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Abstract

Fast retrieval methods are critical for large-scale and
data-driven vision applications. Recent work has explored
ways to embed high-dimensional features or complex dis-
tance functions into a low-dimensional Hamming space
where items can be efficiently searched. However, exist-
ing methods do not apply for high-dimensional kernelized
data when the underlying feature embedding for the kernel
is unknown. We show how to generalize locality-sensitive
hashing to accommodate arbitrary kernel functions, making
it possible to preserve the algorithm’s sub-linear time simi-
larity search guarantees for a wide class of useful similarity
functions. Since a number of successful image-based ker-
nels have unknown or incomputable embeddings, this is es-
pecially valuable for image retrieval tasks. We validate our
technique on several large-scale datasets, and show that it
enables accurate and fast performance for example-based
object classification, feature matching, and content-based
retrieval.

1. Introduction

Fast indexing and search for large databases is critical to
content-based image and video retrieval—particularly given
the ever-increasing availability of visual data in a variety of
interesting domains, such as scientific image data, commu-
nity photo collections on the Web, news photo collections,
or surveillance archives. The most basic but essential task
in image search is the “nearest neighbor” problem: to take a
query image and accurately find the examples that are most
similar to it within a large database. A naive solution to
finding neighbors entails searching over alln database items
and sorting them according to their similarity to the query,
but this becomes prohibitively expensive whenn is large
or when the individual similarity function evaluations are
expensive to compute. For vision applications, this com-
plexity is amplified by the fact that often the most effective
representations are high-dimensional or structured, and best
known distance functions can require considerable compu-

tation to compare a single pair of objects.
To make large-scale search practical, vision researchers

have recently exploredapproximatesimilarity search tech-
niques, where a predictable loss in accuracy is sacrificed
in order to allow fast queries even for high-dimensional in-
puts [25, 24, 12, 16, 4]. Methods for this problem, most
notablylocality-sensitive hashing(LSH) [10, 3], offer prob-
abilistic guarantees of retrieving items within(1 + ǫ) times
the optimal similarity, with query times that are sub-linear
with respect ton. The basic idea is to compute random-
ized hash functions that guarantee a high probability of col-
lision for similar examples. In a similar spirit, a number
of methods show how to form low-dimensional binary em-
beddings that can capture more expensive distance func-
tions [1, 28, 22, 31]. This line of work has shown consid-
erable promise for a variety of image search tasks such as
near-duplicate retrieval, example-based object recognition,
pose estimation, and feature matching.

In spite of hashing’s success for visual similarity search
tasks, existing techniques have some important restrictions.
Current methods generally assume that the data to be hashed
comes from a multidimensional vector space, and require
that the underlying embedding of the data be explicitly
known and computable. For example, LSH relies on ran-
dom projections with input vectors; spectral hashing [31]
assumes vectors with a known probability distribution.

This is a problematic limitation, given that many recent
successful vision results employkernel functionsfor which
the underlying embedding is known onlyimplicitly (i.e.,
only the kernel function is computable). It is thus far im-
possible to apply LSH and its variants to search data with
a number of powerful kernels—including many kernels de-
signed specifically for image comparisons [33, 34, 30], as
well as some basic well-used functions like a Gaussian
RBF. Further, since visual representations are often most
naturally encoded with structured inputs (e.g., sets, graphs,
trees), the lack of fast search methods with performance
guarantees for flexible kernels is inconvenient.

In this paper, we present an LSH-based technique for
performing fast similarity searches overarbitrary kernel



functions. The problem is as follows: given a kernel func-
tion κ(xi,xj) = φ(xi)

T φ(xj) and a database ofn ob-
jects, how can we quickly find the most similar item to
a query objectq in terms of the kernel function, that is,
argmaxiκ(q,xi)? Like standard LSH, our hash functions
involve computing random projections; however, unlike
standard LSH, these random projections are constructed us-
ing only the kernel function and a sparse set of examples
from the database itself. Our main technical contribution is
to formulate the random projections necessary for LSH in
kernel space. Our construction relies on an appropriate use
of the central limit theorem [21], which allows us to approx-
imate a random vector using items from our database. The
resulting scheme, which we call kernelized LSH (KLSH),
generalizes LSH to scenarios when the feature space em-
beddings (φ(x), φ(y)) are either unknown or incomputable.

We empirically validate our scheme with several visual
search tasks. For object recognition, we present results on
the Caltech-101 [8], and show that our hashing scheme out-
performs existing hashing methods on this data set since it
can compute hash functions over arbitrary kernels. For fea-
ture indexing with a larger database, we provide results on
the Photo Tourism data set of local patches [26, 14]. Finally,
we experiment with the Tiny Image data set of 80 million
images [27], in order to show our technique’s ability to scale
to very large databases. Because our algorithm enables fast
approximate search for arbitrary kernels, we can now access
a much wider class of similarity functions needed for many
content-based retrieval applications.

2. Related Work

In this section we review related work in fast search al-
gorithms and their application for visual search problems.

Data structures using spatial partitions and recursive hy-
perplane decomposition (e.g.,k−d trees [9]) provide an ef-
ficient means to search low-dimensional vector data exactly,
however they are known to break down in practice for high-
dimensional data, and cannot provide better than a worst-
case linear query time guarantee. Since high-dimensional
image descriptors are commonly used in object recognition,
methods to mitigate these factors have been explored, such
as hierarchical feature quantization [18], decision trees[19],
and priority queues [2].

Tree-based search structures that can operate with ar-
bitrary metrics [29, 5] remove the assumption of a vec-
tor space by exploiting the triangle inequality. However,
in practice selecting useful partitioning strategies requires
good heuristics, and, in spite of logarithmic query times in
the expectation, metric-tree methods can also degenerate to
a linear time scan of all items depending on the distribution
of distances for the data set.

Randomized approximate similarity search algorithms
have been designed to preserve query time guarantees,

even for high-dimensional inputs. Locality-sensitive hash-
ing [10, 3] offers sub-linear time search by hashing highly
similar examples together in a hash table; LSH functions
that accommodate Hamming distance [15], inner prod-
ucts [3], ℓp norms [6], normalized partial matching [12],
and learned Mahalanobis metrics [16] have all been devel-
oped in prior work. Vision researchers have shown the ef-
fectiveness of this class of methods for various image search
applications, including shape matching, pose inference, and
bag-of-words indexing [25, 24, 12, 16, 4]. However, thus
far, arbitrary kernel functions remain off limits for LSH.

Embedding functions offer another useful way to map
expensive distance functions into something more manage-
able computationally. Recent work has considered how to
construct or learn an embedding that will preserve the de-
sired distance function, typically with the intention of map-
ping to a very low-dimensional space that is more easily
searchable with known techniques [1, 20, 28, 22, 31]. These
methods are related to LSH in the sense that both seek small
“keys” that can be used to encode similar inputs, and of-
ten these keys exist in Hamming space. While most work
with vector inputs, the technique in [1] accepts generic dis-
tance functions, though its boosting-based training process
is fairly expensive, and search is done with a linear scan.
The recent “spectral hashing” algorithm [31] requires that
data be from a Euclidean space and uniformly distributed.

3. Background: Locality-Sensitive Hashing

We begin by briefly reviewing Locality-Sensitive Hash-
ing (LSH). Assume that our database is a set of vectors
x1, ...,xn. Given a query vectorq, we are interested in
finding the most similar items in the database to the query.

The basic idea behind LSH is to project the data into
a low-dimensional binary (Hamming) space; that is, each
data point is mapped to ab-bit vector, called thehash key.
If this projection is performed appropriately, we can find
approximate nearest neighbors in time sub-linear inn. The
hash keys are constructed by applyingb binary-valued hash
functionsh1, ..., hb to each of the database objects. In order
to be valid, each hash functionh must satisfy the locality-
sensitive hashing property:

Pr[h(xi) = h(xj)] = sim(xi,xj), (1)

where sim(xi,xj) ∈ [0, 1] is the similarity function of in-
terest.1The intuition is as follows: if we can rely on only
highly similar examples colliding together in the hash table
(i.e., being assigned the same hash key), then at query time,
directly hashing to a stored bucket will reveal the most sim-
ilar examples, and only those need to be searched. Given

1LSH has been formulated in two related contexts—one in which the
likelihood of collision is guaranteed relative to a threshold on the radius
surrounding a query point [15], and another where collisionprobabilities
are equated with a similarity score [3]. We use the latter definition here.



valid LSH functions, the query time for retrieving(1 + ǫ)-
near neighbors is bounded byO(n1/(1+ǫ)) for the Hamming
distance [10]. One can therefore trade off the accuracy of
the search with the query time required.

As an example, consider the well-known inner product
similarity: sim(xi,xj) = x

T
i xj . In [3], Charikar showed a

hash function for this similarity function based on rounding
the output of a product with a random hyperplane:

hr(x) =

{

1, if r
T
x ≥ 0

0, otherwise
, (2)

wherer is a random hyperplane from a zero-mean multi-
variate GaussianN (0, I) of the same dimensionality as the
inputx. The fact that this hash function obeys the locality-
sensitive hash property follows from a result from Goemans
and Williamson [11], who showed for such a randomr that

Pr[sign(xT
i r) = sign(xT

j r)] = 1− 1

π
cos−1

(

x
T
i xj

‖xi‖‖xj‖

)

.

Procedurally, one chooses a random vectorr from
N (0, I), then computes the sign ofr

T
x for eachx in the

database, then repeats this over theb random vectors for a
total ofb hash functions. The hash table then consists of the
hash keys and their pointers to data items. Given a query
vectorq, one computes its hash key by applying the same
b hash functions. A query hashes to certain buckets in the
hash table, where it collides with some small portion of the
stored examples. Only these examples are searched.

To perform the approximate similarity searches, we use
the method in [3], which requires searchingO(n1/(1+ǫ))
examples for thek = 1 approximate-NN. Given the list of
database hash keys,M = 2n1/(1+ǫ) random permutations
of the bits are formed, and each list of permuted hash keys is
sorted lexicographically to formM sorted orders. A query
hash key indexes into each sorted order with a binary search,
and the2M nearest examples found are the approximate
nearest neighbors. Additionally, we introduce a parameter
B that is the number of neighboring bins to consider as po-
tential nearest neighbors when searching through the sorted
permutations. See [3] for more details.

Previously, hash functions have been designed for cases
where the similarity function “sim” refers to anℓp norm,
Mahalanobis metric, or inner product [6, 16, 3]. In this
work, the similarity function of interest is an arbitrary ker-
nel functionκ: sim(xi,xj) = κ(xi,xj) = φ(xi)

T φ(xj),
for some (possibly unknown) embedding functionφ(·). In
the next section, we present our algorithm for drawing hash
functions that will satisfy Eqn. 1 for any kernel.

4. Kernelized Locality-Sensitive Hashing

The random hyperplane hashing method proposed by
Charikar assumes that the vectors are represented explic-

itly, so that the sign ofrT
x can easily be computed.2 We

now consider the case when the data is kernelized; we de-
note the inputs asφ(x) and assume that the underlying em-
beddings may be unknown or very expensive to compute.
Our access to the data is only through the kernel function
κ(xi,xj) = φ(xi)

T φ(xj), so it is not clear how to com-
pute the hash functions—for example, the RBF kernel has
an infinite-dimensional embedding, making it seemingly
impossible to even constructr. The challenge in apply-
ing LSH to this scenario is in constructing a vectorr from
N (0, I) such thatrT φ(x) can be computed via the kernel
function.

The main idea of our approach is to constructr as a
weighted sum of a subset of the database items. An appro-
priate construction will allow the random hyperplane hash
function to be computed purely via kernel function evalua-
tions, but will also ensure thatr is approximately Gaussian.
Consider each data pointφ(xi) from the database as a vec-
tor from some underlying distributionD with meanµ and
covarianceΣ, which are generally unknown. Given a natu-
ral numbert, definezt = 1

t

∑

i∈S φ(xi), whereS is a set
of t database objects chosen i.i.d. fromD. The central limit
theorem [21] tells us that, for sufficiently larget, the ran-
dom vectorz̃t =

√
t(zt − µ) is distributed according to the

multi-variate GaussianN (0,Σ). By applying a whitening
transform, the vectorΣ−1/2

z̃t will be distributed according
toN (0, I), precisely the distribution required in Eqn. 2.

Therefore, we denote our random vector asr =
Σ−1/2

z̃t, and so the hash functionh(φ(x)) is given by

h(φ(x)) =

{

1, if φ(x)T Σ−1/2
z̃t ≥ 0

0, otherwise
. (3)

Both the covariance matrixΣ and the meanµ of the data
are unknown, so they must be approximated via a sample
of the data. We choose a set ofp database objects, which
we denote without loss of generality as the firstp items
φ(x1), ..., φ(xp) of the database (we will discuss the choice
of the value ofp later). Now we may (implicitly) estimate
the mean asµ = 1

p

∑p
i=1 φ(xi). Conceptually, we can also

form the covariance matrixΣ over thep samples, though
we cannot store this matrix explicitly.

In order to computeh(φ(x)), we will use a technique
similar to that used in kernel PCA [23] to project onto
the eigenvectors of the covariance matrix. In our case,
if the eigendecomposition ofΣ is V ΛV T , thenΣ−1/2 =
V Λ−1/2V T . Therefore,

h(φ(x)) = sign(φ(x)T V Λ−1/2V T
z̃t).

Define a kernel matrix over thep sampled points, denote it
asK, and let its eigendecomposition beK = UΘUT . Note

2Note that other LSH functions exist, but all involve an explicit repre-
sentation of the input, and are not amenable to the kernelizedcase.



that the non-zero eigenvalues ofΛ are equal to the non-zero
eigenvalues ofΘ. Further, denote thek-th eigenvector of
the covariance matrix asvk and thek-th eigenvector of the
kernel matrix asuk. According to the derivation of kernel
PCA, we can compute the projection

v
T
k φ(x) =

p
∑

i=1

1√
θk

uk(i)φ(xi)
T φ(x), (4)

where theφ(xi) are the sampledp data points. We com-
plete the computation ofh(φ(x)) by performing this com-
putation over allk eigenvectors, resulting in the following
expression:

φ(x)T V Λ−1/2V T
z̃t =

p
∑

k=1

1√
θk

v
T
k φ(x)vT

k z̃t.

We substitute Eqn. 4 for each of the eigenvector inner prod-
ucts and expand the resulting expression:

=

p
∑

k=1

1√
θk

( p
∑

i=1

1√
θk

uk(i)φ(xi)
T φ(x)

)

·
( p

∑

i=1

1√
θk

uk(i)φ(xi)
T
z̃t

)

.

Now we reorder the summations and reorganize terms:

=

p
∑

k=1

p
∑

i=1

p
∑

j=1

1

θ
3/2
k

uk(i)uk(j)

(

φ(xi)
T φ(x)

)

·
(

φ(xj)
T
z̃t

)

=

p
∑

i=1

p
∑

j=1

(

φ(xi)
T φ(x)

)

·
(

φ(xj)
T
z̃t

)( p
∑

k=1

1

θ
3/2
k

uk(i)uk(j)

)

.

Finally, we use the fact that K
−3/2
ij =

∑p
k=1

1

θ
3/2

k

uk(i)uk(j) and simplify further to obtain:

=

p
∑

i=1

p
∑

j=1

K
−3/2
ij

(

φ(xi)
T φ(x)

)(

φ(xj)
T
z̃t

)

=

p
∑

i=1

w(i)

(

φ(xi)
T φ(x)

)

,

wherew(i) =
∑p

j=1 K
−3/2
ij φ(xj)

T
z̃t.3

3We can alternatively reach this conclusion by noting that
φ(x)T Σ−1/2

z̃t = φ(x)T ΦK−3/2ΦT
z̃t, whereK = ΦT Φ. This

follows by computing the singular value decomposition ofΦ and simpli-
fying.

This means that the Gaussian random vector can be
expressed asr =

∑p
i=1 w(i)φ(xi), so it is a weighted

sum over the feature vectors chosen from the set ofp

sampled database items. We now expandz̃t; recall that
z̃t =

√
t( 1

t

∑

i∈S φ(xi) − µ) =
√

t( 1
t

∑

i∈S φ(xi) −
1
p

∑p
i=1 φ(xi)). Substituting this intow(i) yields

w(i) =
1

t

p
∑

j=1

∑

ℓ∈S

K
−3/2
ij Kjℓ −

1

p

p
∑

j=1

p
∑

k=1

K
−3/2
ij Kjk.

Note that we are ignoring the
√

t term as it does not affect
the sign of the hash function, and further we assume that the
t points selected forS are a subset of thep sampled points
(i.e., thet points are sampled from the set of points used
to sample the mean and covariance). In that case, the ex-
pression forw(i) simplifies as follows: ife is a vector of
all ones, andeS is a vector with ones in the entries corre-
sponding to the indices ofS, then the expression simplifies:

w = K−1/2

(

1

t
eS − 1

p
e

)

. (5)

Putting everything together, the resulting method is sur-
prisingly simple. To summarize our kernelized locality-
sensitive hashing algorithm (KLSH):

• Selectp data points and form a kernel matrixK over
this data.

• Form the hash table over database items: for each
hash functionh(φ(x)), form eS by selectingt in-
dices at random from[1, ..., p], then form w =
K−1/2( 1

t eS − 1
pe), and assign bits according to

h(φ(x)) = sign(
∑

i w(i)κ(x,xi)).

• For each query, form its hash key using these hash
functions and employ existing LSH methods to find
the approximate nearest neighbors.

Computationally, the most expensive step is in the single of-
fline computation ofK−1/2, which takes timeO(p3). Once
this matrix has been computed, each individual hash func-
tion requiresO(p2) kernel function evaluations to compute
its correspondingw vector (also done offline). Oncew has
been computed for a given hash function, the computation
of the hash function can be computed withp evaluations of
the kernel function. In order to maintain efficiency, and to
maintain sub-linear time searches, we wantp to be much
smaller thann—for example,p = O(

√
n) would guarantee

that the algorithm maintains sub-linear search times.

5. Discussion

Some additional care must be taken to verify that the
analysis for KLSH holds when the underlying embeddings
are infinite-dimensional (for example, with the Gaussian



kernel), but in fact the general case does hold. To summa-
rize the main details associated with arbitrary reproducing
kernel Hilbert spaces: first, the central limit theorem holds
in general Banach spaces (for which RKHSs are a special
case) under certain conditions—see [13] for a discussion.
Second, in the infinite-dimensional case, we whiten the data
via the covariance operator; this has been studied for the
kernel ICA problem [32]. Finally, projecting onto eigenvec-
tors of the covariance is performed as in kernel PCA, which
holds for infinite-dimensional embeddings. We stress that
the KLSH algorithm is unchanged for such embeddings.

Additionally, the random vectorr constructed during
the KLSH routine is onlyapproximatelydistributed accord-
ing toN (0, I)—the central limit theorem assumes that the
mean and covariance of the data are known exactly, whereas
we employ an approximation using a sample ofp points.
Furthermore, since general bounds for the central limit the-
orem are not known, it is possible that the resultingr vec-
tors do not approximate a Gaussian well unlessp andt are
extremely large. This may be the case if the underlying em-
beddings of the kernel function are very high-dimensional.
The good news is that empirical evidence suggests that we
do not need very many samples to compute a satisfactory
random vector for kernelized hashing; as we will see in the
experimental results, withp = 300 andt = 30 we obtain
good hashing results even over very large data sets.

We would also like to stress the general applicability and
simplicity of our approach. Even if the underlying embed-
ding for a particular kernel function is known, our technique
still may be desirable due to its relative simplicity. Kernels
such as the pyramid match kernel [12] or the proximity dis-
tribution kernel [17] have known sparse, high-dimensional
embeddings for which standard LSH methods can be ap-
plied; however, in such scenarios the computation of the
hash functions is dependent on the kernel embeddings, re-
quiring separate (and sometimes intricate) hashing imple-
mentations for each particular kernel function. In contrast,
our approach is general and only requires knowledge of the
kernel function. As a result, the KLSH scheme may be
preferable even in these cases.

6. Experimental Results

To empirically validate the effectiveness of the proposed
hashing scheme, we provide results on three data sets. Our
primary goal is to verify that the proposed KLSH method
can take kernels with unknown feature embeddings, and use
them to perform searches that are fast but still reliable rela-
tive to a linear scan.

Throughout, we present results showing the percentage
of database items searched with hashing as opposed to
timing results, which are dependent on the particular
optimizations of the code. In terms of additional overhead,
finding the approximate nearest neighbors given the query

hash key is very fast, particularly if the computation can
be distributed across several machines (since the random
permutations of the hash bits are independent of one an-
other). The main computational cost is in taking the list of
examples that collided and sorting them by their similarity
to the query; this running time is primarily controlled byǫ.

Example-Based Object Recognition. Our first experiment
uses the Caltech 101 data set, a standard benchmark for ob-
ject recognition. We use our technique to perform nearest
neighbor classification, categorizing each novel image ac-
cording to which of the 101 categories it belongs. This data
set is fairly small (∼9K total images); we use it because re-
cent impressive results for this data have applied specialized
image kernels, including some with no known embedding
function. The goal is therefore to show that our hashing
scheme is useful in a domain where such kernel functions
are typically employed, and that nearest-neighbor accuracy
does not significantly degrade with the use of hashing. We
also use this data set to examine how changes in the param-
eters affect accuracy.

We employ the correspondence-based local feature ker-
nel (CORR) designed in [33], and learn a kernel on top of
it using the metric learning algorithm given in [7]. The
learned kernel basically specializes the original kernel to
be more accurate for the classification task, and was shown
in [16] to provide the best reported single kernel results on
the Caltech-101 (when using linear scan search). We train
the metric with 15 images per class. To compute accuracy,
we use a simplek-nearest-neighbor classifier (k = 1) using
both a linear scan baseline and KLSH.

Figure 1 compares our accuracy using hashing versus
that of an exhaustive linear scan, for varying parameter set-
tings. The parameters of interest are the number of bits used
for the hash keysb, the value ofǫ (from standard LSH), and
the values oft andp (from our KLSH algorithm). When
varying one of the parameters, the others remain fixed at
the following: b = 300, ǫ = 0.5, t = 30, andp = 300.
We ran KLSH 10 times and averaged the results over the
10 runs. The results of changingǫ and the number of hash
bits are consistent with the behavior seen for standard LSH
(see for example [12, 16]). From the plots it appears that
the KLSH parameters (t,p), are reasonably robust; the accu-
racy improves modestly asp is increased, but there is little
change in the accuracy ast is increased.

The parameterǫ trades off accuracy for speed, and thus
has a more significant impact on final classifier perfor-
mance. Our best result of 58.5% hashing accuracy, with
ǫ = 0.2, is significantly better than the best previous
hashing-based result on this dataset: 48% with the pyra-
mid match, as reported in [16]. Note that hashing with the
pyramid match was possible in the past only because that
kernel has a known explicit embedding function [12]; with
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Figure 1. Results on the Caltech-101 data set. The plots illustrate the effect of parameter settings on classification accuracy when using
KLSH with a learned CORR kernel. When varying a parameter, the others are fixed atǫ = .5, t = 30, p = 300, andb = 300. The value of
ǫ controls the accuracy vs. speed tradeoff, and most influences results. When searching only 6.7% of the data (ǫ = 0.5), accuracy is 57%,
versus 59% with a linear scan. Overall, accuracy is quite stable with respect to the number of bits and our algorithm’sp andt parameters.

our method, we can hash with matching kernels for which
the embedding function is unknown (e.g., CORR). This 10-
point accuracy improvement illustrates the importance of
being able to choose the best-suited kernel function for the
task—which KLSH now makes possible.

In terms of the speed, the percentage of database items
searched was uniform ast and p changed. On average,
KLSH searched 17.4% of the database forǫ = 0.2; 6.7%
for ǫ = 0.5, and 1.2% forǫ = 1.5. As we will see in subse-
quent sections, even lower percentages of the database are
searched once we move on to much larger data sets.

One possible baseline is to run kernel PCA followed by
standard LSH. The disadvantage of such an approach is
that it would introduce an extra level of approximation—
information is lost when performing kernel PCA, and fur-
ther information loss occurs when hashing on top of the
PCA embedding. KLSH, on the other hand, is a means to
perform LSH on top of the original embeddings to directly
compute locality-sensitive hash functions. We found this to
be borne out in practice—on the Caltech-101 we observed
higher average accuracy with our approach than with a ker-
nelPCA+LSH baseline.

As another baseline, we also ran this experiment using
the metric-tree (M-tree) approach developed in [5], using
the implementation provided online by the authors. This
is a well-known exact search algorithm that accepts ar-
bitrary metrics as input. To map the CORR kernel val-
uesκ(x, y) to distance values, we compute:D(x,y) =

(κ(x,x) + κ(y,y) − 2κ(x,y))
1

2 .

While accuracy with this method is consistent with a
linear scan, its search time was quite poor; of then database
items, the M-tree required searchingn ± 30 examples to
return the first NN. The speed was unchanged when we
varied the splitting function (between the generalized
hyperplane and balanced strategies), the promotion method
used to promote objects in the parent role (random, max-
imum upper bound on distances, or minimum maximum
radius policies), or the minimum node utilization parameter
(which we tested for values from 0 to 0.5 in increments of
0.1). The likely problem is that the distribution of distances
between the indexed objects has relatively low variance,

making the tree-based measure less effective. Thus, even
though the M-tree can operate with arbitrary metrics,
KLSH has a clear performance advantage for this data.

Local Patch Indexing. Our second experiment uses the
patch data set [14] associated with the Photo Tourism
project [26]. It consists of local image patches of Flickr
photos of various landmarks. The goal is to compute corre-
spondences between local features across multiple images,
which can then be provided to a structure-from-motion al-
gorithm to generate 3D reconstructions of the photographed
landmark [26]. Thus, one critical sub-task is to take an in-
put patch and retrieve its corresponding patches within any
other images in the database—another large-scale similarity
search problem.

We use then = 100, 000 image patches provided for the
Notre Dame Cathedral. Since the goal is to extract ideally
all relevant patches, we measure accuracy in terms of the
recall rate. We consider two measures of similarity between
the patches’ SIFT descriptors: Euclidean distance (L2), and
a Gaussian RBF kernel computed with a metric learned on
top ofL2 (again, using [7] to learn the parameters). For the
first measure, standard LSH can be applied. For the second,
only KLSH is applicable, since the underlying embedding
of the data is not easily computable (in fact, its dimension
is technically infinite).

Figure 2 shows the results. The two lower curves (nearly
overlapping) show the recall results when using either a lin-
ear scan or LSH with the SIFT vectors and Euclidean dis-
tance. The two higher curves show recall using a Gaus-
sian RBF kernel on top of the learned SIFT features. In
both cases, the recall rate relative to a linear scan is hardly
affected by the hashing approximation. However, with
KLSH, a stronger kernel can be used with the hashing (the
RBF), which improves the accuracy of the results. For
this data set, KLSH requires searching only 0.26% of the
database on average, a significant improvement.

Again, the M-tree baseline offered no better perfor-
mance than a linear scan on this data set; as earlier, we
suspect this is because of the high-dimensionality of the
features, and the low variance in the inter-feature distances.
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Figure 2. Results on the Photo Tourism data set. The lower two
curves show LSH or linear scan applied forL2 search on SIFT de-
scriptors; the upper two curves show KLSH or linear scan applied
for a Gaussian RBF kernel after metric learning is run on the SIFT
vectors. For both, recall rates using hashing are nearly equivalent
to those using linear scan search. However, now that our KLSH
enables hashing with the RBF, more accurate retrieval is possible
in sub-linear time.

Large-Scale Image Search with Tiny Images. Finally, we
provide results using a very large-scale data set of80 mil-
lion images, provided by the authors of [27]. Here, the task
is content-based image retrieval. The images are “tiny”: 32
× 32 pixels each. Following [31], we use a global Gist de-
scriptor for each image, which is a 384-d vector describing
the texture within localized grid cells. Given that the im-
ages were collected with keyword-based Web crawlers, the
data set does not have definitive ground truth to categorize
the images. However, we can use the data to qualitatively
show the kinds of images that are retrieved, to quantitatively
show how well KLSH approximates a linear scan, and to
confirm that our algorithm is amenable to rapidly searching
very large image collections.

For this experiment we use only 130 hash key permuta-
tions (which corresponds toǫ ≈ 2.74) in order to restrict
the memory overhead when storing the sorted orders. To
counter the accuracy loss that a higher value ofǫ may entail,
we increase theB parameter to 100 so as to search nearby
hash buckets and thereby explore more hashing matches.
We useb = 300 bits per image and randomly select 100 im-
ages as queries. The KLSH parameters are fixed att = 30
andp = 300, as before. Here we apply KLSH to a Gaussian
RBF kernel over the Gist features.

On average, KLSH searched only 0.98% of the entire
database in order to produce the top 10 approximate nearest
neighbors per query. (We can easily decrease this percent-
age even further by using a smaller value ofB; our choice
may have been too liberal.) Figure 4 shows example re-
trieval results. The leftmost image in each set is the query,
the top row shows the linear scan results, and the row below
it shows our KLSH results. Ideally, linear scan and KLSH
would return the same images, and indeed they are often
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Figure 3. Results on the Tiny Images data set. The plot shows how
many linear scan neighbors are needed to cover the first 10, 20, or
30 hashing neighbors.

close and overlap. The Gist descriptors appear to perform
best on images with clearly discernable shape structure—
sometimes the descriptors are insufficient, and so both the
linear scan and hashing results do not appear to match the
query. This experiment demonstrates the practical scalabil-
ity of our hashing approach for very large image databases.

We can quantify the results on this data set by determin-
ing how well the hashing results approximate the ideal lin-
ear scan. To do this, we looked at how many of the top
ranked linear scan neighbors must be included before the
top 10, 20, or 30 hashing results are all accounted for. The
results appear in Figure 3, where we see for example that
for the top ten hashing neighbors, 90% will be within the
top 50 linear scan neighbors on average.

Finally, the average running times for a NN query
on Tiny Images with our Matlab code fully optimized
are: 0.001s for hash key construction and permutation
(overhead), 0.13s for binary search to find approximate
NN’s (overhead), and 0.44s for searching the approximate
NN’s. In contrast, a linear scan takes 45 seconds per query
on average, assuming that all images are stored in memory.
However, due to their size, the images must typically be
stored on disk or across several machines; in contrast, the
binary data can easily be stored on a single machine.

Conclusions. We presented a general algorithm to draw
hash functions that are locality-sensitive for arbitrary kernel
functions, thereby permitting sub-linear time approximate
similarity search. This significantly widens the accessibility
of LSH to generic kernel functions, whether or not their
underlying feature space is known. Since our method does
not require assumptions about the data distribution or input,
it is directly applicable to many existing useful measures
that have been studied for image search and other domains.
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