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Abstract

This paper presents a vision-based docking algorithm
for an autonomous underwater vehicle (AUV). The algo-
rithm allows the AUV to egress through a melthole in the
frozen surface of a lake after the AUV’s dead-reckoning
system brings the vehicle in the vicinity of the melthole.
A blinking light source is used to guide the robot to-
wards the melthole and through it. A light detection and
tracking algorithm performs a temporal analysis of im-
ages captured from an upward-facing camera to detect
sources of illumination and identify and track the blink-
ing target light source. The vehicle first moves in a spiral
pattern to search for the target using the light-detection
algorithm. On finding the light, the AUV ascends while
keeping the light centered in the camera’s field of view.

The vision-based docking algorithm was imple-
mented on the ENDURANCE AUV and tested during a
four-week-long scientific mission to explore West Lake
Bonney in Antarctica in December 2008. The algo-
rithm was used to ascend in 10 missions and to descend
in 8 missions through a three-meter-deep melthole only
slightly larger than the vehicle itself. In each instance,
the vehicle was able to safely ascend or descend without
coming into contact with the walls. Quantitative analy-
sis of mission data confirmed that the tracking algorithm
and ascent controller were robust and precise.

1 Introduction

Scientists across several disciplines have become in-
creasingly interested in exploring and mapping lakes
frozen over with ice. These environments are too dan-
gerous for divers and too sensitive for large manned
submersibles, making them prime candidates for au-
tonomous vehicle exploration. One of the many chal-
lenges faced by autonomous underwater vehicles in ex-
ploring such environments is the recovery of the vehi-
cle at the end of a mission. This is a particularly dif-
ficult problem because the navigation systems onboard
these vehicles are typically not accurate enough to re-
turn the vehicle to its precise home position. At the same
time, the maneuver has little room for error as entrance
and egress through the ice requires the vehicle to pass
through a narrow, confined region.

In this paper we describe a robust vision-based dock-
ing algorithm for safely recovering an AUV through
a melthole in the ice layer. The algorithm was moti-
vated by and designed for the ENDURANCE AUV for
its four-week scientific mission to explore West Lake
Bonney, Antarctica in December 2008 [12]. The ve-
hicle entered the lake via a three meter vertical hole
melted through the surface ice that was only slightly
larger than the vehicle’s diameter. During its daily scien-
tific missions, ENDURANCE traveled over many hun-



Figure 1: ENDURANCE AUV being deployed through
the melthole in West Lake Bonney. The melthole diam-
eter (≈ 2 m) is only slightly larger than the vehicle’s
diameter (≈ 1.8 m). A blinking light source was sus-
pended approximately 1.5 m above the melthole.

dreds of meters before returning to the melthole and sur-
facing. The vehicle’s dead-reckoning navigation system
was sufficient to bring the AUV within a few of meters
of the melthole but could not precisely position the AUV
under the melthole for safe egress. We therefore had to
develop a homing/docking method that not only had to
center the AUV with respect to the melthole but had to
detect the melthole in the first place. Once the melthole
was detected and the AUV centered, the AUV could rise
to the surface while avoiding contact with the melthole
walls. Figure 1 shows the ENDURANCE AUV and the
actual melthole.

Our vision based docking solution comprised both
hardware and software components. For hardware,
we suspended a downward-facing blinking light cen-
tered above the melthole and an upward-facing camera
mounted on top of the vehicle. The software component
consisted of a light detection module, a spiral search be-
havior, and an ascent controller to align and surface the
vehicle. When the vehicle reached close to the melt-
hole, as per its dead-reckoning, it transitioned to a spi-
ral search routine – the vehicle spiraled outward from
the starting position while looking for the blinking light
in its camera. While executing its spiral path, the vehi-
cle detected and tracked all light sources in the camera’s
field of view. On confirmed identification of the blink-
ing target light, the vehicle transitioned from the search

routine to the ascent controller. The ascent controller
commanded the robot to rise while maintaining the tar-
get light in the center of the image and stopping the robot
when it reached the water surface.

We chose a camera and a blinking light source for the
homing operations after evaluating several alternatives,
such as sonar. A vision-based approach is able to sample
the environment more frequently and more richly than a
sonar-based approach. In addition, it eliminates the need
to address the challenge of overcoming the crosstalk be-
tween different sonar sensors that could occur in a nar-
row melthole. Other kinds of lights do not provide as
strong a signal as a blinking one. A colored light doesn’t
work as the color signal dissipates quickly with distance.
Arranging several lights in a pattern also does not work
because flaring causes the distinct lights to appear as a
single source. Likewise, lights of specific size and shape
are almost impossible to discern at significant distances.
A blinking light source on the other hand provides a
powerful signature as the intensity signal penetrates to a
good depth and because there are few light sources that
blink brightly in natural environments. In Section 6 we
further discuss some of the alternate solutions employed
by other researchers in the literature.

Tracking a blinking light is, however, a challenging
vision problem because it requires temporal analysis in
addition to static analysis of sequential frames. Our ap-
proach uses contours to identify sources of illumination,
and then applies a novel matching algorithm to regis-
ter current light sources with past sources. The algo-
rithm can distinguish between: an existing moving light
source, a new light source entering the image, and an
old light source that no longer needs to be tracked. Light
sources that pass a series of filters on their size and shape
are evaluated for the degree to which they blink. For
flexibility, we do not assume that the light source is syn-
chronized with the camera and thus the blinking may
appear irregular. We provide a metric that is robust to
these conditions, and that returns the most likely target
in the image. The position of the target light, if found,
is then passed to the ascent controller. The details of our
light tracking approach are discussed in Section 4.

Our visual homing system was successfully deployed
on the ENDURANCE mission in Antartica. In all mis-
sions where it was employed, it successfully found the
light source and surfaced the vehicle through the melt-
hole without collision. We present quantitative and qual-
itative results from the missions evaluating the ascent
controller and the light detection module in Section 5.
We begin with a description of the overall architecture
of the system followed by the spiral and ascent behav-
iors and the light detection algorithm.



2 Docking System Architecture

The software architecture for visual homing consists of
three main components: the system executive, the navi-
gator and the light detection module. The system execu-
tive accepts commands from the user through a user in-
terface. It can also execute scripted plans. The navigator
can execute various behaviors such as homing, station-
keeping etc. by instantiating an appropriate controller.
The controller sends velocity commands to lower-level
modules which are eventually converted into thrust val-
ues for the vehicle’s six thrusters. The vehicle’s con-
trol enables it to move independently in the lateral (x, y)
plane and the vertical direction (z). The light detec-
tion module detects light sources in the images taken
by the upward-facing camera, and identifies a blinking
light source as the target. The coordinates of the light
source center are expressed as angles (θt

x, θt
y) in the im-

age frame (Figure 2). These angles are computed as
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where (Lx, Ly) are the image coordinates (in pixels) of
the light center, (αx, αy) is the field of view of the cam-
era in radians, and (Wx,Wy) is the width of the image
in pixels (Figure 2).

As mentioned, the AUV’s dead reckoning system is
accurate enough to move the vehicle within a few me-
ters of its home position under the melthole. At Lake
Bonney, a 50% circular error probable (CEP) drift error
of about 0.1% of distance traveled was observed [10].
Although this error is relatively small, a more accurate
estimate of the melthole position is required for safe
egress. The vehicle searches for the light source posi-
tioned over the melthole, centers it in its field of view,
and ascends upward while avoiding collisions with the
melthole walls.

The system executive initiates the visual homing rou-
tine by sending a message to the navigator when the
dead-reckoning pose estimate indicates that the vehicle
has arrived at its nominal home position. Upon receiving
this message, the navigator initiates a spiraling behav-
ior. In this behavior, the navigator sends a message to
the light detection module to start detecting a target light
source. At the same time, the vehicle starts to move out-
ward in a spiral pattern while maintaining constant depth
to search for a light source. If the light detection module
is able to identify a target source, it starts tracking this
source and sends a message to the navigator. The nav-
igator then transitions to an ascent behavior. The light
detection module continues to track the target while the

Figure 2: Various parameters associated with the image
from the upward-facing camera. The light source is not
necessarily centered in the image (see text for details).

vehicle keeps the light centered in its field of view us-
ing a proportional-derivative (PD) controller in the lat-
eral plane. At the same time, it ascends vertically using
a proportional-integral-derivative (PID) control law.

When visual homing is used for descent, the spiraling
behavior is not executed. This is because it is assumed
that, during descent, the vehicle is directly beneath the
target light source and hence no search is necessary. In-
stead, the navigator directly transitions to a descent be-
havior. This behavior is identical to the ascent behavior
except that the PID control law for descent is used in-
stead.

3 Navigator Behaviors
The visual homing system consists of two component
behaviors: spiraling and ascent/descent. This section de-
scribes these two behaviors in detail.

3.1 Spiraling Behavior
As mentioned earlier, a search for the light source is
performed by having the robot spiral outward from its
present location while maintaining constant depth. A
spiral search allows the vehicle to completely scan the
under-surface of the ice above it.

The equation of the spiral (an Archimedean spiral) is

r = a +
b

2π
θ (3)

where a is an offset parameter which determines where
the spiral starts. The value a is set to zero because we
want the vehicle to start searching from its current lo-
cation. The value b is the distance between the arms of
the spiral. The parameter b is determined from the depth
at which the spiral search is performed and the field of



view of the camera. This value is chosen to ensure that
the under-surface of the ice is completely scanned by the
upward-facing camera for the light source, and that the
overlap between search areas is not excessive. The θ
parameter is varied from zero to θmax such that a max-
imum radius of rmax is reached. The search radius it-
self is calculated from the lateral distance traveled by
the vehicle and its dead-reckoning accuracy. For exam-
ple, if lateral distance traveled is D and dead-reckoning
accuracy is p% of D, then the search radius required is
pD/100.

The position (x, y) of the vehicle in the lateral plane
can be determined from the spiral coordinates (r, θ) as

x = x0 + r cos θ

y = y0 + r sin θ, (4)

where (x0, y0, z0) is the initial position of the vehicle.
The (x, y) locations on the spiral are reached by using

a PID controller that computes the appropriate velocity
commands. This PID controller is similar to the z con-
troller in Algorithm 1.

3.2 Ascent/Descent Behavior

Algorithm 1 outlines the controller used by the naviga-
tor to ascend up the melthole. The controller uses the
coordinates of the center of the light source in the image
as an error signal to center the vehicle on the light.

A PD controller is used to compute the vehicle’s ve-
locity in the lateral plane based on the light center coor-
dinates. The controller tries to center the light source in
the image thereby centering the robot on the light source.
If the vehicle is already well-centered with respect to the
light source in any one direction (x or y), then the com-
manded velocity in that direction is zero.

A non-zero z-velocity vt
z is commanded only when

the light is approximately centered in the image. A PID
control law is used for the z-direction. This law uses an
estimate of the vehicle’s depth, zobs, at the current and
previous times to compute vt

z as given in Algorithm 1.
Note that positive z axis points in the downward direc-
tion.

Thus, the output of the controller is a vector of com-
manded velocities (vt

x, vt
y, vt

z)
T . The controller stops

when the vehicle reaches the water surface as indicated
by zobs. For descent, the vehicle uses the same controller
as for ascent except that control in the z-direction is dis-
abled. The vehicle is slightly weighed down and grad-
ually sinks down the melthole while being controlled in
the x and y directions.

Require: Center of light source in the image
(θt

x, θt
y), estimate of the vehicle’s depth

zt
obs, z

t−1
obs , and estimate of vehicle’s

velocity vt
zobs

// Smoothed error where α = 0.75

// et−1
x is a static variable

et
x ← α θt

x + (1− α) et−1
x

et
y ← α θt

y + (1− α) et−1
y

// Derivative of error

ėt
x ← et

x − et−1
x

ėt
y ← et

y − et−1
y

// If error is greater than a

// threshold use PD controller,

// else set velocity to zero

if |et
x| > θT then
vt

x ← min(vmax,−Kpe
t
x −Kdė

t
x)

else
// For low error, commanded

// velocity is zero

vt
x ← 0

end

if |et
y| > θT then
vt

y ← min(vmax,−Kpe
t
y −Kdė

t
y)

else
vt

y ← 0
end

// Ascend/descend only when

// vehicle is approximately

// centered
if |et

x| < θR and |et
y| < θR then

// Error in z

et
z ← zt

obs − zt−1
obs

// PID Controller

vt
z ← −Kpz et

z −Kdz vt
zobs

−Kiz min(et
z ∆t, ∆emax

z )
else

vt
z ← 0

end

// Store previous error estimate to

// compute smoothed errors
et−1
x ← et

x

et−1
y ← et

y

return (vt
x, vt

y, vt
z)

T

Algorithm 1: Ascent Controller: Returns command
velocities (vt

x, vt
y, vt

z) at time t.



4 Light Detection Module

The controller described in the previous section requires
accurate detection and tracking of the target light source
in the camera image. At the camera frame rate of around
6Hz, frames are captured and then processed by our low-
level vision routines (built on OpenCV) to identify high-
contrast contours as candidates for the target light. These
contours are then filtered based on their roundness and
size to eliminate obvious false positives. For each can-
didate contour that passes our filters, we pass the center
and radius of the bounding circle to our light tracking
algorithm.

Unlike the typical light tracking problem, which as-
sumes that a target light is always illuminated, our prob-
lem is significantly more challenging. We must track a
light even during the frames when it is not illuminated
and distinguish it from persistent light sources in the
image, all while the camera is moving. To tackle this
problem we make a couple of assumptions. First, we as-
sume that, although there maybe be many persistent light
sources in the image, there is only one blinking light at
any given time. And second, we assume that the cam-
era does not move too quickly. The definition of “too
quickly” is determined by constants in the algorithm that
trade off false positives and false negatives.

Algorithm 2 outlines our blinking light detection and
tracking algorithm. The algorithm maintains a set, L,
which contains the current light sources being tracked,
including their bounding circles and histories. A his-
tory is a list that contains whether or not the light source
was seen or unseen for each frame going back to some
upper bound on the history length (24 frames in our ex-
periments). The algorithm updates this data structure by
incorporating C, the set of candidate light sources seen
in the current frame. The tracker must identify which
candidates correspond to light sources that have already
been seen and which candidates are new. We take a
greedy edge-elimination approach, as described in Al-
gorithm 2 and illustrated by example in Figure 3.

The algorithm begins by computing a matrix, ∆, con-
taining the distances between all currently tracked light
sources and the candidates in the frame. The list, λ, is a
list of all possible pairs, as illustrated by the edges in the
left-hand graph in Figure 3.

The first round of elimination, removes all edges with
distance greater than the threshold ∆max (50 pixels in
our experiments). Essentially, if a candidate light is far-
ther away than this value from a light in the tracker, they
cannot be considered the same light source. We set this
threshold large enough to allow the robot to move some
significant amount between frames, but small enough to
avoid clumping all light sources together. At the same
time, we eliminate edges if they connect light sources

Require: Lights tracked in memory, Lt−1,
and candidate lights returned by
contour algorithm on current frame,
Ct.

∆← |Lt−1| × |Ct| matrix
λ← Lt−1 × Ct

foreach (l, c) ∈ λ do
∆l,c ← ||l.center − c.center||

end

// Cull large edges

foreach (l, c) ∈ λ do
if ∆l,c > ∆max or
| log(l.radius)− log(c.radius)| >
Rmax then

Remove (l, c) from λ
end

end

Sort λ by descending ∆l,c

// Greedy edge removal

foreach (l, c) ∈ λ do
if (l′, c) ∈ λ or (l, c′) ∈ λ [l′ 6= l, c′ 6= c]
then

Remove (l, c) from λ
end

end

// Update histories

foreach l ∈ Lt−1 do
if (l, c) ∈ λ then

Mark Lt
l seen

else
Mark Lt

l unseen
end

end

// Add new candidates

foreach c ∈ Ct do
if (l, c) /∈ λ then

Add c to Lt

end
end

// Find target by score

l∗ ← arg maxl score(Lt
l)

if score(l∗) ≥ Smin then
return l∗.center

else
return ⊥

end
Algorithm 2: Light Tracker: Returns position of
blinking light (θt

x, θt
y) in image at time t, or ⊥ if

not found.



with drastically different sizes. If the logs of their radii
differ by more than Rmax, then the edge is eliminated.
The primary motivation for this filter is to prevent specu-
lar glare on the light source glass from being recognized
as the light when it is off, a problem we encountered
during early experimentation.

After the first culling, the edges that remain appear as
depicted in the middle graph in Figure 3. Notice that
some nodes still have more than one edge, which means
that there are multiple potential matches to be made. The
next round of elimination determines which of those po-
tential matches is best. The algorithm sorts the remain-
ing edges by decreasing distance and then eliminates
them one-by-one. An edge will not be eliminated if it
is the only edge remaining for the nodes it connects, be-
cause that edge is treated as a correct match.

In the end, the graph that results from the greedy
culling algorithm looks like the right-hand graph in Fig-
ure 3. No node has more than one edge. The edges that
remain connect the candidates in the current frame with
their corresponding light source histories. Orphaned
nodes in L (one in the figure) are tracked light sources
that were not seen in the current frame. Their histories
are updated to reflect that they were unseen. Orphaned
nodes in C (two in the figure) are newly-observed candi-
dates, which are added to the list of tracked light sources
with a fresh history.

Figure 3: To process new candidate light sources, our
algorithm begins with a bijection between those can-
didates (C) and the currently tracked light sources (L)
[left]. Edges are removed if the distance between the
sources is too large or if the disparity in their sizes is too
high [middle]. Finally, edges are removed in order from
greatest distance to smallest, while not removing edges
(l, c) that would orphan both l and c [right].

With L updated, we compute a score for each tracked
light source. After some experimentation with alterna-
tives, the score that worked best was the simplest: num-
ber of transitions. Every time the light switches from
seen to unseen or unseen to seen in its bounded his-
tory, that light source receives a point. The highest pos-

sible score, then, is half the history length. In prac-
tice, however, a true positive tends to score in the 3–7
range. Through informal experimentation, we arrived
at a value of 4 for the minimum threshold value on the
score, Smin. Thus, the light source with the highest
score above threshold is returned as the target. If no light
sources score above the threshold, then the algorithm re-
turns a null value.

5 Experiments and Results
Visual homing was used for 10 missions in West Lake
Bonney. It was used 10 times for ascent and 8 times
for descent. Of the 10 times when it was used for as-
cent, spiraling behavior was executed 5 times. Two
times, the vehicle was farther away form the melthole
than could be reached with a single spiral search. Here,
spiral search was executed 2 and 3 times respectively by
manually issuing a visual homing command through the
user-interface. The transit depth of the vehicle was 5 m
and hence most ascents were initiated at a depth of 5 m.
For the rest of this paper the ascents will be labeled as
ascent-i where i is the mission number. The descents
will be labeled in a similar manner.

The value of the parameter b for spiral search was cho-
sen to be 0.25 m. The longest length mission performed
at West Lake Bonney was approximately 1800 m. Since
the dead reckoning accuracy for the vehicle is approx-
imately 0.1% of total distance traveled, a search radius
rmax of at least 1.8 m was necessary. To account for
unexpected drift, we set rmax = 4.8 m for Lake Bonney
missions.

For all the 18 instances, visual homing was successful
in guiding the vehicle up and down the melthole with-
out collisions with the walls. Figure 4 shows some im-
ages taken by the upward-facing camera during an as-
cent. Figure 5 shows the path of the vehicle for two as-
cents and one descent. For the ascent, the vehicle’s path
during a spiral search for the light source is also shown.
The spiral search proved to be a simple yet effective way
to search for the light source.

5.1 Ascent/Descent Controller Precision
We analyze the precision of the ascent controller 1. A
sequence of time-stamped poses is available from the
vehicle’s sensors. We use the standard deviation in the
vehicle’s x and y coordinates as an estimate of the pre-
cision of the controller for an ascent (the standard devi-
ations capture not only the ascent controller’s precision
but also the precision of the light detection module at

1Since we do not have ground truth pose information available to
us, we cannot evaluate the accuracy of the controller.



(a) (b) (c)
Figure 4: Sequence of images taken by the upward-facing camera during mission-3 showing various stages of the
visual homing behavior. (a) During search, the light-detection module identifies a candidate light source (red circle).
Note that the light source is not centered in the image. (b) After observing the light source blink a few times, the
source is confirmed as the desired target (blue circle). The robot also starts centering the light source in the image.
(c) The view from the camera when the robot reaches the top of the melthole using the ascent controller with the light
source well centered.

locating the center of the light source). The standard de-
viation is computed for pose values obtained after the
vehicle has approximately centered itself with respect
to the light source. Since both image and pose data is
available for only 7 missions, we analyze data for these
missions. Table 1 lists the standard deviations for the 7
missions.

In addition to standard deviation values for each mis-
sion, we compute the overall standard deviation. To do
this, we first normalize all x and y values for each ascent
by their means. If x is the mean x pose for an ascent,
then the normalized value x̂ for a particular x coordi-
nate is given by x̂ = x − x. The normalized values are
combined into a single vector and the overall precision is
then given by the vector’s standard deviation. The over-
all precision for the y coordinates is similarly computed.

As we can see from Table 1, the overall value for the
standard deviation is 5.70 cm in the x direction and 4.60
cm in the y direction. The vehicle has a clearance of
10 cm on all sides when it is in the melthole implying
that for about 92% of the time, the vehicle was fairly
well centered in the melthole and not touching any walls.
Qualitatively, the vehicle came up the melthole success-
fully every time without suffering any damage, suggest-
ing that at worst the vehicle only lightly grazed the melt-
hole walls. Thus, the controller and the light detection
algorithm were able to successfully surface the robot.
The precision for the descents is numerically similar to
that for the ascents.

5.2 Light Detection Accuracy

The performance of the light detection algorithm is best
evaluated by its impact on the controller. However, to
provide more insight into its strengths and weaknesses,
we present some statistics about the light tracking out-

put. First, to help gain a qualitative sense of algorithm
performance, Figure 6 shows a few key frames taken by
the camera during a field ascent. The images are an-
notated with shapes to visualize the internal state of the
light tracking algorithm through the course of the ascent.
A red circle indicates a candidate light source. A blue
circle indicates a light source determined to be the tar-
get. From Figure 6(e), we see that misclassifications are
possible, but Figure 6(f) shows that the algorithm is able
to recover.

To evaluate algorithm performance, we are primarily
interested in four criteria. First, the algorithm should
acquire and detect the blinking light quickly. Second,
it should not lose track of the light once it has been
acquired, producing false negatives. Third, it should
not produce false positives by misclassifying non-target
light sources. And fourth, it should maintain an accurate
estimate of the target center.

For seven separate ascents of the vehicle, we evalu-
ated the light tracking algorithm against these criteria.
Our performance metrics require a comparison with the
true location of the target light source. Without access to
ground truth, we approximated the location of the target
light source by hand-labeling the images in our data set.
For each frame in which the true target light source was
present, we manually recorded the pixel location that ap-
peared to be closest to the center of the target. We then
ran the same images through the light-detection algo-
rithm and computed the error in this estimate along with
several other statistics. The complete results are shown
in Table 5.2.

The first statistic, “Total frames”, is the number of
frames stored by the camera from the time the first candi-
date light source is identified until the vehicle completes
ascent. Due to real-time requirements, we did not store
every image used by the algorithm while the vehicle was



(a) ascent-10 (b) ascent-9 (c) descent-6

Figure 5: Plots showing the vehicle’s path once the visual homing algorithm starts. Shown are two ascents and one
descent. (a) In ascent-10, the robot searches spirally for the light source and once it locks onto the light source, the
robot begins to rise while staying centered on the light. (b) In ascent-9, the vehicle fails to find a light source the first
time it spirals. It then drifts for a short distance before the visual homing algorithm is restarted. This time the vehicle
finds the light source and rises. (c) A descent – the controller stops when the vehicle reaches a depth of 5 m.

Ascent No. 3 5 8 9 10 12 13 Overall
σx (cm) 8.77 6.20 5.32 2.54 2.65 6.27 5.54 5.70
σy (cm) 1.71 3.09 3.15 7.78 5.94 5.48 2.05 4.60

Table 1: Standard deviations in the x and y coordinates of vehicle’s pose during various ascents. Also shown are the
overvall standard deviations computed for all ascents combined.

(a) (b) (c)

(d) (e) (f)

Figure 6: Images taken by the upward-facing camera. (a) Light too small to be recognized. (b) Light recognized as
candidate. (c) Target identified as blinking. (d) Blinking light tracked while unlit. (e) Misclassification. Blue circle is
false positive. Large red circle is true target. (f) Recovery after misclassification.



Ascent No. 3 5 8 9 10 12 13
Total frames 190 278 243 150 193 179 153

Acquisition time 21 12 162 101 123 95 8
Drops 1 0 0 0 0 0 0

Total drop time 11 0 0 0 0 0 0
Misclassification 1 0 0 0 0 0 0

Misclassification time 15 0 0 0 0 0 0
Average distance 11.2 1.91 3.63 4.44 2.24 3.02 3.38

Avg. dist. w/o misclassified 2.83 1.91 3.63 4.44 2.24 3.02 3.38

Table 2: Statistics evaluating blinking light tracker algorithm across seven separate ascents at Lake Bonney (see
Section 5.2 for details).

in operation. Although the camera operated at 30Hz,
images were stored at about 6Hz, recording roughly ev-
ery fifth frame. Thus, for example, for an ascent that
lasts around 30 seconds, roughly 180 frames would be
recorded.

The next metric, “Acquisition time”, is the number
of frames between the first candidate light and the first
identified blinking target. If the target (blue circle) is lost
after initial acquisition, then we consider that a “Drop”.
We record the number of drop occurrences and the to-
tal duration (in frames) over the occurrences. We do the
same for “Misclassifications”, which are instances when
the algorithm locks on to the incorrect light source. Fi-
nally, we measure the Euclidean distance (in pixels) be-
tween the true target position and the algorithm output.
Because misclassifications have a large impact on this
metric, we record two versions of this statistic: one with
misclassified instances included, and one without.

From Table 5.2 it is clear that the algorithm performed
well during the Lake Bonney deployment. In only one
of the seven ascents did the algorithm ever encounter any
drops or misclassifications. Also, the low-level contour
algorithm appears to have done a good job of finding
the centers of the light sources, as is evidenced by the
average distance values.

To achieve these strong results, the algorithm gives
up quite a bit in terms of acquisition time. Although
shorter acquisition times would certainly be preferable,
for the Lake Bonney missions it was extremely impor-
tant to have very few false positives. The misclassifi-
cation of a distant target could have caused the vehicle
to slam into the ice and cause damage. For that reason,
the algorithm parameters were tuned to err on the side of
safety.

6 Related Work
In our application, we are interested in finding the spe-
cific light source to enable the AUV to egress the melt-

hole reliably. The core challenge addressed is that of
tracking multiple hypotheses across time, and then esti-
mating a specific target state transition. This is a well-
researched problem in the AUV community, and simi-
lar challenges arise in several other computer vision and
robotics applications. We review a few representative
techniques here.

Feezor et al. [6] proposed an electromagnetic (EM)
homing/docking system for an AUV. It consists of a
transmitter located at the dock and a receiver located on
the vehicle. The transmitter generates two orthogonal
oscillatory magnetic fields from two coils, while three
orthogonal coils (with co-located centers) mounted on
the nose of the AUV provide the directional informa-
tion required to guide the vehicle to the docking position.
Stokey et al. [11], on the other hand, used an Ultra Short
Base Line (USBL) rangefinder to determine the location
of a transponder attached to the docking station.

For the purpose of docking, vision provides a few sig-
nificant advantages. Given the recent developments in
sensor technology, high-fidelity visual sensors are avail-
able at moderate costs. In addition, the information ob-
tained from the visual sensors does not have a minimum
detection range. Furthermore, it is possible to devise
highly precise control algorithms using the visual input,
leading to smaller docking areas in comparison to the
other (non-visual) techniques.

The typical approach for using visual information for
homing/docking an AUV involves a contrived arrange-
ment of light sources and detectors. For instance, Cowen
et al. [4] developed a vision-based approach for guid-
ing a vehicle to an underwater dock. Their optical sys-
tem uses a photo-diode split into four quadrants, with
a photo-detector positioned behind a plano-convex lens
that collects the incoming light. When the tracker is
aligned with the light beacon, the light intensity is equal
in all four quadrants of the detector. The light source
is set up to oscillate at 40Hz in order to differentiate it
from other possible sources (e.g. the sun), and appro-



priate band-pass filters are associated with each photo-
detector quadrant. This system has a very high preci-
sion (≈ 1 cm) and is able to perform docking from a
maximum range of ≈ 100 m, but found it difficult to
differentiate sunlight from the light source under certain
conditions.

Richburg et al. [9] have patented a method to guide
a vehicle to a specific position using a light source that
is divided into four panels. The vehicle can detect all
four panels if that light source is within the primary field
of view of the camera. Outside this specific region, the
detected panels provide an indication of the desired di-
rection of motion of the vehicle. In search mode, when
the vehicle attempts to locate the light source, all panels
oscillate at the same rate. Once the light source has been
sighted, a signal is sent to the docking station, causing
the panels to oscillate at different rates to distinguish be-
tween the panels while the vehicle performs its homing
maneuver.

Deltheil et al. [5] presented an interesting comparison
of acoustic, magnetic and optical sensing methods for
recovery of an autonomous underwater vehicle. They
showed that the optical system provided the best perfor-
mance in terms of homing/guiding an underwater vehi-
cle to a desired point reliably. There have hence been
several attempts in the recent past to use visual infor-
mation for similar applications. Hong et al. [7], for in-
stance, proposed the use of camera images to estimate
the relative pose of a AUV with respect to an underwa-
ter dock. Lights arranged on the rim of a circular dock
were projected to an ellipse on the 2D (camera) image
plane. The geometric shape of the ellipse provided an
estimate of the relative distance and pose.

More recently, Park et al. [8] proposed a similar
scheme that uses a CCD camera to detect a set of five
lights arranged in a specific pattern around the rim of
the dock entrance. The input image is binarized and
the candidate light blobs are filtered with suitable masks
and heuristics, based on the known characteristics of
the light sources. Next, the detected light sources are
matched against the expected pattern to determine the
relative position of the dock entrance, and generate ap-
propriate vehicle motion commands. Such methods can
result in accurate docking by estimating the pose of the
vehicle relative to the pattern of light sources, but the en-
tire pattern of lights needs to be within the field of view.

While these previous approaches have performed suc-
cessfully, they are too complex for our operational prob-
lem. We take the approach of using a single blinking
light as the homing beacon – a solution that is simple
but provides a unique signature nevertheless. The hard-
ware required for this approach is available off-the-shelf
and the software, as described in previous sections, re-
quires very little calibration in the field. As a result, our

approach eliminates the above-mentioned constraints of
existing approaches.

In the computer vision literature, considerable work
exists on tracking multiple hypotheses using established
state estimation techniques such as Kalman Filters and
Particle Filters [13]. Extensive research has been per-
formed on the data association challenges that arise
while tracking the multiple hypotheses [1, 3]. In addi-
tion, the desired high-level target (i.e. a blinking light)
can be modeled as a state transition that is detected
using techniques such as Hidden Markov Models [2].
Since computational efficiency is of great importance
our application and the application is simple enough, we
do not require the use of heavy duty probabilistic tech-
niques. Instead we devise and use a simple and efficient
matching algorithm to detect the blinking light source
and track it accurately over a period of time.

7 Conclusions

We have presented a novel vision-based docking algo-
rithm for an autonomous underwater vehicle. The algo-
rithm allows the AUV to exit through a hole in the ice
over a frozen lake. The system uses a relatively unique
homing signal in the form of a blinking light source.
On reaching close to the melthole after a mission, the
robot initiates the visual homing routine and enters a spi-
ral search while scanning the surface of the ice for the
blinking light source using an upward facing camera. A
temporal analysis of the input images is used to identify
sources of illumination, track their positions, sizes and
transition (off-on-off) histories and then robustly iden-
tify the blinking light source amongst all light sources.
Once the light source has been identified the robot cen-
ters itself with respect to the light and rises up through
the melthole using an ascent controller.

The overall algorithm was tested successfully during a
four-week scientific mission to explore West Lake Bon-
ney, Antarctica in December 2008. The robot com-
pleted 10 homing runs (ascents) using the system as
well 8 descents. Quantitatively, the precision of the as-
cent/descent controller was sufficient to keep the robot
away from the melthole walls 92% of the time. Of the
seven ascents on which the light detection module was
evaluated on, in only one ascent was the incorrect light
source identified, that too temporarily. Qualitatively,
the robot successfully surfaced or descended in all runs
without colliding with the melthole walls.

There are several directions in which the visual hom-
ing system can be extended. Currently, we do not make
any assumptions about the blinking light source. Occa-
sionally, this leads to incorrect detection. If we were to
assume a specific blink frequency the algorithm could



be made more robust since it is unlikely that other light
sources will blink at the same frequency. Another way
to extend the work would be to have a more intelligent
search routine for the light. Currently, the robot sim-
ply spirals to search – it might be possible to combine
the spiral search with a more greedy search that uses in-
tensity gradients. This would be particularly applicable
when a spiral search fails and the search has to be man-
ually restarted. A gradient descent search might direct
the robot automatically towards the light source.
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