
To appear in Neural Processing Letters, Vol. 21, No 2/April

Broad-Coverage Parsing

with Neural Networks

Marshall R. Mayberry, III∗ and Risto Miikkulainen

Department of Computer Sciences

The University of Texas, Austin, TX 78712

martym/risto@cs.utexas.edu

Abstract

Subsymbolic systems have been successfully used to model several as-

pects of human language processing. Such parsers are appealing because

they allow revising the interpretation as words are incrementally processed.

Yet, it has been very hard to scale them up to realistic language due to

training time, limited memory, and the difficulty of representing linguis-

tic structure. In this study, we show that it is possible to keep track of

long-distance dependencies and to parse into deeper structures than before

based on two techniques: a localist encoding of the input sequence and a

dynamic unrolling of the network according to the parse tree. With these

techniques, the system can nonmonotonically parse a corpus of realistic

sentences into parse trees labelled with grammatical tags from a broad-

coverage Head-driven Phrase Structure Grammar of English.

Keywords: Cognitive Modeling, Natural Language Processing, Neural Networks,

Parsing, Recursive Autoassociative Memory, Simple Recurrent Network
∗Corresponding Author

This paper has not been submitted elsewhere in identical or similar form, nor will it be
during the first three months after its submission to Neural Processing Letters.



1 Introduction

Researchers have utilized neural networks (i.e. subsymbolic) models to gain insight

into human language processing. These systems develop distributed representations

automatically, giving rise to a many interesting cognitive phenomena. For example,

neural networks have been used to model syntactic, semantic, and thematic constraints

that are seamlessly integrated to interpret linguistic data, lexical errors resulting from

memory interference and overloading, aphasic and dyslexic impairments resulting from

physical damage, biases, defaults and expectations that emerge from training history,

as well as the robust and graceful degradation in performance that accompanies noise,

damage, and incomplete or conflicting input [1, 15, 14, 16, 18, 22].

Yet, despite their many attractive characteristics, neural networks have proven very

difficult to scale up to parsing realistic language. Training takes a long time, fixed-

size vectors make learning long-distance dependencies difficult [2], and the linguis-

tic formalism used imposes architectural constraints, such as the arity of parse trees.

Progress has been made by introducing a number of shortcuts such as concentrating on

small artificial corpora with straightforward linguistic characteristics [3, 10, 21], build-

ing in crucial linguistic heuristics such as Minimal Attachment and Right Association

[11, 13], or foregoing parse trees altogether in order to concentrate on more tractable

subproblems such as clause identification [9] and grammaticality judgements [12, 1, 5].

Why is subsymbolic parsing a desirable goal? The main promise for both cogni-

tive modeling and engineering is that it accurately accounts for the nonmonotonicity

of natural language processing. Over the course of the parse, the network maintains

a holistic parse representation at the output. Words processed later in a sentence can

change the developing representation so that the network can recover from incorrect

earlier decisions. This way, the network can more effectively resolve lexical ambi-

guities, attachments, and anaphoric references during the course of parsing. Indeed,

multiple interpretations are maintained in parallel until disambiguating information is

2



encountered in the input stream. This is evidently how humans process natural lan-

guage, what good parsers should do, and what subsymbolic parsers promise to deliver.

The purpose of the present study is to show that deep parsing of realistic sentences

is possible using neural networks: a subsymbolic neural network can be trained to read

a sentence with complex grammatical structure into a distributed (holistic) representa-

tion of the parse tree. The result is based on two techniques addressing two core issues

in connectionist natural language processing. The first issue is handling long-term de-

pendencies. In earlier studies [13], we found that supplementing a Simple Recurrent

Network [SRN; 7] with a self-organizing map representation of past input significantly

improved performance: the network could retain the identities of words that would

otherwise have been lost as the network processed new information. In this study, we

show that an even simpler localist memory assembly offers sufficient improvement to

allow processing long sentences.

The second issue is representing variable recurrent structure such as parse trees.

In the standard approach [4, 21, 13], fixed-size representations of parse trees are built

up offline from subtrees by repeated compression through Recursive Auto-Associative

Memory [RAAM; 19]. The structures can then be decoded to recover the full parse tree.

Unfortunately, as the depth of the tree increases, the system loses progressively more

information. In this paper we propose a technique called backpropagation-through-

RAAM (BPTR), similar to earlier techniques of Berg [3] and Goller and Küchler [8]

developed for other reasons.

The resulting architecture, the Nonmonotonic Neural Network Parser (NNNP), com-

bines a standard SRN with a localist memory and BPTR, and allows scaling subsym-

bolic parsing up to realistic sentences. This study advances the state of the art by pre-

senting an implementation of this architecture and demonstrating that it nonmonotoni-

cally parses sentences from the CSLI Test Suite corpus from the Linguistic Grammars

Online (LINGO) project at Stanford University’s Center for the Study of Language

and Information (CSLI). The CSLI Test Suite is designed to demonstrate the power of

3



Head-driven Phrase Structure Grammar [HPSG; 20]. HPSG is a constraint-based lex-

icalist (unification) grammar formalism that differs from more traditional derivational

approaches to linguistics by emphasizing the role of the lexicon in understanding lin-

guistic phenomena. The CSLI Test Suite demonstrates a variety of grammatical phe-

nomena, including multiply-embedded clauses, extracted wh-words, nominal, verbal,

and prepositional conjunctions, as well as compound nouns. The results suggest that

holistic, nonmonotonic parsing of realistic complexity is possible to achieve in practice.

2 Representing Sequences and Structures

To process a sentence, we need to be able to represent both sequences and parse trees.

Since its introduction in 1990, the Simple Recurrent Network has been widely used

for sequence processing in tasks such as lexical disambiguation, prepositional phrase

attachment, and active-passive transformation [4, 17, 23]. The SRN reads a sequence

of input word representations into output patterns representing the parse. At each time

step, a copy of the hidden layer is saved and used as input during the next step, together

with the next word. In this way, each new word is interpreted in the context of the entire

sequence so far, and the parse is gradually formed at the output.

One variant of the SRN uses backpropagation-through-time [BPTT; 24, 12] to im-

prove the network’s ability to process longer sequences. With BPTT, copies of the

previous inputs and hidden layer activations are kept in memory, and weight updates

are made with all such activations as context. The SRN is effectively trained as if it

were a multi-layer feedforward network, with the constraint that the weights between

each layer are shared.

In order to represent structures in a neural network, it is essential to be able to

combine multiple substructures into one. The RAAM is a three-layer backpropagation

network in which two or more input representations are compressed into a single rep-

resentation in the hidden layer, and then decompressed back into those same inputs.

4



Thus, the network is trained to reproduce its input at its output. The compressed rep-

resentations developed in the hidden layer are used as the input and targets for deeper

compressions. For example, the representation for [a,[b,c]] is built up from the

leaf representation for a and the compressed representation of [b,c], which, in turn,

is constructed from leaves b and c (leaf representations are usually vectors of ran-

dom values). The input and hidden layers and the weights between them constitute the

“encoder”, while the hidden and outputs layers and their weights are the “decoder”.

Both the SRN and RAAM suffer from a memory problem. As longer or deeper

structures are encoded, information from earlier constituents gradually degrades to the

point where it is eventually unrecoverable. The reason is that the hidden layer has a

fixed size and, consequently, the more items it is forced to represent, the less accurately

it is able to represent them. In the next section, we describe two techniques that help

alleviate the memory degradation problem for both these networks.

3 Experiments

3.1 Network Architectures

The NNNP sentence parsing model (figure 1) consists of three essential components:

• A Simple Recurrent Network trained with BPTT.

• A localist assembly that retains a decaying activation of the input sequence.

• A dynamic unrolling of the output layer into the parse tree, trained with BPTR.

The Simple Recurrent Network trained with BPTT is the basis for the architecture,

receiving distributed representations of words as input and forming compressed repre-

sentations of parse trees as output.

The localist assembly is added to the SRN to solve the long-term memory problem.

It is a simplification of the SARDNET self-organizing map used in earlier work [13].

5



ROOT_CLAUSE

SUBJ_RULE_DECL

LEX_RULE_INFL_NO−AFFIX

PROPER_LE

HCOMP_RULE

Localist Assemblythat
Input Word

(kim)

Hidden Layer

Previous Hidden Layer

kim hired a woman that

Figure 1: The NNNP Architecture. This snapshot shows the network in the middle of reading
the sentence kim hired the woman that i approved of, together with the first four levels of
the unrolled parse tree expansion (see figure 2 for the complete parse tree). The shaded units
represent unit activations between 0.0 and 1.0. As in the SRN, the sentence is read one word
at a time. The representation for the current input word that is shown at the top left. A unit
corresponding to the current input word is activated on the localist assembly at a value of 1.0 and
the rest of the assembly is decayed by a factor of 0.9. The network is trained with BPTT, which
in effect unrolls the network in time (in the figure, only the most recent input and the previous
hidden layer are shown). These inputs are propagated to the hidden layer through a matrix of
weights (indicated by solid arrows) that connect all the units in one layer to those of another. The
hidden layer is further propagated to the output layer through another set of weights. The output
layer is dynamically unrolled into a tree of representations corresponding to the parse tree for the
input sentence, with each node mapped into a label representation, a left node and a right node.
The figure shows the first four levels of the parse tree up to the label matching the first input
word, kim. The same connections are used at each level of the tree expansion. The network
uses backpropagation-through-RAAM (BPTR) to update the weights in a manner analogous to
the BPTT algorithm used to train the first half of the network. Note the single units preceding the
left and right branches of each node in the parse tree: white indicates that the node is null, and
black indicates that the node is to be expanded further. Input, output and RAAM layers had 200
units; the hidden layer had 256 units, and the localist assembly had 247 units.

6



As each word from the input sequence is read in, its corresponding unit in the localist

assembly is activated at a value of 1.0, and the rest of the assembly decayed by a factor

of 0.9. If an input word occurs more than once, the activation will already be greater

than 0.0, so 1.0 is added and the current activation is taken to be the resulting average.

Together with the current input and previous hidden layer, the localist assembly is used

as input to the hidden layer. The localist representation identifies each input word

exactly, information that could otherwise be lost in a long sequence of SRN iterations.

Retaining such information in so simple a localist assembly improves memory per-

formance almost as much as storing it on a map, but this approach is more efficient in

that it is not necessary to self-organize the map. On the other hand, it is less general in

that fewer words can be represented: each unit in the SARDNET self-organizing map

typically denotes several words from the lexicon. The same technique could be applied

to the localist assembly, and our experience with SARDNET suggests it would have a

minimal impact on performance, provided a means of allocating words reasonably uni-

formly to the units were used. With SARDNET, self-organization was used to allocate

words to units, but the role of the map was simply to enable the underlying SRN archi-

tecture to retain past input words. This study focuses on the strongest contribution the

localist assembly could make to the task of scaling up, therefore a one-to-one mapping

from the lexicon is used.

The structure encoding problem is solved through Backpropagation-through-RAAM

(BPTR). Whereas in BPTT, the SRN is unrolled in time, in BPTR the RAAM is unrolled

to match the complete parse tree, which we term “Dynamic RAAM” to distinguish it

from the procedure for training it, BPTR. Each node in the unrolled network consists

of a grammatical label, a left branch, an indicator of whether that branch is null or not,

and a right branch and indicator. After each word representation is read and forward-

propagated through the hidden layer and through each node of the complete parse tree,

the error signals from each leaf are backpropagated through the entire tree and the

hidden layer. The weights are shared between levels of the parse tree and weight ad-

7



justments are accumulated and applied once the entire forward and backpropagation

process has been completed.

The advantage of BPTR is that the network no longer has to track moving targets,

which arise with standard RAAM because nonterminal representations are constantly

changing as the network is trained. Second, when the SRN and RAAM are separated as

in the standard approach, the errors generated by the SRN throw the RAAM off during

decoding the actual representations that it receives as its input are different from what

is is used to seeing during training . Integrating the SRN and RAAM networks this way

eliminates the boundary between them, and the unrolled network learns to compensate

for the inaccurate output of the SRN. Third, as pointed out by Berg [3], when the output

layer is unrolled, it is not necessary to develop nonterminal representations offline,

but they can be learned as part of the parsing process, encoding the properties of the

training corpus. The learning is also sensitive to corpus statistics such as frequency of

partial parse trees and lexical categories, which further improves performance.

In order to determine how each technique contributes to the system, three ablated

architectures were constructed. In the first one, the localist assembly was removed

from the network. In the second, a simple RAAM was substituted for the Dynamic

RAAM. This ablation required significant changes to the training regime. First, the

RAAM representations of the final parse trees that were to serve as targets need to be

developed offline beforehand by standard RAAM training. All partial parse trees that

occur in the training set needed to be identified and a separate training set from the

RAAM needed to be constructed from them. Each partial parse tree was saved in a

lexicon so that the SRN could be trained to output the static compressed representation

of the final parse tree. The third ablated architecture had both the localist assembly

and the Dynamic RAAM removed, in effect establishing a baseline comparison to the

standard approach of using SRN and RAAM separately.

8



PROPER_LE

HCOMP_RULE

HSPEC_RULE

LEX_RULE_INFL_AFFIXED FILLER_HEAD_RULE_REL

INTR_NOUN_WORD_LE LEX_RULE_INFL_NO−AFFIX SUBJH_RULE_DECL

REL_PRO_WORD_LE LEX_RULE_INFL_NO−AFFIX HCOMP_RULE

LEX_RULE_INFL_AFFIXED EXTRACOMP_RULE

LEX_RULE_INFL_NO−AFFIX

PREP_NOMOD_OF_LE

LEX_RULE_INFL_NO−AFFIX

LEX_RULE_INFL_AFFIXED

HADJ_I_N_RULELEX_RULE_INFL_NO−AFFIX

SUBJH_RULE_DECL

(kim) (hired)

(the)

(woman)

(that)

(approved)

(of)

PERS_PRO_LE

(i)

DET_LE

kim hired the woman that i approved of .
ROOT_CLAUSE

Figure 2: HPSG Parse Tree. This figure shows the full parse tree for the sentence kim hired
the woman that i approved of. The terminals of the tree are lexical rules or categories for the
input words, and the nonterminals are lexical or syntactic rules that are applied by the grammar to
develop the parse tree. There were 172 rules and lexemes covering the corpus used in this study,
many of which made such distinctions as the attachment location for an adverb or whether a form
of the verb be is a copula or identity. An advantage of such HPSG parse trees is that they preserve
the order of the words in the input sentence, as opposed to more traditional transformational
grammar formalisms. Words shown in parentheses just below the leaves indicate what part of
the input sentence the leaves correspond to, but are not actually part of the output.

3.2 Input Data, Training, and System Parameters

The networks were trained and tested with sentences taken from the CSLI Test Suite [6]

that is distributed with release 5.2 of the English Resource Grammar (ERG), a broad-

coverage Head-driven Phrase Structure Grammar of English under development for

the LinGO (Linguistic Grammars Online) initiative at CSLI, Stanford University. The

suite comprises 1348 sentences, both grammatical and ungrammatical, that have been

chosen to demonstrate the coverage of the ERG. For this study, those 410 sentences that

yield a single, unambiguous parse by the grammar were used. These sentences were

expanded into 2500 sentences through interchange of nouns, pronouns, verbs, adverbs

and adjectives as is commonly done in training neural networks.

Each sentence was paired with its complete syntactic HPSG parse tree, which spec-

ifies the grammatical and lexical rules that decompose the sentence into meaningful

constituents and word affixes. A parse tree for a typical sentence is shown in figure 2.

9



Two features of HPSG parse trees are expecially worth noting. First, the trees are max-

imally binary; lexical rules (such as LEX_RULE_INFL_AFFIXED) and some gram-

matical rules (such as ROOT_CLAUSE) are unary. Second, unlike in transformational

grammar, sentence word order is preserved in the HPSG parse tree. The rules them-

selves reflect the central role the grammatical head of a constituent plays in HPSG in

constraining its complements, such as the head-specifier rule (HSPEC_RULE), which

combines a head with its specifier. How these rules are symbolically defined is given in

the ERG, but that information is not available to the NNNP parser. Rather, the network

must learn to associate word sequences with the rule names as they appear in the parse

tree, and generalize to new sequences.

In this study, each sentence was presented as a sequence of words and the nodes

of the target parse tree were grammatical and lexical rules. Random vectors within a

200-dimensional unit hypercube were assigned to all the input words and grammati-

cal rules and lexemes in the lexicon. Using semantic feature representations instead

would likely improve the parser’s performance further. However, since this study

focused on memory and structure, random representations suffice. Nevertheless, a

good deal of grammatical knowledge is captured by the grammar rules: for exam-

ple, VP_ADV_PRE_WORD_LE versus VP_ADV_POST_WORD_LE indicates whether

an adverb attaches to the beginning or to the end of a verb phrase. If the network is

able to learn such distinctions with random representations, it should be able to do

much better when those representations have content.

A learning curve for each architecture was obtained based on training with 20%,

40%, 60%, and 80% of the 2500 sentences in the corpus. At each percentage level,

four splits of the data for training, validation, and testing were run. For each split, we

randomly selected 125 sentences for a validation set. Testing was performed on the

sentences that were neither in the training set nor in the validation set. Training on all

64 runs was halted when the validation error for each dataset began to level off.

Rather than use null representations for terminals, we allocated extra two “indica-

10



tor” units for each node in the unrolled parse tree to specify whether the node had a

left, right, or both branches (figure 1). If the indicator activation is less than or equal

0.5, then the corresponding branch is null; a value greater than 0.5 indicates the branch

is to be taken. This approach was found to significantly help learning.

Some rules occur several thousand times in the training data while others only

occur once. Such imbalance leads the network to learn the frequent rules very well

at the expense of the rare ones. To compensate, we adopted a “target radius” around

each node label. If the label was output correctly within the target radius, no error

for this target was backpropagated. In this way, error signals for less frequent items

were backpropagated more often because the network was less likely to represent them

accurately than frequent items.

All of the networks were trained with a learning rate of 0.0005, without momentum

nor bias, and using the standard sum of squares cost function.

The performance of each network is measured by counting the number of termi-

nals the network correctly identified once the entire sentence had been processed. The

representation of the parse tree at the output had to be unrolled in order to determine

how closely each leaf matched its target. The branch indicators complicated the mea-

sure somewhat. If they were not correct, whole subtrees of the parse tree were either

inaccessible when they should have been, or bogus subtrees were accessible when they

should not have been. We followed the stringent criterion of counting all rules in a

branch as errors if that branch existed and that branch’s indicator was below 0.5. On

the other hand, a branch indicator above 0.5 with no corresponding branch in the data

resulted in a single extra error. Such a simplified error is necessary because incorrect

branches may sometimes never terminate.

11



0.5

0.6

0.7

0.8

0.9

1

20 40 60 80

Full network
Localist ablated

BPTR ablated
BPTR and Localist ablated

Figure 3: Learning Curves of NNNP and its ablated versions.. The x-axis shows the percent-
age of the data that was in the training set, and the y-axis shows the performance of each network
on the testing set averaged over four splits. The full architecture clearly outperforms the ablated
networks. All of the differences are statistically significant with p < 0.05.

4 Results

The main result is that both BPTR and the localist assembly substantially improve per-

formance over the standard SRN and RAAM approach (figure 3). BPTR contributes

most of this improvement; when the localist assembly is ablated, the performance

drops slightly less, although still significantly. Training the full and localist-assembly-

ablated architectures took over a month on a 500 MHz Pentium III workstation on the

80% dataset, and proportionally less on the smaller datasets. The performance curves

for these architectures started leveling off around 1000 epochs. The BPTR-ablated ar-

chitectures had to be trained in two phases; the offline RAAM training took less than

a week, and the parser that used the RAAM targets took another two weeks. Although

faster per epoch than the networks with BPTR, the BPTR-ablated networks did not

begin to level off until close to 2000 epochs.

We have shown that the parser can process realistic language. To be a valid cogni-

tive model, it must also be able to parse nonmonotonically. We show how a typical test

12



sentence is processed to see how the network is able to recover from early decisions.

In the example below, the numbers below each word indicate the number of mis-

matches in the parse tree represented in the output as each word is read in:

kim hired the woman that i approved of .

8 4 3 5 3 2 0 0 0

When the first word, kim, is read in, the network’s output represents a very different

sentence structure than its target parse tree, resulting in a mismatch of eight grammat-

ical labels. If we examine the training dataset, we find that the network’s output is

closest to the parse tree for sentences like kim got hired, because sentences with this

structure are more numerous than others beginning with kim. Upon reading hired,

the network’s output decodes into a parse tree that is now closer to the target: that of

the sentence kim hired a woman that was competent, which involves an embedded

relative clause like the test sentence. The next word, the, does not change the output

significantly, but just corrects the article. When woman is read in, the output decodes

into a parse tree for a sentence like kim hired the woman sara approved of. Notice

that this sentence lacks the relative pronoun that, which accounts for the extra mis-

matches. Upon reading that next, the parse tree matches sentences like kim hired the

woman that sara approved of, which are more frequent in the training dataset than

those with a pronoun (such as i) in the relative clause. The pronoun i is next read, but

this time the output decodes into a parse tree for a sentence like kim hired the woman

that i interviewed, since, again, this particular construction is more frequent in the

training set. When approved is reached, the output finally decodes into the correct

parse tree, which does not occur in the training set. It is this nonmonotonic ability

to recover from early mistakes and the ability to generalize that makes subsymbolic

parsers particularly intriguing.

The nonmonotonic parsing ability derives from the same attractor dynamics mech-

anism that makes recurrent neural networks characteristically robust. In an informal

experiment the NNNP architecture was found able to tolerate both the random insertion

13



of a new word in the sentence (e.g., to model dysfluencies) and up to approximately

12% noise added to the network’s weights without a significant degradation in per-

formance. While neural networks have been shown to perform robustly in numerous

earlier studies, nonmonotonic broad-coverage parsing is a novel and equally important

cognitively plausible behavior.

5 Discussion and Future Work

The ultimate goal of this research is to develop a subsymbolic parser that can handle

realistic language without sacrificing those characteristics of neural networks that make

them powerful cognitive models. Distributed representation of parse trees permits the

network to gradually refine its output to accommodate changes as new information

comes in. In this paper, we have shown that this behavior can be preserved while

scaling up to realistic linguistic structures.

The scale-up is achieved through two techniques: localist input assembly and BPTR.

The localist assembly allows the network to keep track of long-term dependencies so

that the correct rule labels in the parse tree can be maintained. It does so by identifying

the constituents exactly, without the gradual blurring that happens in the standard SRN.

Integrating the Dynamic RAAM into the parser reduces the memory bottleneck

problem of standard RAAM. In BPTR, the network develops compressed represen-

tations that facilitate mapping the input sequence to its parse tree. This technique is

similar to the one used by Berg [3], as well as to Backprop-through-Structure [BPTS;

8], although there are some differences. Berg’s XERIC parser used a five-layer network

based on Sequential RAAM [SRAAM; 19], whereas NNNP is based on the SRN. The

sentences used in Berg’s study were relatively simple, and did not include, for exam-

ple, embedded clauses nor conjunctions. Our study extends that of Berg in showing

that the technique will scale up to realistic sentences. Goller and Küchler’s BPTS was

developed for an entirely different task, i.e., classifying logical terms. BPTS was only

14



applied to the encoder part of the network, whereas BPTR is applied to the decoder.

The network performs quite well even with random vectors for words and rules. It

would be interesting to have the network develop its own input and output represen-

tations as part of the learning [possibly with FGREP; 14]. This way, the lexical items

would be optimized according to how phrases are parsed and like the nonterminal rep-

resentations in BPTR. The word representations would begin to embody the contexts in

which they occurred to minimize the error between what the word is meant to be, and

what the output is. This process should improve the parser’s performance even further.

6 Conclusion

In this study we demonstrated two techniques, localist input and BPTR, that alleviate

the memory and structure learning bottlenecks in subsymbolic NLP. These approaches

permit scaling up to real-world language by training parsers on a corpus of realistic

structures. As is typical of holistic parsers, the parse result develops nonmonotonically

while an input sentence is read, making the system an appealing cognitive model.

References

[1] Joseph Allen and Mark S. Seidenberg. The emergence of grammaticality in con-

nectionist networks. In B. MacWhinney, editor, Emergence of Language, pp.

115–151. Erlbaum, Hillsdale, NJ, 1999.

[2] Yoshua Bengio, Patrick Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE Transactions on Neural Networks,

5(2):157–166, 1994.

[3] George Berg. A connectionist parser with recursive sentence structure and lexical

disambiguation. In W. Swartout, editor, Proceedings of the Tenth National Con-

ference on Artificial Intelligence, pp. 32–37. Cambridge, MA: MIT Press, 1992.

15



[4] David J. Chalmers. Syntactic transformations on distributed representations. Con-

nection Science, 2:53–62, 1990.

[5] Morten H. Christiansen and Nick Chater. Toward a connectionist model of recur-

sion in human linguistic performance. Cognitive Science, 23(2):157–205, 1999.

[6] Ann Copestake, John Carroll, Rob Malouf, and Stephan Oepen. The (New) LKB

System. CSLI, Stanford University, 1999.

[7] Jeffrey Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

[8] C. Goller and A. Küchler. Learning task-dependent distributed representations

by backpropagation through structure. IEEE Transactions on Neural Networks,

1:347–352, 1996.

[9] James Hammerton. Clause identification with long short-term memory. In W.

Daelemans and R. Zajac, editors, Proceedings of CoNLL-2001, pp. 61–63, 2001.

[10] Edward Kei Shiu Ho and Lai Wan Chan. Analyzing holistic parsers: Implications

for robust parsing and systematicity. Neural Computation, 13(5):1137–1170,

2001.

[11] Peter C. R. Lane and James B. Henderson. Incremental syntactic parsing of nat-

ural language corpora with simple synchrony networks. IEEE Transactions on

Knowledge and Data Engineering, 13(2):219–231, 2001.

[12] Steve Lawrence, C. Lee Giles, and Sandiway Fong. Natural language grammat-

ical inference with recurrent neural networks. IEEE Transactions on Knowledge

and Data Engineering, 12(1):126–140, 2000.

[13] Marshall R. Mayberry, III and Risto Miikkulainen. Combining maps and dis-

tributed representations for shift-reduce parsing. In S. Wermter and R. Sun, edi-

tors, Hybrid Neural Systems, pp. 144–157. Springer-Verlag, 2000.

[14] Risto Miikkulainen. Subsymbolic Natural Language Processing: An Integrated

Model of Scripts, Lexicon, and Memory. MIT Press, Cambridge, MA, 1993.

[15] Risto Miikkulainen. Dyslexic and category-specific impairments in a self-

organizing feature map model of the lexicon. Brain and Language, 59:334–366,

16



1997.

[16] William C. Morris, Garrison W. Cottrell, and Jeffrey L. Elman. A connectionist

simulation of the empirical acquisition of grammatical relations. volume 1778,

pp. 175–193, Berlin; New York, 2000. Springer-Verlag.

[17] Paul Munro, Cynthia Cosic, and Mary Tabasko. A network for encoding, decod-

ing and translating locative prepositions. Connection Science, 3:225–240, 1991.

[18] David C. Plaut and Tim Shallice. Perseverative and semantic influences on vi-

sual object naming errors in optic aphasia: A connectionist account. Journal of

Cognitive Neuroscience, 5(1):89–117, 1993.

[19] Jordan B. Pollack. Recursive distributed representations. Artificial Intelligence,

46:77–105, 1990.

[20] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Stud-

ies in Contemporary Linguistics. The University of Chicago Press, Chicago, IL,

1994.

[21] Noel E. Sharkey and Amanda J. C. Sharkey. A modular design for connectionist

parsing. In M. Drossaers and A. Nijholt, editors, Twente Workshop on Language

Technology 3: Connectionism and Natural Language Processing, pp. 87–96, En-

schede, the Netherlands, 1992. Department of Computer Science, University of

Twente.

[22] Mark F. St. John and James L. McClelland. Learning and applying contextual

constraints in sentence comprehension. Artificial Intelligence, 46:217–258, 1990.

[23] David S. Touretzky. Connectionism and compositional semantics. In J. Barnden

and J. Pollack, editors, High-Level Connectionist Models, volume 1 of Advances

in Connectionist and Neural Computation Theory, Barnden, J. A., series editor,

pp. 17–31. Ablex, Norwood, NJ, 1991.

[24] Ronald J. Williams and David Zipser. A learning algorithm for continually run-

ning fully recurrent neural networks. Neural Computation, 1:270–280, 1989.

17


