Believable Bot Navigation via Playback of
Human Traces

Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

Abstract Imitation is a powerful and pervasive primitive underlying examples of
intelligent behavior in nature. Can we use it as a tool to help build artificial agents
that behave like humans do? This question is studied in the context of the BotPrize
competition, a Turing-like test where computer game bots compete by attempting to
fool human judges into thinking they are just another human player. One problem
faced by such bots is that of human-like navigation within the virtual world. This
chapter describes the Human Trace Controller, a component of the UT ~2 bot which
took second place in the BotPrize 2010 competition. The controller uses a database
of recorded human games in order to quickly retrieve and play back relevant seg-
ments of human navigation behavior. Empirical evidence suggests that the method
of direct imitation allows the bot to effectively solve several navigation problems
while moving in a human-like fashion.

1 Introduction

Building robots that act human requires solutions to many challenging problems,
ranging from engineering to vision and natural language understanding. Imitation
is a powerful and pervasive primitive in animals and humans, with recently discov-
ered neurophysiological correlates [1]. Children observing adult behavior are able
to mimic and reuse it rationally even before they can talk [2]. As robotics platforms
continue to develop, it is becoming increasingly possible to use similar techniques
in human-robot interaction [3].

Igor V. Karpov
The University of Texas at Austin, Austin, TX 78712 USA, e-mail: ikarpov @cs.utexas.edu

Jacob Schrum
The University of Texas at Austin, Austin, TX 78712 USA, e-mail: schrum2 @cs.utexas.edu

Risto Miikkulainen
The University of Texas at Austin, Austin, TX 78712 USA, e-mail: risto@cs.utexas.edu

2 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

How can we use imitation when building agents with the explicit goal of human-
like behavior in mind? We study this question in the setting of the BotPrize 2010
competition, which explicitly rewards agents for exhibiting believable human-like
behavior [4].

One problem faced by such bots is that of human-like navigation within the vir-
tual world. Due to problems in level design and the interface used by the bots when
acting in the environment, bots can get stuck on level geometry or fail to appear
human when following the built in navigation graph.

As a way to address such challenges, this chapter introduces the Human Trace
Controller (HTC) , a component of the UT "2 bot inspired by the idea of direct imi-
tation of human behavior. The controller draws upon a previously collected database
of recorded human games, which is indexed and stored for efficient retrieval. The
controller works by quickly retrieving relevant traces of human behavior, translating
them into the action space of the bot, and executing the resulting actions. This ap-
proach proves to be an effective way to effectively recover from navigation artefacts
in a human-like fashion.

This chapter is organized as follows. Related work is discussed in Section 2.
The necessary background including a description of the BotPrize competition and
domain used in it is discussed in Section 3. The main focus of this chapter, the
Human Trace Controller, is described in detail in Section 4. Section 5 presents the
results of qualitative and comparative evaluations of the controller. Sections 6 and 7
discuss future work and conclusions.

2 Related Work

An active and growing body work uses games as a domain to study artificial intelli-
gence [5, 6, 7, 8].

The use of human player data recorded from games in order to create realistic
game characters is a promising direction of research because it can be applied both
to games and to the wider field of autonomous agent behavior. This approach is
closely related to the concept of Imitation Learning or Learning from Demonstra-
tion, especially when expanded to generalize to unseen data [9, 10, 11].

Imitation of human traces has previously been used to synthesize and detect
movement primitives in games [12], however this approach has not been evaluated
in the framework of a human-like bot competition. The use of trajectory libraries
was introduced for developing autonomous agent control policies and for transfer
learning [13, 14]. Hladky, et. al., developed predictive models of player behavior
learned from large databases of human gameplay and used them for multi-agent op-
ponent modeling [15]. Human game data is also collected in an attempt to design
non-player characters capable of using natural language [16]. Imitation learning us-
ing supervised models of human drivers was used in order to train agent drivers in
the TORCS racing simulator [17]. In robotics, imitation learning approaches have
been shown effective as well, for example in task learning and programming ro-

Believable Bot Navigation via Playback of Human Traces 3

bosoccer players in simulation [18]. Statistical analysis of player trajectories was
used in order to detect game bots in the Quake first person shooter game [19]. Suk-
thankar, et al. use similar techniques in order to assign teams and recognize team
player behavior in multiagent settings [20]. Most recently, a competitor team, ICE
, is using an interface for creating custom recordings of human behavior in the Bot-
prize competition [21].

While human behavior traces and learning from demonstration techniques are
finding increasing use in both games and robotics applications, the Botprize com-
petition offers a unique opportunity to test such methods in creating human-like be-
havior directly. The challenge of combining imitation and demonstration methods
with other types of policy design methods remains to be met.

3 Background

This section describes the domain of Unreal Tournament, the BotPrize Competition,
and some of the challenges to developing human-like game bot behavior posed by
the software interface used when developing the bot.

3.1 Unreal Tournament 2004

Unreal Tournament 2004 is a commercial sequel in a series of first person shooter
computer games developed by Epic Games and Digital Extremes [22]. After it was
published in 2004, the game received Multiplayer Game of the Year awards from
IGN, Gamespy and Computer Gaming World.

The Unreal 2004 game engine consists of a server which runs the game simu-
lation including 3D collision detection, physics, player score, statistics, inventories
and events. Importantly, the Unreal 2004 game engine includes an embedded script-
ing system that uses Unreal Script, an interpreted programming language that pro-
vides an API to the game engine. This scripting interface is used by higher-level
wrappers such as GameBots2004 and Pogamut to allow external programs to
control bot players and receive information about their state [23, 24]. Unreal Script
also allows the recording of detailed game traces from games played by humans and
bots.

Players connect to the server using Unreal Tournament clients (either locally or
via a network using TCP and UDP protocols). Clients provide 3D graphics and au-
dio rendering of the view of the Unreal level from the perspective of the player,
and allow the player to control their character via keyboard and mouse commands.
Commands are customizable, but basic keyboard controls include movement for-
ward, back, left and right, jumping up, crouching, and selecting a weapon from the
player’s inventory, while the mouse allows the player to turn, aim, and fire primary
and secondary weapons. Each player has some amount of health and armor and an

4 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

array of weapons from one of the predefined weapon types as well as some amount
of ammunition for each.

Multiplayer games can include up to sixteen players per game simultaneously.
These players can include both humans and bots. Normally players can choose from
a number of native bots within Unreal - these are implemented as internal subrou-
tines within the engine and can have a different skill level depending on a numerical
parameter. Both bots and human players can choose from a vide variety of avatars or
skins which represent them during the game. These are all humanoid in appearance
and roughly similar in size — the engine uses the same underlying character anima-
tions during movement, using custom animations only in special situations such as
taunts.

The goal of the normal Death Match mode is to be the first to eliminate a prede-
termined number of opponents by hitting them with weapon fire and reducing their
health and armor to zero. Players who are killed quickly re-spawn at one of sev-
eral predefined spawn locations on the level map. Games can optionally have a time
limit, at the end of which the player with the highest number of frags (kills) wins.

3.2 The BotPrize 2010 competition

The BotPrize competition aims to create a Turing-like interactive test for bot behav-
ior [4, 25]. During the 2010 competition, five teams competed during the course of
three one-hour rounds consisting of three 20-minute games each. Each game took
place on one of the three large levels pre-selected by the competition organizer (and
known to the participants before hand). These levels (Goatswood, IceHenge and
Colosseum), were created by the Unreal Tournament player community after the
release of the original game and are large relative to the character avatar and avatar
motion speed, allowing a large number of participants to interact frequently but
without too much interference from other players. The levels also contain complex
3D geometry and visual and physical obstacles such as trees, walls, columns, fences,
bridges and water. Equal number of bot participants, human judges and native bots
participate in each game. All the participants are anonymized by using a random
in-game name and a random in-game skin. The rules of the game are modified from
a regular death match as follows:

e One of the default weapons in the player arsenal is a “Judging gun” that allows
players (both humans and bots) to record on-the-fly decisions about whether or
not they think their opponent is a human.

e Damage by normal weapons is reduced to 40% to allow players more time to
interact.

Hitting a player with the primary fire of the judging gun for the first time desig-
nates the player as a human. Hitting a player with the secondary fire of the judging
gun for the first time designates the player as a bot. If the designation is correct (the
player correctly guesses whether the opponent is a human) the player gets 10 frags

Believable Bot Navigation via Playback of Human Traces 5

and the opponent is instantly killed. If the designation is incorrect (the player fails to
guess whether the opponent is a human) the player gets —10 frags and dies instantly.
The judgement can only be made once per opponent - judging the same opponent
twice has no effect.

The goal of the human players is to get the highest score - thus it is in their
interest to guess whether or not their opponents are bots correctly. The goal of the
bot players is to appear human, thus ideally their policy should be indistinguishable
from what is expected from a human player in a given situation.

Additional details about the competition are available in previous publications
by the organizer, Philip Hingston ([4, 25], and elsewhere this book [26].

3.3 The GameBots2004 and Pogamut interfaces

The GameBots2004 interface allows a program to control a bot within Un-
real Tournament using a network socket connection [23]. Synchronous and asyn-
chronous messages are exchanged between the agent and the GameBot s2004 Bot-
Connection running on the Unreal Tournament server, allowing the agent to receive
updates about the game and the bot state and to send commands controlling its mo-
tion and its actions.

The Pogamut framework is a Java library that uses GameBots2004 to pro-
vide the developer with a convenient API for accessing game and agent state and
writing custom behaviors for Unreal Tournament 2004 bots [24]. In particular, the
framework takes care of the details of updating agent’s memory (state) information,
wraps GameBot s2004 messaging protocol in a Java API, and provides a class hi-
erarchy for representing useful data structures for building bot behavior, including
navigation graphs, inventory items, sensors, actions, and so on.

3.4 Navigation in Unreal Tournament 2004

The interfaces to the Unreal Tournament game engine support two main styles of
navigation for bots. In one of these, the bot specifies the location (or locations)
in its immediate vicinity where it wishes to move, and the game engine executes
this motion, calculating the appropriate animations and adjusting the bot’s location
according to reachability and physical constrains. In the second mode of navigation,
a navigation graph provided by the creators of the level maps can be used in order
plan longer-term routes that take the bot from one location on the level to another.

In general, a navigation graph for a level consists of a relatively small (on the or-
der of several hundred) number of named vertices, or navpoints, distributed through-
out the level and connected by a network of reachability edges (Figure 1). If two ad-
jacent navpoints are connected by an edge, the engine should be able to successfully
move the avatar between them.

6 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

|
. /il
\ \ /‘l.\ ’
/ e \ >
' Il ’ <
(a) Navigation graph for Colosseum (b) Human traces for Colosseum

Fig. 1: A side-by-side comparison of the two-dimensional projections of the navi-
gation graph (1a) used by native Unreal bots and of three-dimensional view of the
position and event samples of human behavior (1b) used by the Human Trace Con-
troller and on one of the competition levels

Bots can use standard A* pathfinding such as the Floyd-Warshall method ([27])
to get from one location on the map to another. A* and Floyd-Warshall are pre-
packaged in the Pogamut framework, and they work well, but they are different
(and seemingly not quite as good as) what is built into UT2004 and used by the na-
tive bots. Part of the reason for this difference may be that path following sometimes
involves well-timed jumps. The navigation and jumping capability is dramatically
improved in the Pogamut 3.1 release, however, the BotPrize 2010 and the evalua-
tions presented in this chapter were done using the competition version.

Even with the best of interfaces, error-free navigation is not usually available for
domains with high complexity. This is certainly the case with mobile robot nav-
igation where sensor and motor errors, physical slips and other inaccuracies can
combine to both stochastic and systemic errors over time. Even in simulated envi-
ronments such as Unreal Tournament, the well-timed execution of new destination
commands along the path could be adversely affected by the additional network
latency or computational overhead of the interfaces.

Because navigation primitives used by the bot are not error-free, it often gets
“stuck”, where the actions that it choses to execute as part of the path following
(or combat) behavior do not cause any progress because an obstacle is in the way.
This can be caused by navigation command execution errors, by collisions with
other players, by imprecisions in the navigation graph, or by simulated physics in-
teractions with weapon fire. Humans do not play in this manner, and judges often
exploit this behavior to make negative decisions. The UT"2 bot uses the Human

Believable Bot Navigation via Playback of Human Traces 7

Trace Controller (HTC) in order to quickly detect and recover from such navigation
problems.

4 The Human Trace Controller

The UT "2 bot is implemented using a method similar to behavior trees. The overall
architecture of the bot is described in detail elsewhere in this book [26]. In the
BotPrize 2010 competition, the bot uses the HTC in order to improve its navigation
behavior: when the bot gets stuck while moving along a path or during combat
(section 4.3), it executes actions selected by the controller.

The HTC uses a database of previously recorded human games to execute navi-
gation behavior similar to that of human players. This section describes how the data
is recorded (section 4.1) and indexed (section 4.2) to select what actions to execute
(section 4.4).

4.1 Recording human games

Player volunteers were selected from graduate and undergraduate students at UT
Austin. All players had considerable previous experience with video games in gen-
eral and first person shooter games in particular. Familiarity with the Unreal Tour-
nament 2004 game varied between the players.

An early version of the competition mod that allowed the judging gun to be used
was instrumented with the ability to log each player’s pose and event information
into a text file, as follows. The standard BotPrize mod was decompiled into its orig-
inal UnrealScript using the standard tools that come with the Unreal Tournament
2004. The script was then modified to write out a detailed log of the events and
commands used by the players into a text file. The text file was then processed in
order to extract traces of human behavior, and these traces were stored in a SQLite
database [28]. The frequency of the samples in the human database thus roughly
coincided with the average logic cycle of the Pogamut/GameBots configuration,
around ten times a second.

Two types of data points were recorded in the database for each human player:
pose data and event data. The player’s pose includes the current position, orien-
tation, velocity and acceleration of the player. This data was recorded every logic
cycle, or around ten times a second. The player’s events were recorded as they hap-
pened together with their time stamp, and included actions taken by the player or
various kinds of interactions with other players or the environment. Example event
types include picking up inventory items, switching weapons, firing weapons, taking
damage, jumping, falling of edges, and so on. Taken together, all the pose and event
samples for a particular player in a particular game form a sequence, and are stored

8 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

in such a way as to allow the controller to recover both preceding and succeeding
event and pose samples from any given pose or event.

Games were conducted on the three levels selected for the competition (Fig-
ure 1). Knowledge of the levels in this competition allowed the possibility of using
a method that does not generalize to previously unseen levels.

Three types of games were recorded: standard games, judging games, and syn-
thetic coverage games. Standard games were recorded in order to capture what hu-
man players do when playing a standard first person shooter death match variant of
Unreal Tournament 2004. The judging games were recorded in order to overcome
the potential differences in behavior that manifest themselves when human play-
ers are also judging. Finally, because the competition levels were relatively large
and because some problematic parts of the maps were visited infrequently by hu-
man players in the other data sets, synthetic data sets were collected where human
players intentionally spent time navigating around areas with low data coverage.

In the first type of recorded games, two human volunteers were separated so that
they could not see or hear each other outside of the game. They were joined by an
equal number of native Unreal bot players. The rules were standard death match
rules (first player to get 15 frags wins) and the human data was recorded and used
as part of the database of human behavior.

In the second type of recorded game, two human volunteers unfamiliar with the
details of the bot were separated in two different rooms such that they could not
see or hear each other outside the game. One of the authors (alternating) and two
instances of an early version of the bot constituted the other participants of the
games. The volunteers were asked to be vocal about what their thought process is
and how their judgements were made. Recorded human traces of all participants
in these games were stored in the database and used as part of the dataset for the
Human Trace Controller.

In the third type of game recording, the authors participated in games designed
specifically to fill in the areas of the dataset where the performance of the Human
Trace Controller was found to be weaker due to lack of human data. These games
involved alternating normal combat with movement localized to areas of the map
where most of the stuck events were seen during testing, such as under the bridge in
Goatswood or among the columns in the Colosseum.

Table 1: Size of the Level Unique Players|Events|Pose Samples
recorded human game Colosseum 6 4318 |40474

. GoatswoodPlay |7 6085 (40961
datasett.fusedThln ¢ tth‘i IceHenge 4 8927 (29736
competition. 1he fota Total 17 19330 [111171

dataset represents
about ten hours of play
time.

Believable Bot Navigation via Playback of Human Traces 9

The results presented in this chapter were obtained using a relatively modest
number of human traces (Table 1), however, even for this dataset an efficient stor-
age scheme had to be developed to support timely retrieval and playback. The next
section discusses three data indexing schemes that were used over the course of de-
velopment with properties that make it possible to scale this method to much larger
data sets.

4.2 Indexing databases of human behavior

In order to be able to quickly retrieve the relevant human traces, an efficient index-
ing scheme of the data is needed. In particular, it is necessary to quickly find all
segments of the recorded games database that pass within the vicinity of the bot’s
current location. Throughout the course of development of the UT "2 bot, several
such schemes were tested. Two of the most effective indexing schemes are described
below.

4.2.1 Octree based indexing

An octree is a data structure routinely used in computer graphics and vision to index
spatial information [29]. It is constructed by finding the geometric middle of a set
of points, and subdividing the points into eight subsets defined by the three axis-
aligned hyperplanes passing through the point. The process continues recursively
until a termination condition, such as depth, smallest leaf dimension, or smallest
number of points per leaf, is reached.

In order to index the pose data in the database of human game traces, an octree
was constructed over the set of all points with the termination condition defined to
be the first of (a) reaching the smallest leaf radius (set to twice the average distance
moved per logic cycle), or (b) reaching the minimum number of points allowed in a
leaf (set to 20).

Each point in the pose database was then labeled with an octree leaf. Given the
bot’s location, it is possible to traverse the octree index structure and find the small-
est octree node that encloses it, and quickly retrieve the set of points within this
octree node. Only part of the octree is stored in memory, while the rest is backed by
SQL queries which dynamically retrieve the points needed. The Java/SQLite imple-
mentation allows the entire database to be stored in memory if it is small or to scale
to other storage if it excedes available memory.

10 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

4.2.2 Navigation Graph based indexing

As described in Section 3.4, levels in Unreal Tournament and many other similar
games come with navigation graphs, which connect a number of named vertices
distributed throughout the level with reachability edges.

It turns out that the nodes of the navigation graph can be used as labels for the
points in the trace database, allowing the controller to quickly retrieve those points
which are closest to a particular node. While this indexing process does take some
time, it can be done efficiently by forming a KD-tree [30] over the navigation graph
and iterating over the points in the database, performing a nearest neighbor search
over the (relatively few) vertices in the navigation graph.

Once the nearest navpoints to the bot’s location is found, the database yields
the set of points in the pose database that are closest to the navpoint (belong to
the navpoint’s Voronoi cell , [31, 32]). Like the octree implementation above, the
database-backed data structure can scale to a very large number of points because
the tradeoff between memory and speed is adjustable.

Both of these schemes yield a subset of the pose database which is considered
during playback (Section 4.4), however, the navigation graph scheme relies more on
the availability of good level meta-data, while the octree-based indexing relies more
on the quality of the human games database.

4.3 Detecting when the bot is stuck

Several different heuristics were employed in order to quickly determine when the
bot is stuck. These were formulated after observing the behavior of several earlier
versions of the bot and characterizing the times when it was stuck.

e SAME_NAV - the bot keeps track of the number of logic cycles it finds itself next
to the same navigation point as the previous cycle. The SAME_NAV condition is
triggered when this number increases past a threshold.

e STILL - the bot keeps track of the number of logic cycles it finds itself within a
short distance of the previous position. The STILL condition is triggered when
this number increases past a threshold.

e COLLIDING - the Unreal Tournament game engine and the GameBot s2004
API report when the bot is colliding with level geometry, and this information is
incorporated into the bot’s senses by the Pogamut framework. The COLLIDING
condition is set to true whenever the corresponding sense is true.

e BUMPING - the Unreal Tournament game engine and the GameBots2004
API report when the bot is bumping into movable objects such as other players
and this information is incorporated into the bot’s senses by the Pogamut frame-
work. The BUMPING condition is set to true whenever the corresponding sense
is true.

o OFF_GRID - this condition is triggered when the bot finds its distance from the
nearest navpoint reach a threshold.

Believable Bot Navigation via Playback of Human Traces 11

If one of these conditions is set to true, the bot is considered stuck and the Human
Trace Controller is executed as the controller for that logic cycle.

4.4 Retrieval and playback of human behavior traces

When the bot finds itself stuck, if calls upon the Human Trace Controller in order to
get unstuck. The controller keeps track of when it was last called, and either follows
a previous path or creates a new one.

Several conditions have to be met in order for the bot to follow an existing path.
These are:

The path was started recently enough.
The bot has not strayed from the selected path. The “current” point along the
path is within a set distance of the bot’s current position.

e The path is not interrupted or terminated by recorded events such as falls, death,
or large gaps between sampled positions.

If one or more of these conditions is not met, the Human Trace Controller at-
tempts to start a new path. Otherwise, it continues along the previously started one.

The bot selects a set of relevant points from the pose database using one of the
indexing techniques described in section 4.2. Once the points are selected, one of
them is picked as the starting point. Two methods for doing so that were tested
during the development of the UT " 2 bot - the random point selection and the nearest
point selection. Based on the results of these tests, the competition version of the
bot picks the nearest point unless this point is picked twice in a row, in which case
a random point is selected.

Selecting a point from the subset specifies the sequence the agent will follow.
The agent can then estimate the parameters of the movement action by using an
estimate of the logic cycle length and the time stamps of the pose records.

In order to continue along the path, the agent uses the time passed since the
starting point was selected in order to pick the next point from the database. The
time delay between the pose samples along the stored paths in the database and the
logic frames executed by the agent are both variable and different from each other. In
order to address this problem, the agent interpolates between two database points in
order to get an estimate for where on the path it should move to. The controller keeps
an estimate (arithmetic mean) of the logic frame cycle length from its experience in
order to do so.

Executing the planned motions outside of the navigation mesh poses its own
challenges. If a point is not specified far enough in advance as the target of motion,
the bot will apear to stall after every logic cycle. If a point too far ahead is specified,
however, the bot will appear to change directions suddenly. The navigation interface
provided by the GameBots API includes several different kinds of location-based
movement primitives. Because the logic frame rate can be variable and latency can
influence when an action actually reaches the engine and begins to execute, the

12 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

MoveAlong primitive is used. This primitive takes two positions, p; and pj, in
order to make the movement appear smooth in the face of unpredictable latency. In
effect, the MoveAlong action schedules the motion to py and then to p;, making
the assumption that the next MoveAlong command will arrive when the agent is
somewhere between p; and p,. If the actions are interpolated carefully as part of a
continuous path such as a trace of a human game, the resulting path appears smooth
and purposeful.

The recorded and indexed human data, the firing conditions, and the retrieval and
playback of the human trajectories together constitute the entirety of the Human
Trace Controller component of the UT "2 bot. The next section discusses how this
component was evaluated.

5 Results and Discussion

The performance of the human trace module was evaluated in several ways. First,
it was used in the competition version of the UT "2 bot, which placed second out
of five competing systems in the BotPrize 2010 competition (Section 5.1). The re-
sults of this evaluation were limited to high-level performance metrics based on
human judgements and to qualitative insights extracted after the competitions based
on video recordings of agent performance. The second type of evaluation was per-
formed after the competition and was aimed at empirically comparing how the dif-
ferent variants of the unstuck controller contributed to the bot’s ability to get unstuck
and to the overall performance (Section 5.2).

5.1 BotPrize 2010 Competition Results

A summary of the overall bot humanness rating results is given in Table 2. In addi-
tion to these results, the detailed records of the judgements as well as game demo
files from the games were made available at http://www.botprize.org/result.html.
This section summarizes the qualitative evaluation of the Human Trace Controller
part of the bot based on these records.

The game records are provided in the Unreal demo format, which allows play-
back of the entire game from the perspective of a free camera (spectator mode) or
from the perspective of any human player (follow mode). Several qualitative ob-
servations can be made based on reviewing these records. These observations are
described below.

Believable Bot Navigation via Playback of Human Traces 13

Table 2: BotPrize 2010 results, includ- Bot Humanness
ing the average humanness rating of the Native UT2004 Bot|35.3982
native bots. The humanness rating is the S%S’C“’“S'R"bms ; ; 2 ; 23
percentage of judgements of the bot (by ICE-2010 233333
humans) that identified it as a human Discordia 17.7778
player. w00t 9.3023

5.1.1 Data sparseness

One problem that the bot frequently encountered on one of the levels, Colosseum,
was getting stuck in the narrow hallways radiating outward from the center of the
level. Because the navigation graph does not extend into these areas, the bot will
often bump into a wall if it tries to run to a node or an item after finding itself there.

The Human Trace Controller can solve this problem, but only when a record
exists for the particular area where the bot is stuck. Observations of the competi-
tion records from the UT "2 bot confirm this, because the first version of the bot’s
database used on the Colosseum level resulted in the bot being often stuck in the
columns area, and this situation improved dramatically with the addition of traces
specifically in the problem areas.

However, as noted below, one future direction for the controller is to use machine
learning techniques in conjunction with egocentric sensors to generalize between
environments that look similar. The hallways are a great example of where such an
approach would be particularly useful.

5.1.2 Correspondence problem

One fundamental problem faced by all designers of human-like behavior is the cor-
respondence problem, or the difference between the actions and observations avail-
able to humans and those available to artificial agents [11]. This problem can include
differences in decision frequency, the kind and amount of information expressed in
the sensors, differences in body morphology or capability and so on.

This problem sometimes leads to the bot’s inability to reproduce a human reac-
tion either because its observations are insufficient or because its actions are limit-
ing.

For example, in the BotPrize competition, the human players control the bot
via keystrokes and mouse movements that are processed by the game engine at a
very high frequency. They receive information about the environment from a two-
dimensional rendering of the three-dimensional world, which includes rich informa-
tion such as texture, color, shadow, effects of explosions, sounds, and so on. Further,
they can rely on the powerful ability of the human mind to interpret and synthesize

14 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

these events into higher-level stimuli, using highly parallel and complex “wet-ware”,
the workings of which we are only beginning to understand.

Bots, in contrast, send commands controlling their player about ten times a sec-
ond, and the command repertoire does not include direct equivalents to keystroke
and mouse based control of a human player. The observations of a bot include a
lot of information about the environment that the human is not given immediately
(such as reachability grids, navigation graphs, exact locations of items and event
notifications) but also exclude important features, such as an effective way to react
to sound, the ability to see the nature and extent of different environments such as
lava or water, and an effective ability to deal with level geometry.

As a concrete example of this problem, in the Goatswood level, the bot would
sometimes get stuck next to short obstacles in its path, and trying to follow a human
trace would not lead to a successful navigation because in order to do so the bot
would have needed to send a (well timed) jump command in addition to a MoveA—
long action. Humans, in contrast, were able to “push through” such obstacles be-
cause such small jumps are built in to the pawn behavior.

5.1.3 Environmental features

Another class of problems has to do with special features of the environment. For ex-
ample, both the Goatswood and the IceHenge level contain areas with water flowing
through them. These special areas change the way the bot responds to commands,
making movement slower in some directions and faster in others. This in turn causes
human path execution to fail, because the bot tries to execute the same actions in two
very different environments, as it does not operate in the same action space as the
human did.

Because the water hazards are particularly difficult for the human trace controller
to navigate, during the competition the UT "2 bot used a specially designed Water
Controller when it was stuck in water areas. The controller uses a gofo primitive
along with additional hand-crafted navigation nodes in order to get out of the water
as quickly and smoothly as possible. Additionally, proximity to important items
located on the side of the water hazard in IceHenge can cause the bot to go to that
location instead.

While this partial solution improved the performance of the bot on levels with
water hazards, it does not result in a particularly human-like behavior. For example,
people occasionally used water as cover to sneak up on opponents or to escape
pursuit.

Taken together, these observations provide important insights into the kinds of
problems that need to be addressed when designing human-like behavior. In Sec-
tion 6, we discuss some future work that may help address these issues.

Believable Bot Navigation via Playback of Human Traces 15

5.2 Comparative Evaluation

In order to evaluate the contribution of the Human Trace Controller to the overall
UT "2 bot, comparisons were made between three versions of the bot, where the
only difference was the controller used to get the bot unstuck. The following three
controllers were used in the comparison:

e The Null Controller simply ignores the stuck condition and continues to whatever
action would fire in the bot otherwise.

e The Scripted Unstuck Controller is a scripted controller designed to get the bot
unstuck during evolution (Section 5.2.1).

e The Human Trace Controller as used during the BotPrize 2010 competition.

In all three versions the overall bot is modified from the competition version
by removing level-specific special cases and the WaterController in order to
make sure that only one controller is used to get unstuck during the comparison.

5.2.1 The Scripted Unstuck Controller baseline

The Scripted Unstuck Controller is a scripted controller designed to get the bot un-
stuck reliably and quickly. Because it is relatively simple and does not rely on chang-
ing external human databases, the Scripted Unstuck Controller was used whenever
the bot got stuck while evolving the battle controller for the UT "2 bot [26]. It also
provides a strong benchmark for comparisons with the performance of the Human
Trace Controller.

In our experiments, the controller picks one of the following actions depending
on the current state of the bot:

e If the bot is currently at location x; and detected a collision at X,, the controller
requests a move of 5- (X3 — Xq).

e If the bot is currently at location x; and detects a bump at location x3, the con-
troller requests a move of 5- (xz — Xq).

e Otherwise,

— with probability 0.5, the controller performs a DodgeShotAction, which
results in a single jump in a random direction.

— with probability 0.25, the controller requests the bot to run forward continu-
ously until another command is selected.

— with probability 0.25, the controller requests the bot to go to the nearest item.

5.2.2 Comparison results

The results of these comparisons for the three levels are are given in Figures 2, 3
and 4. The three bars represent UT "2 bot using no unstuck controller (NONE), the

16 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

Human Retrace Controller (HTC), and the scripted controller (SCRIPTED). Each
bar is an average of thirty runs, where each run represents ten minutes of game
time in a game with two Hunter bots and the modified UT "2 bot. Standard error is
indicated by the error bar.

Collisions on Colosseum
M same-nav
SCRIPTED still
¥ colliding
H bumping
HTC = off-grid
0 50 100 150 200 250

Fig. 2: Number of logic cycles stuck by condition on the Colosseum level. Averages
of thirty ten-minute runs and standard error are shown.

Collisions on GoatswoodPlay
B same-nav
SCRIPTED — still
¥ colliding
H bumping
HTC = off-grid
0 50 100 150 200 250

Fig. 3: Number of logic cycles stuck by condition on the Goatswood level. Averages
of thirty ten-minute runs and standard error are shown.

Overall, both the Scripted Unstuck Controller and the human trace controller per-
form similarly in terms of the number of cycles stuck. However, the Human Trace
Controller still has two advantages: it generates qualitatively smoother paths when

Believable Bot Navigation via Playback of Human Traces 17

Collisions on IceHenge

M same-nav

I ' still

¥ colliding

SCRIPTED

H bumping

- an off-grid

|
00 150 2

Fig. 4: Number of logic cycles stuck by condition on the IceHenge level. Averages
of thirty ten-minute runs and standard error are shown.

HTC

NONE

00 250

0 50 1

executed in isolation with random restarts, and the average length of a stuck seg-
ment for the Human Trace Controller is shorter than that of the scripted controller.
Because the evaluations are very noisy, further evaluations are needed in order to de-
termine statistical significance of these findings. However, the need for an unstuck
controller is significant in that both controllers outperform the Null Controller.

5.2.3 Post-competition improvements

After the 2010 Botprize competition, the UT "2 bot was modified to improve several
aspects of using human traces. First, the scripted unstuck controller was integrated
with the Human Trace Controller to allow the scripted controller to take over when
traces are unavailable or failing to replay correctly. Second, the HTC was also used
by an additional top-level UT "2 controller that allowed the bot to explore the level
in a human-like fashion in the absence of any other goals. Third, the database was
filtered to include only smooth segments, not interrupted by jumps or other artefacts.
Finally, HTC playback was modified to ensure that positive path progress was made
by keeping an estimate of bot speed and selecting points along the path by distance
traveled according to this estimate.

The results of these comparisons are shown in Figure 5. The amount of time
the bot spends stuck decreases both when using Human Traces to get unstuck and
when using them to explore the environment. Additionally, the human trace replay
used for exploration allows the bot to avoid traveling along the navigation graph and
looks smooth and human-like when observing.

18 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

Stuck Trigger Frequency by Condition m cglision

Off-grid
B Same navpoint

Both
B Standing still
® Under elevator
Explore -l»i Collision freq.

Unstuck

1

|
No retrace F

10 15 20 25 30 35
Number of Logic Cycles Spent Stuck

o
wv

Fig. 5: A comparison of the 2011 version of the UT "2 bot. Average unstuck counts
are shown when the bot is using no human traces (No traces), only to get unstuck
(Unstuck), only to explore the level (Explore), or both to get unstuck and to explore
(Both). Average over 10 runs with standard error bars are shown for the Osiris2
level.

6 Discussion and future work

The Human Trace Controller presented in this chapter is a simple way to utilize
recorded human behavior to improve parts of the agent’s navigation policy. How-
ever, the technique is much more generally applicable and can be extended to further
improve the navigation system, to generalize to previously unseen environments,
and to support higher-level decision making such as opponent modeling.

One further area where human trace data can be useful is to improve other com-
ponents of the navigation subsystem. Because the levels for Unreal Tournament
2004 are designed by hand, some areas of the levels are missing navpoints or edges
in places where they would be quite useful to bots. In such places, it is possible
to use the human data to induce a more complete version of the navpoint graph.
Such a graph could then be used without modification by graph navigation and path
planning modules.

The Human Trace Controller as described in this chapter suffers from one major
weakness - it does not generalize to new environments (or even to unseen parts of
existing environments). Enabling the bot to generalize to previously unseen envi-
ronments would require (1) recasting of the problem in an egocentric state space
and (2) selecting an appropriate machine learning technique to support better gen-
eralization. Some work has already been done towards achieving (1) - the combat
module of the UT "2 bot uses a set of ego-centric and opponent-centric sensors and

Believable Bot Navigation via Playback of Human Traces 19

actions which could be reused when building a human player model. In order to
achieve (2), the indexing techniques described in section 4.2 can be naturally re-
placed with an instance-based machine learning algorithm such as a decision tree
or a nearest-neighbor algorithm. This instance-based method can be compared and
contrasted with other machine learning methods capable of compressing the data
such as neural networks or probabilistic techniques. Whatever solution is used, one
property that would be useful to retain from the current implementation is the ability
to select what parts of what kinds of environments should be added to the database
for maximum gain in the model’s accuracy.

In order to address the correspondence problem, or the difference between the
human and the bot’s observation and action spaces, and to support the use of ma-
chine learning for effective generalization based on previously seen human behavior,
a translation scheme between human and bot observations and actions needs to be
developed. This could be done automatically by learning the bot actions and pa-
rameters that most accurately recreate small sections of human behavior, and using
those actions as primitives when replaying new traces or outputs of a learned human
behavior model.

In addition to using a model of human behavior to mimic it as part of the agent’s
policy, it is possible to use this information in other ways. For example, it may
be possible to use the human behavior database to design a “humanness fitness
function” for evolving human-like control policies. Such a function can be used
for example as part of the multi-objective neuroevolution technique to compare the
behavior generated by a candidate bot with that available in the human database
[26]. As another promising future use of human trace data, the bot can use its model
of human behavior to predict and reacquire a human opponent it is chasing if it
looses track of him or her. Such behavior can be seen as purposeful and cognitively
complex, and thus very human.

7 Conclusion

The Human Trace Controller component of the UT "2 bot takes a step towards
building human-like behavior in a complex virtual environment by directly replay-
ing segments of recorded human behavior.

Evaluation of the resulting controller as part of the BotPrize competition and via
comparitive experiments suggests that the replay of human traces is an effective
way to address the navigation problems faced by the UT "2 bot. Additionally, hu-
man traces can be used for exploration of the level in the absence of other goals.
The resulting behavior appears smooth and human-like on observation, while also
allowing the bot to navigate the environment with a minimal number of failures.

Finally, the work demonstrates the feasibility of using large databases of human
behavior to support online decision making. The approach can scale and improve
with experience gained naturally from domain experts; it is applicable to the explicit

20 Igor V. Karpov, Jacob Schrum and Risto Miikkulainen

goal of building human-like behavior; and it supports imitation, a primitive that is
ubiquitous in examples of intelligent behavior in nature.

Acknowledgements The authors would like to thank Philip Hingston for organizing the BotPrize
competitions and 2K Australia for sponsoring it. The authors would also like to thank students in
the Freshman Research Initiative’s Computational Intelligence in Game Design stream and mem-
bers of the Neural Networks Research Group at the University of Texas and to Christopher Tan-
guay and Peter Djeu for participating in recordings of human game traces and for volunteering
to critique and evaluate versions of UT "2 . This research was supported in part by the NSF un-
der grants DBI-0939454 and 1IS-0915038 and Texas Higher Education Coordinating Board grant
003658-0036-2007.

References

1. G. Rizzolatti, L. Fogassi, and V. Gallese, “Neurophysiological Mechanisms Underlying the
Understanding and Imitation of Action,” Nature Reviews Neuroscience, vol. 2, no. 9, pp. 661—
670, 2001.

2. G. Gergely, H. Bekkering, and I. Kirdly, “Developmental Psychology: Rational Imitation in
Preverbal Infants,” Nature, vol. 415, no. 6873, p. 755, 2002.

3. M. Nicolescu and M. J. Matari¢, “Task Learning Through Imitation and Human-Robot Inter-
action,” in Models and Mechanisms of Imitation and Social Learning in Robots, Humans and
Animals: Behavioural, Social and Communicative Dimensions (K. Dautenhahn and C. Ne-
haniv, eds.), Cambridge University Press, 2005.

4. P. Hingston, “A Turing Test for Computer Game Bots,” Computational Intelligence and Al in
Games, IEEE Transactions on, vol. 1, no. 3, pp. 169-186, 2009.

5. J. E. Laird and M. van Lent, “Interactive computer games: Human-Level AI’s killer applica-
tion,” AI Magazine, vol. 22(2), pp. 15-25, 2001.

6. D. W. Aha and M. Molineaux, “Integrating Learning in Interactive Gaming Simulators,” in
Challenges of Game Al: Proceedings of the AAAI’04 Workshop, AAAI Press, 2004.

7. M. Bowling, J. Fiirnkranz, T. Graepel, and R. Musick, “Machine Learning and Games,” Ma-
chine Learning, vol. 63, pp. 211-215, 2006.

8. M. Molineaux and D. W. Aha, “TIELT: A testbed for gaming environments,” in Proceedings
of the Twentieth National Conference on Artificial Intelligence (Intelligent Systems Demon-
strations), AAAI Press, 2005.

9. S. Schaal, “Learning from demonstration,” in Advances in Neural Information and Processing
Systems, pp. 1040-1046, Citeseer, 1997.

10. C. Atkeson and S. Schaal, “Robot Learning from Demonstration,” in Proceedings of the Four-
teenth International Conference on Machine Learning, ICML’97, pp. 12-20, Citeseer, 1997.

11. B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from
demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469 — 483, 2009.

12. C. Thurau, C. Bauckhage, and G. Sagerer, “Synthesizing Movements for Computer Game
Characters,” Lecture Notes in Computer Science, vol. 3175, pp. 179-186, 2004.

13. M. Stolle and C. G. Atkeson, “Policies Based on Trajectory Libraries,” in Proceedings of the
International Conference on Robotics and Automation (ICRA 2006), 2006.

14. M. Stolle, H. Tappeiner, J. Chestnutt, and C. G. Atkeson, “Transfer of Policies Based on
Trajectory Libraries,” in Proceedings of the International Conference on Intelligent Robots
and Systems, 2007.

15. S. Hladky and V. Bulitko, “An Evaluation of Models for Predicting Opponent Positions in
First-Person Shooter Video Games,” in Proceedings of the IEEE 2008 Symposium on Compu-
tational Intelligence and Games (CIG’08), (Perth, Australia), 2008.

Believable Bot Navigation via Playback of Human Traces 21

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

30.

31.

32.

J. D. Orkin and D. Roy, “Automatic Learning and Generation of Social Behavior from Collec-
tive Human Gameplay,” in Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS’09), vol. 1, pp. 385-392, International Foundation
for Autonomous Agents and Multiagent Systems, 2009.

L. Cardamone, D. Loiacono, and P. L. Lanzi, “Learning Drivers for TORCS through Imitation
Using Supervised Methods,” in Proceedings of the IEEE 2009 Symposium on Computational
Intelligence and Games (CIG’09), 2009.

R. Aler, J. M. Valls, D. Camacho, and A. Lopez, “Programming robosoccer agents by mod-
eling human behavior,” Expert Systems with Applications, vol. 36, no. 2, Part 1, pp. 1850 —
1859, 2009.

H.-K. Pao, K.-T. Chen, and H.-C. Chang, “Game Bot Detection via Avatar Trajectory Anal-
ysis,” Computational Intelligence and Al in Games, IEEE Transactions on, vol. 2, no. 3,
pp. 162-175, 2010.

G. Sukthankar and K. Sycara, “Simultaneous Team Assignment and Behavior Recognition
from Spatio-temporal Agent Traces,” in Proceedings of Twenty-First National Conference on
Artificial Intelligence (AAAI-06), July 2006.

S. Murakami, T. Sato, A. Kojima, D. Hirono, N. Kusumoto, and R. Thawonmas, “Outline of
ICE-CEC2011 and its mechanism for learning FPS tactics.” Extended Abstract for the Human-
like Bot Workshop at the IEEE Congress on Evolutionary Computation (CEC 2011), June
2011.

Epic Games, Inc. and Digital Extremes, Inc., “Unreal Tournament 2004.” Atari, Inc., March
2004.

G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati, A. N. Marshall, A. Sc-
holer, and S. Tejada, “GameBots: a Flexible Test Bed for Multiagent Team Research,” Com-
munications of the ACM, vol. 45, no. 1, pp. 4345, 2002.

J. Gemrot, R. Kadlec, M. Bida, O. Burkert, R. Pibil, J. Havli¢ek, L. Zemcak, J. §imlovié,
R. Vansa, M. §tolba, et al., “Pogamut 3 Can Assist Developers in Building AI (Not Only) for
Their Videogame Agents,” Agents for Games and Simulations, pp. 1-15, 2009.

P. Hingston, “A New Design for a Turing Test for Bots,” Computational Intelligence and Al
in Games, IEEE Transactions on, 2010.

J. Schrum, I. V. Karpov, and R. Miikkulainen, “Humanlike combat behavior via multiobjective
neuroevolution,” in Believable Bots, to appear (P. F. Hingston, ed.), Springer, 2011.

R. Floyd, “Algorithm 97: Shortest Path,” Communications of the ACM, vol. 5, no. 6, p. 345,
1962.

“SQLite.” http://www.sqlite.org/.

C. Jackins and S. Tanimoto, “Oct-Trees and Their Use in Representing Three-Dimensional
Objects,” Computer Graphics and Image Processing, vol. 14, no. 3, pp. 249-270, 1980.

J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Com-
munications of the ACM, vol. 18, no. 9, pp. 509-517, 1975.

G. L. Dirichlet, “Uber die Reduktion der positiven quadratischen Formen mit drei unbes-
timmten ganzen Zahlen,” Journal fiir die Reine und Angewandte Mathematik, vol. 40, pp. 209—
227, 1850.

G. Voronoi, “Nouvelles applications des parametres continus a la théorie des formes quadra-
tiques,” Journal fiir die Reine und Angewandte Mathematik, vol. 133, pp. 97-178, 1907.

