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Abstract eral setting, a widely used approximation technique is max-
product belief propagation (Pearl, 1988). The algorithm is
convergent on trees, and its fixed point configuration upon
convergence can be shown to be locally optimal with re-
spect to a large set of moves (Weiss & Freeman, 2001).
A similar message passing algorithm, tree-reweighted max
product (Wainwright et al., 2005), has stronger correcnes
and convergence guarantees. Boykov et al. (2001) have
proposed graph-cut based algorithms that efficiently find a
local energy minimum with respect to two types of large
moves. A different direction has been taken in recent work
on linear program relaxations for the MAP problem in the
specific setting of metric labeling. In the metric labeling
formulation, a weighted graph and a metric on labels spec-
ifies the energy or cost of different labelings of a set of
objects, and the goal is to find a minimum cost labeling.
Casting this as an integer linear program, Kleinberg and
Tardos (1999) proposed linear relaxations for specific met-
rics. Chekuri et al. (2005) recently extended these tech-
nigues using the natural linear relaxation of the metric la-
beling task, and obtained stronger approximation guaran-

Undirected graphical models, or Markov random fieldstees.

(MRFS),_ are natur_al tools in many (_jomalns, frqm image|, this paper, we propose a quadratic programming (QP)
processing to social network modeling. A key inferenceg|ayation to the MAP or metric labeling problem. While
problem for MRFs is to compute the maximum a poste-ine |inear relaxations have(|E|k?) variables, wheréE|

riori (MAP) configuration—the most probable labeling— is the number of edges in the graph anis the number of
which is used in multiple applications such as image de1abels, in our QP formulation there ake: variables, and
noising, protein folding and error control coding. For ar-yet e show that the quadratic objective function more ac-
bitrary graphs and parameter settings this problem is NI:%urately represents the energy in the graphical model. In

hard, but various approximate techniques have been prosaticylar, we show that the QP formulation computes the
posed that have enabled the application of MRFs t0 a rangg ap solution exactly. Under certain conditions the relax-

of practical problems. ation results in a non-convex problem however, which re-

For tree-structured distributions, the MAP estimate forra quires an intractable search over local minima. This mo-
dom fields can be Computed efﬁcienﬂy by dynamic pro-tivates an additional convex approximation to the relax-
gramming. It can also be computed in polynomial timeation, which we show satisfies an additive approximation
using graph cuts (Greig et al., 1989) when the parameteguarantee. We also extend the relaxation to general varia-
settings yield a submodular energy function. In the gendional “inner polytope” relaxations which we also show to
compute the MAP exactly. Experiments indicate that our
Appearing inProceedings of the 23"¢ International Conference  quadratic relaxation with the convex approximation out-

on Machine Learning, Pittsburgh, PA, 2006. Copyright 2006 by performs or is comparable to existing methods under many
the author(s)/owner(s).

Quadratic program relaxations are proposed as
an alternative to linear program relaxations and
tree reweighted belief propagation for the met-
ric labeling or MAP estimation problem. An ad-
ditional convex relaxation of the quadratic ap-
proximation is shown to have additive approx-
imation guarantees that apply even when the
graph weights have mixed sign or do not come
from a metric. The approximations are extended
in a manner that allows tight variational relax-
ations of the MAP problem, although they gen-
erally involve non-convex optimization. Experi-
ments carried out on synthetic data show that the
guadratic approximations can be more accurate
and computationally efficient than the linear pro-
gramming and propagation based alternatives.

1. Introduction
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settings. The MAP problem is then given by

In the following section, we establish some notation and ,
recall the relevant background. In Section 2.1 we review” arginaxz Ouii Ly (xs) + Zk Ou.jit 1L (s, 1),
linear relaxations for MAP estimation. In Section 3, we > b 1)
describe the quadratic relaxation, prove that it is tight] a
detail its convex approximation. In Section 4, we then ex- . :

. . 2.1, Linear Relaxations
tend the above relaxation to show the tightness of various
variational inner polytope relaxations. Finally, in Seatb ~ MAP estimation in the discrete case is essentially a combi-

and Section 6, we present our experimental results and comatorial optimization problem, and it can be cast as an inte-

clusions. ger program. Recent work has studied approximate MAP
estimation using linear relaxations (Bertsimas & Tsitsik-
2. Notation and Background lis, 1997). Letting variableg(s;j) and u(s, j;t, k) cor-

respond to the indicator variablgs(x) andZ; i (zs, x),
Consider a grapli = (V, E), whereV denotes the set of we obtain the following integer linear program (ILP),
nodes andv denotes the set of edges. L€} be a random
variable associated with nodefor s € V, yielding a ran- max Z&S;j ua(s;7) + Z Os itk 2(8, 75, k)
domvectorX = {Xy,..., X}, and let¢ = {pn,a € I} i stk
denote the set of potential functions (or sufficient stag3t
for a set! of cliques in G. Associated with is a vector of

suchthat " pa(s, jit, k) = pa(s; )
parameterd = {0,,,« € I'}. With this notation, the expo- i

nential family of distributions ofX', associated witky and Z pa(s;j) =1
G is given by J
p(s; ) € {0,1}
p(x;0) = exp (Z Outde — \I'(G)) . p2(s, j;t, k) € {0,1}.

This ILP can then be relaxed to the following linear pro-
As discussed in (Yedidia et al., 2001), at the expense Ofram (LP),

increasing the state space one can assume without loss of

generality that the graphical model is a pairwise Markov max ng;j pa(s; ) + Z O jitke pi2(s, 53, k)
random field,i.e,, the set of cliqued is the set of edges 7 stk

{(s,t) € E}, so that )

suchthat " pa(s,jit, k) = pa(s; )
p(l‘; 9) X exp Z as¢s($s) + Z est¢st(ISa mt) k

seV (s.t)EE Zul(s;j) =1
If each X, takes values in a discrete saf,, we can J )
represent any potential function as a linear combination 0<pm(s;j) <1
of indicator functions,¢s(zs) = Zj ¢s(J) Zj(xzs) and 0 < pa(s,j;t, k) <1.

(bst(xsaxt) = ij, ¢St(j7k)zj,k(xs7xt) where . .
Chekuri et al. (2005) propose the above LP relaxation as
1 z5=3j an approximation algorithm for the metric labeling task,
Zij(zs) = which is the MAP problem with spatially homogeneous

0 otherwise i
MRF parameters; thug, ;.. = ws d(j, k), wherewg,
and is a non-negative edge weight ards a metric that is the
same for all the edges. Kleinberg and Tardos (1999) pro-
Ty p(e o) = 1 zy=jandr =k posed related linear relaxations for specific metrics. The
RSt 0 otherwise. above LP relaxation was also proposed for the general pair-

wise graphical model setting by Wainwright and Jordan
| (2003). Lettingg and¢(x) denote the vectors of parameters
and potential functions, respectively, and lettif#go(z))
denote the inner product

p(@)0) ccexp | Y 0.Ti(ws) + Y O junTin(@e, ) | - (0,6(2) = 0uZi@)+ D OujunLin(re w0)
3

(s,;t)EE; 5,k

We thus consider pairwise MRFs with indicator potentia
functions as

5,7 s,t;5,k
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the MAP problem is then given by The following result shows that the relaxation is in fact

tight; the proof uses the probabilistic method.
& = argmax (6, ¢(z)) = sup (6, )

* HEM Theorem 3.1 The optimal value of problerf¥) is equal
whereM is the set of moment parameters to the optimal value of the MAP problefd).
M = {M : Zp(x)¢(x) = 1 for some distributiopp} . Proof. Let the optimal MAP energy be

e = ma Os.:L:(xs) + Os itk Lir(xs, x
The polytopeM can be seen to be upper-bounded by the ZXZ L)+ D buin Tielwe, i)

s;J s,t;5,k
set LOCAL(G) of all single and pairwise vectqus and j !
that satisfy the local consistency constraints and let the optimal value of the relaxed problem be
Sy hals. jit.k) = p(s:]) ¢ =maxy Ouinlsig) + Y Osgunplsig) uti k)
(s, g) = 1 ik
0<p(s;j) <1 where}" u(s;j) = 1andpu(s; j) € [0,1]. Clearly,e* >
0 < pa(s,j;t, k) < 1. emap Since problem (4) is a relaxation of problem (1). We

now show thatyap > e*.
Wainwright and Jordan (2003) thus proposed the upper-

bounding relaxation of using.OCAL(G) as an outer Let u* be an optimal solution of problem (4), and consider

bound for the polytopeM, the following randomized rounding scheme. For each node
s, assign it valueg with probability u(s; 7). The expected
w = sup (CAD (3)  energy of such a rounding is
pELOCAL(G)
which is the same LP formulation as in equation (2). Fur- °® = ZQSU p(s3)) + Z Os itk p(s:7) p(t: k)
thermore, Wainwright et al. (2005) show that under certain ;’ siditk
conditions, the tree-reweighted belief propagation ugslat = €

so_lve the dual of the LP in equatlor! (3); smce.strong.du-But there has to exist some discrete assignmevtiose en-
ality holds, the tree updates also give the optimal primal

ergy is greater than the expected enerdy) > e*. Since
value for the LP. emap is the energy of the optimal coﬁ?ig)urati@mp >
e(y), which thus givegyap > e*. O
3. Quadratic Relaxation
Note that the randomization in the proof just shows the ex-
istence of a discrete solution with the same energy as that
of the optimal real relaxation. The problem of obtaining
such a discrete solution efficiently is considered next.

In the linear relaxation of equation (2), the variables
ua(s,7;t, k) are relaxations of the indicator variables
Z; k(xs, x¢), with a value of one indicating that for edge
(s,t) € E, variablez, is labeled; and variablez, is

labeledk. These pairwise variables are constrained byTheorem 3.2 Any solution of the MAP problenfl) ef-
demanding that they be consistent with the correspondficiently yields a solution of the relaxatiot#) and vice

ing “marginal” variablesu (s, 7). Note, however, thatthe versa. Thus the relaxatiof) is equivalent to the MAP
binary indicator variables satisfy the additional “indepe problem(1).

dence” constraint

T w(xe, 20) = Tj(2) T (). Proof. From theorem 3.1, the optimal _values_ of

problems (1) and (4) are equal; let denote this maxi-

This then suggests that constraining the relaxation varimum energy. Let: be an optimal solution of the MAP
ables in a similar mannefy (s, j; t, k) = p1(s; ) u(t; k), problem (1). As problem (4) is a relaxation of the MAP
might yield a tighter relaxation. This leads to the follogin problem, u(s; j) = Z(#;4) is also a feasible and optimal

guadratic program solution for (4).
max ng.m(s;j) + Z 0. ek u(s;§) u(t; k) For the converse, lgt” be an optimal solution of prob-
il Py lem (4). Its energy is given by
subject to Zu(s;j) =1 @ e =D 0+ D s (st (EE)
J 853 (s,t)EE;j,k

0< ulsij) <1 | (5)
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If each 1" (s; j) is integer valued, that is, ifi0, 1}, then is d(s,1) < >Z ) |0s;..x], since the negative of a di-
we can use:* itself as the feasible optimal solution for the agonally dominant matrix is negative semi-definite. Let
MAP problem (1). Otherwise, considgr to be real val- ©’ = © — diag{d(s;%)} be the negative semi-definite ma-
ued; we (efficiently) construct a labelingwith the maxi-  trix obtained by subtracting off diagonal elements; ).
mum energy*. Also, let

/ .
Consider an unlabeled node Assign it labely, = 055 = Osii +d(s1j). )
argmax; O + .o nemn Os kit (5 k). Now, set  Now, for binaryu(s;i) € {0,1}, we have thaj(s;i)* =
p*(s;ys) = 1andu*(s;k) = 0 ; k # ys. Continue  p(s;4); in particular,d(s;i)u(s; j) — d(s; i)p(s; §)* = 0.
with this labeling process until all nodes are labeled. it ca We thus get that the following QIP is equivalent to the
be shown that the energy of this assignmeiis equal to  QIP (6),
the energy* of the optimal MAP assignment. In particu-
lar, each time we take up an unlabeled nodee select a
labeling that does not decrease _the expected energy of the ax Z 6. i 1(83) Z els,j;t,k (s;7) p(t; k)
unlabeled nodes given the labelings of the labeled nodes. # stk
Given that the initial expected energy of all unlabeled rsode .
wase, the energy at the end of the process, that is, of the!ch that Z“ s17) =1
assignmeny, is thus at least*. O J

u(s:j) €{0,1}

Relaxing this QIP as before, we obtain the following opti-

The previous section showed that the relaxation in equamization problem.

tion (4), while a simple extension of the LP in equation (2), )

is actually equivalent to the MAP problem. This yields the m}?X Z 0, ;j 1(s37) Z Oy st uit(839) p(t; k)
interesting result that the MAP problem is solvable in poly- s:tig,k

nomial time if the edge parameter matX= [0, .+ x] iS  such that Z# s1) =1

negative definite, since in this case the QP (4) is a convex
program. Note also that the quadratic program has a simple
set of constraints (only linear and box constraints), which
are also small in number, and is thus a simple problem in-
stance of general convex optimization. It should also be! NS IS @ convex program solvable in polynomial time. The

stressed that for an node graph, the QP has orily, vari- opt|mal|ty results of the previous section do not follow,
ables while the LP ha8 (k2| ) \;ariables however, and the relaxation (8) is not always tight. But as

shown next, we can get an additive approximation bound
The case where the edge parameter méris not nega-  for the discrete solution obtained using the rounding proce
tive definite yields a non-convex program. While one coulddure described in the previous section.

carry out an iterative search procedure up to a local maxi-

mum as in the max-product algorithm, we now describe alrheorem 3.3 Let u* be the optimal solution for the con-
convex approximation that provides a polynomial time so-vex QP (8), and lete* be the optimal MAP energy. Then
lution with additive bound guarantees. there is a discrete configuratian(from p*) with energy

Consider the quadratic integer program (QIP) correspondp(y) satisfying

ing to the QP, given by E(y)

3.1. Convex Approximation

u(s; j) € [0,1]

> e—stz i)(1 — p*(s;4))
max Y0 p(5:0) + D Os g (s 5) plti k)
s3] 8,85,k > ef — 1 Zd(s; i).
subjectto Y p(sij) =1 (6) 5
p(s;j) € {0,1} This result shows that if eithe is close to negative defi-
u(s, jit, k) € {0,1}. nite, so thad __ , d(s; %) is small, or if the solution is close

to integral, so that*(s; %) is close to zero or one, then the
This is clearly equivalent to the MAP problem in equa- convex relaxation achieves a solution that is close to the
tion (1). Let© = [0, ;] be a parameter matrix that optimal MAP solution.
is not negative semi-definite. Ldf{s,:) be the (positive)
diagonal terms that need to be subtracted from the matrix ~ Proof. Just as in the proof of Theorem 3.2, giveh
to make it negative semi-definite. An upper bound dor the optimal solution to the convex relaxation, we can effi-
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ciently obtain a discrete solutionwhose energy is subject tozj u(s;j) = 1. This is easily seen to be solved
) e by taking
E(y) = O (s50)+ D Ojirsi(s:5)p" (£ k).
Y (s0EFk J7(s) = argmax 6y + ) s i kpalt; k)
On the other hand, the optimal value of the convex QP is J ti5,k
given by . . . .
and settingu(s, j) = Z;-(5)(j). This is essentially the it-
ecop = Z (Os; +d(s;9)) ™ (s;7) erative conditional modes algorithm (Besag, 1986), which
837 iteratively updates each node with a labeling that most in-
n 0, - “(5:7) it (: k creases the energy, holding fixed the labels of the other
;k it 11 (53.9) (85 k) rodes.
_ Z d(s; i) (s;1)2. A better iterative procedure, with stronger and faster
(o) convergence properties, albeit for convex programs, is
projected conjugate gradient ascent (Axelsson & Barker,
We then have that 2001). Thus, another advantage of our convex approxima-
E(y) = etop— Z d(s; i) (s:0)[1 — p*(s59)] tion is that we can use conjugate gradient ascent as a sim-

ple iterative procedure that is guaranteed to converge (un-

(50 like co-ordinate ascent for max product). This makes the

> e - Z d(s; 1) p*(s;1) (1 — p'(s;4)) convex approximation to the QP applicable to large scale
8,8 problems.
> e — Z d(s; ) .
e 4. Inner Polytope Relaxations
and the result follows. O In the previous section, we obtained a quadratic relaxation
by imposing an “independence” constraint on the parame-
3.2. Iterative Update Procedure tersu(s, j; t, k) in equation (4). We also showed that this

. . . . relaxation is actually tight, and is equivalent to the MAP
Just as tree-reweighted max product gives a set of |terat|v8roblem In this section. we show how one can think of

updates for solving the LP in equation (3), we might aSkthis relaxation as the counterpart of mean-field for MAP,

if there IS an Iterative update counterpart f(_)r the QP. I\/lax'and how any of the corresponding relaxation counterparts
product is a co-ordinate ascent algorithm in the dual (La

. . of structured mean-field are also tight.
grangian) space for the LP; however, since the dual spac% structured mean-field are also tight

of the QP (4) is more complicated, we look at a set of fixedConsider Wainwright and Jordan (2003)'s polytope formu-
point co-ordinate ascent updates in its primal space. lation of MAP in equation (3), given by

The QP is given by

o= mSXZ Hs;jU(S;j)
N

p* = max (0, ¢) = sup (¢, u)
z HEM

where M is the convex hull of all configuration potentials

+ Z Os i 11(s;5) p(t; k) (8)  ¢(x). The second equality follows from the fact that in a
stk linear program, the optimum occurs at an extremal point

¢(x*). Thus, if M; C M is any subset of the marginal

subject to polytope that includes all of the vertices, then the equatio

|
—

Zu(s;j) p* =max (0,¢) = sup (0, u)

J x peEM;
u(s;j) € [0,1].

Consider nodes, and suppose that values fp(t;.) are
fixed for other nodeg # s. Then the optimal parameter
valuesy(s; .) for nodes are given by

still hold. In other words, any relaxation of the indicator

variables tou(s, j;t,k) € M; would lead to a tight re-

laxation, as long ad{; contains all vertices. In contrast,

tree-reweighted max product is not tight, since the domain

u(s;) = max S Oau(s; ) set fpr its relaxed parameters iIDCAL(G) O M; see
p(ss.) r Section 2.1.

+ Zes,j;t,k (s §) p(ts k) As described in (Wainwright & Jordan, 2QO3), one can
Pk think of structured mean field methods as inner polytope
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approximations. For the given graghand a subgraphf, The approximate MAP algorithms were compared on dif-
let ferent potential functions and coupling types for 2D near-
EH)={0"0, =05t 1(s.11er} est neighbor grid graphs with 100 nodes and a label set

of size four. The node potentials were generated uni-

where 6, is the vector of natural parameters associatedormly 7/(—1,1), while the edge potentials were gen-

with edge(s, t). Thus, the parameters not included in theerated as a product of an edge weight and a distance
subgraph are set to zero. Now for the subgratwe can  function on labels. For different settings of an edge

define the following set of moment parameters: coupling-strength parametef,..,, the edge weight was
selected fromd(—dcoup, deoup) fOr the mixed coupling,
M(G; H) = {p|p = Ep[¢p(x)] for somed € E(H)} . from 24(0,2 d.o,) for the positive coupling, and from

U(—2dcoup, 0) for the negative coupling. The follow-

: TS ing four commonly used distances were used for the dis-
realizable by a distribution that respects the structul of 1o function: Ising¢(1,m) = Im; uniform, or Potts

For anyH C G, the reIationM(G; H) - M(G) thus (b(l,m) _ ]I(l _ m); quadratic,qb(Lm) _ (l _ m)Q; linear
always holds, andM(G; H) is an inner polytope approxi- o(l,m) = |l —ml.
mation toM. In particular, takingd to be the completely ’

In essence, the moment parameters\itiG; H) must be

disconnected graphi.¢. no edgesH,, we have, Figures 1 and 2 show plots of the value (energy) of the
MAP estimates using the different algorithms for a range
M(G; Ho) = {u(s; ), (s, 5t k)| of model types. For any given setting of parameters and
0<ps;f) <1 potential functions, a higher value is closer to the MAP es-
- - . timate and is thus better. As the plots show, the quadratic

uls, gst, k) = pls: j)n(t: k)} relaxation slightly outperforms tree-reweighted max prod

ct for mixed and positive couplings, and is comparable or
lightly worse for negative coupling. The quadratic approx
imation typically beats both ICM and the linear relaxation.

which can be seen to be equal to the feasible set of the Q
relaxation (4). For this subgrapi = H,, the mean field
relaxation thus becomes

Ising Mixed Coupling Ising Mixed Coupling

Sup <9’ /’L> —=ICM ° —IcM
; -+
neM(G;Ho) 2500 — gimtl:onvex oI

= sup 97‘u(5,]) + 0. , ';t,k’ﬂ(Svj; t, k-) 2000) 02
HEM(G;Ho) 20 2 0

-0.3]

Relative Energy wrt QP

s3J stijk § 1500 o4
= sup Y Ouipu(sid) + D Osjenp(sifultsk) ]
neM(G;Ho) " stijk 0 08

1000 1500 2000 2500 075 500 1000 1500 2000 2500
Number of Nodes Number of Nodes

which is equivalent to the quadratic relaxation in equa-

tion (4). Thus, we can, in principle, use any “structured _

mean-field” relaxation of the fornup,,c (. (0, p) to  F19ure 3Comparison of ICM and TRW on larger graphs, us-

solve the MAPexactly. The caveat is that thié problem, like ing Ising potentials with mixed coupling. The right plot shows
R ’ — d — .

structured mean field, is a non-convex problem. However\©/cM — €e@)/eicm and(errw — cqe) /errw

X : : In Figure 3 we compare the MAP estimates from different
while structured mean field only solves for an approximate

value of the log-partition function, the results from Sec- algorithms on larger graphs, using the Ising potential func

tion 3 show that its counterpart for the MAP problem is tion with mixed coupling. The qugdratlc relaxation is seen
; ) to outperform ICM and tree-reweighted max product, even
exact, if the global optimum can be found. .
as the number of nodes increases.

5. Experiments We note that sincg the convex apprpximation tp th'e QPisa
convex program, it can be solved (in polynomial time) us-
The quadratic relaxation with the convex approximationing standard QP solvers for small problems, and for larger-
was evaluated by comparing it against three competingcale problems one can use iterative projected conjugate
methods: the linear programming relaxation (Chekurigradient, which provides a fast iterative method that is
et al., 2005), the tree-reweighted max product algo-guaranteed to converge. In our experiments, the compu-
rithm (Wainwright et al., 2005), and iterative conditional tation time for the QP method was comparable to that re-
modes (ICM) (Besag, 1986). For tree-reweighted maxquired by tree-reweighted max product, which in turn re-
product, we use the sequential update variant detailed iquired much less time to solve than the linear programming
(Kolmogorov, 2005), which has better convergence properrelaxation. This is due primarily to the fact that the linear
ties than the originally proposed algorithm. program hagE|k? variables, while the convex quadratic
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Figure 1.Comparison of linear relaxation (LP), iterative conditional modes (IQke-reweighted max product (TRW), and quadratic
programming relaxation (QP) drf) x 10 grid graphs using Ising potentials (top row) and uniform potentials (bottath)mixed (left),
positive (center) and negative (right) couplings. A better MAP estimatatiagher value.
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