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Abstract. This article presents a new reinforcement learning method called SANE (Symbiotic,
Adaptive Neuro-Evolution), which evolves a population of neurons through genetic algorithms
to form a neural network capable of performing a task. Symbiotic evolution promotes both
cooperation and specialization, which results in a fast, e�cient genetic search and discourages
convergence to suboptimal solutions. In the inverted pendulum problem, SANE formed e�ective
networks 9 to 16 times faster than the Adaptive Heuristic Critic and 2 times faster than Q-
learning and the GENITOR neuro-evolutionapproachwithout loss of generalization. Such e�cient
learning, combined with few domain assumptions, make SANE a promising approach to a broad
range of reinforcement learning problems, including many real-world applications.
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1. Introduction

Learning e�ective decision policies is a di�cult problem that appears in many
real-world tasks including control, scheduling, and routing. Standard supervised
learning techniques are often not applicable in such tasks, because the domain
information necessary to generate the target outputs is either unavailable or costly
to obtain. In reinforcement learning, agents learn from signals that provide some
measure of performance and which may be delivered after a sequence of decisions
have been made. Reinforcement learning thus provides a means for developing
pro�table decision policies with minimal domain information. While reinforcement
learning methods require less a priori knowledge than supervised techniques, they
generally require a large number of training episodes and extensive CPU time. As
a result, reinforcement learning has been limited to laboratory-scale problems.

This article describes a new reinforcement learning system called SANE (Sym-
biotic, Adaptive Neuro-Evolution), with promising scale-up properties. SANE is
a novel neuro-evolution system that can form e�ective neural networks quickly
in domains with sparse reinforcement. SANE achieves e�cient learning through
symbiotic evolution, where each individual in the population represents only a par-
tial solution to the problem: complete solutions are formed by combining several
individuals. In SANE, individual neurons are evolved to form complete neural net-
works. Because no single neuron can perform well alone, the population remains
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diverse and the genetic algorithm can search many di�erent areas of the solution
space concurrently. SANE can thus �nd solutions faster, and to harder problems
than standard neuro-evolution systems.
An empirical evaluation of SANE was performed in the inverted pendulum prob-

lem, where it could be compared to other reinforcement learning methods. The
learning speed and generalization ability of SANE was contrasted with those of
the single-layer Adaptive Heuristic Critic (AHC) of Barto et al. (1983), the two-
layer Adaptive Heuristic Critic of Anderson (1987, 1989), the Q-learning method of
Watkins and Dayan (1992), and the GENITOR neuro-evolution system of Whitley
et al. (1993). SANE was found to be considerably faster (in CPU time) and more
e�cient (in training episodes) than the two-layer AHC, Q-learning, and GENITOR
implementations. Compared to the single-layer AHC, SANE was an order of mag-
nitude faster even though it required more training episodes. The generalization
capability of SANE was comparable to the AHC and GENITOR and was superior
to Q-learning. An analysis of the �nal populations veri�es that SANE �nds solu-
tions in diverse, unconverged populations and can maintain diversity in prolonged
evolution. SANE's e�cient search mechanism and resilience to convergence should
allow it to extend well to harder problems.
The body of this article is organized as follows. After a brief review of neuro-

evolution in section 2, section 3 presents the basic idea of symbiotic evolution.
Section 4 describes the SANE method and its current implementation. The empir-
ical evaluation of SANE in the inverted pendulum problem is presented in section
5, followed by an empirical analysis of the population dynamics in 6. Section 7
discusses related work, and 8 brie
y describes other tasks where SANE has been
e�ectively applied and outlines future areas of future research.

2. Neuro-Evolution

Genetic algorithms (Holland 1975; Goldberg 1989) are global search techniques
patterned after Darwin's theory of natural evolution. Numerous potential solu-
tions are encoded in strings, called chromosomes, and evaluated in a speci�c task.
Substrings, or genes, of the best solutions are then combined to form new solutions,
which are inserted into the population. Each iteration of the genetic algorithm con-
sists of solution evaluation and recombination and is called a generation. The idea is
that structures that led to good solutions in previous generations can be combined
to form even better solutions in subsequent generations.
By working on a legion of solution points simultaneously, genetic algorithms sam-

ple many di�erent areas of the solution space concurrently. Such parallel search
can be very advantageous in multimodal (multi-peaked) search spaces that contain
several good but suboptimal solutions. Unlike gradient methods, which perform a
point-to-point search and must search each peak sequentially, genetic algorithms
may evolve several distinct groups of solutions, called species, that search multiple
peaks in parallel. Speciation can create a quicker, more e�cient search as well as
protect against convergence at false peaks. However, for speciation to emerge the
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population must contain a diverse collection of genetic material, which prevents
convergence to a single solution.
Since genetic algorithms do not require explicit credit assignment to individual

actions, they belong to the general class of reinforcement learning algorithms. In
genetic algorithms, the only feedback that is required is a general measure of pro-
�ciency for each potential solution. Credit assignment for each action is made
implicitly, since poor solutions generally choose poor individual actions. Thus,
which individual actions are most responsible for a good/poor solution is irrelevant
to the genetic algorithm, because by selecting against poor solutions, evolution will
automatically select against poor actions.
Recently there has been much interest in evolving arti�cial neural networks with

genetic algorithms (Belew et al., 1990; Je�erson et al., 1991; Kitano, 1990; Koza
and Rice, 1991; Nol� and Parisi, 1991; Scha�er et al., 1992, Whitley et al., 1990).
In most applications of neuro-evolution, the population consists of complete neural
networks and each network is evaluated independently of other networks in the
population. During evolution, the population converges towards a single dominant
network. Such convergence is desirable if it occurs at the global optimum, however,
often populations prematurely converge to a local optimum. Instead of multiple
parallel searches through the encoding space, the search becomes a random walk
using the mutation operator. As a result, evolution ceases to make timely progress
and neuro-evolution is deemed pathologically slow.
Several methods have been developed to prevent premature convergence including

�tness sharing (Goldberg and Richardson, 1987), adaptive mutation (Whitley et
al., 1990), crowding (Dejong, 1975), and local mating (Collins and Je�erson, 1991).
Each of these techniques limits convergence through external operations that are of-
ten computationally expensive or produce a less e�cient search. In the next section,
a new evolutionary method will be presented that maintains diverse populations
without expensive operations or high degrees of randomness.

3. Symbiotic Evolution

Normal evolutionary algorithms operate on a population of full solutions to the
problem. In symbiotic evolution, each population member is only a partial solu-

tion. The goal of each individual is to form a partial solution that can be combined
with other partial solutions currently in the population to build an e�ective full
solution. For example in SANE, which applies the idea of symbiotic evolution to
neural networks, the population consists of individual neurons, and full solutions
are complete neural networks. Because single neurons rely on other neurons in the
population to achieve high �tness levels, they must maintain a symbiotic relation-
ship.
The �tness of an individual partial solution can be calculated by summing the

�tness values of all possible combinations of that partial solution with other current
partial solutions and dividing by the total number of combinations. Thus, an
individual's �tness value re
ects the average �tness of the full solutions in which the
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individual participated. In practice, however, evaluating all possible full solutions
is intractable. The average �tness values are therefore approximated by evaluating
n random subsets of partial solutions (n full solutions).
Partial solutions can be characterized as specializations. Instead of solving the

entire problem, partial solutions specialize towards one aspect of the problem. For
example, in an animal classi�cation task one specialization may learn to recognize
a mammal, while another specialization may learn to recognize a reptile. Whereas
alone each specialization forms a poor classi�cation system, conjunctively such
specializations can form a complete animal classi�cation system. Specialization
will emerge because (1) individual �tness values are based on the performance of
full solutions, and (2) individuals cannot delineate full solutions.
Specialization ensures diversity which prevents convergence of the population. A

single partial solution cannot \take over" a population since to achieve high �tness
values, there must be other specializations present. If a specialization becomes too
prevalent, its members will not always be combined with other specializations in the
population. Thus, redundant partial solutions do not always receive the bene�t of
other specializations and will incur lower �tness evaluations. Evolutionary pressures
are therefore present to select against members of dominant specializations. This is
quite di�erent from standard evolutionary approaches, which always converge the
population, hopefully at the global optimum, but often at a local one. In symbiotic
evolution, solutions are found in diverse, unconverged populations.
Di�erent specializations optimize di�erent objective functions. In the animal

classi�cation example, recognizing mammals is di�erent from recognizing reptiles.
Evolution will, in e�ect, conduct separate, parallel searches in each specialization.
This concurrent, divide-and-conquer approach creates a faster, more e�cient search,
which allows the population to discover better solutions faster, and to more di�cult
problems.

4. The SANE Implementation

SANE employs symbiotic evolution on a population of neurons that interconnect
to form a complete neural network. More speci�cally, SANE evolves a population
of hidden neurons for a given type of architecture such as a 2-layer-feedforward
network (2 layers of weights). The basic steps in one generation of SANE are as
follows (table 1): During the evaluation stage, random subpopulations of neurons of
size � are selected and combined to form a neural network. The network is evaluated
in the task and assigned a score, which is subsequently added to each selected
neuron's �tness variable. The process continues until each neuron has participated
in a su�cient number of networks. The average �tness of each neuron is then
computed by dividing the sum of its �tness scores by the number of networks in
which it participated. The neurons that have a high average �tness have cooperated
well with other neurons in the population. Neurons that do not cooperate and are
detrimental to the networks they form receive low �tness scores and are selected
against.
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Table 1. The basic steps in one generation of SANE.

1. Clear all �tness values from each neuron.
2. Select � neurons randomly from the population.
3. Create a neural network from the selected neurons.
4. Evaluate the network in the given task.
5. Add the network's score to each selected neuron's �tness variable.
6. Repeat steps 2-5 a su�cient number of times.
7. Get each neuron's average �tness score by dividing its total �tness values

by the number of networks in which it was implemented.
8. Perform crossover operations on the population based on the average �tness

value of each neuron.
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Figure 1. Forming a simple 8 input, 3 hidden, 5 output unit neural network from three hid-
den neuron de�nitions. The chromosomes of the hidden neurons are shown to the left and the
corresponding network to the right. In this example, each hidden neuron has 3 connections.

Once each neuron has a �tness value, crossover operations are used to combine
the chromosomes of the best-performing neurons. Mutation at low levels introduces
genetic material that may have been missing from the initial population or lost
during crossover operations. In other words, mutation is used only as an insurance
policy against missing genetic material, not as a mechanism to create diversity.
Each neuron is de�ned in a bitwise chromosome that encodes a series of connection

de�nitions, each consisting of an 8-bit label �eld and a 16-bit weight �eld. The value
of the label determines where the connection is to be made. The neurons connect
only to the input and the output layer, and every speci�ed connection is connected
to a valid unit. If the decimal value of the label, D, is greater than 127, then the
connection is made to output unit D mod O, where O is the total number of output
units. Similarly, if D is less than or equal to 127, then the connection is made to
input unit D mod I, where I is the total number of input units. The weight �eld
encodes a 
oating point weight for the connection. Figure 1 shows how a neural
network is formed from three sample hidden neuron de�nitions.
Once each neuron has participated in a su�cient number of networks, the popu-

lation is ranked according to the average �tness values. A mate is selected for each
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neuron in the top quarter of the population by choosing a neuron with an equal
or higher average �tness value. A one-point crossover operator is used to combine
the two neurons' chromosomes, creating two o�spring per mating. The o�spring
replace the worst-performing neurons in the population. Mutation at the rate of
0.1% is performed on the new o�spring as the last step in each generation.

Selection by rank is employed instead of the standard �tness-proportionate selec-
tion to ensure a bias towards the best performing neurons. In �tness-proportionate
selection, a string s is selected for mating with probability fs=F , where fs is the
�tness of string s and F is the average �tness of the population. As the aver-
age �tness of the strings increase, the variance in �tness decreases (Whitley, 1994).
Without su�cient variance between the best and worst performing strings, the ge-
netic algorithm will be unable to assign signi�cant bias towards the best strings.
By selecting strings based on their overall rank in the population, the best strings
will always receive signi�cant bias over the worst strings even when performance
di�erences are small.

The current implementation of SANE has performed well, however, SANE could
be implemented with a variety of di�erent neuron encodings and even network
architectures that allow recurrency. More advanced encodings and evolutionary
strategies may enhance both the search e�ciency and generalization ability and
will be a subject of future research.

5. Empirical Evaluation

To evaluate SANE, it was implemented in the standard reinforcement learning
problem of balancing a pole on a cart, where its learning speed and generalization
ability could be compared to previous reinforcement learning approaches to this
problem.

5.1. The Inverted Pendulum Problem

The inverted pendulum or pole-balancing problem is a classic control problem that
has received much attention in the reinforcement learning literature (Anderson,
1989; Barto et al., 1983; Michie and Chambers, 1968; Whitley et al., 1993). A
single pole is centered on a cart (�gure 2), which may move left or right on a
horizontal track. Naturally, any movements to the cart tend to unbalance the pole.
The objective is to push the cart either left or right with a �xed-magnitude force
such that the pole remains balanced and the track boundaries are avoided. The
controller receives reinforcement only after the pole has fallen, which makes this
task a challenging credit assignment problem for a reinforcement learning system.

The controller is a�orded the following state information: the position of the cart
(�), the velocity of the cart ( _�), the angle of the pole (�), and the angular velocity
of the pole ( _�). At each time step, the controller must resolve which direction the
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Figure 2. The cart-and-pole system in the inverted pendulum problem. The cart is pushed either
left or right until it reaches a track boundary or the pole falls below 12 degrees.

cart is to be pushed. The cart and pole system can be described with the following
second order equations of motion:

��t =
mg sin�t � cos�t[Ft +mpl _�2t sin�t]

(4=3)ml �mpl cos2�t
; ��t =

Ft +mpl[ _�2t sin�t � ��t cos�t]

m
;

where
�: The position of the cart.
_�: The velocity of the cart.
�: The angle of the pole.
_�: The angular velocity of the pole.
l: The length of the pole = 0.5 m.

mp: The mass of the pole = 0.1 kg.
m: The mass of the pole and cart = 1.1 kg.
F : The magnitude of force = 10 N.
g: The acceleration due to gravity = 9.8.

Through Euler's method of numerical approximation, the cart and pole system
can be simulated using discrete-time equations of the form �(t + 1) = �(t) + � _�(t),
with the discrete time step � normally set at 0.02 seconds. Once the pole falls
past 12 degrees or the cart reaches the boundary of the 4.8 meter track, the trial
ends and a reinforcement signal is generated. The performance of the controller is
measured by the number of time steps in which the pole remains balanced. The
above parameters are identical to those used by Barto et al. (1983), Anderson
(1987), and Whitley et al. (1993) in this problem.

5.2. Controller Implementations

Five di�erent reinforcement learning methods were implemented to form a control
strategy for the pole-balancing problem: SANE, the single-layer Adaptive Heuristic
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Critic (AHC) of Barto et al. (1983), the two-layer AHC of Anderson (1987, 1989),
the Q-learning method of Watkins and Dayan (1992), and the GENITOR system of
Whitley et al. (1993). The original programs written by Sutton and Anderson were
used for the AHC implementations, and the simulation code developed by Pendrith
(1994) was used for the Q-learning implementation. For GENITOR, the system
was reimplemented as described in (Whitley et al.,1993). A control strategy was
deemed successful if it could balance a pole for 120,000 time steps.

5.2.1. SANE

SANE was implemented to evolve a 2-layer network with 5 input, 8 hidden, and
2 output units. Each hidden neuron speci�ed 5 connections giving each network
a total of 40 connections. The number of hidden neurons was chosen so that the
total number of connections was compatible with the 2-layer AHC and GENITOR
implementations. Each network evaluation consisted of a single balance attempt
where a sequence of control decisions were made until the pole fell or the track
boundaries were reached. Two hundred networks were formed and evaluated per
generation, which allowed each neuron to participate in 8 networks per generation
on average. The input to the network consisted of the 4 state variables (�; _�; �; _�),
normalized between 0 and 1 over the following ranges:

�: (�2:4; 2:4)
_�: (�1:5; 1:5)
�: (�12�; 12�)
_�: (�60�; 60�)

To make the network input compatible with the implementations of Whitley et al.
(1993) and Anderson (1987), an additional bias input unit that is always set to 0.5
was included.

Each of the two output units corresponded directly with a control choice (left
or right). The output unit with the greatest activation determined which control
action was to be performed. The output layer, thus, represented a ranking of the
possible choices. This approach is quite di�erent from most neuro-control architec-
tures, where the activation of an output unit represents a probability of that action
being performed (Anderson, 1987; Barto et al., 1983; Whitley et al., 1993). For
example, a decision of \move right" with activation 0.9 would move right only 90%
of the time. Probabilistic output units allow the network to visit more of the state
space during training, and thus incorporate a more global view of the problem into
the control policy (Whitley et al.,1993). In the SANE implementation, however,
randomness is unnecessary in the decision process since there is a large amount of
state space sampling through multiple combinations of neurons.
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Table 2. Implementation parameters for each method.

1-AHC 2-AHC QL GENITOR SANE

Action Learning Rate (�): 1.0 1.0 Population Size: 100 200
Critic Learning Rate (�): 0.5 0.2 0.2 Mutation Rate: Adaptive 0.1%
TD Discount Factor (
): 0.95 0.9 0.95 Chromosome Length: 35 (
oats) 120 (bits)

Decay Rate (�): 0.9 0 Subpopulation (�): 8

5.2.2. The Adaptive Heuristic Critic

The Adaptive Heuristic Critic is one of the best-known reinforcement learning meth-
ods, and has been shown e�ective in the inverted pendulum problem. The AHC
framework consists of two separate networks: an action network and an evaluation

network. The action network receives the current problem state and chooses an
appropriate control action. The evaluation network receives the same input, and
evaluates or critiques the current state. The evaluation network is trained using
the temporal di�erence method (Sutton, 1988) to predict the expected outcome of
the current trial given the current state and the action network's current decision
policy. The di�erences in predictions between consecutive states provide e�ective
credit assignment to individual actions selected by the action network. Such credit
assignment is used to train the action network using a standard supervised learning
algorithm such as backpropagation.

Two di�erent AHC implementations were tested: A single-layer version (Barto et
al., 1983) and a two-layer version (Anderson, 1987). Table 2 lists the parameters for
each method. Both implementations were run directly from pole-balance simulators
written by Sutton and Anderson, respectively. The learning parameters, network
architectures, and control strategy were thus chosen by Sutton and Anderson and
presumably re
ect parameters that have been found e�ective.

Since the state evaluation function to be learned is non-monotonic (Anderson,
1989) and single-layer networks can only learn linearly-separable tasks, Barto et al.
(1983) discretized the input space into 162 nonoverlapping regions or \boxes" for
the single-layer AHC. This approach was �rst introduced by Michie and Chambers
(1968), and it allows the state evaluation to be a linear function of the input. Both
the evaluation and action network consist of one unit with a single weight connected
to each input box. The output of the unit is the inner product of the input vector
and the unit's weight vector, however, since only one input box will be active at
one time, the output reduces to the weight corresponding to the active input box.

In the two-layer AHC, discretization of the input space is not necessary since
additional hidden units allow the network to represent any non-linear discriminant
function. Therefore, the same continuous input that was used for SANE was also
used for the two-layer AHC. Each network (evaluation and action) in Anderson's
implementation consists of 5 input units (4 input variables and one bias unit set at
0.5), 5 hidden units, and one output unit. Each input unit is connected to every
hidden unit and to the single output unit. The two-layer networks are trained using
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a variant of backpropagation (Anderson, 1989). The output of the action network
is interpreted as the probability of choosing that action (push left or right) in both
the single and two-layer AHC implementations.

5.2.3. Q-learning

Q-learning (Watkins, 1989; Watkins and Dayan 1992) is closely related to the AHC
and is currently the most widely-studied reinforcement learning algorithm. In Q-
learning, the Q-function is a predictive function that estimates the expected return
from the current state and action pair. Given accurate Q-function values, called
Q values, an optimal decision policy is one that selects the action with the high-
est associated Q value (expected payo�) for each state. The Q-function is learned
through \incremental dynamic programming" (Watkins and Dayan, 1992), which
maintains an estimate Q̂ of the Q values and updates the estimates based on im-
mediate payo�s and estimated payo�s from subsequent states.
Our Q-learning simulations were run using the simulation code developed by Pen-

drith (1994), which employs one-step updates as described by Watkins and Dayan
(1992). In this implementation, the Q-function is a look-up table that receives
the same discretized input that Barto et al. created for the single-layer AHC. Ac-
tions on even-numbered steps are determined using the stochastic action selector
described by Lin (1992). The action on odd-numbered steps is chosen determin-
istically according to the highest associated Q-value. Pendrith (1994) found that
such interleaved exploration and exploitation greatly improves Q-learning in the
pole-balancing domain. Our experiments con�rmed this result: when interleaving
was disabled, Q-learning was incapable of learning the pole-balancing task.

5.2.4. GENITOR

The motivation for comparing SANE to GENITOR is twofold. GENITOR is an
advanced genetic algorithm method that includes external functions for ensuring
population diversity. Diversity is maintained through adaptive mutation, which
raises the mutation rate as the population converges (section 7.1). Comparisons
between GENITOR's and SANE's search e�ciency thus test the hypothesis that
symbiotic evolution produces an e�cient search without reliance on additional ran-
domness. Since GENITOR has been shown to be e�ective in evolving neural net-
works for the inverted pendulum problem (Whitley et al.,1993), it also provides a
state-of-the-art neuro-evolution comparison.
GENITOR was implemented as detailed in (Whitley et al.,1993) to evolve the

weights in a fully-connected 2-layer network, with additional connections from each
input unit to the output layer. The network architecture is identical to the two-
layer AHC with 5 input units, 5 hidden units and 1 output unit. The input to
the network consists of the same normalized state variables as in SANE, and the
activation of the output unit is interpreted as a probabilistic choice as in the AHC.
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5.3. Learning-Speed Comparisons

The �rst experiments compared the time required by each algorithm to develop a
successful network. Both the number of pole-balance attempts required and the
CPU time expended were measured and averaged over 50 simulations. The number
of balance attempts re
ects the number of training episodes required. The CPU
time was included because the number of balance attempts does not describe the
amount of overhead each algorithm incurs. The CPU times should be treated as
ballpark estimates because they are sensitive to the implementation details. How-
ever, the CPU time di�erences found in these experiments are large enough to
indicate real di�erences in training time among the algorithms. Each implementa-
tion was written in C and compiled using the cc compiler on an IBM RS6000 25T
workstation with the -O2 optimization 
ag. Otherwise, no special e�ort was made
to optimize any of the implementations for speed.
The �rst comparison (table 3) was based on the static start state of Barto et

al. (1983). The pole always started from a centered position with the cart in the
middle of the track. Neither the pole nor the cart had any initial velocity. The
second comparison (table 4), was based on the random start states of Anderson
(1987, 1989) and Whitley et al. (1993). The cart and pole were both started from
random positions with random initial velocity. The positions and velocities were
selected from the same ranges that were used to normalize the input variables,
and could specify a state from which pole balancing was impossible. With random
initial states, a network was considered successful if it could balance the pole from
any single start state.

5.3.1. Results

The results show the AHCs to require signi�cantly more CPU time than the other
approaches to discover e�ective solutions. While the single-layer AHC needed the
lowest number of balance attempts on average, its long CPU times overshadow its
e�cient learning. Typically, it took over two minutes for the single-layer AHC to
�nd a successful network. This overhead is particularly large when compared to the
genetic algorithm approaches, which took only �ve to ten seconds. The two-layer
AHC performed the poorest, exhausting large amounts of CPU time and requiring
at least 5, but often 10 to 20, times more balance attempts on average than the
other approaches.
The experiments con�rmed Whitley's observation that the AHC trains inconsis-

tently when started from random initial states. Out of the 50 simulations, the
single-layer AHC failed to train in 3 and the two-layer AHC failed in 14. Each un-
successful simulation was allowed to train for 50,000 pole balance attempts before
it was declared a failure. The results presented for the AHC in tables 3 and 4 are
averaged over the successful simulations, excluding the failures.
Q-learning and GENITOR were comparable across both tests in terms of mean

CPU time and average number of balance attempts required. The di�erences in
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Table 3. The CPU time and number of pole balanceattempts required to �nd a successful network
starting from a centered pole and cart in each attempt. The number of pole balance attempts
refers to the number of training episodes or \starts" necessary. The numbers are computed over
50 simulations for each method. A training failure was said to occur if no successful network
was found after 50,000 attempts. The di�erences in means are statistically signi�cant (p < :01),
except the number of pole balance attempts between Q-learning and GENITOR.

CPU Seconds Pole Balance Attempts

Method Mean Best Worst SD Mean Best Worst SD Failures

1-layer AHC 130.6 17 3017 423.6 232 32 5003 709 0
2-layer AHC 99.1 17 863 158.6 8976 3963 41308 7573 4
Q-learning 19.8 5 99 17.9 1975 366 10164 1919 0
GENITOR 9.5 4 45 7.4 1846 272 7052 1396 0
SANE 5.9 4 8 0.6 535 70 1910 329 0

Table 4. The CPU time and number of pole balance attempts required to �nd a successful
network starting from random pole and cart positions with random initial velocities. The dif-
ferences in means between Q-learning and GENITOR are not signi�cant (p < :01); the other
mean di�erences are.

CPU Seconds Pole Balance Attempts

Method Mean Best Worst SD Mean Best Worst SD Failures

1-layer AHC 49.4 14 250 52.6 430 80 7373 1071 3
2-layer AHC 83.8 13 311 61.6 12513 3458 45922 9338 14
Q-learning 12.2 4 41 7.8 2402 426 10056 1903 0
GENITOR 9.8 4 54 7.9 2578 415 12964 2092 0
SANE 5.2 4 9 1.1 1691 46 4461 984 0

CPU times between the two approaches are not large enough to discount imple-
mentation details, and when started from random start states the di�erence is not
statistically signi�cant. Both Q-learning and GENITOR were close to an order of
magnitude faster than the AHCs and incurred no training failures.
SANE expended one half of the CPU time of Q-learning and GENITOR on aver-

age and required signi�cantly fewer balance attempts. Like Q-learning and GEN-
ITOR, SANE found solutions in every simulation. In addition, the time required
to learn the task varied the least in the SANE simulations. When starting from
random initial states, 90% of the CPU times (in seconds) fall in the following ranges:

1-layer AHC: [17; 136]
2-layer AHC: [17; 124]
Q-learning: [4; 20]
GENITOR: [4; 17]

SANE: [4; 6]

Thus, while the AHC can vary as much as 2 minutes among simulations and Q-
learning and GENITOR about 15 seconds, SANE consistently �nds solutions in 4
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to 6 seconds of CPU time, making it the fastest and most consistent of the learning
methods tested in this task.

5.3.2. Discussion

The large CPU times of the AHC are caused by the many weight updates that
they must perform after every action. Both the single and two-layer AHCs adjust
every weight in the neural networks after each activation. Since there are thousands
of activations per balance attempt, the time required for the weight updates can
be substantial. The Q-learning implementation reduces this overhead considerably
by only updating a single table entry after every step, however, these continuous
updates still consume costly CPU cycles. Neither SANE nor GENITOR require
weight updates after each activation, and do not incur these high overhead costs.

Note that the Q-function can be represented e�ciently as a look-up table only
when the state space is small. In a real-world application, the enormous state space
would make explicit representation of each state impossible. Larger applications
of Q-learning are likely to use neural networks (Lin 1992), which can learn from
continuous input values in an in�nite state space. Instead of representing each state
explicitly, neural networks form internal representations of the state space through
their connections and weights, which allows them to generalize well to unobserved
states. Like the AHC, a neural network implementation ofQ-learning would require
continuous updates of all neural network weights, which would exhaust considerably
more CPU time than the table look-up implementation.

Both the single-layer AHC and Q-learning had the bene�t of a presegmented in-
put space, while the two-layer AHC, GENITOR, and SANE methods received only
undi�erentiated real values of the state variables. Barto et al. (1983) selected the
input boxes according to prior knowledge of the \useful regions" of the input vari-
ables and their compatibility with the single-layer AHC. This information allowed
the single-layer AHC to learn the task in the least number of balance attempts. The
input partitioning, however, did not extend well to the Q-learner, which required
as many pole-balance attempts as the methods receiving real-valued inputs.

Interestingly, the results achieved with GENITOR were superior to those reported
by Whitley et al. (1993). This disparity is probably caused by the way the input
variables were normalized. Since it was unclear what ranges Whitley et al. (1993)
used for normalization, the input vectors could be quite di�erent. On average, our
implementation of GENITOR required only half of the attempts, which suggests
that Whitley et al. may have normalized over an overly broad range.

The comparison between SANE and GENITOR con�rms our hypothesis that
symbiotic evolution can perform an e�cient genetic search without relying on high
mutation rates. It appears that in GENITOR, the high mutation rates brought on
through adaptive mutation may be causing many disruptions in highly-�t schemata
(genetic building blocks), resulting in many more network evaluations required to
learn the task.
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Table 5. The generalization ability of the networks formed with each method. The numbers show
the percentageof random start states balanced for 1000 time steps by a fully-trainednetwork. Fifty
networks were formed with each method. There is a statistically signi�cant di�erence (p < :01)
between the mean generalizations of Q-learning and those of the single-layer AHC, GENITOR,
and SANE. The other di�erences are not signi�cant.

Method Mean Best Worst SD

1-layer AHC 50 76 2 16

2-layer AHC 44 76 5 20

Q-learning 41 61 13 11

GENITOR 48 81 2 23

SANE 48 81 1 25

5.4. Generalization Comparisons

The second battery of tests explored the generalization ability of each network.
Networks that generalize well can transfer concepts learned in a subset of the state
space to the rest of the space. Such behavior is of great bene�t in real-world tasks
where the enormous state spaces make explicit exploration of all states infeasible.
In the pole balancing task, networks were trained until a network could balance the
pole from a single start state. How well these networks could balance from other
start states demonstrates their ability to generalize.
One hundred random start states were created as a test set for the �nal network

of each method. The network was said to successfully balance a start state if the
pole did not fall below 12� within 1000 time steps. Table 5 shows the generalization
performance over 50 simulations. Since some initial states contained situations from
which pole balancing was impossible, the best networks were successful only 80%
of the time.
Generalization was comparable across the AHCs and the genetic algorithm ap-

proaches. The mean generalization of the Q-learning implementation, however,
was signi�cantly lower than those of the single-layer AHC, GENITOR, and SANE.
This disparity is likely due to the look-up table employed by the Q-learner. In the
single-layer AHC, which uses the same presegmented input space as the Q-learner,
all weights are updated after visiting a single state, allowing it to learn a smoother
approximation of the control function. In Q-learning, only the weight (i.e. the
table value) of the currently visited state is updated, preventing interpolation to
unvisited states.
Whitley et al. (1993) speculated that an inverse relationship exists between learn-

ing speed and generalization. In their experiments, solutions that were found in
early generations tended to have poorer performance on novel inputs. Sammut
and Cribb (1990) also found that programs that learn faster often result in very
speci�c strategies that do not generalize well. This phenomenon, however, was not
observed in the SANE simulations. Figure 3 plots the number of network eval-
uations incurred before a solution was found against its generalization ability for
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Figure 3. A plot of the learning speed versus generalization for the �nal networks formed in the
50 SANE simulations. The learning speed is measured by the number of network evaluations
(balance attempts) during the evolution of the network, and the generalization is measured by
the percentage of random start states balanced for 1000 time steps. The points are uniformly
scattered indicating that learning speed does not a�ect generalization.

each of the 50 SANE simulations. As seen by the graph, no correlation appears to
exist between learning speed and generalization. These results suggest that further
optimizations to SANE will not restrict generalization.

6. Population Dynamics in Symbiotic Evolution

In section 3, we hypothesized that the power of the SANE approach stems from its
ability to evolve several specializations concurrently. Whereas standard approaches
converge the population to the desired solution, SANE forms solutions in diverse,
unconverged populations. To test this hypothesis, an empirical study was con-
ducted where the diversity levels of populations evolved by SANE were compared
to those of an otherwise identical approach, but one that evolved a population of
networks. Thus, the only di�erence between the two approaches was the underlying
evolutionary method (symbiotic vs. standard). Whereas in SANE each chromo-
some consisted of 120 bits or one neuron de�nition, in the standard approach each
chromosome contained 960 bits or 8 (the value of �) neuron de�nitions. All other
parameters including population size, mutation rate, selection strategy, and number
of networks evaluated per generation (200) were identical.



26 D. MORIARTY AND R. MIIKKULAINEN

The comparisons were performed in the inverted pendulum problem starting from
random initial states. However, with the standard parameter settings, (section 5.1),
SANE found solutions so quickly that diversity was not even an issue. Therefore,
the pendulum length was extended to 2.0 meters. With a longer pole, the angular
acceleration of the pole �� is increased, because the pole has more mass and the pole's
center of mass is farther away from the cart. As a result, some states that were
previously recoverable no longer are. The controllers receive more initial states from
which pole balancing is impossible, and consequently require more balance attempts
to form an e�ective control policy. A more di�cult problem to learn prolongs the
evolution and thereby makes the population more susceptible to diversity loss.

Ten simulations were run using each method. Once each simulation established a
successful network, the diversity of the population, �, was measured by taking the
average Hamming distance between every two chromosomes and dividing by the
length of the chromosome:

� =
2
Pn

i=1

Pn

j=i+1Hi;j

n(n� 1)l
;

where n is the population size, l is the length of each chromosome, and Hi;j is
the Hamming distance between chromosomes i and j. The value � represents the
probability that a given bit at a speci�c position on one chromosome is di�erent from
a bit at the same position on a di�erent chromosome. Thus, a random population
would have � = 0:5 since there is a 50% probability that any two bits in the same
position di�er.

Figure 4 shows the average population diversity � as a function of each gener-
ation. A signi�cant loss of diversity occurred in the standard approach in early
generations as the populations quickly converged. After only 50 generations, 75%
of any two chromosomes were identical (� = 0:25). After 100 generations, 95%
of two chromosomes were the same. In the symbiotic approach, the diversity level
decreased initially but reached a plateau of 0.35 around generation 100. The sym-
biotic diversity level never fell below 0.32 in any simulation. SANE was able to
form solutions in every simulation, while the standard approach found solutions
in only 3. SANE found its solutions between 10 and 201 generations (67 on aver-
age), with an average �nal diversity � = 0:38. The three solutions found by the
standard approach were at generations 69, 76, and 480, with an average diversity
of 0.14. The failed simulations were stopped after 1000 generations (i.e. 200,000
pole-balance attempts).

These results con�rm the hypothesis that symbiotic evolution establishes solutions
in diverse populations and can maintain diversity in prolonged evolution. Whereas
evolving full solutions caused the population to converge and fail to �nd solutions,
the symbiotic approach always found a solution and in an unconverged population.
This cooperative, e�cient, genetic search is the hallmark of symbiotic evolution
and should allow SANE to extend to more di�cult problems.
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Figure 4. The average population diversity � after each generation. The diversity measures were
averaged over 10 simulations using each method. The symbiotic method maintained high levels
of diversity, while the standard genetic algorithm quickly converged.

7. Related Work

Work most closely related to SANE can be divided into two categories: genetic
reinforcement learning and coevolutionary genetic algorithms.

7.1. Genetic Reinforcement Learning

Several systems have been built or proposed for reinforcement learning through
genetic algorithms, including both symbolic and neural network approaches. The
SAMUEL system (Grefenstette et al.,1990) uses genetic algorithms to evolve rule-
based classi�ers in sequential decision tasks. Unlike most classi�er systems where
genetic algorithms evolve individual rules, SAMUEL evolves a population of clas-
si�er systems or \tactical plans" composed of several action rules. SAMUEL is
a model-based system that is designed to evolve decision plans o�ine in a sim-
ulation of the domain and then incrementally add the current best plan to the
actual domain. SAMUEL has been shown e�ective in several small problems in-
cluding the evasive maneuvers problem (Grefenstette et al.,1990) and the game of
cat-and-mouse (Grefenstette, 1992), and in more recent work, SAMUEL has been
extended to the task of mobile robot navigation (Grefenstette and Schultz, 1994).
The main di�erence between SAMUEL and SANE lies in the choice of representa-
tion. Whereas SAMUEL evolves a set of rules for sequential decision tasks, SANE
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evolves neural networks. The interpolative ability of neural networks should allow
SANE to learn tasks quicker than SAMUEL, however, it is easier to incorporate
pre-existing knowledge of the task into the initial population of SAMUEL.

GENITOR (Whitley and Kauth, 1988; Whitley, 1989) is an \aggressive search"
genetic algorithm that has been shown to be quite e�ective as a reinforcement learn-
ing tool for neural networks. GENITOR is considered aggressive because it uses
small populations, large mutation rates, and rank-based selection to create greater
variance in solution space sampling. In the GENITOR neuro-evolution implemen-
tation, each network's weights are concatenated in a real-valued chromosome along
with a gene that represents the crossover probability. The crossover allele deter-
mines whether the network is to be mutated or whether a crossover operation is to
be performed with a second network. The crossover allele is modi�ed and passed to
the o�spring based on the o�spring's performance compared to the parent. If the
o�spring outperforms the parent, the crossover probability is decreased. Otherwise,
it is increased. Whitley refers to this technique as adaptive mutation because it
tends to increase the mutation rate as populations converge.

There are several key di�erences between GENITOR and SANE. The main di�er-
ence, however, is that GENITOR evolves full networks and requires extra random-
ness to maintain diverse populations, whereas SANE ensures diversity by building
it into the evaluation itself. As demonstrated in the pole-balancing simulations,
GENITOR's high mutation rates can lead to a less e�cient search than SANE's
symbiotic approach. Another di�erence between SANE and Whitley's approach
lies in the network architectures. In the current implementation of GENITOR
(Whitley et al.,1993), the network architecture is �xed and only the weights are
evolved. The implementor must resolve a priori how the network should be con-
nected. In SANE, the topology of the network evolves together with the weights,
granting more freedom to the genetic algorithm to manifest useful neural structures.

7.2. Coevolutionary Genetic Algorithms

Symbiotic evolution is somewhat similar to implicit �tness sharing or co-adaptive
genetic algorithms (Smith et al., 1993; Smith and Gray, 1993). In their immune
system model, Smith et al. (1993) evolved arti�cial antibodies to recognize or match
arti�cial antigens. Since each antibody can only match one antigen, a diverse pop-
ulation of antibodies is necessary to e�ectively guard against a variety of antigens.
The co-adaptive genetic algorithm model, however, is based more on competition
than cooperation. Each antibody must compete for survival with other antibodies
in the subpopulation to recognize the given antigen. The �tness of each individual
re
ects how well it matches its opposing antigen, not how well it cooperates with
other individuals. The antibodies are thus not dependent on other antibodies for
recognition of an antigen and only interact implicitly through competition. Horn
et al. (1994) characterize this di�erence as weak cooperation (co-adaptive GA) vs.
strong cooperation (symbiotic evolution). Since both approaches appear to have
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similar e�ects in terms of population diversity and speciation, further research is
necessary to discover the relative strengths and weaknesses of each method.
Smith (1994) has recently proposed a method where a learning classi�er system

(LCS) can be mapped to a neural network. Each hidden node represents a classi�er
rule that must compete with other hidden nodes in a winner-take-all competition.
Like SANE, the evolution in the LCS/NN is performed on the neuron level in-
stead of at the network level. Unlike SANE, however, the LCS/NN does not form
a complete neural network, but rather relies on a gradient descent method such
as backpropagation to \tune" the weights. Such reliance precludes the LCS/NN
from most reinforcement learning tasks where sparse reinforcement makes gradient
information unavailable.
Potter and De Jong have developed a symbiotic evolutionary strategy called Co-

operative Coevolutionary Genetic Algorithms (CCGA) and have applied it to both
neural network and rule-based systems (Potter and De Jong, 1995a; Potter et al.,
1995b). The CCGA evolves partial solutions much like SANE, but distributes the
individuals di�erently. Whereas SANE keeps all individuals in a single population,
the CCGA evolves specializations in distinct subpopulations or islands. Members of
di�erent subpopulations do not interbreed across subpopulations, which eliminates
haphazard, destructive recombination between dominant specializations, but also
removes information-sharing between specializations.
Evolving in distinct subpopulations places a heavier burden on a priori knowledge

of the number of specializations necessary to form an e�ective complete solution. In
SANE, the number and distribution of the specializations is determined implicitly
throughout evolution. For example, a network may be given eight hidden neurons
but may only require four types of hidden neurons. SANE would evolve four dif-
ferent specializations and redundantly select two from each for the �nal network.
While two subpopulations in the CCGA could represent the same specialization,
they cannot share information and therefore are forced to �nd the redundant spe-
cialization independently. Potter and De Jong (1995a) have proposed a method
that automatically determines the number of partial solutions necessary by incre-
mentally adding random subpopulations. This approach appears promising, and
motivates further research comparing the single population and incremental sub-
population approaches.

8. Extending SANE

SANE is a general reinforcement learning method that makes very few domain
assumptions. It can thus be implemented in a broad range of tasks including
real-world decision tasks. We have implemented SANE in two such tasks in the
�eld of arti�cial intelligence: value ordering in constraint satisfaction problems and
focusing a minimax search (Moriarty and Miikkulainen, 1994a, 1994b).
Value ordering in constraint satisfaction problems is a well-studied task where

problem-general approaches have performed inconsistently. A SANE network was
used to decide the order in which types or classes of cars were assigned on an
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assembly line, which is an NP-complete problem. The network was implemented
in a chronological backtrack search and the number of backtracks incurred deter-
mined each network's score. The �nal SANE network required 1/30 of the back-
tracks of random value ordering and 1/3 of the backtracks of the commonly-used
maximization-of-future-options heuristic.

In the second task, SANE was implemented to focus minimax search in the game
of Othello. SANE formed a network to decide which moves from a given board
situation are promising enough to be evaluated. Such decisions can establish better
play by e�ectively hiding bad states from the minimax search. Using the powerful
evaluation function from Bill (Lee and Mahajan, 1990), the SANE network was
able to generate better play while examining 33% fewer board positions than a
normal, full-width minimax search using the same evaluation function.

Future work on SANE includes applying it to larger real-world domains with mul-
tiple decision tasks. Possible tasks include local area network routing and schedul-
ing, robot control, elevator control, air and automobile tra�c control, and �nancial
market trading. Since SANE makes few domain assumptions, it should be applica-
ble in each of these domains as well as many others. An important question to be
explored in such domains is: can SANE simultaneously evolve networks for separate
decision tasks? For example, in a local area network, can neurons involved in pri-
ority queuing be simultaneously evolved with neurons for packet routing? Evolving
neurons to formmany di�erent networks should not be any di�erent than for a single
network, since even in a single network SANE must develop neurons that specialize
and serve very di�erent roles. To evolve multiple networks, the input layers and
output layers of each network could be concatenated to form a single, multi-task
network. Which input units are activated and which output units are evaluated
would depend on which decision task was to be performed. Since a hidden neuron
could establish connections to any input or output unit, it could specialize its con-
nections to a single decision task or form connections between sub-networks that
perform di�erent tasks. Such inter-network connections could produce interesting
interactions between decision policies.

A potential key advantage of symbiotic evolution not yet fully explored is the abil-
ity to adapt quickly to changes in the environment. Often in control applications,

uctuations in the domain may require quick adaptation of the current decision pol-
icy. In gradient or point-to-point searches, adaptation can be as slow as retraining
from a random point. Similarly in standard genetic algorithms which converge the
population to a single solution, the lack of diverse genetic material makes further
traversals of the solution space extremely slow. In SANE, however, the population
does not converge. SANE's population should therefore remain highly adaptive to
any changes in the �tness landscape.

While we believe that symbiotic evolution is a general principle, applicable not
only to neural networks but to other representations as well, not all representations
may be compatible with this approach. Symbiosis emerges naturally in the current
representation of neural networks as collections of hidden neurons, but prelimi-
nary experiments with other types of encodings, such as populations of individual
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network connections, have been unsuccessful (Steetskamp, 1995). An important
facet of SANE's neurons is that they form complete input to output mappings,
which makes every neuron a primitive solution in its own right. SANE can thus
form subsumption-type architectures (Brooks, 1991), where certain neurons pro-
vide very crude solutions and other neurons perform higher-level functions that �x
problems in the crude solutions. Preliminary studies in simple classi�cation tasks
have uncovered some subsumptive behavior among SANE's neurons. An important
focus for future research will be to further analyze the functions of evolved hidden
neurons and to study other symbiotic-conducive representations.

9. Conclusion

SANE is a new reinforcement learning system that achieves fast, e�cient learn-
ing through a new genetic search strategy called symbiotic evolution. By evolving
individual neurons, SANE builds e�ective neural networks quickly in diverse pop-
ulations. In the inverted pendulum problem, SANE was faster, more e�cient, and
more consistent than the earlier AHC approaches, Q-learning, and the GENITOR
neuro-evolution system. Moreover, SANE's quick solutions do not lack generaliza-
tion as suggested by Whitley et al. (1993). Future experiments will extend SANE
to more di�cult real-world problems where the ability to perform multiple con-
current searches in an unconverged population should allow SANE to scale up to
previously unachievable tasks.
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