 1 or 0. Hence,

this process terminates in at most n steps, where n is the number of query

atoms. Note that due to the dependencies between the variables yi’s and zj’s

(the linear constraints of the LP problem), this modified ROUNDUP procedure

does not guarantee an improvement in the value of the objective function in

each step like the original ROUNDUP procedure where all the variables are

independent.
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4.3.2 Approximation algorithm for the separation oracle

The separation oracle adds an additional term, the loss term, to the

objective function. So, if we can represent the loss as a linear function of the

yi variables of the LP-relaxation, then we can use the above approximation

algorithm to also approximate the separation oracle. In this work, we consider

two loss functions. The first one is the 0/1 loss function, ∆0/1(yT,y) where

yT is the true assignment and y is some predicted assignment. For this loss

function, the separation oracle is the same as the MPE inference problem since

the loss function only adds a constant 1 to the objective function. Hence, in

this case, to find the most violated constraint, we can use the LP-relaxation

algorithm above or any other MPE inference algorithm. This 0/1 loss makes

the separation oracle problem easier but it does not scale the margin by how

different yT and y are. It only requires a unit margin for all assignments y

different from the true assignment yT. To take into account this problem, we

consider the second loss function that is the number of misclassified atoms or

the Hamming loss:

∆Hamming(y
T,y) =

n∑
i

[yTi 6= yi]

=
n∑
i

[(yTi = 0 ∧ yi = 1) ∨ (yTi = 1 ∧ yi = 0)]

From the definition, this loss can be represented as a function of the yi’s:

∆Hamming(y
T,y) =

∑
i:yT

i =0

yi +
∑
i:yT

i =1

(1− yi)
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which is equivalent to adding 1 to the coefficient of yi if the true value of yi

is 0 and subtracting 1 from the coefficient of yi if the true value of yi is 1. So

we can use the LP-relaxation algorithm above to approximate the separation

oracle with this Hamming loss function. Another possible loss function is the

F1 loss which is equivalent to 1 − F1. Unfortunately, this loss is a non-linear

function, so we cannot use the above approach to optimize it. Developing

algorithms for optimizing or approximating this loss function is an area for

future work.

4.4 Experimental Evaluation

This section presents experiments comparing the max-margin weight

learner to the weight learners in section 3.2 and the PSCG algorithm.

4.4.1 Datasets

Besides those Alzheimer’s datasets described in section 3.3.1, we also

ran experiments on two other large, real-world datasets: WebKB for collective

web-page classification, and CiteSeer for bibliographic citation segmentation.

The WebKB dataset, mentioned in chapter 1, consists of labeled web

pages from the computer science departments of four universities. Different

versions of this data have been used in previous work. To make a fair com-

parison, we used the version from (Lowd & Domingos, 2007), which contains

4,165 web pages and 10,935 web links. Each page is labeled with a subset of

the categories: course, department, faculty, person, professor, research project,
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and student. The goal is to predict these categories from the words and links

on the web pages. We used the same simple MLN from (Lowd & Domingos,

2007), which only has clauses relating words to page classes, and page classes

to the classes of linked pages.

Has(+word, page)⇒ PageClass(+class, page)

¬Has(+word, page)⇒ PageClass(+class, page)

PageClass(+c1, p1) ∧ Linked(p1, p2)⇒ PageClass(+c2, p2)

The plus notation creates a separate clause for each pair of word and page class,

and for each pair of classes. The final MLN consists of 10,891 clauses, and a

weight must be learned for each one. After grounding, each department results

in an MLN with more than 100,000 ground clauses and 5,000 query atoms in a

complex network. This also results in a large LP-relaxation problem for MPE

inference.

For CiteSeer (Lawrence, Giles, & Bollacker, 1999), we used the ver-

sion created by Poon and Domingos (Poon & Domingos, 2007). The dataset

contains 1,563 bibliographic citations such as:

J. Jaffar, J. - L. Lassez. Constraint logic programming. In Proceedings

of the Fourteenth ACM symposium of the principles of programming languages,

pages 111-119, Munich, 1987.

The task is to segment each of these citations into three fields: Au-

thor, Title and Venue. The dataset has four independent subsets consisting

of citations to disjoint publications in four different research areas. We used
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the MLN for isolated segmentation model in (Poon & Domingos, 2007). After

grounding, this model results in a large network with more than 30,000 query

atoms and 110,000 ground clauses.

All the datasets except Alzheimer’s datasets and MLNs can be found

at the Alchemy website.1

4.4.2 Methodology

For the max-margin weight learner, we used a simple process for se-

lecting the value of the C parameter. For each train/test split, we trained the

algorithm with five different values of C: 1, 10, 100, 1000, and 10000, then

selected the one which gave the highest average F1 score on training. The

ε parameter was set to 0.001. To solve the QP problems in Algorithm 2.1

and LP problems in the LP-relaxation MPE inference, we used the Mosek 2

solver. The PSCG algorithm was carefully tuned by its author. For MC-SAT,

we used the default setting, 100 burn-in and 1000 sampling iterations, and

predict that an atom is true iff its probability is at least 0.5.

For the Alzheimer’s datasets, we used the same experimental setup

mentioned in section 3.3.2, and ran four-fold cross-validation (i.e. leave one

university/topic out) on the WebKB and CiteSeer datasets.

We used F1 to measure the performance of each algorithm on the We-

bKB and CiteSeer datasets.

1http://alchemy.cs.washington.edu
2http://www.mosek.com/
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Table 4.1: F1 scores on WebKB

Cornell Texas Washington Wisconsin Average
PSCG-MCSAT 0.418 0.298 0.577 0.568 0.465
PSCG-LPRelax 0.420 0.310 0.588 0.575 0.474
MM-∆0/1-MaxWalkSAT 0.150 0.162 0.122 0.122 0.139
MM-∆0/1-LPRelax 0.282 0.372 0.675 0.521 0.462
MM-∆Hamming-LPRelax 0.580 0.451 0.715 0.659 0.601

Table 4.2: F1 scores of different inference algorithms on WebKB

Cornell Texas Washington Wisconsin Average
PSCG-MCSAT 0.418 0.298 0.577 0.568 0.465
PSCG-MaxWalkSAT 0.161 0.140 0.119 0.129 0.137
PSCG-LPRelax 0.420 0.310 0.588 0.575 0.474
MM-∆Hamming-MCSAT 0.470 0.370 0.573 0.481 0.473
MM-∆Hamming-MaxWalkSAT 0.185 0.184 0.150 0.154 0.168
MM-∆Hamming-LPRelax 0.580 0.451 0.715 0.659 0.601

4.4.3 Results and Discussion

Table 4.1 and 4.3 present the performance of different systems on the

WebKB and Citeseer datasets. Each system is named by the weight learner

used, the loss function used in training, and the inference algorithm used in

testing. For max-margin (MM) learner with margin rescaling, the inference

used in training is the loss-augmented version of the one used in testing. For

example, MM-∆Hamming-LPRelax is the max-margin weight learner using the

loss-augmented (Hamming loss) LP-relaxation MPE inference algorithm in

training and the LP-relaxation MPE inference algorithm in testing.

Table 4.1 shows that the model trained using MaxWalkSAT has very

low predictive accuracy. This result is consistent with the result presented in

(Riedel, 2008) which also found that the MPE solution found by MaxWalkSAT
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Table 4.3: F1 scores on CiteSeer

Constraint Face Reasoning Reinforcement Average
PSCG-MCSAT 0.937 0.914 0.931 0.975 0.939
MM-∆Hamming-LPRelax 0.933 0.922 0.924 0.958 0.934

Table 4.4: F1 scores on CiteSeer with different parameter values

Constraint Face Reasoning Reinforcement Average
PSCG-MCSAT-5 0.852 0.844 0.836 0.923 0.864
PSCG-MCSAT-10 0.937 0.914 0.931 0.973 0.939
PSCG-MCSAT-15 0.878 0.896 0.780 0.891 0.861
PSCG-MCSAT-20 0.850 0.859 0.710 0.784 0.801
PSCG-MCSAT-100 0.658 0.697 0.600 0.668 0.656
MM-∆Hamming-LPRelax-1 0.933 0.922 0.924 0.955 0.934
MM-∆Hamming-LPRelax-10 0.926 0.922 0.925 0.955 0.932
MM-∆Hamming-LPRelax-100 0.926 0.922 0.925 0.954 0.932
MM-∆Hamming-LPRelax-1000 0.931 0.918 0.925 0.958 0.933
MM-∆Hamming-LPRelax-10000 0.932 0.922 0.919 0.968 0.935

is not very accurate. Using the proposed LP-relaxation MPE inference im-

proves the F1 score from 0.139 to 0.462, the MM-∆0/1-LPRelax system. Then

the best system is obtained by rescaling the margin and training with our

loss-augmented LP-relaxation MPE inference, which is the only difference be-

tween MM-∆Hamming-LPRelax and MM-∆0/1-LPRelax. The MM-∆Hamming-

LPRelax achieves the best F1 score (0.601), which is much higher than the

0.465 F1 score obtained by the previously best discriminative weight learner

for MLNs, PSCG-MCSAT.

Table 4.2 compares the performance of the proposed LP-relaxation

MPE inference algorithm against MCSAT and MaxWalkSAT on the best

trained models by PSCG and MM on the WebKB dataset. In both cases,

the LP-relaxation MPE inference achieves much better F1 scores than those
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Table 4.5: Average predictive accuracies and standard deviations on
Alzheimer’s datasets with transitive clause added

Data set Aleph Aleph++ Aleph++ Aleph Aleph++ Aleph++
ExactL2 ExactL2 ExactL1 MM-LPRelax MM-LPRelax MM-L1-LPRelax

Alzheimer amine 87.0 ± 3.3 91.7± 3.5 90.5 ± 3.6 87.0 ± 2.2 89.2± 2.9 88.8 ± 3.0
Alzheimer toxic 88.8 ± 4.8 91.4± 3.6 91.9 ± 4.1 88.5 ± 4.2 90.8± 3.6 91.6 ± 4.3
Alzheimer acetyl 84.1 ± 3.1 88.7± 2.1 87.6 ± 2.7 86.3 ± 2.8 88.3± 2.9 87.9 ± 2.8
Alzheimer memory 76.5 ± 3.5 81.3± 4.8 81.3 ± 4.1 79.1 ± 3.0 81.5± 4.2 80.7 ± 4.0

Table 4.6: Average number of clauses learned on Alzheimer’s datasets

Data set Aleph Aleph++ Aleph++ Aleph++ Aleph++ Aleph++
ExactL2 ExactL1 MM-LPRelax MM-L1-LPRelax

Alzheimer amine 10 7061 5070 3477 6981 35
Alzheimer toxic 9 2034 1194 747 2034 25
Alzheimer acetyl 12 8662 5427 2433 8621 51
Alzheimer memory 11 6524 4250 2471 6297 31

of MCSAT and MaxWalkSAT. This demonstrates that the approximate MPE

solution found by the LP-relaxation algorithm is much more accurate than

the one found by the MaxWalkSAT algorithm. The fact that the performance

of the LP-relaxation is higher than that of MCSAT shows that in collective

classification it is better to use the MPE solution as the prediction than the

marginal prediction.

For the WebKB dataset, there are other results reported in previous

work, such as those in (Taskar et al., 2004), but those results cannot be directly

compared to our results since we use a different version of the dataset and test

on a more complicated task (a page can have multiple labels not just one).

On the Citeseer results presented in Table 4.3, the performance of max-
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margin methods are very close to those of PSCG. However, its performance

is much more stable. Table 4.4 shows the performance of MM weight learners

and PSCG with different parameter values by varying the C value for MM and

the number of iterations for PSCG. The best number of iterations for PSCG

is 9 or 10. In principle, we should run PSCG until it converges to get the

optimal weight vector. However, in this case, the performance of PSCG drops

drastically on both training and testing after a certain number of iterations.

For example, from Table 4.4 we can see that at 10 iterations PSCG achieves the

best F1 score of 0.939, but after 15 iterations, its F1 score drops to 0.861 which

is much worse than those of the max-margin weight learners. Moreover, if we

let it run until 100 iterations, then its F1 score is only 0.656. On the other hand,

the performance of MM only varies a little bit with different values of C and

we don’t need to tune the number of iterations of MM. On this dataset, (Poon

& Domingos, 2007) achieved a F1 score of 0.944 with the same MLN by using a

version of the voted perceptron algorithm called Contrastive Divergence (CD)

(Hinton, 2002) to learn the weights. However, the performance of the CD

algorithm is very sensitive to the learning rate (Lowd & Domingos, 2007),

which requires a very careful tuning process to learn a good model.

Table 4.5 and 4.6 compares the performance of the MM weight learners

against the some of the systems described in section 3.2 for the case when the

transitive clause is included. For the MM weight learner, instead of adding the

transitive clause to the learnt MLNs in testing, we learned the weights with

the presence of the transitive clause since it can handle recursive clauses. In
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term of the accuracy, the MM weight learner is a little bit worse than the ones

proposed in the previous chapter. However, the 1-norm MM weight learner

(MM-L1-LPRelax) produces a very compact model, with less than 50 clauses,

with high accuracy while the models learnt by other systems have thousands

of clauses.

Regarding training time, the max-margin weight learner is comparable

to other learners. On the Alzheimer’s datasets, it took less than 100 iterations

to find the optimal weights, which resulted in a few minutes of training. For

the WebKB and CiteSeer datasets, the number of training iterations are about

200 and 50 respectively, which takes a few hours of training for WebKB and

less than an hour for CiteSeer.

4.5 Related Work

The work in this chapter is related to various previous projects. Among

them, M3N (Taskar et al., 2004) is probably the most related. It is a special

case of structural SVMs where the feature function φ(x,y) is represented by a

Markov network. When the Markov network can be triangulated and the loss

function can be linearly decomposed, the original exponentially-sized QP can

be reformulated as a polynomially-sized QP (Taskar et al., 2004). Then, the

polynomially-sized QP can be solved by general QP solvers (Anguelov, Taskar,

Chatalbashev, Koller, Gupta, Heitz, & Ng, 2005), decomposition methods

(Taskar et al., 2004), extragradient methods (Taskar, Lacoste-Julien, & Jor-

dan, 2006), or exponentiated gradient methods (Collins, Globerson, Koo, Car-
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reras, & Bartlett, 2008). As mentioned by Taskar et al. (2004), these methods

can also be used when the graph cannot be triangulated, but the algorithms

only yield approximate solutions like our approach. However, these algorithms

are restricted to the cases where a polynomially-sized reformulation exists

(Joachims et al., 2009). Consequently, in this work we used the general cut-

ting plane algorithm which imposes no restrictions on the representation. The

ground MLN can be any kind of graph. On the other hand, since an MLN is a

template for constructing Markov networks (Richardson & Domingos, 2006),

the proposed model, M3LN, can also be seen as a template for construct-

ing M3Ns. Hence, when the ground MLN can be triangulated and the loss

is a linearly decomposable function, the algorithms developed for M3Ns can

be applied. Our work is also closely related to the Relational Markov Net-

works (RMNs) (Taskar et al., 2002). However, by using MLNs, M3LNs are

more powerful than RMNs in term of representation (Richardson & Domingos,

2006). Besides, the objectives of M3LNs and RMNs are different. One tries

to maximize the margin between the true assignment and other competing

assignments, and one tries to maximize the conditional likelihood of the true

assignment. Another related system is Rumble (Rückert & Kramer, 2007),

a margin-based approach to first-order rule learning. In that work, the goal

is to find a set of weighted rules that maximizes a quantity called margin mi-

nus variance. However, unlike M3LNs, Rumble only applies to independent

binary classification problems and is unable to perform structured prediction

or collective classification. In terms of applying the general structural SVM
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framework to a specific representation, our work is related to the work in

(Szummer, Kohli, & Hoiem, 2008) which used CRFs as the representation and

graph cuts as the inference algorithm. In the context of discriminative learn-

ing, our work is related to previous work on discriminative training for MLNs

(Singla & Domingos, 2005; Lowd & Domingos, 2007; Biba et al., 2008). We

have mentioned some of them (Singla & Domingos, 2005; Lowd & Domingos,

2007) in previous sections. The main difference between the work in (Biba

et al., 2008) and ours is that we assume the structure is given and apply max-

margin framework to learn the weights while (Biba et al., 2008) tries to learn

a structure that maximizes the conditional likelihood of the data.

4.6 Chapter Summary

We have presented a max-margin weight learning method for MLNs

based on the framework of structural SVMs. It resulted in a new model, M3LN,

that has the representational expressiveness of MLNs and the predictive per-

formance of SVMs. M3LNs can be trained to optimize different performance

measures depending on the needs of the application. To train the proposed

model, we developed a new approximation algorithm for loss-augmented MPE

inference in MLNs based on LP-relaxation. The experimental results showed

that the new max-margin learner generally has better or equally good but

more stable predictive accuracy (as measured by F1) than the previously best

discriminative MLN weight learner.
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Chapter 5

Online Max-Margin Weight Learning for

MLNs

5.1 Introduction

In the previous chapter, we presented a max-margin algorithm to learn-

ing weights for MLNs. However, like other existing weight learning algorithms

for MLNs, the algorithm uses batch training which becomes computationally

expensive and even infeasible for very large datasets since the training exam-

ples may not fit in main memory. To address this issue, in this chapter, we

derive a new online max-margin algorithm for structured prediction from the

primal-dual framework for strongly convex loss functions (section 2.5).

The remainder of the chapter is organized as follows. Section 5.2

presents the new online max-margin algorithm for structured prediction. Sec-

tion 5.3 reports experimental evaluation. Section 5.4 discusses related work

and section 5.5 summarizes the chapter.
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5.2 Online Coordinate-Dual-Ascent Algorithms for Max-
Margin Structured Prediction

In this section, we derive new online algorithms for structured predic-

tion based on the algorithmic framework described in section 2.5 using the

CDA update rule. A standard complexity function used in structured predic-

tion is f(w) = 1
2 ||w||

2
2. Regarding the loss function gt, a generalized version

of the Hinge loss is widely used in max-margin structured prediction (Taskar

et al., 2004; Tsochantaridis et al., 2004):

lMM(w, (xt,yt)) =

maxy∈Y[∆(yt,y)− 〈w, (φ(xt,yt)− φ(xt,y)〉]+

However, minimizing the above loss results in an optimization problem with a

lot of constraints in the primal (one constraint for each possible label y ∈ Y)

which is usually expensive to solve. To overcome this problem, we consider

two simpler variants of the max-margin loss which only involves a particular

label: the maximal loss function and the prediction-based loss function.

Maximal loss (ML) function This loss function is based on the

maximal loss label at step t, yML
t = arg maxy∈Y{∆(yt,y) + 〈wt,φ(xt,y)〉}:

lML(w, (xt,yt)) =[
∆(yt,y

ML
t )−

〈
w,
(
φ(xt,yt)− φ(xt,y

ML
t )

)〉]
+

The loss lML(wt, (xt,yt)) is the greatest loss the algorithm would suffer at

step t if it used the maximal loss label yML
t as the prediction. On the
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other hand, it checks whether the max-margin constraints are satisfied since

if lML(wt, (xt,yt)) = 0 then yML
t = yt, and it means that the current weight

vector wt scores the correct label yt higher than any other label y′t where the

difference is at least ∆(yt,y
′
t). Note that the maximal loss label yML

t is the

input to the maximal loss (it is possible in online learning since the loss is

computed after the weight vector wt is chosen), therefore it does not depend

on the weight vector w for which we want to compute the loss. So the maximal

loss function only concerns the particular constraint for whether the true label

yt is scored higher than the maximal loss label with a margin of ∆(yt,y
ML
t ).

This is the key difference between the maximal loss and the max-margin loss

since the latter looks at the constraints of all possible labels. The main draw-

back of the maximal loss is that finding the maximal loss label yML
t , which is

also called the loss-augmented inference problem (section 2.4), is only feasible

for some decomposable label loss functions such as Hamming loss since the

maximal loss label depends on the label loss function ∆(yt,y
′). This is the

reason why we want to consider the second loss function, prediction-based loss,

which can be used with any label loss function such as (1− F1) loss.

Prediction-based loss (PL) function This loss function is based on

the predicted label yPt = hwt(xt) = arg maxy∈Y〈wt,φ(xt,y)〉:

lPL(w, (xt,yt)) =[
∆(yt,y

P
t )−

〈
w,
(
φ(xt,yt)− φ(xt,y

P
t )
)〉]

+
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Like the maximal loss, the prediction-based loss only concerns the constraint

for the prediction label yPt . We have lPL(wt, (xt,yt)) ≤ lML(wt, (xt,yt)) since

yML
t is the maximal loss label for wt. As a result, the update based on the

prediction-based loss function is less aggressive than the one based on the

maximal loss function. However, the prediction-based loss function can be

used with any label loss function since the predicted label yPt does not depend

on the label loss function.

To apply the primal-dual algorithmic framework described in section

2.5, we need to find the Fenchel conjugate function of the complexity func-

tion f(w) and the loss function g(w). The Fenchel conjugate function of the

complexity function f(w) = 1
2 ||w||

2
2 is itself, i.e. f∗(θ) = 1

2 ||θ||
2
2 (Boyd & Van-

denberghe, 2004). For the loss function, recall that the Fenchel conjugate

function of the Hinge-loss g(w) = [γ − 〈w,x〉]+ is:

g∗(θ) =

{
−γα if θ ∈ {−αx : α ∈ [0, 1]}
∞ otherwise

(Appendix A in (Shalev-Shwartz & Singer, 2007a)). We can see that both the

prediction-based loss and the maximal loss have the same form as the Hinge-

loss where γ is replaced by the label loss function l(yt,y
P
t ) and l(yt,y

ML
t ),

and x is replaced by ∆φPLt = φ(xt,yt) − φ(xt,yPt ) and ∆φML
t = φ(xt,yt) −

φ(xt,yML
t ) for the prediction-based loss and the maximal loss respectively.

Using the result of the Hinge-loss, we have the Fenchel conjugate function of

the prediction-based loss and the maximal loss as follows:

g∗t (θ) =

{
−∆(yt,y

P |ML
t )α if θ ∈ {−α∆φ

PL|ML
t : α ∈ [0, 1]}

∞ otherwise
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The next step is to derive the closed-form solution of the CDA update rule.

The optimization problem that we need to solve is:

argmaxλt
− (σt)f ∗

(
−
λ1:(t−1) + λt

(σt)

)
− g∗t (λt) (5.1)

where λ1:(t−1) =
∑t−1

i=1 λi. Substituting the conjugate function f ∗ and g∗t as

above in the equation 5.1, we obtain the following optimization problem:

arg max
α∈[0,1]

− (σt)

2

∣∣∣∣∣
∣∣∣∣∣−λ1:(t−1) − α∆φ

PL|ML
t

(σt)

∣∣∣∣∣
∣∣∣∣∣
2

2

+ α∆(yt,y
P |ML
t )

= arg max
α∈[0,1]

− α2 ||∆φ
PL|ML
t ||22

2(σt)
−
||λ1:(t−1)||22

2(σt)

+ α

(
∆(yt,y

P |ML
t ) +

1

(σt)

〈
λ1:(t−1),∆φ

PL|ML
t

〉)
This objective function is a function of α only and in fact it is a concave

parabola whose maximum attains at the point:

α∗ =
(σt)∆(yt,y

P |ML
t ) +

〈
λ1:(t−1),∆φ

PL|ML
t

〉
||∆φPL|ML

t ||22

If α∗ ∈ [0, 1], then α∗ is the maximizer of the problem. If α∗ < 0, then 0 is the

maximizer and if α∗ > 1 then 1 is the maximizer. In summary, the solution of

the above optimization is:

αmax =

min

{
1,

h
(σt)∆(yt,y

P |ML
t )+

D
λ1:(t−1),∆φ

PL|ML
t

Ei
+

||∆φPL|ML
t ||22

}
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To obtain the update in terms of the weight vectors w, we have:

wt+1 = ∇f ∗
(
− 1

σt
λ1:t

)
= − 1

σt
(λ1:(t−1) + λt)

= −
λ1:(t−1)

σt
− 1

σt
(−αmax∆φPL|ML

t )

= −−(σ(t− 1))wt

σt
+

1

σt
min

1,

[
(σt)∆(yt,y

P |ML
t ) +

〈
−(σ(t− 1))wt,∆φ

PL|ML
t

〉]
+

||∆φPL|ML
t ||22

∆φ
PL|ML
t

=
t− 1

t
wt+

min

 1

σt
,

[
∆(yt,y

P |ML
t )− t−1

t

〈
wt,∆φ

PL|ML
t

〉]
+

||∆φPL|ML
t ||22

∆φ
PL|ML
t

The new method is summarized in Algorithm 5.1. Interestingly, this up-

date formula has the same form as that of the subgradient algorithm (Nathan Ratliff

& Zinkevich, 2007) which is derived from the simple update criterion:

wt+1 = wt −
1

σt
(σwt −∆φML

t )

=
t− 1

t
wt +

1

σt
∆φML

t

The key difference is in the learning rate. The learning rate of the subgradient

algorithm, which is equal to 1/(σt), does not depend on the loss suffered at

each step, while the learning rate of CDA is the minimization of 1/(σt) and

the loss suffered at each step. In the beginning, when t is small and therefore

1/(σt) is large (assuming σ is small), CDA’s learning rate is controlled by the
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Algorithm 5.1 Online Coordinate-Dual-Ascent Algorithms for Structured Pre-
diction
1: Parameters: A constant σ > 0; Label loss function ∆(y,y′)
2: Initialize: w1 = 0
3: for i = 1 to T do
4: Receive an instance xt
5: Predict yPt = arg maxy∈Y〈wt,φ(xt,y)〉
6: Receive the correct target yt
7: (For maximal loss) Compute yML

t = arg maxy∈Y{∆(yt,y) + 〈wt,φ(xt,y)〉}
8: Compute ∆φt:
8: PL: ∆φt = φ(xt,yt)− φ(xt,yPt )
8: ML: ∆φt = φ(xt,yt)− φ(xt,yML

t )
9: Compute loss:
9: PL (CDA): lt =

[
∆(yt,yPt )− t−1

t 〈wt,∆φt〉
]
+

9: ML (CDA): lt =
[
∆(yt,yML

t )− t−1
t 〈wt,∆φt〉

]
+

10: Update:
10: CDA: wt+1 = t−1

t wt + min{1/(σt), lt
||∆φ||22

}∆φt
11: end for

loss suffered at each step. In contrast, when t is large and therefore 1/(σt)

is small, then the learning rate of CDA is driven by the quantity 1/(σt). In

other words, at the beginning, when the model is not good, CDA aggressively

updates the model based on the loss suffered at each step; and later when the

model is good, it updates the model less aggressively.

We can use the derived CDA algorithm to perform online weight learn-

ing for MLNs since the weight learning problem in MLNs can be cast as a

max-margin structured prediction problem as described in 4.2.
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5.3 Experimental Evaluation

In this section, we conduct experiments to answer the following ques-

tions in the context of MLNs:

1. How does our new online learning algorithm, CDA, compare to existing

online max-margin learning methods? In particular, is it better than the

subgradient method due to its more aggressive update in the dual?

2. How does it compare to the batch max-margin weight learning method

developed in the previous chapter?

3. How well does using the prediction-based loss compare to the maximal

loss in practice?

5.3.1 Datasets

We ran experiments on three large, real-world datasets with thousands

of examples: the CiteSeer dataset for bibliographic citation segmentation de-

scribed in 4.4.1, a web search query dataset (Mihalkova & Mooney, 2009)

obtained from Microsoft Research for query disambiguation, and the CoNLL

2005 dataset (Carreras & Màrquez, 2005) for Semantic Role Labeling. We

did not run experiments on Alzheimer’s datasets and WebKB dataset since

those are datasets with a few mega-examples (when taking into account the

transitive relationship, each Alzheimer’s dataset becomes a mega-example).

For the search query disambiguation, we used the data created by Mi-

halkova and Mooney (2009). The dataset consists of thousands of search ses-
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sions where ambiguous queries are asked. The data are split into 3 disjoint

sets: training, validation, and test. There are 4, 618 search sessions in the

training set, 4, 803 sessions in the validation set, and 11, 234 sessions in the

test set. In each session, the set of possible search results for a given ambigu-

ous query is given, and the goal is to rank these results based on how likely

it will be clicked by the user. A user may click on more than one result for a

given query. To solve this problem, Mihalkova and Mooney (2009) proposed

three different MLNs which correspond to different levels of information used

in disambiguating the query. We used all three MLNs in our experiments. In

comparison to the Citeseer dataset, the search query dataset is larger but is

much noisier since a user can click on a result because it is relevant or because

the user is just doing an exploratory search.

The CoNLL 2005 dataset contains over 40, 000 sentences from Wall

Street Journal (WSJ). Given a sentence, the task is to analyze the propositions

expressed by some target verbs of the sentence. In particular, for each target

verb, all of its semantic components must be identified and labeled with their

semantic roles as in the following sentence for the verb accept.

[A0 He] [AM−MOD would] [AM−NEG n’t] [V accept] [A1 anything of value]

from [A2 those he was writing about].

A verb and its set of semantic roles form a proposition in the sentence, and a

sentence usually contains more than one proposition. Each proposition serves

as a training example. The dataset consists of three disjoint subsets: training,

development, and test. The number of propositions (or examples) in the train-
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ing, development, and test sets are: 90, 750; 3, 248; and 5, 267 respectively.1

We used the MLN constructed by Riedel (2008) which contains clauses that

capture the features of constituents and dependencies between semantic com-

ponents of the same verb.

5.3.2 Methodology

To answer the above questions, we ran experiments with the following

systems:

MM: The offline max-margin weight learner for MLNs presented in previous

chapter.

1-best MIRA: MIRA is one of the first online learning algorithms for struc-

tured prediction proposed by McDonald, Crammer, and Pereira (2005).

A simple version of MIRA, called 1-best MIRA, is widely used in practice

since its update rule has a closed-form solution. 1-best MIRA has been

used in previous work (Riedel & Meza-Ruiz, 2008) to learn weights for

MLNs. In each round, it updates the weight vectors w as follows:

wt+1 = wt +

[
∆(yt,y

P
t )−

〈
wt,∆φ

PL
t

〉]
+

||∆φPLt ||22
∆φPLt

Subgradient: This algorithm proposed by Nathan Ratliff and Zinkevich

(2007) is an extension of the Greedy Projection algorithm (Zinkevich,

2003) to the case of structured prediction.

1We only used the WSJ part of the test set.
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CDA: Our newly derived online learning algorithm presented in Algorithm

5.1.

Regarding label loss functions, we use Hamming (HM) loss described

in section 4.3.2. As mentioned earlier, Hamming loss is a decomposable loss

function, so it can be used with both maximal loss and prediction-based loss.

Since F1 is the standard evaluation metric for the citation segmentation task

on Citeseer, we also considered the label loss function (1 − F1) (Joachims,

2005). However, since this loss function is not decomposable, we can only use

it with the prediction-based loss.

In training, for online learning algorithms, since the algorithms process

one example at a time it is feasible to use the exact MPE inference method

based on Integer Linear Programming described in section 4.3.1 on Citeseer

and web search query datasets, and Cutting Plane Inference on the CoNLL

2005 dataset. For the offline weight learner MM, we use the approximate

inference algorithm described in section 4.3.1 since it is computationally in-

tractable to run exact inference for all training examples at once. In testing,

we use MCSAT to compute marginal probabilities for the web search query

dataset since we want to rank the query results, and exact MPE inference on

the other two datasets. For all online learning algorithms, we ran one pass over

the training set and used the average weight vector to predict on the test set.

For CiteSeer, we ran four-fold cross-validation (i.e. leave one topic out). The

parameter σ of the Subgradient and CDA is set based on the performance on
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the validation set except Citeseer where the parameter is set based on training

performance.

Like previous work, for citation segmentation on Citeseer, we used F1 at

the token level to measure the performance of each algorithm; for search query

disambiguation, we used MAP (Mean Average Precision) which measures how

close the relevant results are to the top of the ranking; and for semantic role

labeling on CoNLL 2005, we used F1 of the predicted arguments as described

by Carreras and Màrquez (2005).

For testing the statistical significance between the performance of dif-

ferent algorithms, we use McNemar’s test (Dietterich, 1998) on Citeseer and

a two-sided paired t-test on the web search query. The significance level was

set to 5% (p-value smaller than 0.05) for both cases.

5.3.3 Results and Discussion

Table 5.1 presents the F1 scores of different algorithms on Citeseer. On

this dataset, the CDA algorithm with maximal loss, CDA-ML-HM, has the

best F1 scores across four folds. These results are statistically significantly bet-

ter than those of subgradient method. So aggressive update in the dual results

in a better F1 scores. The F1 scores of CDA-ML-HM are a little bit higher than

those of 1-best-MIRA, but the difference is not significant. Interestingly, with

the possibility of using exact inference in training, CDA is a little bit more

accurate than the batch max-margin algorithm (MM) since the batch learner

can only afford to use approximate inference in training. Other advantages of
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Table 5.1: F1 scores on CiteSeer dataset. Highest F1 scores are shown in bold.

Algorithms Constraint Face Reasoning Reinforcement
MM-HM 93.187 92.467 92.581 95.496
1-best-MIRA-HM 90.982 90.598 93.124 97.518
1-best-MIRA-F1 89.764 90.046 93.200 96.841
Subgradient-HM 90.957 89.859 91.505 95.318
CDA-PL-HM 91.245 90.992 92.589 96.516
CDA-PL-F1 91.742 92.368 92.726 96.994
CDA-ML-HM 93.287 93.204 93.448 97.560

online algorithms are in terms of training time and memory. Table 5.2 shows

the average training time of different algorithms on this dataset. All online

learning algorithms took on average about 12-13 minutes for training while

the batch one took an hour and a half on the same machine. In addition, since

online algorithms process one example at a time, they use much less memory

than batch methods. On the other hand, the running time results also confirm

that the new algorithm, CDA, has the same computational complexity as other

existing online methods. Regarding the comparison between maximal loss and

prediction-based loss, the former is better than the latter on this dataset due

to its more aggressive updates. For prediction-based loss function, there is not

much difference between using different label loss functions in this case.

Table 5.3 shows the MAP scores of different algorithms on the Microsoft

web search query dataset. The first row in the table is from Mihalkova and

Mooney (Mihalkova & Mooney, 2009) who used a variant of the structured

perceptron (Collins, 2002) called Contrastive Divergence (CD) (Hinton, 2002)
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Table 5.2: Average training time on CiteSeer dataset.

Algorithms Average training time
MM-HM 90.282 min.
1-best-MIRA-HM 11.772 min.
1-best-MIRA-F1 11.768 min.
Subgradient-HM 12.655 min.
CDA-PL-HM 11.869 min.
CDA-PL-F1 11.915 min.
CDA-ML-HM 12.887 min.

Table 5.3: MAP scores on Microsoft search query dataset. Highest MAP scores
are shown in bold.

Algorithms MLN1 MLN2 MLN3
CD 0.375 0.386 0.366
1-best-MIRA-HM 0.366 0.375 0.379
Subgradient-HM 0.374 0.397 0.396
CDA-PL-HM 0.382 0.397 0.398
CDA-ML-HM 0.380 0.397 0.397

to do online weight learning for MLNs. It is clear that the CDA algorithm has

better MAP scores than CD. For this dataset, we were unable to run offline

weight learning since the large amount of training data exhausted memory

during training. The 1-best MIRA has the worst MAP scores on this dataset.

This behavior can be explained as follows. From the update rule of the 1-best

MIRA algorithm, we can see that it aggressively updates the weight vector

according to the loss incurred in each round. Since this dataset is noisy,

this update rule leads to overfitting. This also explains why the subgradient

algorithm has good performance on this data since its update rule does not
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Figure 5.1: Learning curve on CoNLL 2005

depend on the loss incurred in each round. The MAP scores of the CDA

algorithms are not significantly better than that of the subgradient method,

but their performance is more consistent across the three MLNs. Regarding

the loss function, the MAP scores of CDA-PL and CDA-ML are almost the

same.

Figure 5.1 shows the learning curve of three online learning algorithms:

CDA, 1-best MIRA and subgradient on the CoNLL 2005 dataset. In general,

the relative accuracy of three algorithms is similar to what we have seen on
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Figure 5.2: F1 scores on noisy CoNLL 2005

Citeseer. CDA outperforms the subgradient method across the whole learning

curve. In particular, at 30, 000 training examples, about 1/3 of the training

set, the F1 score of CDA is already better than the that of the subgradient

method trained on the whole training set. The performance of CDA and 1-best

MIRA are comparable to each other, except on the early part of the learning

curve (less than 10, 000 examples) where the F1 scores of CDA are about 1 to

2 percentage points higher than those of 1-best MIRA.

The CoNLL 2005 dataset was carefully annotated by experts (Palmer,
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Gildea, & Kingsbury, 2005), which is a time consuming and expensive process.

Nowadays, a faster and cheaper way to obtain this type of annotation is using

crowdsourcing services such as Amazon Mechanical Turk,2 which is possible

to assign annotation jobs to thousands of people and get results back in a

few hours (Snow, O’Connor, Jurafsky, & Ng, 2008). However, a downside

of this approach is the big variance in the quality of labels obtained from

different annotators. As a result, there is a lot of noise in the annotated

data. To simulate this type of noisy labeled data, we introduce random noise

to the CoNLL 2005 dataset. At p percent noise, there is probability p that

an argument in a proposition is swapped with another argument in the same

proposition. For example, an argument with role “A0” may be swapped to

an argument with role “A1” and vice versa. Figure 5.2 shows the F1 scores of

the above three online learning algorithms on noisy CoNLL 2005 dataset at

various levels of noise. With the presence of noise, CDA is the most accurate

and also the most robust to noise among the three algorithms. For 10% noise

and higher, CDA is significantly better than the other two methods. The F1

score of CDA at a noise level of 50% is 8.5% higher than that of 1-best MIRA

and 12.6% higher than that of the subgradient method. On the other hand,

comparing with the F1 score on the clean dataset, the F1 score of CDA at 50%

of noise only drops 8.4 points while those of 1-best MIRA and subgradient drop

about 17.6 and 16.1 respectively. In addition, the F1 score of CDA at 50%

noise is higher than the F1 score of 1-best MIRA at 35% noise and comparable

2https://www.mturk.com/mturk/
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to the F1 score of subgradient method at 20% noise.

In summary, our new online learning algorithm CDA has generally

better accuracy than existing max-margin online methods for structured pre-

diction such as 1-best MIRA and the subgradient method which have been

shown to achieve good performance in previous work. In particular, CDA is

significantly better than other methods on noisy datasets.

5.4 Related Work

Online learning for max-margin structured prediction has been stud-

ied in several pieces of previous work. In addition to those mentioned ear-

lier, a family of online algorithms similar to the 1-best MIRA, called passive-

aggressive algorithms, was presented in (Crammer, Dekel, Keshet, Shalev-

Shwartz, & Singer, 2006). Another piece of related work is the exponenti-

ated gradient algorithm (Bartlett, Collins, Taskar, & McAllester, 2005; Collins

et al., 2008) which also performs updates based on the dual of the primal prob-

lem. However, the dual problem in (Bartlett et al., 2005; Collins et al., 2008)

is more complicated and expensive to solve since it was derived based on the

max-margin loss, lMM . As a result, to efficiently solve the problem, the authors

assume that each label y is a set of parts and both the joint feature and the

label loss function can be decomposed into a sum over those for the individual

parts. Even under this assumption, efficiently computing the marginal values

of the part variables is still a challenging problem.

In the context of online weight learning for MLNs, one related algorithm
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is SampleRank (Culotta, 2008) which uses a sampling algorithm to generate

samples from a given training example and updates the weight vector whenever

it misranks a pair of samples. So unlike traditional online learning algorithms

that perform one update per example, SampleRank performs multiple updates

per example. However, the performance of SampleRank highly depends on

the sampling algorithm, and which sampling algorithms are best is an open

research question.

The issue of prediction-based loss versus maximal loss has been dis-

cussed previously (Crammer et al., 2006; Shalev-Shwartz, 2007), but no ex-

periments have been conducted to compare them on real-world datasets.

5.5 Chapter Summary

We have presented a comprehensive study of online weight learning for

MLNs. Based on the primal-dual framework, we derived a new CDA online

algorithm for structured prediction and applied it to learn weights for MLNs

and compared it to existing online methods on three large, real-world datasets.

Our new algorithm generally achieved better accuracy than existing online

methods. In particular, our new algorithm is more accurate and robust when

training data is noisy.
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Chapter 6

Online Structure Learning for MLNs

6.1 Introduction

In the previous chapter, we derived a new online max-margin weight

learning algorithm for MLNs. However, like other existing online algorithms,

the algorithm assumes the input MLN’s structure is complete and only updates

the weights. In practice, the input structure is usually incomplete, so it should

also be updated. To address this issue, in this chapter, we propose a new

algorithm that performs both online structure and parameter learning.

The remainder of the paper is organized as follows. Section 6.2 provides

some background on the field segmentation task. Section 6.3 presents the

proposed algorithm OSL. Section 6.4 reports the experimental evaluation on

two real-world datasets. Section 6.5 discusses the related work and section 6.6

summarizes the chapter.

6.2 Task

In this chapter, we focus on an information extraction task, called field

segmentation which is the generalized version of the citation segmentation task

described in previous chapters. Field segmentation is an instance of structured
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prediction problems where the data contain many examples such as a corpus

of documents. In this task, a document is represented as a sequence of tokens,

and the goal is to segment the document into fields (i.e. to label each token in

the document with a field label). For example, in segmenting advertisements

for apartment rentals (Grenager et al., 2005), the goal is to segment each

advertisement into fields such as Features, Neighborhood, Rent, Contact, and

so on. Below are descriptions of some key predicates in this domain:

• Token(string, position, docID): the token at a particular position in a

document such as Token(Entirely, P4, Ad001)

• Next(position, position): the later position is next to the former position

such as Next(P01, P02)

• LessThan(position, position): the former position is appeared before

the later position such as LessThan(P01, P05)

• InF ield(field, position, docID): the field label of the token at a partic-

ular position in a document such as InF ield(Features, P4, Ad001)

Only InF ield is the target predicate and the rest are evidence predicates.

6.3 Online Max-Margin Structure and Parameter Learn-
ing

In this section, we describe OSL—the new online max-margin learning

algorithm for updating both the structure and parameters of an MLN. In each
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step, whenever the model makes wrong predictions on a given example, based

on the wrongly predicted atoms OSL finds new clauses that discriminate the

ground-truth possible world from the predicted one, then uses an adaptive

subgradient method with l1-regularization to update weights for both old and

new clauses. Algorithm 6.1 gives the pseudocode for OSL. Lines 3 to 20

are pseudocode for structure learning and lines 21 to 35 are pseudocode for

parameter learning.

6.3.1 Online Max-Margin Structure Learning with Mode-Guided
Relational Pathfinding

Most existing structure learning algorithms for MLNs only consider

ground-truth possible worlds and search for clauses that improve the likeli-

hood of those possible worlds. However, these approaches may spend a lot of

time searching over insignificant clauses that are likely true in most possible

worlds. Therefore, instead of only considering ground-truth possible worlds,

OSL also takes into account the predicted possible worlds which are the most

probable possible worlds predicted by the model. At each step, if the pre-

dicted possible world is different from the ground-truth one, then OSL focuses

on where the two possible worlds differ and searches for clauses that differen-

tiate them. This is related to the idea of using implicit negative examples in

(Zelle, Thompson, Califf, & Mooney, 1995). In this case, each ground-truth

possible world plays the role of a positive example in traditional ILP. Making

a closed world assumption (Genesereth & Nilsson, 1987), any possible world

that differs from the ground-truth possible world is incorrect and can be con-
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sidered as a negative example (the predicted possible world in this case). In

addition, this follows the max-margin training criterion (section 2.4) which

discriminates the true label (the ground-truth possible world) from the closest

incorrect one (the predicted possible world).

At each time step t, OSL receives an example xt, produces the predicted

label yPt = arg maxy∈Y〈wC,nC(xt,y)〉, then receives the true label yt. Given

yt and yPt , in order to find clauses that separate yt from yPt , OSL first finds

atoms that are in yt but not in yPt , ∆yt = yt \ yPt . Then OSL searches the

ground-truth possible world (xt,yt) for clauses that are specific to the true

ground atoms in ∆yt.

A simple way to find useful clauses specific to a set of atoms is to use

relational pathfinding (Richards & Mooney, 1992), which considers a relational

example as a hypergraph with constants as nodes and true ground atoms as

hyperedges connecting the nodes that are its arguments, and searches in the

hypergraph for paths that connect the arguments of an input literal. A path

of hyperedges corresponds to a conjunction of true ground atoms connected by

their arguments and can be generalized into a first-order clause by variabilizing

their arguments. Starting from a given atom, relational pathfinding searches

for all paths connecting the arguments of the given atom. Therefore, relational

pathfinding may be very slow or even intractable when there are a large (or

exponential) number of paths. To speed up relational pathfinding, we use mode

declarations (Muggleton, 1995) to constrain the search for paths. As defined in

(Muggleton, 1995), mode declarations are a form of language bias to constrain
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the search for definite clauses. Since our goal is to use mode declarations for

constraining the search space of paths, we introduce a new mode declaration:

modep(r, p) for paths. It has two components: a recall number r which is a

positive interger, and an atom p whose arguments are place-makers. A place-

maker is either ‘+’ (input), ‘-’ (output), or ‘.’ (don’t explore). The recall

number r limits the number of appearances of the predicate p in a path to

r. The place-maker restricts the search of relational pathfinding. Only paths

connecting ‘input’ or ‘output’ nodes will be considered. A ground atom can

only added to a path if one of its arguments has previously appeared as ‘input’

or ‘output’ arguments in the path and all of its ‘input’ arguments are ‘output’

arguments of previous atoms. Here are some examples of mode declarations

for paths:

modep(2, T oken(.,+, .)) modep(1, Next(−,−)) modep(2, InF ield(.,−, .)

The above mode declarations require that a legal path contains at most two

ground atoms of each predicate Token and InF ield and one ground atom

of predicate Next. Moreover, the second argument of Token is an ‘input’

argument; the second argument of InF ield and all arguments of Next are

‘output’ arguments. Note that, in this case, all ‘input’ and ‘output’ argu-

ments are of type position. These ‘input’ and ‘output’ modes constrain that

the position constants in atoms of Token must appeared in some previous

atoms of Next or InF ield in a path. From the graphical model perspec-

tive, these mode declarations restrict the search space to linear chain CRFs
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(Sutton & McCallum, 2007) since they constrain the search to paths connect-

ing ground atoms of two consecutive tokens. It is easy to modify the mode

declarations to search for more complicated structure. For example, if we in-

crease the recall number of Next to 2 and the recall number of InF ield to

3, then search space is constrained to second-order CRFs since they constrain

the searches to paths connecting ground atoms of three consecutive tokens.

If we add a new mode declaration modep(1, LessThan(−,−)) for predicate

LessThan, then the search space becomes skip-chain CRFs (Sutton & McCal-

lum, 2007). Algorithm 6.2 presents the pseudocode for efficiently constructing

a hypergraph based on mode declarations by only constructing the hypergraph

corresponding to input and output nodes. Algorithm 6.3 gives the pseudocode

for mode-guided relational pathfinding, ModeGuidedF indPaths, on the con-

structed hypergraph. It is an extension of a variant1 of relational pathfinding

presented in (Kok & Domingos, 2009). Starting from each true ground atom

r(c1, ..., cr) ∈ ∆yt, it recursively adds to the path ground atoms or hyper-

edges that satisfy the mode declarations. Its search terminates when the path

reaches a specified maximum length or when no new hyperedge can be added.

The algorithm stores all the paths encountered during the search. Below is an

example path found by the algorithm:

{InF ield(Size, P29, Ad001), Token(And, P29, Ad001), Next(P29, P30),

Token(Spacious, P30, Ad001) InF ield(Size, P30, Ad001)}

1In this variant, a path doesn’t need to connect arguments of the input atom. The only
requirement is that any two consecutive atoms in a path must share at least one argument.
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A standard way to generalize paths into first-order clauses is to replace each

constant ci in a conjunction with a variable vi. However, for many tasks such

as field segmentation, it is critical to have clauses that are specific to a partic-

ular constant. In order to create clauses with constants, we introduce mode

declarations for creating clauses: modec(p). This mode declaration has only

one component which is an atom p whose arguments are either ‘c’ (constant)

or ‘v’ (variable). Below are some examples of mode declarations for creating

clauses:

modec(Token(c, v, v)) modec(Next(v, v)) modec(InF ield(c, v, v)

Based on these mode declarations, OSL variablises all constants in a conjunc-

tion except those are declared as constants. Then OSL converts the conjunc-

tion of positive literals to clausal form since this is the form used in Alchemy.

In MLNs, a conjunction of positive literals with weight w is equivalent to a

clause of negative literals with weight −w. Previous work (Kok & Domingos,

2009, 2010) found that it is also useful to add other variants of the clause

by flipping the signs of some literals in the clause. Currently, we only add

one variant—a Horn version of the clause by only flipping the first literal,

the one for which the model made a wrong prediction. In summary, for each

path, OSL creates two type of clauses: one with all negative literals and one

in which only the first literal is positive. For example, from the sample path

above, OSL creates the following two clauses:
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¬InF ield(Size, p1, a) ∨ ¬Token(And, p1, a) ∨ ¬Next(p1, p2) ∨

¬Token(Spacious, p2, a) ∨ ¬InF ield(Size, p2, a)

InF ield(Size, p1, a) ∨ ¬Token(And, p1, a) ∨ ¬Next(p1, p2) ∨

¬Token(Spacious, p2, a) ∨ ¬InF ield(Size, p2, a)

Finally, for each new clause c, OSL computes the difference in number

of true groundings of c in the ground-truth possible world (xt,yt) and the

predicted possible world (xt,y
P
t ), ∆nc = nc(xt,yt) − nc(xt,yPt ). Then, only

clauses whose difference in number of true groundings is greater than or equal

to a predefined threshold minCountDiff will be added to the existing MLN.

The smaller the value of minCountDiff , the more clauses will be added to

the existing MLN at each step.

6.3.2 Online Max-Margin l1-regularized Weight Learning

The above online structure learner may introduce a lot of new clauses

in each step, and some of them may not be useful in the long run. To ad-

dress this issue, like in section 3.2.2, we use l1-regularization but in an on-

line setting. We employ a state-of-the-art online l1-regularization method—

ADAGRAD FB which is a l1-regularized adaptive subgradient method using

composite mirror-descent update (Duchi, Hazan, & Singer, 2010). At each

time step t, it updates the weight vector as follows:

wt+1,i = sign

(
wt,i −

η

Ht,ii

gt,i

)[∣∣∣∣wt,i −
η

Ht,ii

gt,i

∣∣∣∣− λη

Ht,ii

]
+

(6.1)
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Algorithm 6.1 OSL
Input: C: initial clause set (can be empty)

mode: mode declaration for each predicate
maxLen: maximum number of hyperedges in a path
minCountDiff : minimum number of difference in true groundings for selecting new

clauses
λ, η, δ: parameters for the l1-regularization adaptive subgradient method
ρ(y,y′): label loss function

Note: Index H maps from each node γi to set of hyperedges r(γ1, ..., γi, ..., γn) containing
γi
Paths is a set of paths, each path is a set of hyperedges

1: Initialize: wC = 0,gC = 0, nc = |C|
2: for i = 1 to T do
3: Receive an instance xt
4: Predict yPt = arg maxy∈Y〈wC,nC(xt,y)〉
5: Receive the correct target yt
6: Compute ∆yt = yt \ yPt
7: if ∆yt 6= ∅ then
8: H = CreateHG((xt,yt),mode)
9: Paths = ∅

10: for each true atom r(c1, ..., cr) ∈ ∆yt do
11: V = ∅
12: for each ci ∈ {c1, ..., cr} do
13: if isInputOrOutputVar(ci,mode) then
14: V = V ∪ {ci}
15: end if
16: end for
17: ModeGuidedF indPaths({r(c1, ..., cr)}, V,H,mode,maxLen, Paths)
18: end for
19: end if
20: Cnew = CreateClauses(C, Paths,mode)
21: Compute ∆nC,∆nCnew

:
22: ∆nC = nC(xt,yt)− nC(xt,yPt )
23: ∆nCnew

= nCnew
(xt,yt)− nCnew

(xt,yPt )
24: for i = 1 to |C| do
25: gC,i = gC,i + ∆nC,i ∗∆nC,i

26: wC,i = sign
(
wC,i + η

δ+
√

gC,i
∆nC,i

) [∣∣∣wC,i + η
δ+
√

gC,i
∆nC,i

∣∣∣− λη
δ+
√

gC,i

]
+

27: end for
28: for i = 1 to |Cnew| do
29: if ∆nCnew,i ≥ minCountDiffer then
30: C = C ∪ Cnew,i
31: nc = nc+ 1
32: gC,nc = ∆nCnew,i

∗∆nCnew,i

33: wC,nc =
[

η
δ+
√

gC,nc
(∆nCnew,i − λ)

]
+

34: end if
35: end for
36: end for 88



Algorithm 6.2 CreateHG(D,mode)
Input: D: a relational example

mode: mode declaration file
1: for each constant c in D do
2: H[c] = ∅
3: end for
4: for each true ground atom r(c1, ..., cr) ∈ D do
5: for each constant ci ∈ {c1, ..., cr} do
6: if isInputOrOutputVar(ci,mode) then
7: H[ci] = H[ci] ∪ {r(c1, ..., cr)}
8: end if
9: end for

10: end for
11: return H

Algorithm 6.3ModeGuidedF indPaths(CurrPath, V,H,mode,maxLen, Paths)
1: if |CurrPath| < maxLen then
2: for each constant c ∈ V do
3: for each r(c1, ..., cr) ∈ H[c] do
4: if canBeAdded(r(c1, ..., cr), CurrPath,mode) == success then
5: if CurrPath /∈ Paths then
6: CurrPath = CurrPath ∪ {r(c1, ..., cr)}
7: Paths = Paths ∪ {CurrPath}
8: V ′ = ∅
9: for each ci ∈ {c1, ..., cr} do

10: if ci /∈ V and isInputOrOutputVar(ci,mode) then
11: V = V ∪ {ci}
12: V ′ = V ′ ∪ {ci}
13: end if
14: end for
15: ModeGuidedF indPaths(CurrPath, V,H,mode,maxLen, Paths)
16: CurrPath = CurrPath \ {r(c1, ..., cr)}
17: V = V \ V ′
18: end if
19: end if
20: end for
21: end for
22: end if
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where λ is the regularization parameter, η is the learning rate, gt is the subgra-

dient of the loss function at step t, and Ht,ii = δ+ ||g1:t,i||2 = δ+
√∑t

j=1(gj,i)2

(δ ≥ 0). Note that, ADAGRAD FB assigns a different step size, η
Ht,ii

, for each

component of the weight vectors. Thus, besides the weights, ADAGRAD FB

also needs to retain the sum of the squared subgradients of each component.

From the equation 6.1, we can see that if a clause is not relevant to the

current example (i.e. gt,i = 0) then ADAGRAD FB discounts its weight by

λη
Ht,ii

. Thus, irrelevant clauses will be zeroed out in the long run.

Regarding the loss function, we use the prediction-based loss function

lPL described in section 5.2:

lPL(wC, (xt,yt)) =
[
ρ(yt,y

P
t )−

〈
wC,

(
nC(xt,yt)− nC(xt,y

P
t )
)〉]

+

The subgradient of lPL is:

gPL = nC(xt,y
PL
t )− nC(xt,yt) = −

[
nC(xt,yt)− nC(xt,y

PL
t )
]

= −∆nC

Substituting the gradient into equation 6.1, we obtain the following

formulae for updating the weights of old clauses:

gC,i = gC,i + (∆nC,i)
2

wC,i ← sign

(
wC,i +

η

δ +
√

gC,i

∆nC,i

)[∣∣∣∣wC,i +
η

δ +
√

gC,i

∆nC,i

∣∣∣∣− λη

δ +
√

gC,i

]
+

For new clauses, the update formulae are simpler since all the previous weights

and gradients are zero:

gC,nc = (∆nCnew,i
)2
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wC,nc =

[
η

δ +
√

gC,nc

(∆nCnew,i
− λ)

]
+

Lines 24− 27 in Algorithm 6.1 are the pseudocode for updating the weights of

existing clauses, and lines 28− 35 are the pseudocode for selecting and setting

weights for new clauses.

6.4 Experimental Evaluation

In this section, we conduct experiments to answer the following ques-

tions:

1. Starting from a given MLN, does OSL find new useful clauses that im-

prove the predictive accuracy?

2. How well does OSL perform when starting from an empty knowledge

base?

3. How does OSL compare to LSM, the state-of-the-art structure learner

for MLNs (Kok & Domingos, 2010) ?

6.4.1 Data

We ran experiments on two real world datasets for field segmentation:

CiteSeer described in section 4.4.1 and the advertisements dataset Craigslist

(Grenager et al., 2005).

The Craigslist dataset2 consists of advertisements for apartment rentals

2http://nlp.stanford.edu/~grenager/data/unsupie.tgz
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posted on Craigslist. There are 8, 767 ads in the dataset, but only 302 of them

were labeled with 11 fields: Available, Address, Contact, Features, Neighbor-

hood, Photos, Rent, Restrictions, Roommates, Size, and Utilities. The labeled

ads are divided into 3 disjoint sets: training, development and test set. The

number of ads in each set are 102, 100, and 100 respectively. We preprocessed

the data using regular expressions to recognize numbers, dates, times, phone

numbers, URLs, and email addresses.

6.4.2 Input MLNs

A standard model for sequence labeling tasks such as field segmentation

is a linear chain CRF (Lafferty et al., 2001). Thus, we use a linear chain CRF

as the input MLN. The following MLN, named LC 0, encodes a simple linear

chain CRF that only use the current words as features:

Token(+t, p, c) ⇒ InF ield(+f, p, c)

Next(p1, p2) ∧ InF ield(+f1, p1, c) ⇒ InF ield(+f2, p2, c)

InF ield(f1, p, c) ∧ (f1! = f2) ⇒ ¬InF ield(f2, p, c).

The plus notation indicates that the MLN contains an instance of the first

clause for each (token, field) pair, and an instance of the second clause for

each pair of fields. Thus, the first set of rules captures the correlation between

tokens and fields, and the second set of rules represents the transitions between

fields. The third rule constrains that the token at a position p can be part of

at most one field.
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For CiteSeer, there is also an existing MLN previously mentioned in

4.4.1, which is called the isolated segmentation model (ISM). ISM is also a

linear chain CRF but has more features than the simple linear chain CRF

above. Like LC 0, ISM also has rules that correlate the current words with

field labels. For transition rules, ISM only captures transitions within fields

and also takes into account punctuation as field boundaries:

Next(p1, p2) ∧ ¬HasPunc(p1, c) ∧ InF ield(+f, p1, c) ⇒ InF ield(+f, p2, c)

In addition, ISM also contains rules that are specific to the citation domain

such as “the first two positions of a citation are usually in the author field”,

“initials tend to appear in either the author or the venue field”. Most of

those rules are features corresponding to words that appear before or after the

current tokens.

For Craigslist, previous work (Grenager et al., 2005) found that it is

useful to only capture the transitions within fields and take into account the

field boundaries, so we create a version of ISM for it by removing all clauses

that are specific to the citation domain. Thus, the ISM MLN for Craiglist is

a revised version of the LC 0 MLN. Therefore, we only ran experiments with

ISM on Craigslist.

6.4.3 Methodology

To answer the questions above, we ran experiments with the following

systems:
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ADAGRAD FB-LC 0: Use ADAGRAD FB to learn weights for the LC 0

MLN.

OSL-M1-LC 0: Starting from the LC 0 MLN, this system runs a slow ver-

sion of OSL where the parameter minCountDiff is set to 1, i.e. all

clauses whose number of true groundings in true possible worlds is greater

than those in predicted possible worlds will be selected.

OSL-M2-LC 0: Starting from the LC 0 MLN, this system runs a faster

version of OSL where the parameter minCountDiff is set to 2.

ADAGRAD FB-ISM: Use ADAGRAD FB to learn weights for the ISM

MLN.

OSL-M1-ISM: Like OSL-M1-LC 0, but starting from the ISM MLN.

OSL-M2-ISM: Like OSL-M2-LC 0, but starting from the ISM MLN.

OSL-M1-Empty: Like OSL-M1-LC 0, but starting from an empty MLN.

OSL-M2-Empty: Like OSL-M2-LC 0, but starting from an empty MLN.

Regarding label loss functions, we use Hamming (HM) loss described in section

4.3.2.

For inference in training and testing, we used the exact MPE inference

method based on Integer Linear Programming described in section 4.3.1. For

all systems, we ran one pass over the training set and used the average weight
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vector to predict on the test set. For Craigslist, we used the original split for

training and test. For CiteSeer, we ran four-fold cross-validation (i.e. leave one

topic out). The parameters λ, η, δ of ADAGRAD FB were set to 0.001,1, and 1

respectively. For OSL, the mode declarations were set to constrain the search

space of relational pathfinding to linear chain CRFs in order to make exact

inference in training feasible 3; the maximum path length maxLen was set to

4; the parameters λ, η, δ were set to the same values in ADAGRAD FB. All the

parameters are set based on the performance on the Craigslist development

set. We used the same parameter values on CiteSeer.

Like previous work, we used F1 to measure the performance of each

system.

6.4.4 Results and Discussion

Table 6.1 shows the average F1 with their standard deviations, average

training times in minutes, and average number of non-zero clauses on CiteSeer.

All results are averaged over the four folds. First, either starting from LC 0

or ISM, OSL is able to find new useful clauses that improve the F1 scores. For

LC 0, comparing to the system that only does weight learning, the fast version

of OSL, OSL-M2, increases the average F1 score by 9.4 points, from 82.62 to

92.05. The slow version of OSL, OSL-M1, further improves the average F1

score to 94.47. For ISM, even though it is a well-developed MLN, OSL is

3We did try to search on a more complex space such as second-order CRFs, but it took
much longer time in training with minimal improvement in the F1 score.
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Table 6.1: Experimental results on CiteSeer.

Systems Average F1 Average training Average number of
time (minutes) non-zero clauses

ADAGRAD FB-LC 0 82.62± 2.12 10.40 2, 896
OSL-M2-LC 0 92.05± 2.63 14.16 2, 150
OSL-M1-LC 0 94.47± 2.04 163.17 9, 395
ADAGRAD FB-ISM 91.18± 3.82 11.20 1, 250
OSL-M2-ISM 95.51± 2.07 12.93 1, 548
OSL-M1-ISM 96.48± 1.72 148.98 8, 476
OSL-M2-Empty 88.94± 3.96 23.18 650
OSL-M1-Empty 94.03± 2.62 257.26 15, 212

Table 6.2: Experimental results on Craigslist.

Systems F1 Training time Number of
(minutes) non-zero clauses

ADAGRAD FB-ISM 79.57 2.57 2, 447
OSL-M2-ISM 77.26 3.88 2, 817
OSL-M1-ISM 81.58 33.63 9, 575
OSL-M2-Empty 55.28 17.64 1, 311
OSL-M1-Empty 71.23 75.84 17, 430

still able to enhance it. The OSL-M1-ISM achieves the best average F1 score,

96.48, which is 2 points higher than the current best F1 score achieved by

using a complex joint segmentation model that also uses information from

matching multiple citations of the same paper (Poon & Domingos, 2007).

On the other hand, the results of OSL-M2-Empty and OSL-M1-Empty shows

that OSL also perform very well when there is no input MLN. OSL-M1 even

finds a structure that has higher predictive accuracy than that of ISM. All of

the differences in F1 score between OSL and ADAGRAD FB are statistically
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significant according to a paired t-test at significance level 0.05. Regarding

the training time, OSL-M2 takes on average a few more minutes than systems

that only do weight learning. However, OSL-M1 takes more time to train since

including more new clauses results in longer time for constructing the ground

network, running inference, and computing the number of true groundings.

The last column of Table 6.1 shows the average number of non-zero clauses in

the final MLNs learnt by different systems. These numbers reflect the size of

MLNs generated by different systems during training.

Table 6.2 shows the experimental results on Craigslist. The segmen-

tation task in Craigslist is much harder than the one in CiteSeer due to the

huge variance in the context of different ads. As a result, most words only

appear once or twice in the training set. Thus the most important rules are

those that correlate words with fields and those capturing the regularity that

consecutive words are usually in the same field, which are already in ISM. In

addition, most rules only appear once in a document. That’s why OSL-M2 is

not able to find useful clauses, but OSL-M1 is able to find some useful clauses

that improve the F1 score of ISM from 79.57 to 81.58. On the other hand,

OSL also gives some promising results when starting from an empty MLN.

To answer question 3, we ran LSM on CiteSeer and Craigslist but the

MLNs returned by LSM result in huge ground networks that make weight

learning infeasible even using online weight learning. The problem is that these

natural language problems have a huge vocabulary of words. Thus, failing to

restrict clauses to specific words results in a blow-up in the size of the ground
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network. However, LSM is currently not able to learn clauses with constants.

It is unclear whether it is feasible to make LSM efficiently learn clauses with

constants since those constants may need to be considered individually which

dramatically increases the search space. This problem also holds for other

existing structure learners of MLNs (Kok & Domingos, 2005; Mihalkova &

Mooney, 2007; Biba et al., 2008; Kok & Domingos, 2009). Our previous

structure learner described in chapter 3 can learn clauses with constants but

it can only learn non-recursive clauses. Thus, it is not suitable for the field

segmentation task.

Below are some good clauses found by OSL-M2-ISM on CiteSeer:

• If the current token is in the Title field and it is followed by a period

then it is likely that the next token is in the Venue field.

¬InF ield(Ftitle, p1, c) ∨ ¬FollowBy(p1, TPERIOD, c) ∨

¬Next(p1, p2) ∨ InF ield(Fvenue, p2, c)

• If the next token is ‘in’ and it is in the Venue field, then the current

token is likely in the Title field

¬Next(p1, p2) ∨ ¬Token(Tin, p2, c) ∨ ¬InF ield(Fvenue, p2, c) ∨

InF ield(Ftitle, p1, c)

On the other hand, when starting from an empty knowledge base, OSL-M2 is

able to discover the regularity that consecutive words are usually in the same

fields:
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¬Next(p1, p2) ∨ ¬InF ield(Fauthor, p1, c) ∨ InF ield(Fauthor, p2, c)

¬Next(p1, p2) ∨ ¬InF ield(Ftitle, p1, c) ∨ InF ield(Ftitle, p2, c)

¬Next(p1, p2) ∨ ¬InF ield(Fvenue, p1, c) ∨ InF ield(Fvenue, p2, c)

6.5 Related Work

Our work in this chapter is related to previous work on online feature

selection for Markov Random Fields (MRFs) (Perkins & Theiler, 2003; Zhu,

Lao, & Xing, 2010). However, our work differs in two aspects. First, this

previous work assumes all the training examples are available at the beginning

and only the features are arriving online, while in our work both the examples

and features (clauses) are arriving online. Second, in previous work, the new

features are given, while in our work the new features are induced from each

example. Thus, our work is also related to previous work on feature induction

for MRFs (Della Pietra, Della Pietra, & Lafferty, 1997; McCallum, 2003), but

those are batch methods.

The idea of combining relational pathfinding with mode declarations

has been used in previous work (Ong, de Castro Dutra, Page, & Costa, 2005;

Duboc, Paes, & Zaverucha, 2008). However, how they are used is different.

In (Ong et al., 2005), mode declarations were used to transform a bottom

clause into a directed hypergraph where relational pathfinding was used to

find paths. Similarly, in (Duboc et al., 2008), mode declarations were used

to validate paths obtained from bottom clauses. Here, mode declarations are

first used to reduce the search space to paths that contain ‘input’ and ‘output’
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nodes. Then they are used to test whether an hyperedge can be added to an

existing path. Finally, they are used to create clauses with constants.

6.6 Chapter Summary

In this chapter, we present OSL, the first online structure learner for

MLNs. In each step, OSL uses mode-guided relational pathfinding to find new

clauses that fix the model’s wrong predictions. Experimental results in field

segmentation on two real-world datasets show that OSL is able to find new

useful clauses that improve the predictive accuracies of well-developed MLNs.
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Chapter 7

Automatically Selecting Hard Constraints to

Enforce when Training Structured Prediction

7.1 Introduction

Many real-world applications of machine learning involve a mix of soft

probabilistic constraints and hard logical constraints. For example, when ex-

tracting relations from natural language sentences, the outputs must satisfy

hard constraints like “the first argument of a live in relation must be a person

entity, and the second argument must be a location entity,” as well as many soft

constraints such as “the word ‘residence’ frequently appears between the two

arguments of a live in relation.” Or when segmenting bibliographic citations,

a prediction must conform to the hard constraint “a Venue token cannot ap-

pear before a Title token,” as well as many soft constraints such as “the word

’International’ is usually a Venue token.”

In terms of graphical models, hard constraints add new interactions be-

tween variables, which increases the computational complexity of a problem.

On the other hand, from the point of view of probabilistic models, hard con-

straints introduce deterministic factors into the model (i.e zero out some po-

tential function values), which causes a lot of troubles to existing inference and
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learning methods (Poon & Domingos, 2006). Thus, finding the most effective

and efficient way to perform inference and learning for problems with a mix of

hard and soft constraints is an ongoing research problem (Chang, Ratinov, Riz-

zolo, & Roth, 2008). Previous work has explored two different approaches to

the learning problem. The first approach, called learning plus inference (L+I)

(Punyakanok, Roth, tau Yih, & Zimak, 2005), is to completely ignore hard

constraints during training and only enforce them at testing time. At first,

this approach does not seem theoretically appealing since hard constraints are

only used during testing and have no effect on the learning process. However,

the L+I approach allows efficient modular training of individual components

that are only integrated as needed for testing and has achieved significant

successes in many real-world applications (Roth & Yih, 2005, 2007). For ex-

ample, Punyakanok et al. (2004) and Koomen et al. (2005) trained classifiers

to independently assign a semantic role to each noun phrase in a natural lan-

guage sentence, and then Integer Linear Programming is used to determine

the most likely set of global assignments that satisfies a set of hard linguis-

tic constraints. The second approach, called inference based training (IBT)

(Punyakanok et al., 2005), includes all constraints both in training and test-

ing. This approach is theoretically more desirable since it takes into account

all constraints at training time thus can ideally learn a more accurate model.

Nevertheless, so far there is relatively little empirical success on real-world

problems with this approach since enforcing deterministic constraints during

learning typically makes the training problem significantly more complex and
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computationally intractable.

In this chapter, we propose a new approach to incorporating declara-

tive hard constraints when learning probabilistic models for structured predic-

tion. The key idea is to only include “inexpensive” constraints during training

and only enforce the remaining “expensive” constraints during testing. Our

new approach, which we will call Selectively Constrained Training (SCT), lies

somewhere between the two extreme approaches reviewed above, attempting

to achieve the improved accuracy of the IBT approach while retaining the

training efficiency of the L+I approach.

The remainder of the chapter is organized as follows. Section 7.1 de-

scribes our heuristic for selecting which hard constraints are “inexpensive” and

should be included in training. Section 7.2 presents the experimental evalua-

tion of the proposed approach. Section 7.3 discusses related work and section

7.4 summarizes the chapter.

7.2 Heuristic for selecting hard constraints to use in
training

As previously mentioned, the main problem with including hard con-

straints during training is that, in practice, it greatly increases the computa-

tional complexity of the learning problem. Examining the problem further,

we found that the main effect of enforcing hard constraints during training is

on the complexity of the inference problem. Introducing hard constraints in

training usually results in a much more complex inference problem which can-

103



not be solved efficiently in most cases. Therefore, it significantly impacts the

training process since we need to solve these complex inference problems many

times during training. So our idea is to only include hard constraints in train-

ing when they do not significantly increase the complexity of the underlying

inference problem. We call such hard constraints “inexpensive”. A standard

metric for measuring the complexity of an inference problem is the tree-width

of the graphical structure (Koller & Friedman, 2009). However, computing

the tree-width of a graph is an NP-hard problem in general (Arnborg, Corneil,

& Proskurowski, 1987). There are methods for approximating the tree width

(Koller & Friedman, 2009), but it is still computationally expensive for SRL

formalisms since we need to construct the ground networks and compute the

approximate tree-width for each possible subset of the hard constraints. We

now describe a simple and efficient heuristic for detecting “inexpensive” hard

constraints.

From the point of view of the resulting graphical model, each hard

constraint defines a graphical structure among the output variables. So we

define an “inexpensive” hard constraint in terms of how its addition to the

graphical model affects the efficiency of inference. Since all graphical models

can be converted into factor graphs, we analyze the complexity of a constraint

based on its factor graph representation (Kschischang, Frey, & Loeliger, 2001).

From the perspective of factor graphs, a hard constraint introduces new factors

into the original problem. Intuitively, the denser the factor graph is, the

harder the inference problem is since a dense factor graph tends to have high
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tree-width. For a given problem, the number of random variables, i.e. the

number of nodes in its factor graph, is a fixed number, so the denseness of

the factor graph is determined by the number of factors and the number of

edges. Therefore, we measure the complexity of a hard constraint based on

the number of factors added by the constraint and the degree (the number of

edges connecting to nodes or the number of involved variables) of the created

factors. A well-known result is that if the graph is a linear chain then inference

is efficient (Sutton & McCallum, 2007). Looking at the factor graph of a linear

chain, we see that it has n nodes (one for each output variable), n− 1 factors

(one for each pair of adjacent nodes), and each factor has a degree of two. So

for linear chains, the relationship between the created factors and number of

nodes is linear, 2 ∗ (n − 1) and n. Based on this observation, we propose the

following heuristic for detecting “inexpensive” hard constraints:

Definition. An “inexpensive” hard constraint is one that creates a

graphical structure in which the number of factors times the degree of each

factor is linear in its number of nodes.

For an MLN, this heuristic is easily implemented. The number of nodes

created by a clause is the total number of unique ground literals of its query

predicates. The number of factors that a clause creates is its number of unique

ground clauses. The degree of each created factor is the number of appear-

ances of query predicates in the clause. Therefore, based on examining these

quantities, it can be automatically decided whether or not a hard clause is

“inexpensive.” Below are examples of “inexpensive” and “expensive” hard
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constraints in MLNs for the task of citation segmentation:

• An “inexpensive” constraint: a Venue token cannot appear right

after an Author token

Next(p1, p2) ∧ InF ield(Fauthor, p1, c) ⇒ ¬InF ield(Fvenue, p2, c).

This constraint satisfies the above criterion since the number of generated

ground clauses is n−1, there are two appearances of the query predicate

InField in each ground clause, and the total number of unique ground

literals is 2n where n is the number of possible positions (i.e. tokens) in

the citation to be segmented.

• An “expensive” constraint: a Venue token cannot appear before an

Author token

LessThan(p1, p2) ∧ InF ield(Fauthor, p2, c) ⇒

¬InF ield(Fvenue, p1, c).

This constraint does not satisfy the above criterion since the relationship

between the number of generated ground clauses and the total number

of unique ground literals is quadratic (n ∗ (n− 1)/2 ground clauses and

2n ground literals.)

In the SCT approach, only the inexpensive constraints are used when training

the weights of the soft clauses in the model. This ensures that inference, and
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therefore training, is reasonably efficient. During testing, all hard clauses and

soft clauses with learned weights are used when making predictions. This helps

ensures accurate predictions for test cases.

7.3 Experimental Evaluation

7.3.1 Data

In order to empirically evaluate SCT and compare it to L+I and IBT,

we ran experiments on two standard bibliographic citation datasets: CiteSeer

described in 4.4.1 and Cora (Bilenko & Mooney, 2003).

The task is to segment each citation into three fields: Author, Title and

Venue. There are 1, 563 and 1, 295 citations in CiteSeer and Cora respectively.

The CiteSeer dataset has four independent subsets consisting of citations in

four different research areas. There are 3 disjoint subsets of citations in Cora.

7.3.2 Hard Constraints

We used the MLN for isolated segmentation model described in 6.4.2

as the base MLN. It has one hard clause imposing the constraint that a token

can only be part of at most one field (mutual exclusivity):

InF ield(f1, p, c) ∧ (f1! = f2) ⇒ ¬InF ield(f2, p, c).

When analyzing the prediction errors of the isolated segmentation model

including this constraint, we noticed these types of recurring errors:

107



• Violations of the purity of each field. For example, we found Title or

Venue tokens between two Author tokens in many examples.

• Violations of the typical order of field appearances such as the Venue

field appearing between the Author and Title field.

To correct these errors, we introduced the following new hard constraints:

• Continuity constraint (C1): any tokens between two tokens of the same

field must also belong to that field.

LessThan(p1, p2) ∧ LessThan(p2, p3) ∧ InF ield(+f, p1, c) ∧

InF ield(+f, p3, c) ⇒ InF ield(+f, p2, c).

• Constraints on the order of field appearance.

– C2: a Title token cannot appear before an Author token

LessThan(p1, p2) ∧ InF ield(Fauthor, p2, c) ⇒

¬InF ield(Ftitle, p1, c).

– C3: a Venue token cannot appear before an Author token

LessThan(p1, p2) ∧ InF ield(Fauthor, p2, c) ⇒

¬InF ield(Fvenue, p1, c).

– C4: a Venue token cannot appear before a Title token

LessThan(p1, p2) ∧ InF ield(Ftitle, p2, c) ⇒

¬InF ield(Fvenue, p1, c).
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– C5: a Venue token cannot appear right after an Author token

Next(p1, p2) ∧ InF ield(Fauthor, p1, c) ⇒

¬InF ield(Fvenue, p2, c).

According to the heuristic described in previous section, only the mutually

exclusive constraint and constraint C5 are “inexpensive” constraints, the rest

are “expensive” ones.

7.3.3 Methodology

We evaluated the following systems:

No constraints : Train the base MLN, which is the isolated segmentation

model without the mutual exclusivity constraint, and use the learned

MLN for testing.

L+I : Like the previous system, but include all of the hard constraints above

during testing.

IBT : Train a model that includes clauses from the base MLN as well as all

of the hard constraints above, and then use the learned MLN with all

the constraints for testing.

IBT-Approx : Like IBT but use approximate inference instead of exact in-

ference in training.

SCT : Use the heuristic described in previous section to automatically select

the “inexpensive” hard constraints from the hard constraints above and
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only include them when training, and then include all constraints during

testing.

SCT− : Like SCT but does not include “expensive” constraints in testing.

In other words, this is IBT without “expensive” constraints.

To train all of the systems, we used the CDA-ML algorithm described

in section 5.2. We used Hamming loss as the label loss function and set the

value of σ to 0.0001 for CiteSeer and 0.002 for Cora.1 We ran one pass over

the training set and used the average weight vector for making predictions on

the test set. For inference, we used the procedure described in section 4.3.1 to

translate the MPE inference problem into an ILP. An ILP solver was then used

for exact inference, and the ILP was relaxed to a Linear Program (LP) and an

LP solver used for approximate inference.2 Only exact inference guarantees

that inference results satisfy all hard constraints. For all systems, we ran 4-fold

cross-validation on CiteSeeer and 3-fold cross-validation on Cora.

Like previous work, we used the F1 at the token level, F1-token, to

measure the segmentation accuracy of all systems. However, the F1-token

only captures the local performance, which is not the best metric for mea-

suring the effect of hard constraints which enforce global properties of the

complete segmentation. To better measure the effect of hard constraints, we

also computed the F1 at the field level, F1-field, (all tokens in a field must be

1The value of σ was set based on predictive performance on the training set.
2We used lp solve (http://lpsolve.sourceforge.net) for ILP and Mosek (http://

www.mosek.com) for LP.

110



Table 7.1: Performance of different systems on CiteSeer. Results are averaged
over 4 folds. Results of the proposed approach are shown in bold.

F1-token F1-field Citation Average trainining
accuracy time (minutes)

No constraints 93.53 ± 2.63 84.41 ± 8.63 37.25 ± 12.50 12.1
L+I 95.10 ± 2.51 85.85 ± 9.61 63.30 ± 22.59 12.1
IBT 95.53 ± 2.04 88.00 ± 6.75 66.83 ± 17.95 322.8
IBT-Approx 90.37 ± 3.73 69.48 ± 15.55 20.45 ± 15.04 64.4
SCT 95.64 ± 2.05 87.97 ± 6.85 66.72 ± 18.72 37.4
SCT− 94.61 ± 1.95 84.70 ± 7.91 43.24 ± 10.37 37.4

Table 7.2: Performance of different systems on Cora. Results are averaged
over 3 folds. Results of the proposed approach are shown in bold.

F1-token F1-field Citation Average training
accuracy time (minutes)

No constraints 96.46 ± 0.45 92.58 ± 3.08 55.91 ± 3.96 2.6
L+I 98.88 ± 0.21 93.74 ± 0.86 81.30 ± 1.86 2.6
IBT 98.92 ± 0.40 95.63 ± 1.74 84.45 ± 7.50 266.3
IBT-Approx 87.06 ± 1.98 62.12 ± 4.69 13.61 ± 5.15 87.2
SCT 98.98 ± 0.49 96.04 ± 1.83 85.39 ± 7.08 22
SCT− 98.10 ± 0.90 94.73 ± 2.08 71.40 ± 9.51 22

correctly assigned the right labels in order to count as a correct field) and cita-

tion accuracy: the proportion of citations in which all tokens are assigned the

correct labels, i.e. the percentage of citations segmented completely correctly.

7.3.4 Results and Discussion

Table 7.1 and Table 7.2 show the performance of difference systems

on CiteSeer and Cora respectively. The first three columns show how adding

hard constraints improves segmentation accuracy. All of the systems with con-

straints except IBT-Approx are significantly better than the one without them,
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especially in terms of citation accuracy. For example, the citation accuracies

of IBT and SCT are 30% higher than that of “No constraints” on average.

The reason for the huge jump in the citation accuracy is due to the fact that

without constraints there are many examples having only a few mislabeled

tokens. Among the systems using constraints, the ones that are trained using

constraints except IBT-Approx have higher segmentation accuracy than the

one that only enforces constraints during testing (L+I). On the other hand,

the significant difference between the citation accuracy of SCT− and that of

SCT shows the usefulness of the expensive hard constraints (C1 to C4).

Therefore, including hard constraints during learning improves the ac-

curacy of the learned model with exact inference. However, the last column of

Table 7.1 and 7.2 show that naively including all hard constraints in training

results in a huge increase in training time. Training for the IBT approach

takes 26.7 times longer than the L+I approach on CiteSeer, and an order of

magnitude longer on Cora. IBT-Approx results show that using approximate

inference in training reduces training time but also significantly decreases ac-

curacy. However, using the heuristic described in section 7.2, SCT takes only

3 times longer to train than L+I and is 8.6 times faster than IBT on CiteSeer,

and 8.5 times longer than L+I and 12 times faster than IBT on Cora, while

still matching IBT’s accuracy.

IBT-Approx has the worst accuracy, which may be due to the combina-

tion of online learning and approximate inference, since the same approximate

inference method has shown good performance in chapter 4. The performance
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of IBT-Approx may be improved by using the latest methods for learning with

approximate inference (Meshi, Sontag, Jaakkola, & Globerson, 2010; Martins,

Smith, Xing, Aguiar, & Figueiredo, 2010; Koo, Rush, Collins, Jaakkola, &

Sontag, 2010).

7.4 Related Work

Learning and inference with constraints has been studied in several pre-

vious papers (Punyakanok et al., 2005; Tromble & Eisner, 2006; Chang et al.,

2008). The first comprehensive study of the issue of learning and inference over

constrained output was conducted by Punyakanok et al. (2005). The L+I and

IBT approaches were defined in that work, and experiments on both synthetic

and real-world data were conducted to compare their predictive performance.

The authors also presented some theoretical results on the predictive perfor-

mance of the L+I and IBT approaches. However, they did not look at the case

of only enforcing some constraints during training. In followup work, Chang et

al. (2008) proposed Constrained Conditional Models (CCMs), an extension of

linear models for combining probabilistic models with declarative constraints.

A CCM has two weight vectors: one for features and one for constraints. Un-

like MLNs, CCMs separate constraints from features, thus their weights are

learned in different manners. When all the constraints are hard constraints,

then a CCM can be represented by an MLN where the soft clauses in the MLN

are the features and the hard clauses are the constraints in the corresponding

CCM. Like Punyakanok et al. (2005), the authors only looked at two ways to
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train a CCM: the L+I and IBT approaches.

By only enforcing “inexpensive” constraints in training, our work shares

the goal of piecewise training (Sutton & McCallum, 2009), which is “to perform

less inference at training time than at test time.” The key idea of piecewise

training is to break the original complex problem into smaller pieces, train

these pieces independently, and then combine them at testing for prediction.

In this sense, piecewise training is similar to an extreme version of the L+I

approach (Chang et al., 2008) where no interaction between output variables

is learned during training and constraints are only used in testing to capture

those relationships. So far, piecewise training has only been applied in training

structured prediction models without hard constraints. It would be interesting

to see how well it performs when there are hard constraints in the models.

Another line of research on speeding up the learning process for complex

problems is learning with approximate inference (Martins, Smith, & Xing,

2009; Meshi et al., 2010; Martins et al., 2010; Koo et al., 2010). It would

be interesting to see how well these methods help improve the accuracy of

IBT-Approx.

7.5 Chapter Summary

We have presented a new approach to incorporating declarative hard

constraints into learning models for structured prediction. The idea is to only

enforce “inexpensive” hard constraints during training that do not inordinately

increase the computational complexity of inference. We also proposed a simple
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heuristic for detecting “inexpensive” hard constraints in Statistical Relational

Learning frameworks like Markov Logic that represent models as templates for

constructing graphical models. The proposed approach was applied to MLNs

on the task of bibliographic citation segmentation. Experimental results show

that the new approach achieves the best predictive accuracy while still allowing

for efficient training.
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Chapter 8

Future Work

This chapter discusses some ways in which the contributions of this

thesis can be extended.

8.1 Online Max-Margin Weight Learning

As mentioned earlier, the CDA algorithm developed in chapter 5 can

be applied to other structured prediction models. So it would be interesting

to apply CDA to models such as M3Ns (Taskar et al., 2004). On the other

hand, currently CDA assumes that the data are fully observable. However,

there are problems in which some information is not observable. For example,

in plan recognition, we usually only observe the actions and the top-level

plans not the intermediate plans (Blaylock & Allen, 2005). Existing work has

developed a max-margin approach for learing with partially observable data

(Yu & Joachims, 2009), but the method is for a batch setting. So it would be

interesting to extend CDA to the case of learing with partially observable data.

Another venue for future work is to derive Coordinate-Dual-Ascent algorithms

for l1-regularized max-margin structured prediction.
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8.2 Online Structure Learning

In chapter 6, we presented OSL, the first online structure learning for

MLNs. Since this is the initial step, there is still a lot of room for improvement.

First, the mode declarations provide a simple way to restrict the search space

for paths but there are some types of constraints that cannot be expressed by

mode declarations such as the constraint that the predicate P1 and predicate

P2 should not appear in the same path. So it may be useful to use some other

forms of language biases that are more expressive. In addition, OSL currently

does not use clauses in the existing MLN to restrict the search space. So it

would be useful to exploit this information. Second, OSL, especially OSL-M1,

currently adds a lot of new clauses at each step, which significantly increases

the computational cost. So it would be useful to develop a better criterion for

selecting fewer but useful clauses at each step. On the other hand, besides l1-

regularization, there are also other methods for inducing sparse models such as

greedy methods (Zhang, 2009). Thus, it would be interesting to explore those

methods in order to reduce the number of clauses learnt by OSL. Finally,

relational pathfinding is just one way to learn clauses from data, and there are

some types of clauses that cannot be learnt by relational pathfinding such as

clauses containing non-relational literals. Hence, it may be useful to combine

relational pathfinding with other search methods.
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8.3 Other Issues in Online Learning

In this thesis, we only considered one extreme setting in online learning

where the learner only uses the current example for updating the model at

each step and only runs one pass over examples. So it would be interesting

to explore other settings such as running multiple passes (or epochs) over

examples or maintaining a window of examples. It would also be useful to

study the sensitivity of the online algorithms developed in chapter 5 and 6 to

the order of examples.

8.4 Discriminative Learning with Large Mega-Examples

In this thesis, we addressed one dimension of the issue of scalability in

discriminative learning for MLNs when the number of examples is increasing.

However, the issue of scalability also arises when the size of an example is

getting bigger. For instance, in social network analysis (Backstrom & Leskovec,

2011), each example is a huge network. In order to use the max-margin weight

learning methods developed in chapters 4 and 5 on these large mega-examples,

one needs to develop efficient MPE inference methods for large graphs. For

instance, one can use the approach described by Singla and Domingos (2008)

to lift the max-product algorithm (Pearl, 1988), a widely used approximation

algorithm for MPE inference in Markov network. For discriminative structure

learning on large mega-examples, one can adapt the motif identification step

in LSM to only search for motifs that contain the query predicates, then uses

the mode-guided relational pathfinding developed in chapter 6 to search for
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paths in each motif. In addition, another important line of research is to

develop online learning methods for the case where the example is a single

huge network that is changing over time.

8.5 Improving Scalability through Parallelism

In this thesis, we improve the scalability of discriminative learning

methods for MLNs through online learning. However, another way to speed

up existing discriminative learning methods for MLNs is to make them par-

allel. For instance, one may use GraphLab (Low, Gonzalez, Kyrola, Bickson,

Guestrin, & Hellerstein, 2010), a recently proposed parallel framework for ma-

chine learning algorithms, to speed up existing batch learning methods for

MLNs. In addition, the online algorithms presented in chapter 5 and 6 can

also be sped up by computing the subgradients and performing the weight’s

updates in parallel.

8.6 Learning with Hard Constraints

In the previous chapter, we only experimentally evaluated the SCT ap-

proach with one learning algorithm. So, it would be useful to test the SCT

approach with other learning algorithms. Additionally, given the encouraging

results on citation segmentation, an obvious area for future research is evalu-

ating the selective enforcement of constraints when training models for other

real-world applications that involve a lot of hard constraints such as entity and

relation extraction. On the other hand, SCT could be applied to select inex-
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pensive constraints in other SRL formalisms that use expressions in logical,

relational-database, or object-oriented languages as templates for constructing

graphical models, such as BLPs (Kersting & De Raedt, 2001), PRMs (Getoor,

Friedman, Koller, & Pfeffer, 2001), RMNs (Taskar et al., 2002) and FACTO-

RIE (McCallum, Schultz, & Singh, 2009). Given the success with MLNs, it

would be interesting to see how well SCT perform on those formalisms.

Currently, SCT only addresses the computational aspect of hard con-

straints. However, another important aspect of hard constraints is whether

they are helpful or not. So it would be useful to extend SCT to take into

account the usefulness of hard constraints.

8.7 Other Applications

In previous chapters, we have applied our new algorithms to some real-

world structured prediction problems that involve data with thousands of ex-

amples such as natural language field segmentation, semantic role labeling,

and web search. There are many more real-world problems that have similar

characteristics. For examples, many problems in computer vision involve data

with thousands of images where each image is an example. The task may be

to segment an image into different regions or to recognize all the objects and

their interactions in a given image, etc. Thus, it would be interesting to apply

the methods developed in this thesis to those problems.

In addition, the online learning algorithms developed in chapter 5 and 6

fit nicely to many problems in social media where the data arrive in a streaming
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order. So it would be interesting to apply those methods to problems with

streaming data.
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Chapter 9

Conclusion

The research presented in this thesis addresses two important issues in

discriminative learning for MLNs: accuracy and scalability.

We first presented a new method that discriminatively learns both the

structure and parameters for a special class of MLNs where all the clauses

are non-recursive ones which allow efficient exact inference. The proposed

approach is a two-step process. The first step uses Aleph to generate a large

set of potential clauses. The second step learns the weights for these clauses,

preferring to eliminate useless clauses by giving them zero weight by using l1-

regularization. The new method outperforms existing MLN and ILP methods

and achieves state-of-the-art accuracies on the Alzheimer’s-drug benchmarks.

To further improve the predictive accuracy, we proposed a new ap-

proach to learning weights for MLNs, which aims to maximize the separation

margin instead of the conditional likelihood of the training data. In order to

solve the max-margin optimization problem, we developed a new approximate

algorithm for loss-augmented MPE inference in MLN based on LP-relaxation.

The max-margin weight learner generally has better or equally good but more

stable predictive accuracy than existing discriminative weight learning meth-
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ods for MLNs.

Then, to make the max-margin method more scalable, we derived CDA,

an online algorithm for max-margin structured prediction, from the primal-

dual framework. We applied CDA to learn weights for MLNs on problems

with thousand of examples where existing batch learning methods for MLNs

cannot. Experimental results on several large-scale real-world problems show

that CDA generally achieves better accuracy than existing online methods for

structured prediction. In particular, CDA is more accurate and robust on

noisy datasets.

However, like other existing online algorithms, CDA assumes the input

MLN’s structure is complete and only updates the weights. But, the input

structure is usually incomplete in practice, so it should be also updated. To

address this issue, we developed OSL, the first algorithm that performs both

online structure and parameter learning. To find new clauses at each step, we

introduced mode-guided relational pathfinding which use mode declarations

to constrain the search of relational pathfinding in a novel way. Experimental

results in field segmentation on two real-world datasets show that OSL is

able to find new useful clauses that improve the predictive accuracies of well-

developed MLNs.

In the final part of the thesis, we addressed the problem of learning with

a mix of hard and soft constraints which arises in many real-world problems.

Based on first-order logic, MLNs provides a convenient way to encode both soft

and hard constraints. However, the training problem becomes more compu-
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tational expensive due to the complexity introduced by the hard constraints.

To address this issue, we proposed SCT, a simple heuristic for automatically

selecting which hard constraints should be included during training. On the

task of bibliographic citation segmentation, SCT achieves better accuracy than

existing methods for learning with hard constraints, while still allows efficient

training.

Overall, the work in this thesis have led to progress on discriminative

learning for MLNs. Since many real-world problem are discriminative and

involve noisy structured data with a lot of examples, our work have provided

more accurate and scalable methods for solving those problems.
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