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Abstract

An approach to episodic associative memory is presented, which has several desirable
properties as a human memory model. The design is based on topological feature map
representation of data. An ordinary feature map is a classi�er, mapping an input vector
onto a topologically meaningful location on the map. A trace feature map, in addition,
creates a memory trace on that location. The traces can be stored episodically in a single
presentation, and retrieved with a partial cue. Nearby traces overlap, which results in
plausible memory interference behavior. Performance degrades gracefully as the memory
is overloaded. More recent traces are easier to recall as are traces that are unique in the
memory.

1 Introduction

Neural network models of associative memory have been extensively studied in the last
few decades (see e.g. Willshaw et al., 1969; Anderson, 1972; Kohonen, 1972, 1977, 1984;
Cooper, 1973; Little and Shaw, 1975; Anderson et al., 1977; Hinton and Anderson, 1981,
Hop�eld, 1982, 1984; Grossberg, 1983; Knapp and Anderson, 1984; Ackley et al., 1985;
McClelland and Rumelhart, 1986; Kanerva, 1988). These models are motivated by the
properties of human associative memory, which are very di�erent from those of the usual
digital computer memory. Instead of accessing memory with speci�c addresses, associative
memories are content-addressable. Items (binary or gray-scale pattern vectors) can be
retrieved with partial or approximate cue patterns. Several patterns can be stored on
the same physical hardware, and similar patterns interfere with each other. Performance
degrades gracefully when the memory is overloaded.

Many associative memory models were developed as mathematical abstractions of hu-
man memory. The goal was to understand the mathematics of associative memory, rather
than to build psychologically plausible models. In a cognitive model of associative mem-
ory, (1) storage and retrieval should be based on local processing, rather than on a global
computation of the weight matrix. (2) It should be possible to store items episodically, in
only a single presentation, rather than iterating through all items multiple times. (3) Dis-
tributed representations, which are continuously valued, non-orthogonal and not necessarily
linearly independent, should be supported, because several interesting cognitive phenomena
has been shown to emerge from such representation style (Hinton et al., 1986; van Gelder,
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1989). Many associative memory models are restricted to binary vectors, and some require
the vectors to be linearly independent or orthogonal. (4) Memory interference e�ects and
e�ects of damage should be psychologically plausible. Many models exhibit undi�erentiated
decrease in performance, rather than e�ects of recency, primacy, uniqueness, categorization,
proactive and retroactive transfer etc.

Auto-associative matrix memories are the simplest class of associative memory, and
theoretically fairly well understood (Kohonen, 1972, 1977, 1984; Hop�eld 1982, 1984). In
these models, N -dimensional vectors are represented on N units which are fully connected
through an N � N weight matrix. The weights are assigned so that the vectors become
attractors for the dynamical system. In some special cases, e.g. with linearly independent
binary patterns, it is possible to determine the appropriate weight values \o�-line" with
a non-local algorithm (Kohonen, 1984). Adding new patterns requires recomputing the
weight matrix. The Hop�eld network (Hop�eld, 1982, 1984) is perhaps the best-known
example of this type of associative memory.

There also exist associative memory models where storage and retrieval takes place
through local computations. The patterns are stored by cycling through the set of all
patterns multiple times and making small adjustments on the network weights at each
presentation. Eventually the weights converge to a con�guration where the network makes
the correct associations for all patterns in the training set, and possibly generalizes to new
but similar patterns. Backpropagation networks (Rumelhart et al., 1986) and the Boltzman
machine (Hinton et al., 1984; Ackley et al., 1985), which make use of \hidden units" (extra
units that are not part of the item representation), and the Brain-State-In-A-Box model
(Anderson et al., 1977; Anderson, 1986) are examples of this approach.

Note that all patterns to be stored need to be known in advance in the local learning
models. Storing patterns in a single presentation is possible only when the patterns are
orthogonal. In this case there is no crosstalk between patterns, and the correct associations
can be established in a single weight modi�cation. If the patterns are not orthogonal, each
new presentation alters the traces of the previous patterns, and early traces are gradually
erased from the memory. Several iterative presentations with very small weight adjustments
are necessary for successful learning.

Episodic storage of non-orthogonal patterns is infeasible in the local learning models be-
cause they distribute the trace of each item over the whole memory hardware, and crosstalk
in general cannot be avoided. The solution is to use di�erent hardware to store di�erent
memories. This idea is employed in e.g. Read, Nenov and Halgren's binary auto-associative
memory, which is based on the Gardner-Medwin model of the hippocampal formation (Read
et al., in press). Each vector is encoded by approximately 10% of the neurons, randomly
distributed in the network. Also, in Kanerva's sparse distributed memory for binary vectors
(Kanerva, 1988), each vector is stored at those neurons whose addresses are within a certain
radius of the input vector. Di�erent neurons participate in storing di�erent vectors.

Trace feature map is a new approach to auto-associative memory which aims at plausible
modeling of human memory. The space of possible items to be stored is laid out on a
topological feature map (Kohonen, 1984). Each unit on the map stands for a particular
input item, i.e. the input space is represented using value-unit encoding (Ballard, 1986).
Which items are currently stored in the memory is indicated by the lateral (recurrent)
weights of the network.

The main features of the trace feature map model are: (1) The memory traces are cre-
ated on a spatially localized area of the hardware. (2) The traces are created in a single
presentation, without knowledge of future items to be stored and without re-activating the
traces of the previous items. (3) Interaction of nearby traces results in plausible memory in-
terference behavior: more recent traces are easier to recall, and unique traces are preserved.
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Figure 1: A topological feature map network. This network implements a mapping from a
3-dimensional input space onto a 2-dimensional location in the network. The values of the input
components, weights and the unit output are indicated by gray-scale coding.

(4) Local damage to the network results in category-speci�c memory loss. (5) Storage and
retrieval takes place through local computations. (6) The input vectors can be continuously
valued and linearly dependent. (7) The memory is limited within the space represented by
the feature map, i.e. it is a memory of occurrences of familiar items.

In the following, the basic properties of topological feature maps are �rst reviewed, and
the trace feature map architecture is introduced as an extension to ordinary feature maps.
The storage and retrieval mechanisms are described, followed by discussion of memory
capacity and memory e�ects. An example application, episodic story memory, is brie
y
described. Discussion of some of the implications, open issues and directions for future
research concludes the article.

2 Topological feature maps

2.1 General mechanisms

A 2-D topological feature map (Kohonen, 1984) implements a topology-preserving mapping
from a high-dimensional input space onto a 2-D output space. The map consists of an
array of processing units, each with N weight parameters (�gure 1). The map takes an N -
dimensional vector as its input, and produces a localized pattern of activity as its output.
In other words, an input vector is mapped onto a location on the map.

Each processing unit receives the same input vector, and produces one output value.
The response is proportional to the similarity of the input vector and the unit's weight
vector. The unit with the largest output value constitutes the image of the input vector on
the map. The weight vectors are ordered in such a way that the output activity smoothly
decreases with the distance from the image unit, forming a localized response.

The weight vectors approximate speci�c items of the input space in such a way that
topological relations are retained. This means roughly that nearby vectors in the input
space are mapped onto nearby units on the map. This is a very useful property, since the
complex similarity relationships of the high-dimensional input space become visible on the
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map.

The organization of the map, i.e. the assignment of the weight vectors, is formed in an
unsupervised learning process. Input items are randomly drawn from the input distribution
and presented to the network one at a time. The map responds to each vector by developing
a localized activity pattern. The weight vector of the maximally responding unit and each
unit in its neighborhood are changed towards the input vector. These units now produce
an even stronger response to the same input. In the process, the weight vectors become
better approximations of the input vector distribution and neighboring vectors become more
parallel, which over time results in global order.

The size of the weight change neighborhood and the gain of the weight change decrease
with time, allowing the map to make �ner and �ner distinctions between items. Eventu-
ally, the distribution of the weight vectors becomes an approximation of the input vector
distribution. This means that more weight vectors are allocated to dense areas of the input
space, i.e. these areas are magni�ed (represented to greater detail) on the map. The two
dimensions of the map do not necessarily stand for any recognizable features of the input
space. The dimensions develop automatically to facilitate best discrimination between input
items.

Each adaptation step consists of three computational tasks: (1) computing the initial
response of each unit to the external input by measuring the similarity of the input vector
and the unit's weight vector, (2) determining the adapting neighborhood by focusing the
initial response of the map to the neighborhood of the maximally responding unit, and
(3) changing the weights in this neighborhood. The following discussion concentrates on
generating and focusing the response, because these processes are central in the operation
of trace feature maps. The weight adaptation occurs only during self-organization, which is
assumed to have taken place before the operation of trace feature maps. For more details on
the self-organization process, see e.g. (Kohonen, 1982ab, 1984, 1990; Ritter and Schulten,
1988; Miikkulainen, 1991).

2.2 Generating and focusing the response

In a biologically plausible implementation of topological feature maps (Kohonen, 1982b;
Miikkulainen, 1991) the similarity is measured by a scalar product of the input vector
and the weight vector, i.e. by computing a weighted sum of the input components. This
approach is cumbersome, because it requires that both the input vectors and the weight
vectors are normalized (Miikkulainen, 1991). Normalization can be e�ciently abstracted by
using Euclidian distance as the similarity measure (Kohonen, 1984). The distance between
the input vector and the weight vector is scaled between 0 and 1 and negated so that the
value 1 indicates maximum similarity:

sij = 1� kx�mijk
dmax

; (1)

where x is the external input vector,mij is the weight vector of unit (i; j) (in a 2-dimensional
map), dmax is the maximum distance of two vectors in the input space (e.g.

p
2 in the 2-D

unit square) and sij stands for the unit's similarity value. The initial response �ij of unit
(i; j) to an external input vector is then

�ij = � (sij) ; (2)

where � is the familiar sigmoid activation function of the type

�(z) =
1

1 + e�(��z)
: (3)
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The parameter � determines the slope of the sigmoid and � its displacement from the
origin. The sigmoid introduces a nonlinearity (a soft threshold) into the reponse, and limits
its output within the range [0; 1].

The initial response can be focused through lateral inhibition. Each unit on the feature
map receives activation from its neighbors through lateral connection weights. During self-
organization, these weights are �xed in the \Mexican hat" pattern, i.e. the connections
from the closest units are excitatory and from the units further away are inhibitory. The
response of the network evolves over time according to

�ij(t) = �

0
@sij +X

k;l


kl;ij�kl(t��t)

1
A ; (4)

where 
kl;ij is the lateral connection weight on the connection from unit (k; l) to unit (i; j),
and �kl(t � �t) is the activity of unit (k; l) during the previous time step. The primary
e�ect of lateral inhibition is to sharpen the contrast between the high and low activity
areas. If the diameter of the lateral inhibition mask is comparable to the diameter of the
initial response of the network, in successive iterations of equation 4 the response becomes
more focused around the maximally responding unit. The more lateral inhibition there is
compared to lateral excitation, the narrower is the �nal stable response. Self-organizing
weight changes then take place withing the �nal stable activity pattern.

2.3 Feature maps as memory models

Feature maps have several potentially useful properties for modeling memory. The main
reason is that both distributed and localist features (Feldman and Ballard, 1982; Hinton
et al., 1986; van Gelder, 1989) are combined in the feature map representation. Distributed
representations for the input items are stored in the input weights of the feature map
units. In addition, each unit is a localist representation for an input item, and the spatial
arrangement of the units corresponds to the topological relations of the items. Some of the
properties that result include:

(1) The classi�cation performed by a feature map is based on a large number of pa-
rameters (the input weight components), making it very robust. Incomplete and somewhat
noisy representations can usually be correctly recognized.

(2) Once an inexact input item is recognized, it is possible to recover its exact repre-
sentation from the weights of the image unit. In other words, categorical perception can be
modeled (Miikkulainen, 1990a).

(3) The map tends to be continuous. It contains many intermediate units which do not
stand for any particular input item, but represent combinations of items. This means that
in some cases it is possible to recover a blend of two items.

(4) Several items can be active on the map at the same time, i.e. di�erent alternatives
can be represented distinctly and in parallel. Associations between di�erent items can be
implemented through lateral connections (Kohonen and M�akisara, 1986). With connections
between di�erent maps, many-to-many mappings are possible (Miikkulainen, 1990b). Note
that e.g. backpropagation networks can represent ambiguity only by blending the possible
alternatives.

(5) Because items are stored in di�erent parts of the map, episodic storage is possible.
Storing new traces does not necessarily a�ect all other traces on the map. Nearby traces,
which represent similar items, are more likely to be a�ected.

(6) Di�erences between the most frequent input items are magni�ed spatially in the
mapping, i.e. the variations of the most common inputs are more �nely discriminated.
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(7) The self-organizing process requires no supervision and makes no assumptions about
the data. The properties that best distinguish between input items are determined auto-
matically, and may be very di�erent for di�erent kinds of items.

3 Trace feature maps

3.1 De�nition

An ordinary feature map is a classi�er, mapping an input vector onto a location on the
map. A trace feature map, in addition, creates a memory trace on that location. The
map remembers that at some point it received an input item that was classi�ed there. The
traces can be stored one at a time, as items are read in, and retrieved with a partial cue.
In the following, the basic trace feature map mechanism is presented and its properties are
illustrated and analyzed using uniformly distributed 2-dimensional input data.

In the biological model of self-organization, lateral connections between units are respon-
sible for neighborhood selection (section 2.2). The response concentrates around the maxi-
mally responding unit, and the weight changes occur in this area. Kohonen and M�akisara
(1986) suggested that lateral connections could also be responsible for associations between
items. Trace feature maps are based on a similar idea: after the map has become ordered,
the lateral connections are used to store episodic memory traces.

The output �ij of unit (i; j) on a trace feature map is based on equations 1, 3 and 4:

�ij(t) = �

0
@(1� �)

�
1� kx�mijk

dmax

�
+ �

X
k;l


kl;ij�kl(t ��t)

1
A ; (5)

where (as before) x is the external input vector, mij is the unit's weight vector, dmax is the
maximum distance of two vectors in the input space, 
kl;ij is the lateral connection weight
on the connection from unit (k; l) to unit (i; j), and �kl(t ��t) is the output of unit (k; l)
during the previous time step. In other words, each unit computes a weighted sum of its
lateral activity, adds the activity resulting from the external input, and develops an output
activity which is a sigmoid of the sum. The parameter � determines the balance of external
and lateral activation, and it is used to separate the storage and retrieval processes.

During self-organization, � > 0, and the lateral connections implement lateral inhibi-
tion. Excitation decreases gradually while inhibition increases, making the weight change
neighborhoods smaller. At the same time, � also decreases gradually, making the response
more sensitive to the external input as the map becomes more ordered (Miikkulainen, 1991).
At the limit, the weight vectors form a topological map of the input space, � = 0 and all
lateral connections are inhibitory. This is the ideal initial con�guration for the operation of
trace feature maps.

However, the trace feature map mechanism is independent of how the map is formed.
The map may be produced by a self-organizing process where settling through lateral con-
nections is explicitly modeled, or by a process where settling is replaced by a computational
abstraction (which is the usual practical implementation of feature maps, see e.g. Kohonen
(1984)). Alternatively, the map may be formed by simply assigning ordered weights to the
feature map units to begin with (as is done below).

3.2 Storage mechanism

Let us assume that we have an ordered 2-D feature map of a uniform distribution on the unit
square. The input vectors in this case are 2-dimensional, with each component uniformly
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Figure 2: Creating a trace. The map lays out a uniform distribution on the unit square. The
coordinates of each unit correspond to the two components of its weight vector. Gray-scale coding
indicates the responses to the external input [0.4, 0.4], with � = 0:0; � = 10:0; � = 1:4. Line segments
indicate excitatory lateral weights emanating from each unit. The lateral weight parameters were

E = 2:0; 
I = �0:5. Inhibitory lateral connections are not shown.

distributed within [0, 1]. The weight vectors form a regular grid on the unit square, and
each unit is responsible for an approximately equal area of the input space (�gure 2).

Let us further assume that the lateral connections of the map are all inhibitory with

kl;ij = 
I (a negative constant). This means that the map is blank, i.e. contains no traces.
During storage, � = 0 so that the response of the map depends only on the external input
activity.

When an input vector is presented to this map, it responds by developing a localized
symmetric activity \bubble" around the unit whose weight vector is closest to the input
vector (�gure 2). The diameter and the intensity of the bubble depend on the sigmoid
parameters.

A trace is created by modifying the lateral connections of the active units 1. For each
unit in the bubble, a connection to a unit with a higher activity becomes excitatory, while
a connection to a unit with a lower activity becomes inhibitory, both proportional to the
activity level of the presynaptic unit:


ij;kl =

(

E �ij if �ij < �kl or (i; j)� (k; l)

I �ij if �ij � �kl

(6)

where 
E > 0 and 
I < 0 are the inhibition and excitation strength parameters. The units
within the response are now \pointing" towards the unit with the highest activity in the
bubble (�gure 2).

Note that the trace is created in a single presentation2, and it is not necessary to know
what has already been stored in the memory and what additional items need to be stored
later.

1Since �(z) > 0, a unit is considered active if its output � > �a, where �a is a suitable threshold value,
e.g. 0.1

2The weight change in reality would be a gradual process. We assume that the input is present long
enough so that the weights have time to reach their stable values given in equation 6.
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(a) (b)

Figure 3: Retrieval from a trace feature map with a partial cue. The lateral connections
pull the initial response to vector [0.7, 0.5] (a) to the center of the trace [0.4, 0.4] (b). Parameter
settings were otherwise the same as in �gure 2, except � = 0:5 during retrieval.

3.3 Retrieval mechanism

During retrieval, � is positive, e.g. 0.5. The response of the map now depends both on the
external input vector and the lateral connections encoding the traces.

A stored vector is retrieved by presenting an approximation of the vector to the map.
The initial response is again a localized activity pattern (�gure 3a). Because the map is
topological, the center of this pattern is likely to be somewhere near the target trace. If
the cue vector is close enough to the target, the initial response overlaps with the trace.
In the next few settling iterations, the excitatory lateral connections within the trace pull
the activity towards the center of the trace. The activity settles around the center, and the
external input weights of the unit with the highest activity give the stored vector (�gure 3b).

If the cue vector is too far from the target, the initial response does not overlap with the
trace. The lateral connections of the units within the initial response are all inhibitory, and
in the next step, all activity is turned o�. The next step is then again the initial response.
In subsequent steps, the activity oscillates between nonactivity and the initial response.
This oscillation indicates that there is no appropriate trace in the memory.

Notice that the retrieval process makes no distinction between incomplete, noisy and
partly incorrect cues. Any pattern can be used to cue the memory, and if there is a trace
close enough to the cue, it will be returned. As a result, minor errors in the cue can be
automatically corrected.

3.4 Memory e�ects and capacity

The trace feature map exhibits interesting memory e�ects which result from interactions
between traces. When two traces are stored close to each other, the later trace steals units
from the older one (�gure 4). When a cue is mapped onto the general neighborhood of
the two traces, the later one is likely to receive more lateral activation, which allows it to
inhibit the older trace and eventually turn it o�. This results in a recency e�ect: if several
similar items are stored on the same map, the later traces are more likely to be retrieved.
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Figure 4: Interaction of nearby traces. Traces are indicated by circles as before. The trace
on the right has partially obscured an earlier trace. The three shaded areas indicate the attractor
basins for each trace. These areas were determined by systematically presenting input vectors from
a 200� 200 grid and observing which trace (if any) was retrieved. The weight space and the input
space are superimposed in this �gure. For example, any vector from the bottom left area of the
input space will retrieve the bottom left trace. The parameter settings were the same as in �gures 2
and 3.

As the memory becomes overloaded, older traces become increasingly hard to retrieve,
and eventually they may be completely replaced by newer traces. However, this process is
selective in that traces in a sparse area of the map are not a�ected, no matter how old they
are. In other words, unique items are preserved.

Figure 4 depicts the attractor basins for each of the three traces stored on a map. The
two topmost traces are located in the same area, and the newer of them has partially
obscured the older one. The third trace is located in the lower left hand corner by itself
and it is not a�ected by the newer traces.

It is di�cult to characterize the memory capacity of trace feature maps. Memory e�ects
are an important part of the model, but they greatly complicate analysis. The diameter of
the trace is obviously an important factor. The narrower the traces, the more of them will
�t on the map without obscuring each other. On the other hand, they become harder to
retrieve because more accurate cues are required.

Instead of attempting to estimate how many traces of a given diameter can be stored on
a particular trace feature map, it makes more sense to outline the behavior of the memory
as it becomes increasingly loaded with traces. Figure 5 depicts a few such performance
descriptors as a function of the number of traces stored in the memory.

There is a 15% chance that a random vector will retrieve a single solitary trace, i.e. on
the average, the basin covers 15% of the map in this experiment (the plot labeled \Nearest"
in �gure 5). As more traces are stored on the same map, the basins become smaller. With
six traces, each one has only 7.5% chance of being retrieved with a vector that is nearest
to them. At this point, the percentage of \Nearest" begins to level o�, indicating that the
additional traces are mostly stealing units from the older ones.

Even when there are only two traces on the map, there is an 8% chance that the later
one completely wipes out the earlier one (\Lost" plot). The percentage of lost traces grows
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Figure 5: Performance descriptors with increasing number of traces. As before, the map
consisted of 9 � 9 units and the diameter of the trace was about 0.5. The sigmoid and lateral
interaction parameters were � = 15:0; � = 1:4; 
E = 0:5; 
I = �0:075. Each percentage represents
an average of 100 trials. In each trial, the traces were uniformly distributed on the unit square. Test
vectors were laid out on a 20 � 20 grid that uniformly covered the unit square. The test vectors
were presented to the map one at a time, and depending on which trace they retrieved (if any), they
were classi�ed as \Nearest", \Another" or \None". The fourth possibility, settling onto a unit that
is not a center of any trace, only occurred in about 0.1% of the trials, and was not plotted in the
�gure. If a trace was not retrieved at all during the trial, it was counted as a \Lost" trace. Typical
standard deviations for each descriptor were: Nearest 12, Another 6, None 10, Lost 14.

approximately linearly as more traces are stored on the same map. With eight traces, 1/3
of them are inaccessible. This is surprisingly little, knowing that a single trace not clipped
by the boundaries of the map covers about 1/4 of the map in this experiment.

The plot labeled \Another" demonstrates recency e�ect3. The number of test vectors
that will retrieve another trace grows approximately linearly with the number of traces
stored. As the memory becomes overloaded, the oldest traces are gradually replaced by
newer ones. It is necessary to specify more and more accurate cues to retrieve old traces,
and eventually they become inaccessible. With eleven traces on the same map, a random
cue is as likely to retrieve a later trace than the nearest one (44% vs. 42%). At that point,
47% of the traces have become inaccessible altogether.

The main conclusion from this experiment is that the trace feature map memory de-
grades very gracefully when it is overloaded. On the other hand, memory e�ects are possible
even under very light load. Statistically the behavior is very predictable, but individual cases
vary signi�cantly. The standard deviations of the above percentages were typically greater
than 10.

4 Example: Episodic memory for stories

Trace feature maps have been used in episodic memory for DISCERN, a neural network
model of script-based story understanding (Miikkulainen, 1990a). DISCERN reads short
narratives about stereotypical event sequences (such as visiting a fancy restaurant or trav-

3When some other trace as the nearest one is retrieved, it is generally because it was stored more recently
than the nearest trace.
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Figure 6: Episodic memory for script-based stories. The labels at the top and middle levels
indicate the maximally responding unit for stories based on the di�erent scripts and tracks. The
labels at the bottom level indicate the role-binding map for each track. This particular input story
representation is classi�ed as an instance of the restaurant script and fancy-restaurant track, and
the role bindings are found to be customer=John, food=lobster, restaurant=MaMaison, tip=big
(i.e. JLMB). The trace is created around the role binding unit labeled JLMB in the fancy-restaurant
role-binding map (lower left corner).

eling by airplane), stores them in episodic memory, generates fully expanded paraphrases
of the narratives, and answers questions about them.

The episodic memory in DISCERN is a pyramid of feature maps, organized according
to the hierarchical taxonomy of script-based stories (�gure 6). The highest level of the
hierarchy is a single feature map that lays out the di�erent script classes. Beneath each
unit of this map there is another feature map that lays out the tracks (established variations)
of the script. At the bottom level, the di�erent role bindings of each track are separated.

The script taxonomy is extracted from examples of story representations. The pyramid
structure itself is predetermined and �xed, but the maps are self-organized one level at a
time from top to bottom. The top- and middle-level maps act as �lters, (1) choosing the
relevant input items for each lower-level map and (2) compressing the representation of
these items to the most relevant components (i.e. components that vary the most) before
passing them down to the lower-level map for a more detailed mapping.

The map hierarchy receives a distributed representation of the story as its input and
classi�es it as an instance of a particular script, track and role binding. The maximally
responding units at the script-, track- and role-binding levels provide a unique memory
representation for each story. However, the role-binding unit alone uniquely identi�es the
story, and a trace needs to be created only at the bottom level. The script and the track
level are ordinary feature maps, while the role-binding level consists of trace feature maps.

When a representation is stored in the episodic memory, the map hierarchy determines
the appropriate role-binding map and the location on that map. The trace feature map
mechanism creates a memory trace at that location. A story is retrieved from the memory
by giving it a partial story representation as a cue. Unless the cue is highly de�cient, the
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map hierarchy is able to recognize it as an instance of the correct script and the track, and
form a partial cue for the role-binding map. The trace feature map then completes the
role binding. The complete story representation is retrieved from the weight vectors of the
maximally responding units at the script-, track-, and role-binding levels.

In DISCERN, the trace feature maps have to operate in less than ideal conditions. The
role-binding maps lay out high-dimensional spaces on a small number of units, and the
maps have more structure and less continuity than in the ideal case discussed in previous
sections. Similar vectors may sometimes be mapped on di�erent areas of the map. While
the basic mechanisms remain the same, they need to be parameterized slightly di�erently
to guarantee robust operation in these conditions (see (Miikkulainen, 1990a) for details; the
e�ect of di�erent parameters on performance are discussed in the appendix).

5 Discussion

5.1 Issues in feature map representation

The trace feature map model makes a number of predictions about human knowledge orga-
nization and the mechanisms underlying knowledge processing. Perhaps most important is
the idea of laying out memory traces spatially on maps. This is in line with the general idea
of brain representation by value-unit encoding, as proposed by Barlow (1972) and Ballard
(1986). Several topological maps, including retinotopic, tonotopic and also tactile, motor
and spatial maps are known to exist in the central nervous system (Konishi, 1986; Knudsen
et al., 1987). It is quite possible that higher-level information is also represented in a similar
manner. For example, it has been shown (through simulation), that it is possible to form
maps of phonemes (Kohonen et al., 1984) and word semantics (Ritter and Kohonen, 1989;
Miikkulainen, 1990b) from simple contextual information. Neurophysiological evidence for
such phonotopic and semantotopic maps is still to be found.

The operation of the trace feature map re
ects the physical organization of the hardware.
We have seen how high-level phenomena such as recency preference for similar memory
traces and persistence of unique traces can be explained by the spatial layout of the memory.
The model can be lesioned, and local damage results in loss of speci�c types of traces.
Such category-speci�c impairments have been observed in the semantic memory of aphasic
patients (Warrington, 1975; Warrington and Shallice, 1984; Warrington and McCarthy,
1987). It remains to be seen whether similar impairments can also occur in the episodic
memory. The model also predicts that it is not possible to selectively loose all traces of
a particular time period, provided the traces have been fully consolidated in the episodic
memory.

Representation of the input space on feature maps seems to su�er from combinatorial
explosion. The number of units on the map determines how many items the system can
tell apart. If k is the number of input dimensions and N is the number of di�erent values
in each dimension, Nk units are needed to represent the space of all possible combinations.
This \Nk problem" is a general limitation of the value-unit encoding approach (Ballard,
1986).

A plausible solution, which also seems to be in use in the value-unit maps in the central
nervous system, is to divide complex spaces into several lower dimensional ones, and combine
them hierarchically (Ballard, 1986). None of the individual feature maps would ever need
to map more than a few dimensions. If there are many dimensions of variation, these could
be split into separate maps. The representation would consists of image units in each and
every submap, i.e. it would be distributed and compositional. However, it is not clear how
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multiple items can be represented distinctly in parallel in such an architecture (von der
Malsburg, 1987).

A complex feature map representation could thus contain two kinds of hierarchical
relations: (1) a higher-level map forms a categorization of its input space and passes the
input items down to the appropriate submaps for more accurate mapping of each category
(as in the episodic memory of DISCERN and in (Miikkulainen, 1990c)), and (2) the whole
input space of the parent map is laid out on the lower level maps, but di�erent dimensions
are represented on di�erent maps. The representation of an item in such a hierarchical
system would be an AND-OR tree.

Currently, the number of items that can be represented on a single feature map is limited
by the number of units. Resolution could be improved by taking the response pattern as a
whole into account. Instead of using the input weights of the maximally responding unit as
the representation, the weight vectors of all active units could be combined, proportional to
their activity. Items between units on the map would be represented as linear combinations
of the existing unit weights.

5.2 Limitations of the model

There are two major issues that the model does not address. First, it assumes that the
whole space of possible input items is represented on the map. Truly novel items cannot be
stored correctly, because the system has no mechanism for representing traces that do not
�t the memory organization.

Similar dissociation of novel and familiar experience has been observed in hippocam-
pal amnesia. Amnesic patients often cannot explicitly recall individual episodes, although
these episodes cause normal priming e�ects (Warrington and Weiskrantz, 1974; Tulving and
Schacter, 1990). However, priming is limited to pre-existing representations. The patients
can form implicit memory traces of already familiar elements, but they cannot form traces
that combine previously unrelated semantic elements (Shimamura, 1986; Halgren, 1984).

A possible explanation is that two dissociable memory encoding processes exist. Encod-
ing novel integrative traces requires hippocampal activity, whereas recording occurrences of
familiar items is based on other cortical regions (Shimamura, 1986; Halgren, 1990). Trace
feature maps can be seen as a model for the latter process.

People often exhibit better recall not only for the most recent experience, but also for
the �rst experience of a particular kind. In the trace feature map framework, the �rst
experience would be coded as a novelty through the hippocampal processes, and therefore
it could be more prominent in the memory than a mere map representation. Subsequent
experiences would be familiar and recorded only on the (updated) map. Since all traces on
the map are equal (except for the recency e�ect), the primacy e�ect would be a result of
the hippocampal encoding process only. Interestingly, this is again in line with observations
on amnesic patients, who exhibit recency e�ect but no primacy e�ect (Baddeley, 1982).

The second open issue concerns the \the beginning of experience" in trace feature maps.
The model currently makes a sharp distinction between self-organization and operation as
memory, although it seems that memory mechanisms should be active during the self-
organization also. However, even if traces were stored during self-organization, they would
become inaccessible later as the memory organization evolves. Only traces that were created
after the organization settled could be reliably recalled. In that sense the two-phase model
can be seen as an approximation of the actual memory organization process.
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5.3 Extensions

The global parameter � is used to select between storage and retrieval processes. When
� = 0, the lateral connections of the map are inactive, and the map develops a response
according to the external input activity. This response is coded into the lateral connections
as the memory trace. When � > 0, the lateral connections are active, and the map settles
into a stored trace. Lateral connections are not modi�ed during retrieval.

Interesting e�ects would result from relaxing this simple two-mode operation. If the
lateral connections were active during storing an item, they would a�ect the trace that is
formed. Items that are novel, i.e. in a sparse area of the map, would be stored as before.
Items close to existing traces would be pulled closer to the traces. In e�ect, the input pattern
would be perceived as more similar to the existing traces than it actually is. Contents of
the memory would a�ect how new items are remembered. This kind of interaction would be
consistent with proactive interference in human memory (Postman, 1971; Thorndyke and
Hayes-Roth, 1979).

On the other hand, it would also be possible to modify the lateral weights during recall.
After the activity has settled, the lateral connections could adapt to the �nal activity
pattern. If the initial activity was emphasized in the settling process (with small �), the
�nal pattern would re
ect the initial activity more than the lateral trace connections, and
the trace would be changed towards the cue. This would have the e�ect of cues modifying
the memory, which has been shown to happen e.g. in eyewitness testimony with leading
questions (Loftus, 1975; Loftus et al., 1978).

Settling times give interesting insight into the recall process. Settling usually takes a
few iterations longer when the cue is far away on the map. When there are two traces about
equidistant from the cue, convergence can take very long. In other words, retrieval with
an ambiguous cue is slower than retrieval with an unambiguous one, which behavior has
also been observed in short-term memory recognition tasks (Baddeley, 1976). The settling
times provide information that could be used by a high-level monitor process to decide on
the validity of the recalled trace.

Usually one of the ambiguous traces wins after a number of iterations, turning the other
one o� completely. However, it is also possible that both traces remain active in the sta-
ble pattern, indicating ambiguous retrieval. Our implementation currently retrieves the
one with the strongest activity, but it would also be possible to retrieve an average of the
two traces. This strategy would model retroactive memory confusions where a blend of
two traces is retrieved, e.g. blue circle from red circle, blue square (Bower, 1974;
Thorndyke and Hayes-Roth, 1979). Another interesting extension would be to allow mutu-
ally excitatory traces. Activating one trace would then automatically turn on one or more
other traces also. This process can be used to implement heteroassociative recall (Kohonen
and M�akisara, 1986).

Modulating the trace diameter has not been explored at all in the current model. It
would be possible to make the early traces more resistant to forgetting by storing them
on a wider area. Also, traces at a crowded section of the memory could be made smaller,
and more of them would �t in without severe interference. Interestingly, decreasing the
diameter of the trace with experience is in line with the self-organizing process, where the
neighborhoods are initially large but decrease as the map becomes more ordered. Perhaps
traces could be created during self-organization also. Forming traces could be an essential
part of the process. The traces would modify the lateral connections so that they better
support the current state of self-organization. Combining self-organization with the trace
feature map mechanism is a very interesting future research direction.
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6 Conclusion

The trace feature map model has many properties that make it attractive as a human
associative memory model. The model does not require linear independence or binary
representations, and all computations are local. Topological feature map representation
makes it possible to store di�erent items on di�erent hardware, which in turn makes episodic
storage possible without excessive crosstalk. Where memory interferences occur, they are
psychologically plausible. More recent traces are easier to recall as are traces that are unique
in the memory. Several other neuropsychological phenomena can also be explained by the
model or its extensions. However, how novel memories are encoded and how storing traces
can be combined with self-organization remain largely open research questions at this point.
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APPENDIX: Tuning the parameters

The operation of trace feature maps is highly sensitive to the sigmoid and lateral weight parameters.
Reliability of the settling process, the extent of the trace, the accuracy of the retrieved vector, the
distinction between successful retrieval and failure, and the maximum distance for retrieval can be
controlled with these parameters.

Ideally, settling should be a continuous and gradual process, where each successive pattern is
closer to the �nal stable pattern. In many cases however, it resembles damped oscillation, where
the activity alternates between two patterns that both converge to the same �nal pattern. In one of
these patterns the lateral connections dominate, the other one re
ects the external input activity.
Oscillatory behavior is more likely to occur when the lateral weight parameters 
E and 
I are large.
Thus oscillations can be reduced by reducing the absolute values of the weights (or equivalently, the
�-parameter), and also by reducing the ratio 
I


E
.

The diameter of the trace depends on the extent of the �nal stable activity pattern. The steeper
the slope of the sigmoid, the more the sigmoid is displaced towards in�nity, and the higher the
inhibition, the smaller the bubble. Narrower traces can thus be produced by increasing � and �, or
by increasing 
I


E
. The center of the activity (where the stored vector should be retrieved from) can

be most reliably located when the bubble is sloping gently, i.e. when � is small. High values of �

tend to saturate several units at 1.0, making retrieval ambiguous.

The distinction between successful and unsuccesful retrieval is less simple in reality than has
been indicated so far. Ideally, we would want the system to always settle into a stable pattern
with a highly active center, or else oscillate between the initial response and uniform zero activity.
However, the sigmoid is strictly nonnegative, and the oscillation actually occurs between a pattern
very similar to the initial response, and an almost zero pattern. Also, sometimes the system does not
settle into a stable pattern, but oscillates between two nonzero patterns indicating the same center.
It is necessary to use a threshold to decide whether these type of oscillations should be interpreted
as successful retrieval or failure. If the lower of the highest activities in the alternating patterns is
greater than the threshold, a vector is retrieved from the most active unit, otherwise the situation
is interpreted as failed retrieval.

Successful retrieval and failure can be made quite distinct by increasing the absolute values of the
lateral weights. In this case the system is not sensitive to the retrieval threshold. In our simulations,
the highest activity in failed retrieval was always less than 0.1, while the successes were all greater
than 0.9. If success and failure are less distinct, the retrieval threshold controls how accurate the
cue has to be. High threshold settings require accurate cues, whereas low values can be reached with
more distant cues.

As the reader can see, optimal behavior requires contradicting parameter values. Usually it is
possible to �nd compromise values that produce satisfactory performance, especially if the traces
can be fairly large, and retrieval from oscillating patterns is acceptable.
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Instructions for the compositor

Please typeset the references, the appendix and the �gure captions in small type.

The �gures can be reduced to �t the column limits.
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