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Outline

This thesis is really all about extending certain exploration
mechanisms beyond the case of unstructured MDPs. Section 1
motivates RL and exploration. Section 2 extends R-MAX exploration
to MDPs with continuous state spaces. Section 3 extends R-MAX
exploration to environments with known hierarchical structure.
Section 4 discusses some potential future directions and concludes.
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Introduction
The Reinforcement Learning Problem

One Solution to Many Problems

The key appeal of Reinforcement Learning is the prospect of
designing and developing a single learning algorithm that can solve
many problems, in much the same way that any given human can
learn many tasks. (Of course, the human must invest significant time
and energy: exploration!) General mechanisms for learning therefore
also appear to those interested in how humans learn, not just those
interested in solving multiple problems with a single agent.
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Introduction
The Reinforcement Learning Problem

One Formalism for Many Problems

RL seems almost too good to be true, but in humans we have an
existence proof that general learning is possible. How can we
formalize learning in domain-agnostic way? This thesis builds upon
the modern field of Reinforcement Learning, which adopts the
Markov Decision Process (MDP) formalism. Agents generate actions
given states. Environments generate immediate rewards and
successor states given actions (and the current state). The agent
takes the output of the environment as feedback, and its goal is to
find a policy that maps states to actions in a way that will maximize
cumulative rewards.
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Introduction
The Reinforcement Learning Problem

Example: A Resource Gathering Simulation

Many of the experiments in this thesis use a simulated problem
generalized from the PuddleWorld domain that appears in the RL
literature. The agent lives in the unit square and must collect several
resources from initially unknown locations. At each time step, the
agent knows its x and y coordinates, as well as whether it has
collected each resource. It can move in four different directions and
attempt to collect any one of the resources that might be near the
current coordinates. The environment contains costly puddle regions
that the agent should learn to avoid. Note that to a RL algorithm,
these actions are just unlabeled buttons, and the state variables
comprise a vector of unlabeled numbers. The figure shows an
optimal trajectory for a particular placement of four resources. After
collecting the last resource, the agent starts over in a random
location, but the resources don’t move.
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Reinforcement Learning Methods

Evaluating Policies with Value Functions

The MDP formalism gives us a way to evaluate a given policy, using
the Bellman equations. The thesis adopts a matrix notation that
expresses the Bellman equations more compactly than the traditional
form, and this presentation adopts a visual representation intended to
show the structure of the equation as a kind of circuit.

Given a policy, the long-term value Vπ(s) of a state is equal to the
long-term value Qπ(s, π(s)) of executing the policy action at that
state. This state-action value is equal to the immediate reward for that
state-action plus the expected long-term value of the successor state
for that state-action.
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Introduction
Reinforcement Learning Methods

Example: An Optimal Value Function

Planning algoritms can compute the optimal value function for the
resource-gathering domain, given access to its reward and transition
functions. In this four-resource instance, the state value function V is
six-dimensional, but this slide shows some two-dimensional slices.
For example, the first figure shows the value of each x and y
coordinate assuming the only uncollected resource is resource C.
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Introduction
Reinforcement Learning Methods

Standard Approach: Learn the Value Function

Most RL algorithms are model-free, meaning that estimate the
optimal value function directly from data, without needing the true
reward and transition functions or even constructing a model or
estimate of these functions. The fact that it is possible to converge to
optimal behavior in this fashion is somewhat remarkable and
providing the impetus for the field of RL. However, these original
algorithms only guaranteed convergence in the limit and by making
certain key assumptions, such as that unbounded amounts of data for
every state-action would become available.
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Introduction
Thesis Focus

Scaling to Real-World Problems

The desire to apply RL to more practical problems gave rise to
innumerable branches of RL research, all of which seek to improve
the efficiency of RL. This thesis focuses on at least two such
methods, function approximation (Section 2) and hierarchical
decomposition (Section 3).
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Introduction
Thesis Focus

Exploration and Exploitation

The branch of RL at the core of this thesis is model-based RL, which
underlies much of the research showing that it is possible to learn
near-optimal policies most of the time given finite (and polynomial in
certain parameters) interactions with the environment. The key idea
behind such results is that it is not sufficient just to estimate the
optimal value function given the currently available data. Instead, an
efficient agent realizes that it should gather more data now to improve
its estimate of the optimal value function later. In other words, agents
should reason explicitly about the fact that they control the cycle of
interaction with the environment and thereby determine the data from
which they learn (active learning).
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The branch of RL at the core of this thesis is model-based RL, which
underlies much of the research showing that it is possible to learn
near-optimal policies most of the time given finite (and polynomial in
certain parameters) interactions with the environment. The key idea
behind such results is that it is not sufficient just to estimate the
optimal value function given the currently available data. Instead, an
efficient agent realizes that it should gather more data now to improve
its estimate of the optimal value function later. In other words, agents
should reason explicitly about the fact that they control the cycle of
interaction with the environment and thereby determine the data from
which they learn (active learning).
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Surprisingly, the three branches on which this thesis focuses are fairly
independent. Few researchers have tried to combine the ideas from
multiple of these branches. The primary contribution of this thesis is
the integration of these ideas, thereby showing their synergies and
extending the reach of RL. The source code for an agent combining
all these technologies is publicly available at
http://library.rl-community.org/wiki/Fitted_R-MAXQ.

http://library.rl-community.org/wiki/Fitted_R-MAXQ
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Model-Based Exploration

Model-Based Reinforcement Learning

Why construct a model of the environment (and then plan given the
model) when it is possible just to estimate the value function directly?
One key benefit is that model-estimation is a supervised learning
process, permitting the use of well-understood techniques, and the
model may be intrinsically easier to learn than the value function. In
particular, each entry in the value function folds together all future
time steps and all possible actions; for each state-action, the model
only predicts one time step ahead and only involves one action at a
time.

Furthermore, uncertainty in the model provides a rational basis for
exploration. High variance at a given state-action implies that
additional data at that state-action will lower the variance. Such
reasoning underlies many of the theoretical guarantees currently
available for RL.
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Simple and Efficient Learning with R-max

This thesis builds upon a simple model-based RL algorithm known as
R-MAX, which acknowledges that the standard maximum-likelihood
estimate of the transition function is unreliable given a small sample
size. For example, if we have executed the blue action from the circle
state twice, we might estimate a 50-50 chance of ending up in either
the diamond or star states the next time we try this state-action. But if
star is a very bad state, we might be afraid to try this state-action
again, even if it’s actually optimal. R-MAX employs an optimistic
model whenever the amount of data for a given state-action falls
beneath a certain threshold. This optimistic model gives an
immediate reward equal to some upper bound on the value function,
and it transitions to some artificial terminal state (instead of any
existing state, whose values are unknown). R-MAX only reverts to the
MLE model given a large enough sample size, in this case 5.
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Exploration and Approximation

Model-Based Exploration

Challenges for Model-Based Reinforcement Learning

Given the benefits of model-based RL, why does the vast majority of
RL research rely on model-free methods? First, the computational
cost of planning given a model tends to be relatively high. However,
the limiting factor in most practical applications is data, not CPU time.

Second, defining representations and algorithms that involve
transition models, which specify distributions over successor states,
seems more complex than working with value functions, which
specify scalar values. However, models may be easier than value
functions to approximate adequately, since they only need to be
accurate for one action at a time and for one time step.

Finally, algorithms such as R-MAX that employ model-based
exploration have a reputation for exploring every reachable
state-action too aggressively. A key contribution of this thesis is a
demonstration that such exploration can be reduced used model
generalization and hierarchical constraints.
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Function Approximation

One prerequisite for learning in real-world settings is the ability to
cope with infinite state spaces. Research into function approximation
extends model-free RL methods by replacing exact representations of
the value function, which store each state’s value independently,
which a function parameterized by a small number of parameters.
This approach effectively reduces the degrees of freedom of the
estimated value function, introducing some regularization. In
particular, adjusting the value function given data at one state tends
to improve the value function for other states that depend on the
same parameters. This effect both facilitates successful applications
of RL to continuous state spaces as well as invalidating many
theoretical convergence guarantees.
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Fitted Value Iteration
(Gordon, 1995)

Averagers

Parameterize Vπ with values Vπ(X ) on X ⊂ S
Vπ(s) is a weighted average

∑
x∈X φ(s, x)Vπ(x)

Discrete Planning in Continuous State Spaces
Approximate planning with an exact MDP
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Fitted Value Iteration

This thesis investigates a form of function approximation originally
studied in the context of planning with continuous-state MDPs. For
the family of function approximations known as averagers, the
parameters of the continuous-state function are the values of the
function over some small subset X ⊂ S. For states outside X , the
value is approximated as a weighted average of the values over X .
A key benefit of this approximation is that a standard planning
algorithm, value iteration, always remains stable despite the
approximate nature of the value function. Gordon (1995) proved this
stability by showing that computing the approximate value function in
this manner for the original exact MDP is equivalent to computing the
exact value function for a derived MDP, in which the transition function
incorporates the averaging approximation. In particular, the transition
function of the derived MDP assumes that every action always
transitions to states in X .
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Model Approximation

This thesis applies averaging approximation to the model, not just the
value function. Assume that we want to define the transition function
for a given state-action sa, using our available data, stored as a set of
instances, one for each time step. These instances play the same
role that the state set X plays in value approximation: we approximate
the result of state-action sa using some weighted average over
instances. To generate a random successor state for sa, we randomly
choose an instance i , weighted by the function ψ(sa, i). Then we
apply to s whatever relative (vector) effect we observed at instance i .
The approximation transition matrix composes the approximate
“transition” to an instance with the instances’ deterministic observed
transitions, in much the same way that the derived transition function
in fitted value iteration composes the given MDP’s transition function
with the approximate “transition” to a state in X .
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Generalization in Large State Spaces

Model Approximation

This thesis applies averaging approximation to the model, not just the
value function. Assume that we want to define the transition function
for a given state-action sa, using our available data, stored as a set of
instances, one for each time step. These instances play the same
role that the state set X plays in value approximation: we approximate
the result of state-action sa using some weighted average over
instances. To generate a random successor state for sa, we randomly
choose an instance i , weighted by the function ψ(sa, i). Then we
apply to s whatever relative (vector) effect we observed at instance i .
The approximation transition matrix composes the approximate
“transition” to an instance with the instances’ deterministic observed
transitions, in much the same way that the derived transition function
in fitted value iteration composes the given MDP’s transition function
with the approximate “transition” to a state in X .
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Fitted R-MAX

This thesis contributes the Fitted R-MAX algorithm, which modifies
R-MAX only by changing the model estimate it uses for planning.
Instead of maximum-likelihood estimation, Fitted R-MAX uses the
averager-based approximation described on the previous slide. On
top of that baseline model, it applies the same modifications to the
Bellman equations that R-MAX applies, followed by the same
modifications introduced by fitted value iteration to cope with the
unbounded number of successor states in the model.
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This thesis contributes the Fitted R-MAX algorithm, which modifies
R-MAX only by changing the model estimate it uses for planning.
Instead of maximum-likelihood estimation, Fitted R-MAX uses the
averager-based approximation described on the previous slide. On
top of that baseline model, it applies the same modifications to the
Bellman equations that R-MAX applies, followed by the same
modifications introduced by fitted value iteration to cope with the
unbounded number of successor states in the model.
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This thesis contributes the Fitted R-MAX algorithm, which modifies
R-MAX only by changing the model estimate it uses for planning.
Instead of maximum-likelihood estimation, Fitted R-MAX uses the
averager-based approximation described on the previous slide. On
top of that baseline model, it applies the same modifications to the
Bellman equations that R-MAX applies, followed by the same
modifications introduced by fitted value iteration to cope with the
unbounded number of successor states in the model.
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An Instance of Fitted R-MAX

The experiments in the thesis use one concrete instantiation of this
algorithm. The averager it uses to weight instances for a given
state-action sa applies a Gaussian kernel over every instance i with a
matching action ai = a, assuming a distance function defined over
the state space. The R-MAX exploration mechanism considers a
state-action known if the combined weight across all instances
exceeds some threshold. The averager used to approximate the
value function interpolates over a uniform grid over the state space.
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An Instance of Fitted R-MAX

The experiments in the thesis use one concrete instantiation of this
algorithm. The averager it uses to weight instances for a given
state-action sa applies a Gaussian kernel over every instance i with a
matching action ai = a, assuming a distance function defined over
the state space. The R-MAX exploration mechanism considers a
state-action known if the combined weight across all instances
exceeds some threshold. The averager used to approximate the
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An Instance of Fitted R-MAX

The experiments in the thesis use one concrete instantiation of this
algorithm. The averager it uses to weight instances for a given
state-action sa applies a Gaussian kernel over every instance i with a
matching action ai = a, assuming a distance function defined over
the state space. The R-MAX exploration mechanism considers a
state-action known if the combined weight across all instances
exceeds some threshold. The averager used to approximate the
value function interpolates over a uniform grid over the state space.
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Benchmark Performance

Fitted R-MAX was developed shortly after the NIPS RL Benchmarking
Workshop, allowing a comparison with other contemporary RL
algorithms implemented and optimized by other researchers. Michael
Littman was kind enough to grant access to the raw data submitted to
the workshop, which includes the average reward per episode after
every 50 episodes in the PuddleWorld domain, which underlies the
resource-gathering domain used in this thesis. Fitted R-MAX
achieves near-optimal behavior within the first couple of data points,
easily outperforming algorithms that only combine function
approximation (generalization) or model-based exploration, not both.
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Policy and value function with 250 instances
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Fitted Value Functions for PuddleWorld

These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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Fitted Value Functions for PuddleWorld

These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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Fitted Value Functions for PuddleWorld

These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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The Fitted R-MAX Algorithm

Fitted Value Functions for PuddleWorld

These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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Policy and value function with 3000 instances
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Fitted Value Functions for PuddleWorld

These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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Policy and value function with 4000 instances
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Fitted Value Functions for PuddleWorld

These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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Policy and value function with 5000 instances
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Fitted Value Functions for PuddleWorld

These figure demonstrate the evolution of the policy and value
function over time. The left figure shows the policy action at each
“known” state in the finite sample X . The first 1000 or so instances all
come from the agent’s first episode, as it seeks to reach the unknown
frontier, which has optimistic value 0. After finding the goal in the
upper right corner, the agent tends to spend episodes exploiting
instead of exploring, except when the random start state is near
unexplored regions. Note that the agent is only willing to explore in
the middle of the costly puddles if it begins an episode within the
puddle already.
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The Fitted R-MAX Algorithm

Generalization and Exploration

Fitted R-MAX can learn efficiently in part because it separates
generalization of state values from generalization of state dynamics,
in contrast to model-free methods which tend to conflate the two.
Experiments with Fitted R-MAX show that model generalization more
directly controls the amount of exploration the agent performs:
smaller neighborhoods of generalization entail more neighborhoods
to explore. In contrast, decreasing the amount of generalization in the
value function increases the accuracy of policy evaluation, which
mostly affects the equality of the policy obtained after exploration.
After a certain point, finer value approximations only increase the
computational cost of planning without affecting the actual rewards
earned by the agent.
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Generalization and Exploration

Fitted R-MAX can learn efficiently in part because it separates
generalization of state values from generalization of state dynamics,
in contrast to model-free methods which tend to conflate the two.
Experiments with Fitted R-MAX show that model generalization more
directly controls the amount of exploration the agent performs:
smaller neighborhoods of generalization entail more neighborhoods
to explore. In contrast, decreasing the amount of generalization in the
value function increases the accuracy of policy evaluation, which
mostly affects the equality of the policy obtained after exploration.
After a certain point, finer value approximations only increase the
computational cost of planning without affecting the actual rewards
earned by the agent.



Reinforcement Learning

Model-Based 
Exploration

Hierarchical 
Decomposition

Function 
Approximation

Hierarchical 
Exploration

Approximate 
Exploration

Structured Exploration

Introduction
Exploration and Approximation

Exploration and Hierarchy
Conclusion

Model-Based Exploration
Generalization in Large State Spaces
The Fitted R-MAX Algorithm

Generalization and Exploration

Inductive Bias
Model-Free Similar states have similar values

Model-Based Similar states have similar dynamics

Model Generalization
Is the effect of sa known or unknown?
Less generalization leads to more exploration

Value Generalization
How good is my policy π?
Less generalization leads to more computation

Nicholas K. Jong Structured Exploration for Reinforcement Learning

Generalization and Exploration

Inductive Bias
Model-Free Similar states have similar values

Model-Based Similar states have similar dynamics

Model Generalization
Is the effect of sa known or unknown?
Less generalization leads to more exploration

Value Generalization
How good is my policy π?
Less generalization leads to more computation

20
10

-1
2-

15

Structured Exploration for Reinforcement Learning

Exploration and Approximation

The Fitted R-MAX Algorithm

Generalization and Exploration

Fitted R-MAX can learn efficiently in part because it separates
generalization of state values from generalization of state dynamics,
in contrast to model-free methods which tend to conflate the two.
Experiments with Fitted R-MAX show that model generalization more
directly controls the amount of exploration the agent performs:
smaller neighborhoods of generalization entail more neighborhoods
to explore. In contrast, decreasing the amount of generalization in the
value function increases the accuracy of policy evaluation, which
mostly affects the equality of the policy obtained after exploration.
After a certain point, finer value approximations only increase the
computational cost of planning without affecting the actual rewards
earned by the agent.
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Hierarchical Decomposition

The Appeal of Hierarchy

Fitted R-MAX extends model-based exploration to continuous state
spaces, but it wants to explore every neighborhood of the state
space. In practical applications, agents can’t afford to be so
exhaustive. These applications often have inherent hierarchical
structure from which the agent should be able to benefit. The intuitive
appeal of hierarchy is that humans don’t only learn or plan at the
lowest possible level. The skills I employ and the factors I consider
depend on whether I’m driving through an intersection (at the low
level) or plotting a route from home to campus (at the high level).
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Options (Sutton, Precup, and Singh, 1999)
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An option o comprises:

An initiation set Io ⊂ S
An option policy πo : S → A
A termination function T o : S → [0,1]

MAXQ (Dietterich, 2000)
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Hierarchical Decomposition

Hierarchy in Reinforcement Learning

Hierarchical RL has become a popular branch of research, but a
variety of formalisms underscore the lack of consensus in how
precisely hierarchy can benefit RL algorithms. The two most popular
formalisms, options and MAXQ, both define abstract actions as a
sequence of lower-level actions executed until reaching a specific
termination condition or subgoal. Options assume that a given policy
specifies the lower-level actions taken, but MAXQ frames each
abstract action as a recursive instance of an RL problem. This thesis
adopts the MAXQ approach.
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Hierarchical RL has become a popular branch of research, but a
variety of formalisms underscore the lack of consensus in how
precisely hierarchy can benefit RL algorithms. The two most popular
formalisms, options and MAXQ, both define abstract actions as a
sequence of lower-level actions executed until reaching a specific
termination condition or subgoal. Options assume that a given policy
specifies the lower-level actions taken, but MAXQ frames each
abstract action as a recursive instance of an RL problem. This thesis
adopts the MAXQ approach.
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High-Level Rewards are Low-Level Values
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MAXQ Value Function Decomposition

A key insight of MAXQ is that solutions to lower-level instances of RL
in a task hierarchy explicitly define part of the higher-level instances.
It separates each task’s state-action value function Qo : S × A→ R
into action-specific pieces Qo

a : S → R, each of which directly involve
only that portion of the reward and transition functions specific to one
action. But the action-specific reward function Ro

a is exactly equal to
the value function V a for the subtask a! MAXQ can therefore treat
part of the value function Qo

a as known, but it must still apply
model-free learning to estimate the remainder, which it defines as the
“completion” function Co

a = Po
a V o. MAXQ learns a value function of

sorts for each primitive task in the hierarchy and for each link
between tasks. The value of a state for a given hierarchical policy is
the sum of the components along the path from root to leaf.
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MAXQ Value Function Decomposition

A key insight of MAXQ is that solutions to lower-level instances of RL
in a task hierarchy explicitly define part of the higher-level instances.
It separates each task’s state-action value function Qo : S × A→ R
into action-specific pieces Qo

a : S → R, each of which directly involve
only that portion of the reward and transition functions specific to one
action. But the action-specific reward function Ro

a is exactly equal to
the value function V a for the subtask a! MAXQ can therefore treat
part of the value function Qo

a as known, but it must still apply
model-free learning to estimate the remainder, which it defines as the
“completion” function Co

a = Po
a V o. MAXQ learns a value function of

sorts for each primitive task in the hierarchy and for each link
between tasks. The value of a state for a given hierarchical policy is
the sum of the components along the path from root to leaf.
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A key insight of MAXQ is that solutions to lower-level instances of RL
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It separates each task’s state-action value function Qo : S × A→ R
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only that portion of the reward and transition functions specific to one
action. But the action-specific reward function Ro
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Hierarchical Model Decomposition

A key contribution of this thesis is to take the MAXQ observation one
step further. Instead of obtaining the abstract reward function
recursively, we can also define the abstract transitions recursively.
The thesis defines Ω : S × S → [0,1] as the terminal state distribution
for a policy in a task: given a start state, the expected terminal states.
This distribution can be computed in exactly the same way as a value
function: consider defining for each terminal state the value function
for the task in which the agent receives reward 1 for reaching that
state and 0 for reaching any other terminal state.
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A key contribution of this thesis is to take the MAXQ observation one
step further. Instead of obtaining the abstract reward function
recursively, we can also define the abstract transitions recursively.
The thesis defines Ω : S × S → [0,1] as the terminal state distribution
for a policy in a task: given a start state, the expected terminal states.
This distribution can be computed in exactly the same way as a value
function: consider defining for each terminal state the value function
for the task in which the agent receives reward 1 for reaching that
state and 0 for reaching any other terminal state.
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A key contribution of this thesis is to take the MAXQ observation one
step further. Instead of obtaining the abstract reward function
recursively, we can also define the abstract transitions recursively.
The thesis defines Ω : S × S → [0,1] as the terminal state distribution
for a policy in a task: given a start state, the expected terminal states.
This distribution can be computed in exactly the same way as a value
function: consider defining for each terminal state the value function
for the task in which the agent receives reward 1 for reaching that
state and 0 for reaching any other terminal state.
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The R-MAXQ Algorithm

The hierarchical model decomposition on the last slide underlies the
R-MAXQ algorithm, which replaces the model estimation of R-MAX
with a bottom-up modeling process, given a task hierarchy. It learns
primitive action models in the same way as R-MAX, using
maximum-likeihood estimation spliced with optimism. For higher-level
tasks, it assembles the reward and transition functions for that task
using the lower-level action models. It computes the task policy by
planning that incorporates the task goal function, as described in
more detail in the thesis. Finally, given the policy and task reward and
transition functions, policy evaluation computes the value function
and terminal states that model the task for even higher-level tasks.
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tasks, it assembles the reward and transition functions for that task
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more detail in the thesis. Finally, given the policy and task reward and
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(Jong and Stone, 2009)
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The Fitted R-maxq Algorithm

Fitted R-MAX and R-MAXQ both extend R-MAX by modifying the
Bellman equation, and these modifications may be composed to
obtain Fitted R-MAXQ, an algorithm that extends model-based
exploration to both continuous state spaces and hierarchical
decomposition. This slide summaries the resulting model-estimation
process, using the matrix notation developed in the thesis. Note that
all the explicit learning and exploration is confined to the models of
the primitive actions, in red, while the upper levels of the hierarchy
only perform planning and policy evaluation. The two kinds of tasks
interact by propagating low-level optimism up the hierarchy,
encouraging exploration, constrained by the goal-reward functions
and subtask sets at each task.



Reinforcement Learning

Model-Based 
Exploration

Hierarchical 
Decomposition

Function 
Approximation

Hierarchical 
Exploration

Approximate 
Exploration

Structured Exploration

Introduction
Exploration and Approximation

Exploration and Hierarchy
Conclusion

Hierarchical Decomposition
The R-MAXQ and Fitted R-MAXQ Algorithms
The Utility of Hierarchy

The Software Architecture

Algorithm
1 Execute πRoot hierarchically
2 Update data: RD and PD

3 Propagate changes to πRoot

4 Repeat

Averagers

Φ Interpolation over uniform grid
Ψ Radial basis functions

o
Vo Ω o

π

PoRo

Va Ω a

a

PDRDData

To

Model Approximation

Optimistic Exploration

Ψa

Ua

Value Approximation oΦ

Prediction

Planning Go

Optimizations

Memoization and DP

Prioritized sweeping

Sparse representations

Cover trees for online
nearest neighbors

Nicholas K. Jong Structured Exploration for Reinforcement Learning

The Software Architecture

Algorithm
1 Execute πRoot hierarchically
2 Update data: RD and PD

3 Propagate changes to πRoot

4 Repeat

Averagers

Φ Interpolation over uniform grid
Ψ Radial basis functions

o
Vo Ω o

π

PoRo

Va Ω a

a

PDRDData

To

Model Approximation

Optimistic Exploration

Ψa

Ua

Value Approximation oΦ

Prediction

Planning Go

Optimizations

Memoization and DP

Prioritized sweeping

Sparse representations

Cover trees for online
nearest neighbors

20
10

-1
2-

15

Structured Exploration for Reinforcement Learning

Exploration and Hierarchy

The R-MAXQ and Fitted R-MAXQ Algorithms

The Software Architecture

In concept, Fitted R-MAXQ simply estimates the model of every task
at each time step, while executing the resulting hierarchical policy. In
practice, recomputing all the models from scratch would be
prohibitively expensive, especially given the cost of computing the
averager weights. This thesis contributes an implementation of Fitted
R-MAXQ that includes several optimizations, designed to cache as
much information as possible between time steps and propagate the
changes due to each new instance as efficiently as possible. The
code is available at
http://library.rl-community.org/wiki/Fitted_R-MAXQ.

http://library.rl-community.org/wiki/Fitted_R-MAXQ
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Example: A Resource Gathering Simulation

The next few slides describe experimental results in the
resource-gathering domain, recapitulated here.
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Hierarchical decomposition allows R-MAXQ to outperform R-MAX.

These two ideas synergize in Fitted R-MAXQ!
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The Utility of Hierarchy and Model Generalization

These figures show the learning performance of agents in the
resource-gathering domain, with four resources. The left-hand figure
shows the quality of the agent’s learned policy at each episode,
measured as the reward earned in each of the first 40 episodes. The
right-hand figure shows the cumulative cost of learning these policies.

Fitted R-MAX outperforms R-MAX by introducing generalization in the
model reducing the amount of data the agent attempts to collect in
any given neighborhood of the state space. R-MAXQ outperforms
R-MAX by introducing hierarchical constraints to the exploration
policy.

Fitted R-MAXQ combines both benefits. It still converges to an
optimal policy, and its reduction in the cost of learning is greater than
the sum of the reductions for either of its component algorithms!
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These figures show the learning performance of agents in the
resource-gathering domain, with four resources. The left-hand figure
shows the quality of the agent’s learned policy at each episode,
measured as the reward earned in each of the first 40 episodes. The
right-hand figure shows the cumulative cost of learning these policies.

Fitted R-MAX outperforms R-MAX by introducing generalization in the
model reducing the amount of data the agent attempts to collect in
any given neighborhood of the state space. R-MAXQ outperforms
R-MAX by introducing hierarchical constraints to the exploration
policy.

Fitted R-MAXQ combines both benefits. It still converges to an
optimal policy, and its reduction in the cost of learning is greater than
the sum of the reductions for either of its component algorithms!
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Task Hierarchies as Domain Knowledge
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Task Hierarchies as Domain Knowledge

How does hierarchical decomposition benefit Reinforcement
Learning? Clearly, a given task hierarchy comprises prior knowledge
for a given domain. In these experiments, even a flat hierarchy, which
implements R-MAX and Fitted R-MAX, benefits from state
abstraction: each primitive action model uses a minimal state
representation.

The following slides show experiments in the resource-gathering
domain with a shallow hierarchy, which captures the intuition that
each resource corresponds to an independent subtask.

The thesis also explores deeper hierarchies in the context of the
discrete Taxi domain, where the hierarchy also includes the
knowledge that certain coordinates in the environment are important.
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Soft Inductive Bias in Hierarchy

Hierarchical knowledge can curb the over-enthusiastic exploration of
R-MAX. Suppose an agent in state s considers using its model to
reach state x , in the middle of a puddle, where the effect of pickupD
is unknown. In the absence of hierarchy, the agent compares its
optimistic value for this exploration against the estimated value of
exploitation: gathering the four resources. In this case, the agent
chooses exploration, since the cost of wading through the puddles to
reach the optimistic reward seems smaller than the cost of
completing the entire task.

Given hierarchical knowledge, the agent only considers exploring
pickupD at x in the context of the GatherD subtask, so it only
compares the cost of exploration against the cost of completing
GatherD. Hierarchy therefore allows the agent to apply a higher
threshold when considering the value of an exploratory policy, without
sacrificing any ability to converge to a (hierarchically) optimal policy.
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is unknown. In the absence of hierarchy, the agent compares its
optimistic value for this exploration against the estimated value of
exploitation: gathering the four resources. In this case, the agent
chooses exploration, since the cost of wading through the puddles to
reach the optimistic reward seems smaller than the cost of
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Hierarchical Constraint and Reformulation

HIerarchy also conveys important computational advantages. Even
the shallow hierarchy allows the planning at the Root task to focus on
higher-level structure. At the root, the agent only considers which
resource to gather next. After its models of each subtask converge,
the root task essentially solves an embedded instead of the Traveling
Salesman Problem, where the four resource locations correspond to
the cities that must be visited, and the subtask models define the
costs of going from one city to the next. Note that after the first time
step, Root only selects actions when at one of the four resource
locations.

A deeper task hierarchy can apply the same constraints to GatherA

and its siblings. After the first time step of each episode, the agent will
only attempt pickupA at one of the four resource locations, avoiding
substantial amounts of unnecessary exploration.
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Hierarchical Constraint and Reformulation

HIerarchy also conveys important computational advantages. Even
the shallow hierarchy allows the planning at the Root task to focus on
higher-level structure. At the root, the agent only considers which
resource to gather next. After its models of each subtask converge,
the root task essentially solves an embedded instead of the Traveling
Salesman Problem, where the four resource locations correspond to
the cities that must be visited, and the subtask models define the
costs of going from one city to the next. Note that after the first time
step, Root only selects actions when at one of the four resource
locations.

A deeper task hierarchy can apply the same constraints to GatherA

and its siblings. After the first time step of each episode, the agent will
only attempt pickupA at one of the four resource locations, avoiding
substantial amounts of unnecessary exploration.
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Discovering Abstractions

This thesis assumes that task hierarchies are available as prior
knowledge, but the open problem of how to discovery such
hierarchies automatically directly motivated the synthesis of hierarchy
with model-based exploration and function approximation. The thesis
directly addresses what makes for a good hierarchy, particularly in the
context of model-based methods that already handle exploration, one
of the supposed motivations for using hierarchies. In particular,
hierarchies should constrain exploration and permit compact models
at each level of the hierarchy.

R-MAXQ and Fitted R-MAXQ are designed to serve as foundations
for research into hierarchy discovery. In particular, they explicitly
confine all the directly learned knowledge to the primitive actions.
The composite tasks, which only perform bottom-up planning given
primitive action models, can be swapped out on the fly at the cost of
replanning.
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Prior Distributions Over Inductive Biases

More generally, this thesis recognizes that no algorithm can learn
efficiently in real-world domains in the absence of any prior
knowledge. The MDP formalism is too rich a hypothesis space, and
current analyses of sample complexity implicitly assume that any
MDP is possible and that all possibilities are equally likely. Function
approximation methods necessarily assume some notion of
smoothness, but additional structure is necessary to make RL
practical.

This thesis employs hierarchy as a natural way for users to
communicate domain knowledge to an RL agent. Hierarchy may also
provide a reasonable language for expression prior distributions over
MDPs.
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Natural Knowledge Representations

Models, as well as hierarchies, seem a natural way to communicate
domain knowledge to a practical RL agent. A key benefit of the model
decomposition developed in this thesis is that each primitive action or
composite task can have a model completely independent of its
siblings. One consequence is that instead of requiring the agent to
learn models for every action, the agent may be given as prior
knowledge the model for any task in the hierarchy, removing the need
for learning in that subtree. At upper levels of the hierarchy, the
correct high-level policy may be known, leaving the agent only to
evaluate that policy by learning a model of that task.
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Connections to Other Fields of Artificial Intelligence

Finally, this thesis may help bridge the gap between RL methods and
the rich literature in classical planning techniques. In Fitted R-MAXQ,
the primitive actions may be stochastic and continuous, but its
bottom-up planning naturally results in high-level models that are
more deterministic and discrete. In the resource-gathering domain,
the modeling process essentially recovers an embedded instance of
the Travelling Salesman Problem, which could in principle be solved
using more sophisticated methods than value iteration. In general,
hierarchical models could transform an MDP representation into
something closer to classical planning operators. Reasoning about
the preconditions and postconditions of existing subtasks could also
form the basis for new abstract states and abstract actions.
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The primary contribution of this thesis is its extension of model-based
exploration methods to settings that previously relied on random
exploration. In particular, the Fitted R-MAX algorithm brings R-MAX
exploration to continuous state spaces by reasoning explicitly about
how broadly to generalize data. The R-MAXQ algorithm combines
R-MAX exploration with MAXQ decomposition, allowing intuitive
domain knowledge to inform the exploration policy.

So that this work might serve as a foundation for ongoing research
into exploration and discovery in structured environments, an
implementation of the full Fitted R-MAXQ algorithm resides in the RL
Library.
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