
On Modular Translations and
Strong Equivalence

Paolo Ferraris

University of Texas at Austin, Austin TX 78712, USA otto@cs.utexas.edu

Abstract. Given two classes of logic programs, we may be interested
in modular translations from one class into the other that are sound
wth respect to the answer set semantics. The main theorem of this pa-
per characterizes the existence of such a translation in terms of strong
equivalence. The theorem is used to study the expressiveness of several
classes of programs, including the comparison of cardinality constraints
with monotone cardinality atoms.

1 Introduction

The notion of an answer set (or “stable model”), originally defined in [Gelfond
and Lifschitz, 1988], was extended to more general logic programs in various
ways. In Fig. 1 we see some examples of extensions of the class of “traditional”
rules studied in that paper, and also some subclasses of that class. The language
in each line of the table contains the languages shown in the previous lines.

When we compare the expressiveness of two classes of rules R and R′, several
criteria can be used. First, we can ask whether for any R-program (that is, a
set of rules of the type R) one can find a R′-program that has exactly the
same answer sets. (That means, in particular, that the R′-program does not
use “auxiliary atoms” not occurring in the given R-program.) From this point
of view, the classes of rules shown in Fig. 1 can be divided into three groups:
a UR- or PR-program has a unique answer set; TR-, TRC- and DR-programs
may have many answer sets, but its answer sets always have the “anti-chain”
property (one cannot be a proper subset of another); a NDR- or RNE-program
can have an arbitrary collection of sets of atoms as its collection of answer sets.

Another comparison criterion is based on the computational complexity of
the problem of the existence of an answer set. We pass, in the complexity hier-
archy, from P in case of UR- and PR-programs, to NP in case of TR- and TRC-
programs [Marek and Truszczyński, 1991], and finally to ΣP

2 for more complex
kinds of programs [Eiter and Gottlob, 1993].

A third criterion consists in checking whether every rule in R is strongly
equivalent [Lifschitz et al., 2001] to a R′-program. From this point of view, PR
is essentially more expressive than UR: we will see at the end of Sect. 3 that
a← b, c is not strongly equivalent to any set of unary rules. Furthermore, TRC
and DR are essentially different from each other, since no program in TRC is
strongly equivalent to the rule p; q in DR [Turner, 2003, Proposition 1].

class of rules syntactic form

UR unary rules:
a← (also written as simply a) and a← b

PR positive rules:
a← b1, . . . , bn

TR traditional rules:
a← b1, . . . , bn,not c1, . . . ,not cm

TRC TRs + constraints:
TRs and ← b1, . . . , bn,not c1, . . . ,not cm

DR disjunctive rules:
a1; . . . ; ap ← b1, . . . , bn,not c1, . . . , not cm

NDR negational disjunctive rules:
a1, . . . ; ap;not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . ,not cm

RNE rules with nested expressions:
F ← G

Fig. 1. A classification of logic programs under the answer set semantics. Here a, b, c,
d stand for propositional atoms. F , G stand for nested expressions without classical
negation [Lifschitz et al., 1999], that is, expressions formed from atoms, > and ⊥, using
conjunction (,), disjunction (;) and negation as failure (not).

A fourth comparison criterion is based on the existence of a translation from
R-programs to R′-programs that is not only sound (that is, preserves the pro-
gram’s answer sets) but is also modular: it can be applied to a program rule-by-
rule. For instance, [Janhunen, 2000] showed that there is no modular translation
from PR to UR and from TR to PR 1. On the other hand, RNE can be translated
into NDR by a modular procedure similar to converting formulas to conjunctive
normal form [Lifschitz et al., 1999].

The main theorem of this paper shows that under some general conditions,
the last two criteria — the one based on strong equivalence and the existence of a
sound modular translation — are equivalent to each other. This offers a method
to prove that there is no modular translation from R to R′ by finding a rule in
R that is not strongly equivalent to any R′-program. For instance, in view of
the Proposition 1 from [Turner, 2003] mentioned above, no modular translation
exists from DR to TRC.

To apply the main theorem to other cases, we need to learn more about
the strong equivalence relations between a single rule of a language and a set
of rules. We show that for many rules r in NDR, any NDR-program that is
strongly equivalent to r contains a rule that is at least as “complex” as r. This
fact will allow us to conclude that all classes UR, PR, TR, TRC, DR and NDR
are essentially different from each other in terms of strong equivalence. In view
of the main theorem, it follows that they are essentially different from each other
in the sense of the modular translation criterion as well.

1 His results are actually stronger, see Sect. 7 below.

Finally, we show how to apply our main theorem to programs with weight
constraints [Niemelä and Simons, 2000]. As a result, we find that it is not possi-
ble to translate programs with weight constraints into programs with monotone
cardinality atoms [Marek and Niemelä, 2004] in a modular way (unless the trans-
lation introduces auxiliary atoms).

The paper continues with the statement of our main theorem (Sect. 2). In
Sect. 3, we study the expressiveness of subclasses of NDR in terms of strong
equivalence and modular translations. We move to the study of cardinality con-
straints in Sect. 4. Section 5 provides some background needed for the proof of
some of the claims of this paper (Sect. 6).

2 Modular transformations and strong equivalence

We assume that the reader is familiar with the concept of an answer set for the
classes of logic programs in Fig. 1 (the semantics for the class RNE, which is
applicable to all its subclasses, is reproduced in Sect. 5.1). A program is a subset
of RNE. Two programs Π1 and Π2 are strongly equivalent if, for every program
Π, Π1 ∪Π and Π2 ∪Π have the same answer sets. A (modular) transformation
is a function f such that

– Dom(f) ⊆ RNE, and
– for every rule r ∈ Dom(f), f(r) is a program such that every atom occurring

in it occurs in r also.

A transformation f is sound if, for every program Π ⊆ Dom(f), Π and
⋃

r∈Π f(r)
have the same answer sets.

For example, the transformation defined in the proof of Proposition 7 from [Lif-
schitz et al., 1999], which eliminates nesting from a program with nested expres-
sions, is a sound transformation. For instance, for this transformation f ,

f(a← b; c) = {a← b, a← c}.
As another example of a sound transformation, consider the transformation f
with Dom(f) = NDR, where

f(not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . ,not dm) =
{← b1, . . . , bn, d1, . . . , dq,not c1, . . . ,not dm}

and f(r) = {r} for the other rules r in NDR. On the other hand, the famil-
iar method of eliminating constraints from a program that turns ← p into
q ← p,not q is not a transformation in the sense of our definition, because
it introduces an atom q that doesn’t occur in ← p.

This is the theorem that relates strong equivalence and modular transfoma-
tions:

Theorem 1 (Main Theorem). For every transformation f such that Dom(f)
contains all unary rules, f is sound iff, for each r ∈ R, f(r) is strongly equivalent
to r.

Our definition of transformation requires that all atoms that occur in f(r)
occur in r also. The following counterexample shows that without this assump-
tion the assertion of the Main Theorem would be incorrect. Let p and q be two
atoms, and, for each rule r = F ← G in RNE, let f1(r) be

F ← G,not p
F ← G,not q
Fp↔q ← Gp↔q,not not p,not not q.

where Fp↔q and Gp↔q stand for F and G with all the occurrences of p replaced
by q and vice versa. Note that f1 is not a transformation as defined in this paper
since q occurs in f1(p ← >). It can also be shown that p ← > and f1(p ← >)
are not strongly equivalent. However, the “transformation” is sound:

Proposition 1. For any program Π, Π and
⋃

r∈Π f1(r) have the same answer
sets.

Without the assumption that UR ⊆ Dom(f), the Main Theorem would not
be correct either. We define a transformation f2 such that Dom(f2) consists of
all rules of DR where all atoms in the body are prefixed by negation as failure,
and the head is nonempty: the rules have the form

a1; . . . ; ap ← not c1, . . . ,not cm. (1)

with p > 0. For each rule r of the form (1), f2(r) is defined as

{ai ← not a1, . . . ,not ai−1,not ai+1, . . . ,not ap,not c1, . . . ,not cm : 1 ≤ i ≤ p}.
It is easy to see that f2(p; q) is not strongly equivalent to p; q. However, this
transformation is sound:

Proposition 2. For any program Π ⊆ Dom(f2), Π and
⋃

r∈Π f2(r) have the
same answer sets.

3 Applications: Negational Disjunctive Rules

In order to apply the Main Theorem to modular translations, we first need to
study some properties of strong equivalence. We focus on the class NDR.

If r is

a1, . . . ; ap;not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . ,not cm

define
head+(r) = {a1, . . . , ap} head−(r) = {d1, . . . , dq}
body+(r) = {b1, . . . , bn} body−(r) = {c1, . . . , cm}.

We say that r is basic if every pair of these sets, except possibly for the pair
head+(r), head−(r), is disjoint.

Any nonbasic rule can be easily simplified: it is either strongly equivalent to
the empty program or contains redundant terms in the head. A basic rule, on
the other hand, cannot be simplified if it contains at least one nonnegated atom
in the head:

Theorem 2. Let r be a basic rule in NDR such that head+(r) 6= ∅. Every
program subset of NDR that is strongly equivalent to r contains a rule r′ such
that

head+(r) ⊆ head+(r′) body+(r) ⊆ body+(r′)
head−(r) ⊆ head−(r′) body−(r) ⊆ body−(r′)

This theorem shows us that for most basic rules r (the ones with at least one pos-
itive element in the head), every program strongly equivalent to r must contain
a rule that is at least as “complex” as r.

Given two subsets R and R′ of RNE, a (modular) translation from R to R′

is a transformation f such that Dom(f) = R and f(r) is a subset of R′ for each
r ∈ Dom(f). Using Theorems 1 and 2, we can differentiate between the classes
of rules in Fig. 1 in terms of modular translations:

Proposition 3. For any two languages R and R′ among UR, PR, TRC, TR,
DR and NDR such that R′ ⊂ R, there is no sound translation from R to R′.

Theorems 1 and 2 allow us also to differentiate between subclasses of NDR de-
scribed in terms of the sizes of various parts of the rule. Define, for instance PBRi

(“positive body of size i”) as the set of rules r of NDR such that |body+(r)| ≤ i.
We can show that, for every i ≥ 0, there is no sound translation from PBRi+1

to PBRi (or even from PBRi+1∩PR to PBRi). Similar properties can be stated
in terms of the sizes of body−(r), head+(r) and head−(r).

Another consequence of Theorem 2 is in terms of (absolute) tightness of
a program [Erdem and Lifschitz, 2003, Lee, 2005]. Tightness is an important
property of logic programs: if a program is tight then its answer sets can be
equivalently characterized by the satisfaction of a set of propositional formulas of
about the same size. Modular translations usually don’t make nontight programs
tight:

Proposition 4. Let R be any subset of NDR that contains all unary rules, and
let f be any sound translation from R to NDR. For every nontight program
Π ⊂ R consisting of basic rules only,

⋃
r∈Π f(r) is nontight.

4 Applications: programs with cardinality constraints

4.1 Syntax

We briefly review the syntax of programs with cardinality constraints [Niemelä
and Simons, 2000].

A rule element is an atom possibly prefixed with negation as failure symbol
not . A cardinality constraint is an expression of the form

L{c1, . . . , cm}U (2)

where

– each of L, U is (a symbol for) an integer or −∞, +∞,
– m ≥ 0, and
– c1, . . . , cm are rule elements.

As an abbreviation, L can be omitted if L = −∞; similarly, we can drop U if
U = +∞. A rule with cardinality constraints is an expression of the form

C0 ← C1, . . . , Cn (3)

where C0, . . . , Cn (n ≥ 0) are cardinality constraints. A program with cardinality
constraints is a set of rules with cardinality constraints.

Let CCR denote the set of all rules with cardinality constraints. A straight-
forward generalization of the definition of a transformation allows us to talk
about sound translations between subclasses of CCR, and also between a class
of CCR and a subclass of RNE. The concept of (modular) transformations and
translations can be extended to programs with cardinality constraints: we can
have translations between subclasses of CCR, and from/to subclasses of RNE.
The definition of the soundness for those translations follows as well.

Another class of programs similar to the one with cardinality constraints
— programs with monotone cardinality atoms — has been defined in [Marek
and Niemelä, 2004]. The results of that paper show that rules with monotone
cardinality atoms are essentially identical to rules with cardinality constraints
that don’t contain negation as failure; we will denote the set of all such rules by
PCCR (“positive cardinality constraints”).

4.2 Translations

First of all, we show how programs with cardinality constraints are related to
the class NDR. Let SNDR (Simple NDR) be the language consisting of rules of
the form

a;not d1; . . . ;not dq ← b1, . . . , bn,not c1, . . . ,not cm (4)

and
← b1, . . . , bn,not c1, . . . ,not cm. (5)

Proposition 5. There exist sound translations from SNDR to CCR, and back.

If we don’t allow negation in cardinality constraints, another relationship
holds. We define the class VSNDR (Very Simple NDR) consisting of rules of the
form

a;not a← b1, . . . , bn,not c1, . . . ,not cm (6)

and of the form (5).

Proposition 6. There exist sound translations from VSNDR to PCCR, and
back.

Using Theorems 1 and 2, we can prove:

Proposition 7. There is no sound translation from CCR to PCCR.

Since the class PCCR is essentially identical to the class of rules with mono-
tone cardinality atoms, we have that programs with cardinality constraints are
essentially more expressive than programs with monotone cardinality atoms.

5 Background for proofs

5.1 Answer set semantics for RNE

The semantics of programs is characterized by defining when a set X of atoms
is an answer set for a program Π. As a preliminary step, we define when a set
X of atoms satisfies a formula F (symbolically, X |= F), as follows:

– for an atom a, X |= a if a ∈ X
– X |= >
– X 6|= ⊥
– X |= (F, G) if X |= F and X |= G
– X |= (F ; G) if X |= F or X |= G
– X |= not F if X 6|= F .

We say that X satisfies a program Π (symbolically, X |= Π) if, for every rule
F ← G in Π, X |= F whenever X |= G.

The reduct ΠX of a program Π with respect to a set X of atoms is obtained
by replacing each outermost formula of the form not F (that is, every formula
of the form not F not in the scope of negation as failure) by ⊥, if X |= F , and
by ⊥ otherwise.

The concept of an answer set is defined first for programs not containing
negation as failure: a set X of atoms is an answer set for such a program Π if
X is a minimal set satisfying Π. For an arbitrary program Π, we say that X is
an answer set for Π if X is an answer set for the reduct ΠX .

5.2 Strong equivalence

The following lemma is the main criterion that we use to check strong equivalence
in most of the proofs. It can be proved in a way similar to the equivalence
criterion from [Turner, 2003].

Lemma 1. Let A be the set of atoms occurring in programs Π1 and Π2. Π1 and
Π2 are strongly equivalent iff, for each Y ⊆ A,

– Y |= ΠY
1 iff Y |= ΠY

2 , and
– if Y |= ΠY

1 then, for each X ⊂ Y , X |= ΠY
1 iff X |= ΠY

2 .

Next lemma can be easily proven under the characterization of strong equiv-
alence as stated in [Lifschitz et al., 2001].

Lemma 2. Let P1 and P2 be sets of programs. If each program in P1 is strongly
equivalent to a program in P2 and vice versa, then

⋃
Π∈P1

Π and
⋃

Π∈P2
Π are

strongly equivalent.

Finally, we will use another property of strong equivalence from [Lifschitz et
al., 2001]:

Lemma 3. Two programs P1 and P2 are strongly equivalent iff, for every pro-
gram Π ⊆ UR, Π1 ∪Π and Π2 ∪Π have the same answer sets.

6 Proofs

6.1 Proof of the Main Theorem

Main Theorem. For every transformation f such that Dom(f) contains all
unary rules, f is sound iff, for each r ∈ R, f(r) is strongly equivalent to r.

The proof from right to left is a direct consequence of Lemma 2: if f(r) is
strongly equivalent to r for every rule r ∈ R, then for any Π ⊆ R, Π and⋃

r∈Π f(r) are strongly equivalent, and consequently have the same answer sets.
In the proof from left to right, we first consider the case when r is a unary rule,

and then extend the conclusion to arbitrary rules. In the rest of this section, f
is an arbitrary sound transformation such that Dom(f) contains all unary rules.
By a and b we denote distinct atoms.

Lemma 4. For every fact a, {a} and f(a) are strongly equivalent.

Proof. For every program Π that has {a} as the only answer set, we have that
∅ 6|= Π∅, {a} |= Π{a} and ∅ 6|= Π{a}. Since {a} and f(r) are two of such programs
Π, and a is the only atom that occurs in r and f(r), we can conclude that {r}
and f(r) are strongly equivalent by Lemma 1. ut
Lemma 5. For every rule r and fact a, {r, a} and f(r) ∪ {a} have the same
answer sets.

Proof. In view of Lemma 4, f(r) ∪ {a} and f(r) ∪ f(a) have the same answer
sets, and the same holds for {r, a} and f(r) ∪ f(a) by hypothesis. ut
Lemma 6. For every rule r of the form a← a,

(i) ∅ |= f(r)∅,
(ii) {a} |= f(r){a}, and
(iii) ∅ |= f(r){a}.

Proof. First of all, since the empty set in the only answer set for {r} and then
for f(r), (i) is clearly true. Now consider the program consisting of rule r plus
fact a. Since {a} is an answer set for {r, a}, it is an answer set for f(r)∪{a} also
by Lemma 5. Consequently, {a} |= (f(r) ∪ {a}){a}, which proves (ii). From (ii)
and the fact that {a} is not an answer set for f(r), (iii) follows also. ut

Lemma 7. For every rule r of the form a← b,

(i) ∅ |= f(r)∅,
(ii) {a} |= f(r){a},
(iii) ∅ |= f(r){a}, and
(iv) {b} 6|= f(r){b}.

Proof. The proof of the first three claims is similar to the one of Lemma 6. To
prove (iv), consider that since {b} is not an answer set for {r, b}, it is not an
answer set for f(r) ∪ {b} either by Lemma 5. But ∅ 6|= (f(r) ∪ {b}){b} because
∅ 6|= {b}{b}; consequently {b} 6|= (f(r) ∪ {b}){b}. Since {b} |= {b}{b}, we can
conclude (iv). ut
Lemma 8. For every rule r of the form a← b,

(i) {a, b} |= f(r){a,b},
(ii) {b} 6|= f(r){a,b}, and
(iii) {a} |= f(r){a,b}.

Proof. Set {a, b} is an answer set for {r, b}, and consequently for f(r) ∪ {b}
also by Lemma 5. Consequently {a, b} |= (f(r) ∪ {b}){a,b} — from which we
derive (i) — and all proper subsets of {a, b} don’t satisfy (f(r)∪{b}){a,b}. Since
{b} |= {b}{a,b}, we have that (ii) holds. Notice that {a, b} |= (f(r) ∪ {a}){a,b}

follows from (i), and that {a, b} is not an answer set for f(r) ∪ {a} because it
is not an answer set for {r, a} and by Lemma 5. Consequently there is a proper
subset of {a, b} that satisfies (f(r) ∪ {a}){a,b}. Such subset can only be {a}
because it is the only one that satisfies {a}{a,b}. We can conclude (iii). ut
Lemma 9.

∅ |= f(a← b){a,b}.

Proof. Let r be a← b, and r′ be b← a. Lemma 8 can help us determine which
subsets of {a, b} satisfy (f(r) ∪ f(r′)){a,b}: from part (i) applied to both r and
r′, we get that {a, b} satisfies this program, while {b} (by part (ii) applied to
r) and {a} (by part (ii) applied to r′) don’t. On the other hand {a, b} is not
an answer set for {r, r′} and then for f(r) ∪ f(r′) by the soundness hypothesis.
We can conclude that ∅ |= (f(r) ∪ f(r′)){a,b} from which the lemma’s assertion
follows. ut
Lemma 10. For every unary program Π, Π and

⋃
r∈Π f(r) are strongly equiv-

alent.

Proof. In view of Lemma 2, it is sufficient to show that for each unary rule r,
{r} and f(r) are strongly equivalent. For rules that are facts, this is shown by
Lemma 4. For rules r of the form a ← a, in view of Lemma 6 it is easy to
check that, for every sets X and Y such that X ⊆ Y ⊆ {a}, X |= (a ← a)Y iff
X |= f(a ← a)Y . So a ← a and f(a ← a) are strongly equivalent by Lemma 1.
Similarly, we can check that for every sets X and Y such that X ⊆ Y ⊆ {a, b}
with X 6= ∅ or Y 6= {b}, that X |= (a ← b)Y iff X |= f(a ← b)Y . This is
by Lemmas 7–9. Consequently a ← b and f(a ← b) are strongly equivalent by
Lemma 1 as well. ut

Now we are ready to prove the second part of the main theorem: for any rule
r ∈ Dom(f), f(r) and {r} are strongly equivalent. By Lemma 3,it is sufficient to
show that, for each unary program Π, Π∪{r} and Π∪f(r) have the same answer
sets. First we notice that Π∪{r} and

⋃
r′∈Π∪{r} f(r′) have the same answer sets

since Π ∪ {r} ⊆ Dom(f) and for the soundness of the transformation. Then we
can see that

⋃
r′∈Π∪{r} f(r′) =

⋃
r′∈Π f(r′) ∪ f(r). Finally,

⋃
r′∈Π f(r′) ∪ f(r)

and Π ∪ f(r) have the same answer sets because, by Lemma 10, programs Π
and

⋃
r′∈Π f(r′) are strongly equivalent. ut

6.2 Proof of Propositions 1 and 2

Proposition 1. For any program Π, Π and
⋃

r∈Π f1(r) have the same answer
sets.

Proof. (outline) Consider any set of atoms X. If {p, q} 6⊆ X then f(F ← G)X

is essentially {F ← G}X , and the claim easily follows. Otherwise f1(F ← G)X

is essentially {Fp↔q ← Gp↔q}. If we extend the notation of the subscript p↔ q
to both programs and sets of atoms, (

⋃
r∈Π f1(r))X can be seen as (ΠX)p↔q.

A subset Y of X satisfies ΠX iff Yp↔q satisfies (ΠX)p↔q. Since Yp↔q ⊆ X and
|Yp↔q| = |Y |, we can conclude that X is a minimal set satisfying (

⋃
r∈Π f1(r))X

iff it is a minimal set satisfying ΠX . ut
Proposition 2. For any program Π ⊆ NBR, Π and

⋃
r∈Π f2(r) have the same

answer sets.

Proof. (outline) Let Π ′ be
⋃

r∈Π f2(r). The proof consists in seeing that that
Π and Π ′ are both absolutely tight. So each set X atoms is an answer set for
Π iff X satisfies Π and X is “supported” by Π, and similarly for Π ′ (for more
details, see [Lee, 2005]). Those conditions are satisfied, for both Π and Π ′, by
the same sets of atoms.

It is not hard to see that the same sets X satisfy both conditions for Π and
Π ′. ut

6.3 Proof of Theorem 2

For simplicity, we consider the definition of an answer set for NDR programs as
defined in [Lifschitz and Woo, 1992], in which the reduct ΠX consists of the rule

head+(r)← body+(r) (7)

(head+(r) here stands for the disjunction of its elements, body+(r) for their
conjunction) for every rule r in Π such that head−(r) ⊆ X and body−(r)∩X = ∅.
Since ΠX is satisfied by the same sets of atoms regardless on the definition, the
strong equivalent criterion based on satisfaction of the reduct doesn’t change.

Let Π be a program strongly equivalent to r. Let X be head+(r)∪head−(r)∪
body+(r), and let Y be body+(r). Then rX is (7). By Lemma 1, since X |= rX

(recall that head+(r) is nonempty by hypothesis) then X |= ΠX , and since

Y 6|= rX it follows that Y 6|= ΠX . Consequently, there is a rule of Π — the rule
r′ of the theorem’s statement — such that X |= (r′)X and Y 6|= (r′)X . From this
second fact, (r′)X is nonempty so it is

head+(r′)← body+(r′), (8)

and also Y |= body+(r′) and Y 6|= head+(r′).
To prove that head+(r) ⊆ head+(r′), take any atom a ∈ head+(r). The

set Y ∪ {a} satisfies rX , so it satisfies ΠX by Lemma 1, and then (r′)X also.
On the other hand, since Y |= body+(r′) and Y ⊆ Y ∪ {a}, we have that
Y ∪{a} |= body+(r′). Consequently, Y ∪{a} |= head+(r′). Since Y 6|= head+(r′),
we can conclude that a is an element of head+(r′).

The proof that body+(r) ⊆ body+(r′) is similar to the previous part of the
proof, by taking any a ∈ body+(r) and considering the set Y \ {a} instead of
Y ∪ {a}.

To prove that head−(r) ⊆ head−(r′), take any atom a ∈ head−(r). Since
rX\{a} is empty, it is satisfied, in particular, by Y and X \ {a}. Consequently,
Y |= (r′)X\{a} by Lemma 1. On the other hand, Y 6|= (r′)X , so (r′)X\{a} is
not (8), and then it is empty. The only case in which (r′)X\{a} is empty and
(r′)X is not is if a ∈ head−(r′).

The proof that body−(r) ⊆ body−(r′) is similar to the previous part of the
proof, by taking any a ∈ body−(r) and considering the reduct rX∪{a}.

6.4 Proofs of Propositions 5–7 (outline)

In the proof of Proposition 5, from SNDR to CCR, we take the following sound
translation f : if r has the form (4) then f(r) is

1{a} ← 1{b1}, . . . , 1{bn}, {c1}0, . . . , {cm}0, {not d1}0, . . . , {not dq}0,

and, if r has the form (5), then f(r) is

1{} ← 1{b1}, . . . , 1{bn}, {c1}0, . . . , {cm}0, 1{d1}, . . . , 1{dq}.
A sound translation f from VSNDR to PCCR (proof of Proposition 6) is defined
as follows: if r has the form (6) then f(r) is

{a} ← 1{b1}, . . . , 1{bn}, {c1}0, . . . , {cm}0
while for rules r of the form (5), f(r) is the same as in the previous translation.

The proof in the other direction is based on the modular translation from
programs with cardinality constraints to programs with nested expressions whose
heads are atoms or ⊥, as defined in [Ferraris and Lifschitz, 2005]. If we first
apply such translation to any CCR-program, then the one from RNE to NDR
of [Lifschitz et al., 1999], we get a SNDR-program. Similarly from a PCCR-
program we get a VSNDR-program.

Proposition 7 follows from Propositions 5 and 6, the fact that no subset of
VSNDR is strongly equivalent to the rule a;not a;not b of SNDR by Theorem 2,
and the Main Theorem.

7 Conclusions

We have established a relationship between modular transformations and strong
equivalence. We showed how it can be used to determine whether sound modular
translations between languages are possible.

Other definitions of a modular translation allow the the introduction of aux-
iliary atoms. This is, for instance, the case for the definitions in [Ferraris, 2005]
and [Janhunen, 2000]. These two papers are also different from the work de-
scribed in this note in that they take into account the computation time of
translation algorithms.

We restricted, in Sect. 2, the domain and range of transformations to pro-
grams with nested expressions. If we drop this limitation by allowing arbitrary
propositional formulas, and we define the soundness of a transformation in terms
of equilibrium logic [Pearce, 1997, 1999] then the Main Theorem will still hold.
Since each propositional theory is strongly equivalent to a logic program [Ca-
balar and Ferraris, 2004] we can conclude that there exists a sound and modular
translation from propositional theories to RNE and vice versa.

Criteria for strong equivalence, in part related to Theorem 2, are proposed
in [Lin and Chen, 2005].

The theorems about cardinality constraints stated in Sect. 4 can be trivially
extended to arbitrary weight constraints in view of the fact that an expression
c = w in a weight constraint can always be replaced by w copies of c = 1.

Acknowledgments

I am grateful to Joohyung Lee for comments on this work. Special thanks go
to Vladimir Lifschitz for many comments and discussions on the topic, and
his careful reading of this paper. This research was partially supported by the
National Science Foundation under Grant IIS-0412907.

References

[Cabalar and Ferraris, 2004] Pedro Cabalar and Paolo Ferraris. Propositional theories
are equivalent to logic programs. In preparation, 2004.

[Eiter and Gottlob, 1993] Thomas Eiter and Georg Gottlob. Complexity results for
disjunctive logic programming and application to nonmonotonic logics. In Dale
Miller, editor, Proceedings of International Logic Programming Symposium (ILPS),
pages 266–278, 1993.

[Erdem and Lifschitz, 2003] Esra Erdem and Vladimir Lifschitz. Tight logic programs.
Theory and Practice of Logic Programming, 3:499–518, 2003.

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir Lifschitz. Weight constraints
as nested expressions. Theory and Practice of Logic Programming, 5:45–74, 2005.

[Ferraris, 2005] Paolo Ferraris. A modular, polynomial method for eliminating weight
constraints. 2 Submitted to the same conference, 2005.

2 http://www.cs.utexas.edu/users/otto/papers/newweight.ps .

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Proceedings of International Logic Programming Conference and Symposium,
pages 1070–1080, 1988.

[Janhunen, 2000] Tomi Janhunen. Comparing the expressive powers of some syntacti-
cally restricted classes of logic programs. In Proc. 1st International Conference on
Computational Logic, volume 1861, pages 852–866, 2000.

[Lee, 2005] Joohyung Lee. A model-theoretic counterpart of loop formulas. In Proc. IJ-
CAI, 2005. To appear.

[Lifschitz and Woo, 1992] Vladimir Lifschitz and Thomas Woo. Answer sets in general
nonmonotonic reasoning (preliminary report). In Bernhard Nebel, Charles Rich,
and William Swartout, editors, Proc. Third Int’l Conf. on Principles of Knowledge
Representation and Reasoning, pages 603–614, 1992.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner.
Nested expressions in logic programs. Annals of Mathematics and Artificial In-
telligence, 25:369–389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin Valverde.
Strongly equivalent logic programs. ACM Transactions on Computational Logic,
2:526–541, 2001.

[Lin and Chen, 2005] Fangzhen Lin and Yin Chen. Discovering classes of strongly
equivalent logic programs. In Proc. IJCAI, 2005. To appear.

[Marek and Niemelä, 2004] Victor Marek and Ilkka Niemelä. On logic programs with
cardinality constraints. In Proc. 7th Int’l Conference on Logic Programming and
Nonmonotonic Reasoning, pages 154–166, 2004.

[Marek and Truszczyński, 1991] W. Marek and M. Truszczyński. Autoepistemic logic.
Journal of the ACM, 38(3):588–619, 1991.

[Niemelä and Simons, 2000] Ilkka Niemelä and Patrik Simons. Extending the Smodels
system with cardinality and weight constraints. In Jack Minker, editor, Logic-Based
Artificial Intelligence, pages 491–521. Kluwer, 2000.

[Pearce, 1997] David Pearce. A new logical characterization of stable models and an-
swer sets. In Jürgen Dix, Luis Pereira, and Teodor Przymusinski, editors, Non-
Monotonic Extensions of Logic Programming (Lecture Notes in Artificial Intelligence
1216), pages 57–70. Springer-Verlag, 1997.

[Pearce, 1999] David Pearce. From here to there: Stable negation in logic programming.
In D. Gabbay and H. Wansing, editors, What Is Negation? Kluwer, 1999.

[Turner, 2003] Hudson Turner. Strong equivalence made easy: nested expressions and
weight constraints. Theory and Practice of Logic Programming, 3(4,5):609–622, 2003.

