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Abstract

Generalized relational theories with null values in the sense of Reiter are
first-order theories that provide a semantics for relational databases with
incomplete information. In this paper we show that any such theory can be
turned into an equivalent logic program, so that models of the theory can
be generated using computational methods of answer set programming. As
a step towards this goal, we develop a general method for calculating stable
models under the domain closure assumption but without the unique name
assumption.

1 Introduction

We re-examine here some of the problems discussed in two important papers on
the semantics of null values that were published many years ago. The first of
them is Ray Reiter’s paper “Towards a logical reconstruction of relational database
theory” [Reiter, 1984]. Generalized relational theories with null values in the sense
of Reiter are first-order theories that provide a semantics for relational databases
with incomplete information. The incompleteness can be of two kinds. One is
represented by inclusive disjunction; for instance, the formula

SUPPLIES (Foo, p1) ∨ SUPPLIES (Foo, p3), (1)

says: Foo supplies p1 or p3, maybe both. The other is represented by null values;
by writing

SUPPLIER(ω), SUPPLIES (ω, p3), (2)

where ω is a null value, we express that some supplier, which may or may not
already be in the database, supplies p3.

The second paper, by Bonnie Traylor and Michael Gelfond, is entitled “Rep-
resenting null values in logic programming” [Traylor and Gelfond, 1994]. The
authors define, among other things, the “logic programming counterpart” of a
generalized relational theory with null values—a logic program whose meaning
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under the answer set semantics is similar to the meaning of the theory under the
standard semantics of first-order logic.

We propose here an alternative approach to turning Reiter’s theories into logic
programs, which represents the meaning of the theory more closely than the one
due to Traylor and Gelfond. We show also how these logic programs can be
executed using computational methods of answer set programming (ASP) [Marek
and Truszczyński, 1999, Niemelä, 1999, Lifschitz, 2008]—for instance, by running
the answer set solver clingo.1

The difference between null values and other object constants emphasized in
Reiter’s semantics is that null values are exempt from the unique name assump-
tion: a null value may represent an object that has a name in the database, and
two different null values may represent the same object. This fact leads us to
the general problem of using answer set solvers for calculating the stable models
that satisfy the domain closure assumption but may not satisfy the unique name
assumption. Such models are allowed in some versions of the stable model se-
mantics [Ferraris et al., 2007, Ferraris et al., 2011], just as they are allowed in the
definition of circumscription [McCarthy, 1980, McCarthy, 1986]. But the existing
answer set solvers do not deal with stable models of this kind directly. To take a
simple example, the formula

P (a) ∨ P (b) (3)

has minimal models of three kinds: in some of them, P (a) is true, and P (b) is
false; in others, P (a) is false, and P (b) is true; finally, there are minimal models
in which both P (a) and P (b) are true, along with the formula a = b. We will see
how syntactic expressions describing these three possibilities can be generated by
an answer set solver. Our method is applicable, in particular, to logic programs
representing relational theories with null values.

We start by discussing the use of ASP for representing generalized relational
theories without null values (Section 2). The method is extended to theories with
null values in Section 3. The use of answer set solvers for calculating stable models
in the absence of the unique name assumption is discussed in Section 4. Proofs of
theorems are presented in Section 5.

The word “generalized” in Reiter’s terminology indicates the possibility of
including disjunctive information, and in the rest of the paper it will be omitted.

2 Relational Theories without Null Values

2.1 Review of Reiter’s Semantics of Relational Theories

We begin with a signature that consists of finitely many object and predicate
constants. A positive ground clause is a formula of the form A1 ∨ · · · ∨Ar (r ≥ 1),

1http://potassco.sourceforge.net
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where each Ai is a ground atomic formula whose predicate is distinct from the
equality symbol. For instance, (1) is a positive ground clause. For any finite
set ∆ of positive ground clauses, the corresponding relational theory T∆ is the set
consisting of the following sentences:

• the domain closure axiom DCA:

∀x
∨

a

x = a

where the disjunction extends over all object constants a;

• the unique name axioms a 6= b for all pairs of distinct object constants a, b;

• the clauses ∆;

• for each predicate constant P , the completion axiom

∀x



P (x) →
∨

a∈WP

x = a



 (4)

where x is a tuple of distinct object variables, and WP is the set of all
tuples a of object constants such that P (a) belongs to a clause from ∆.2

In view of the domain closure axiom DCA and the unique name axioms, any
model of T∆ is isomorphic to an Herbrand model.3 Consequently, in the discussion
of models of T∆ we can restrict attention to Herbrand models.

Consider, for instance, Example 4.1 from [Reiter, 1984]. Its signature includes
the object constants

p1, p2, p3, Acme, Foo,

the unary predicate constants

PART , SUPPLIER,

and the binary predicate constants

SUPPLIES , SUBPART .

The set ∆ describes the following supplier and parts world:

2The equality between two tuples of terms of the same length, such as x = a, stands for
the conjunction of the equalities between the corresponding members of the tuples. We do not
include equality axioms from [Reiter, 1984] because we assume here the version of the semantics
of first-order formulas that treats equality as identity (see, for instance, [Lifschitz et al., 2008,
Section 1.2.2]).

3Recall that in the absence of function constants of arity > 0 an Herbrand interpretation is
an interpretation such that (i) its universe is the set of all object constants, and (ii) each object
constant is interpreted as itself. An Herbrand interpretation can be identified with the set of
all ground atomic formulas that are true in it and whose predicate is distinct from the equality
symbol.

3



PART SUPPLIER SUPPLIES SUBPART
p1 Acme 〈Acme p1〉 〈p1 p2〉
p2 Foo 〈Foo p2〉
p3

In other words, it includes the corresponding atomic formulas:

PART (p1), PART (p2), . . . , SUBPART (p1, p2). (5)

In addition, ∆ includes clause (1).
The completion axioms in this example are

∀x(PART (x) → x = p1 ∨ x = p2 ∨ x = p3),
∀x(SUPPLIER(x) → x = Acme ∨ x = Foo),
∀xy(SUPPLIES (x, y) → (x = Acme ∧ y = p1) ∨ (x = Foo ∧ y = p2)

∨ (x = Foo ∧ y = p1) ∨ (x = Foo ∧ y = p3)),
∀xy(SUBPART (x, y) → (x = p1 ∧ y = p2)).

Theory T∆ has 3 Herbrand models:

I1 = I ∪ {SUPPLIES (Foo, p1)},
I2 = I ∪ {SUPPLIES (Foo, p3)},
I3 = I ∪ {SUPPLIES (Foo, p1),SUPPLIES (Foo, p3)},

where I is the set of atomic formulas (5).

2.2 Representing Relational Theories by Logic Programs

For any set ∆ of positive ground clauses, by Π∆ we denote the set of rules

1{A1, . . . , Ar} (6)

for all clauses A1 ∨ · · · ∨Ar from ∆. Recall that this is an expression in the input
language of clingo

4 that allows us to decide arbitrarily whether or not to include
the atomic formulas A1, . . . , Ar in the answer set as long as at least one of them
is included.

The translation 1{A} of a unit clause A is strongly equivalent [Lifschitz et al.,
2001, Lifschitz et al., 2007] to the fact A. Using this simplification we can say,
for instance, that the logic program representing the example from Section 2.1
consists of the facts (5) and the rule

1{SUPPLIES (Foo, p1),SUPPLIES (Foo, p3)}.

Furthermore, this program can be made more compact using the clingo conven-
tions that allow us to use semicolons to merge a group of facts into one expression:

4Such expressions appeared originally as part of the input language of the grounder lparse

(http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz).
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part(p1;p2;p3).

supplier(acme;foo).

supplies(acme,p1;;foo,p2).

subpart(p1,p2).

1{supplies(foo,p1),supplies(foo,p3)}.

Given this input, clingo returns 3 answer sets:

Answer: 1

part(p1) part(p2) part(p3) supplier(acme) supplier(foo)

supplies(foo,p2) supplies(acme,p1) subpart(p1,p2) supplies(foo,p3)

Answer: 2

part(p1) part(p2) part(p3) supplier(acme) supplier(foo)

supplies(foo,p2) supplies(acme,p1) subpart(p1,p2) supplies(foo,p1)

Answer: 3

part(p1) part(p2) part(p3) supplier(acme) supplier(foo)

supplies(foo,p2) supplies(acme,p1) subpart(p1,p2) supplies(foo,p1)

supplies(foo,p3)

These answer sets are identical to the Herbrand models of the relational theory
from Section 2.1. This is an instance of a general theorem that expresses the
soundness of our translation:

Theorem 1. For any set ∆ of positive ground clauses, an Herbrand interpreta-
tion I is a model of T∆ iff I is an answer set of Π∆.

3 Null Values

3.1 Review of Reiter’s Semantics of Null Values

We turn now to a more general framework. As in Section 2.1, the underlying
signature is assumed to consist of finitely many object and predicate constants.
We assume that the object constants are classified into two groups, the database

constants and the null values. About a unique name axiom a 6= b we say that it is
required if both a and b are database constants, and that it is optional otherwise.
As before, ∆ stands for a finite set of positive ground clauses. Let Σ be a set of
optional unique name axioms. The relational theory with null values T∆,Σ is the
set of sentences obtained from T∆ by removing all optional unique name axioms
that do not belong to Σ. In other words, T∆,Σ consists of

• the domain closure axiom DCA,

• all required unique name axioms,

• the optional unique name axioms from Σ,
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• the clauses ∆;

• the completion axioms (4).

Consider, for instance, the modification of the example from Section 2.1 in
which

• the object constant ω is added to signature as the only null value,

• clause (1) is replaced in ∆ with clauses (2), and

• Σ = {ω 6= p1, ω 6= p2, ω 6= p3}.

Thus ω is assumed to be a supplier that supplies part p3; it may be identical to
one of the suppliers Acme, Foo or may be different from both of them, and it is
certainly different from p1, p2, p3. The completion axioms in this example are

∀x(PART (x) → x = p1 ∨ x = p2 ∨ x = p3),
∀x(SUPPLIER(x) → x = Acme ∨ x = Foo ∨ x = ω),
∀xy(SUPPLIES (x, y) → (x = Acme ∧ y = p1) ∨ (x = Foo ∧ y = p2)

∨ (x = ω ∧ y = p3)),
∀xy(SUBPART (x, y) → (x = p1 ∧ y = p2)).

The set of unique name axioms of T∆,Σ includes neither ω 6= Acme nor ω 6= Foo.
Accordingly, this theory has models of different kinds: some of them satisfy
ω = Acme; some satisfy ω = Foo; in some models, both equalities are false. We
will return to this example at the end of Section 4.1, where a complete description
of its models is given.

3.2 Representing Theories with Null Values by Logic Programs

Since the axiom set T∆,Σ may not include some of the optional unique name
axioms, it may have models that are not isomorphic to any Herbrand model. For
this reason, the problem of relating T∆,Σ to logic programs becomes easier if we
start with a semantics of logic programs that is not restricted to Herbrand models.

A version of the stable model semantics that covers non-Herbrand models is
described in [Ferraris et al., 2011, Section 2].5 These papers deal with models of a
first-order sentence and define under what conditions such a model is considered
stable relative to a subset p of the predicate constants of the underlying signature.
The predicates from p are called “intensional.” Unless stated otherwise, we will
assume that p consists of all predicate constants of the underlying signature,
so that every predicate constant (other than equality) is considered intensional.

5Other possible approaches to the semantics of logic programs that are not limited to Herbrand
models use program completion [Clark, 1978] without Clark’s equality axioms and the logic of
nonmonotone inductive definitions [Denecker and Ternovska, 2008].
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When this definition of a stable model is applied to a logic program, each rule of
the program is viewed as shorthand for a first-order sentence, and the program is
identified with the conjunction of these sentences. For instance, rule (6) can be
viewed as shorthand for the formula

r
∧

i=1

(Ai ∨ ¬Ai) ∧ ¬
r

∧

i=1

¬Ai.

(The first conjunctive term says, “choose the truth value of each Ai arbitrarily”;
the second term prohibits making all atoms Ai false.)

The papers referenced above define a syntactic transformation SMp that turns
a first-order sentence F into a conjunction

F ∧ · · ·

where the dots stand for a second-order sentence (the “stability condition”). The
stable models of F are defined as arbitrary models (in the sense of second-order
logic) of SMp[F ].

From this perspective, Theorem 1 asserts that an Herbrand interpretation is
a model of T∆ iff it is a model of SMp[Π∆], where p is the set of all predicate
constants of the underlying signature.

By Π∆,Σ we denote the conjunction of Π∆ with DCA and with all unique
name axioms from T∆,Σ (that is to say, with all unique name axioms except for
the optional axioms that do not belong to Σ). The following theorem expresses
the soundness of this translation:

Theorem 2. For any set ∆ of positive ground clauses and any set Σ of optional
unique name axioms, T∆,Σ is equivalent to SMp[Π∆,Σ], where p is the set of all
predicate constants.

In other words, an interpretation I is a model of T∆,Σ iff I is a stable model
of Π∆,Σ.

One useful property of the operator SMp is that

SMp[F ∧ G] is equivalent to SMp[F ] ∧ G

whenever G does not contain intensional predicates (that is, predicate constants
from p).6 For instance, let Π−

∆,Σ be the conjunction of Π∆ with the unique name

axioms from T∆,Σ; then Π∆,Σ is Π−

∆,Σ ∧DCA. Since DCA does not contain inten-
sional predicates (recall that all atomic parts of DCA are equalities), SMp[Π∆,Σ] is
equivalent to SMp[Π−

∆,Σ]∧DCA. The assertion of Theorem 2 can be reformulated

as follows: an interpretation I is a model of T∆,Σ iff I is a stable model of Π−

∆,Σ

that satisfies DCA.
6See [Ferraris et al., 2011, Section 5.1].
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We saw in Section 2.2 that the translation Π∆ makes it possible to generate
models of T∆ using an answer set solver. Unfortunately, the translation Π∆,Σ does
not do the same for relational theories with null values. In the presence of null
values we are interested in non-Herbrand models (for instance, in the models of
the theory from Section 3.1 that satisfy ω = Acme), but answer set solvers are
designed to generate Herbrand stable models only. There is also a more basic
question: an Herbrand interpretation can be viewed as a set of ground atomic
formulas, but how will we describe non-Herbrand models by syntactic expressions?
These questions are addressed in the next section.

4 Stable Models without the Uniqueness of Names

4.1 Diagrams

Consider a signature σ consisting of finitely many object and predicate constants.
By HBσ we denote the Herbrand base of σ, that is, the set of its ground atomic
formulas whose predicate is distinct from the equality symbol. By EHBσ (“ex-
tended” Herbrand base) we denote the set of all ground atomic formulas, including
equalities between object constants. For any interpretation I of σ satisfying the
domain closure axiom (DCA-interpretation, for short), by D(I) we will denote
the set of the formulas from EHBσ that are true in I. This set will be called the
diagram of I.7

If a subset X of EHBσ is the diagram of a DCA-interpretation then it is clear
that

• the set of equalities in X is closed under reflexivity (it includes a = a for every
object constant a), symmetry (includes b = a whenever it includes a = b),
and transitivity (includes a = c whenever it includes a = b and b = c), and

• X is closed under substitution: it includes P (b1, . . . , bn) whenever it includes
P (a1, . . . , an), a1 = b1, . . . , an = bn.

The converse holds also:

Theorem 3. If a subset X of EHBσ is closed under substitution, and the set of
equalities in X is closed under reflexivity, symmetry, and transitivity, then there
exists a DCA-interpretation I such that D(I) = X. Furthermore, this interpreta-
tion is unique up to isomorphism.

Since relational theories with null values include the domain closure assump-
tion, Theorem 3 shows that their models can be completely characterized by di-
agrams. In the example from Section 3.1, the theory has 3 non-isomorphic mod-
els J1, J2, J3. The diagram of J1 consists of the formulas (5), (2), and a = a for

7This is essentially the “positive diagram” of I, as this term is used in model theory, for the
special case of DCA-interpretations.
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all object constants a. The diagrams of the other two are given by the formulas

J2 = J1 ∪ {SUPPLIES (Acme, p3),SUPPLIES (ω, p1), ω = Acme,Acme = ω},
J3 = J1 ∪ {SUPPLIES (Foo, p3),SUPPLIES (ω, p2), ω = Foo,Foo = ω}.

4.2 Calculating General Stable Models

The problem that we are interested in can be now stated as follows: Given a first-
order sentence F , we would like to construct a first-order sentence F ′ such that
the diagrams of all DCA-interpretations satisfying SMp[F ] can be easily extracted
from the Herbrand interpretations satisfying SMp[F ′]. We say “can be easily
extracted from” rather than “are identical to” because diagrams include equalities
between object constants, and Herbrand models do not; occurrences of equality
in F will have to be replaced in F ′ by another symbol. Our goal, in other words,
is that diagrams of the stable DCA-models of F be nearly identical to Herbrand
stable models of F ′.

The examples of F that we are specifically interested in are the formulas Π−

∆,Σ,
because stable DCA-models of that sentence are identical to models of T∆,Σ (Sec-
tion 3.2). As a simpler example, consider formula (3). It has 3 minimal DCA-
models, with the diagrams

K1 = {P (a), a = a, b = b},
K2 = {P (b), a = a, b = b},
K3 = {P (a), P (b), a = a, b = b, a = b, b = a}.

(7)

Our translation F 7→ F ′ will allow us to construct these diagrams using ASP.
The solution described below uses the binary predicate constant E, which is

assumed not to belong to σ. For any first-order formula F of the signature σ, F=
E

stands for the formula of the signature σ ∪ {Eq} obtained from F by replacing
each subformula of the form t1 = t2 with Eq(t1, t2). (Here t1, t2 are terms, that
is, object constants or object variables.) The notation X=

Eq , where X is a set of
formulas of the signature σ, is understood in a similar way. By Eσ we denote the
conjunction of the logically valid sentences

∀x(x = x).
∀xy(x = y → y = x),

∀xyz(x = y ∧ y = z → x = z),

and
∀xy(P (x) ∧ x = y → P (y))

for all predicate constants P from σ, where x, y are disjoint tuples of distinct
variables.

In the statement of the theorem below, F is an arbitrary sentence of the
signature σ, and p stands for the set of all predicate constants of σ.
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Theorem 4. For any DCA-interpretation I of the signature σ that satisfies SMp[F ],
the Herbrand interpretation D(I)=Eq of the signature σ ∪ {Eq} satisfies

SMp[(F ∧ Eσ)=Eq ]. (8)

Conversely, any Herbrand model of this formula is D(I)=Eq for some DCA-interpreta-
tion I of σ satisfying SMp[F ].

In other words, the transformation I 7→ D(I)=Eq maps the class of stable DCA-
models of F onto the set of Herbrand stable models of (F∧Eσ)=Eq . The second part
of Theorem 3 shows that this transformation is one-to-one up to isomorphism.

By [Ferraris et al., 2011, Theorem 2], formula (8) is equivalent to

SMp,Eq [(F ∧ Eσ)=Eq ∧ ∀xy(Eq(x, y) ∨ ¬Eq(x, y))]. (9)

The advantage of this reformulation is that it treats all predicate constants of
the signature σ ∪ {Eq} as intensional. This is useful, because the existing answer
set solvers calculate Herbrand stable models under the assumption that all predi-
cate constants occurring in the program (except for “predefined predicates”) are
intensional.

For example, the diagrams (7) of the minimal DCA-models of (3) are identical,
modulo replacing = with Eq , to the Herbrand stable models of the conjunction of
the formulas (3),

∀xEq(x, x),
∀xy(Eq(x, y) → Eq(y, x)),

∀xyz(Eq(x, y) ∧ Eq(y, z) → Eq(x, z)),
(10)

∀xy(P (x) ∧ Eq(x, y) → P (y)),

and
∀xy(Eq(x, y) ∨ ¬Eq(x, y)). (11)

In logic programming syntax, this conjunction can be written as

p(a)|p(b).

eq(X,X).

eq(X,Y) :- eq(Y,X).

eq(X,Z) :- eq(X,Y), eq(Y,Z).

p(Y) :- p(X), eq(X,Y).

{eq(X,Y)}.

To make this program safe8 we need to specify that the only possible values of the
variables X and Y are a and b. This can be accomplished by including the lines

8Safety is a syntactic condition required for “intelligent instantiation”—part of the process of
generating answer sets. In the program above, the rules eq(X,X) and {eq(X,Y)} are unsafe.
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u(a;b).

#domain u(X). #domain u(Y).

#hide u/1.

(The auxiliary predicate symbol u describes the “universe” of the program.) Now
the program can be grounded by gringo, and its Herbrand stable models can be
generated by claspD.9 The output

Answer: 1

eq(b,b) eq(a,a) p(b)

Answer: 2

eq(b,b) eq(a,a) p(a)

Answer: 3

eq(b,b) eq(a,a) eq(b,a) eq(a,b) p(a) p(b)

is essentially identical to the list (7) of minimal models, as could be expected on
the basis of Theorem 4.

The Python script nonH.py (for “non-Herbrand”) is a preprocessor that turns
a program F of a signature σ without function symbols of arity > 0, written in
the input language of gringo, into the program

(F ∧ Eσ)=Eq ∧ ∀xy(Eq(x, y) ∨ ¬Eq(x, y)),

written in the language of gringo also. Thus the Herbrand stable models of the
output of nonH.py are the diagrams of the stable DCA-models of the input (with
equality replaced by Eq). As in the example above, a “universe” predicate is used
to ensure that whenever the input of nonH.py is safe, the output is safe also. The
diagrams of the minimal DCA-models of formula (3) can be generated by saving
that formula, in the form

p(a)|p(b).

in a file, say disjunction.lp, and then executing the command

% nonH.py disjunction.lp | gringo | claspD 0

(the claspD option 0 instructs it to generate all answer sets, not one). The script
can be downloaded from http://www.cs.utexas.edu/users/fkyang/nonH/.

9
gringo and claspD are “relatives” of clingo; see Footnote (1) for a reference.

clingo itself cannot be used in this case because the program is disjunctive. cmodels

(http://www.cs.utexas.edu/users/tag/cmodels.html) would do as well. Using the solver dlv

(http://www.dlvsystem.com) will become an option too after eliminating choice rules in favor
of disjunctive rules with auxiliary predicates. We are grateful to Yuliya Lierler for helping us
indentify the software capable of executing this program.

11



4.3 Calculating Models of a Relational Theory with Null Values

The method applied above to the disjunction P (a) ∨ P (b) can be applied also to
the formula Π−

∆,Σ. Stable DCA-models of this formula can be generated using
clingo with the preprocessor nonH.py. The preprocessor has two options that
can be useful here. The command line

% nonH.py <filename> -una <list of object constants>

instructs the preprocessor to conjoin its output with the unique name axioms a 6= b

for all pairs a, b of distinct constants from the given list. The command line

% nonH.py <filename> -no-una <list of object constants>

adds the unique name axioms a 6= b for all pairs a, b of distinct object constants
such that at least one of them does not occur in the given list. The diagrams of
models of the example from Section 3.1 can be generated by saving the rules

part(p1;p2;p3).

supplier(acme;foo;omega).

supplies(acme,p1;;foo,p2;;omega,p3).

subpart(p1,p2).

:- omega==p1.

:- omega==p2.

:- omega==p3.

in a file, say db.lp, and then executing the command

% nonH.py db.lp -no-una omega | clingo 0

The following output will be produced:

Answer: 1

part(p1) part(p3) part(p2) supplier(acme) supplier(omega) supplier(foo)

supplies(omega,p3) supplies(foo,p2) supplies(acme,p1) subpart(p1,p2)

eq(omega,omega) eq(foo,foo) eq(acme,acme) eq(p3,p3) eq(p2,p2)

eq(p1,p1) eq(omega,foo) eq(foo,omega) supplies(omega,p2) supplies(foo,p3)

Answer: 2

part(p1) part(p3) part(p2) supplier(acme) supplier(omega) supplier(foo)

supplies(omega,p3) supplies(foo,p2) supplies(acme,p1) subpart(p1,p2)

eq(omega,omega) eq(foo,foo) eq(acme,acme) eq(p3,p3) eq(p2,p2) eq(p1,p1)

Answer: 3

part(p1) part(p3) part(p2) supplier(acme) supplier(omega) supplier(foo)

supplies(omega,p3) supplies(foo,p2) supplies(acme,p1) subpart(p1,p2)

eq(omega,omega) eq(foo,foo) eq(acme,acme) eq(p3,p3) eq(p2,p2) eq(p1,p1)

eq(omega,acme) eq(acme,omega) supplies(acme,p3) supplies(omega,p1)

It is essentially identical to the set of diagrams J1, J2, J3 described at the end of
Section 4.1.
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4.4 Comparison with the Traylor—Gelfond Translation

The approach to encoding relational theories with null values by logic programs
proposed in [Traylor and Gelfond, 1994] does not have the property established
for Π∆,Σ in Theorem 2: generally, there is no 1–1 correspondence between the
models of T∆,Σ and the answer sets of the Traylor—Gelfond translation. For in-
stance, the logic programming counterpart of the example from Section 3.1 in
the sense of [Traylor and Gelfond, 1994] has 2 answer sets, not 3. It uses strong
(classical) negation [Gelfond and Lifschitz, 1991], and its answer sets are incom-
plete sets of literals. One of them, for instance, includes SUPPLIES (Foo, p1) but
does not include either of the two complementary literals SUPPLIES (Foo, p3),
¬SUPPLIES (Foo, p3). This is how the program expresses the possibility of p3

being supplied by Foo, along with p1. The result of [Traylor and Gelfond, 1994]

describes the relation of T∆,Σ to the intersection of the answer sets of its logic
programming counterpart, not to the individual answer sets.

The difference between the encoding due to Traylor and Gelfond and our en-
coding Π∆,Σ illustrates the distinction between the “ASP-belief” and “ASP-world”
methodologies described by Marc Denecker in a message to Texas Action Group
posted on November 8, 2010:

. . . there are two different methodologies in ASP; they differ in how an
answer set relates to the (informal) problem domain. In one method-
ology, an answer set is a formal representation of a potential state of
belief of some (relevant) agent; . . . the answer set is the set of be-
lieved literals in a possible state of belief of the agent. . . . I call it the
ASP-belief methodology. In a second methodology, an answer set is
a formal representation of a possible state of affairs of the objective
world, just like a structure (= interpretation) in classical logic. In this
view, an answer set is really an Herbrand interpretation in which a
missing atom means falsity of that atom in the world state. There is
no reflecting epistemic agent involved. . . . I call this the ASP-world
methodology.10

The models of T∆,Σ and, equivalently, the stable models of Π∆,Σ correspond to
the states of the world that are possible according to the information available in
the database, not to beliefs of an agent.

Logic programming counterparts in the sense of [Traylor and Gelfond, 1994],
like our programs Π∆,Σ, can be turned into executable ASP code. The reason why
that was not done in that paper is simply that the paper was written too early—
the first answer set solver appeared on the scene two years after its publication
[Niemelä and Simons, 1996].

10http://www.cs.utexas.edu/users/vl/tag/choice discussion2
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5 Proofs of Theorems

5.1 Proofs of Theorems 1 and 2

Lemma 1. For any finite set ∆ of positive ground clauses, formula SMp[Π∆] is
equivalent to the conjunction of the clauses ∆ and the completion axioms (4).

Proof. Let C be the conjunction of the formulas

P (a) ∨ ¬P (a) (12)

for all atomic formulas P (a) occurring in ∆. It is clear that Π∆ is strongly
equivalent11 to the conjunction of C with the formulas

¬
r

∧

i=1

¬Ai (13)

for all clauses A1 ∨ · · · ∨ Ar from ∆. According to Theorem 3 from [Ferraris
et al., 2011], it follows that SMp[Π∆] is equivalent to the conjunction of SMp[C]
with formulas (13). Furthermore, (12) is strongly equivalent to ¬¬P (a) → P (a).
Consequently C is strongly equivalent to the conjunction of the formulas

∀x





∨

a∈WP

(¬¬P (x) ∧ x = a) → P (x)





for all predicate constants P . By Theorem 11 from [Ferraris et al., 2011], it follows
that SMp[C] is equivalent to

∀x



P (x) ↔
∨

a∈WP

(¬¬P (x) ∧ x = a)



 . (14)

It remains to observe that (13) is equivalent to A1 ∨ · · · ∨ Ar, and that (14) is
equivalent to (4).

Theorem 1. For any set ∆ of positive ground clauses, an Herbrand interpreta-
tion I is a model of T∆ iff I is an answer set of Π∆.

Proof. An Herbrand interpretation is a model of T∆ iff it satisfies the clauses ∆
and the completion axioms (4). On the other hand, an Herbrand interpretation
is an answer set of Π∆ iff it satisfies SMp[Π∆]. Consequently the assertion of the
theorem follows from Lemma 1.

11See [Ferraris et al., 2011, Section 5].
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Theorem 2. For any set ∆ of positive ground clauses and any set Σ of optional
unique name axioms, T∆,Σ is equivalent to SMp[Π∆,Σ], where p is the set of all
predicate constants.

Proof. Recall that Π∆,Σ is Π∆ ∧ DCA ∧ U , where U is the conjunction of all
unique name axioms from T∆,Σ. Since neither DCA nor U contains intensional
predicates, SMp[Π∆,Σ] is equivalent to SMp[Π∆]∧DCA∧U . By Lemma 1, it follows
that SMp[Π∆,Σ] is equivalent to the conjunction of the clauses ∆, the completion
axioms (4), and the formulas DCA and U ; that is to say, it is equivalent to T∆,Σ.

5.2 Proof of Theorem 3

Theorem 3. If a subset X of EHBσ is closed under substitution, and the set of
equalities in X is closed under reflexivity, symmetry, and transitivity, then there
exists a DCA-interpretation I such that D(I) = X. Furthermore, this interpreta-
tion is unique up to isomorphism.

Proof. The binary relation

a = b is in X (15)

between object constants a, b is an equivalence relation on the set of object con-
stants. For any predicate constant P , the n-ary relation

P (a1, . . . , an) is in X (16)

between object constants a1, . . . , an can be extended to equivalence classes of (15).
Consider the interpretation I such that

• the universe of I is the set of equivalence classes of relation (15),

• I interprets each object constant a as the equivalence class that contains a,

• I interprets each predicate constant P as the extension of the corresponding
relation (16) to equivalence classes.

Interpretation I satisfies DCA, and D(I) = X.
To prove the second claim, consider any DCA-interpretation J such that

D(J) = X. For any object constant a, let f(a) be the element of the universe
of J that represents a. Function f can be extended to equivalence classes of
relation (15), and this extension is an isomorphism between I and J .
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5.3 Proof of Theorem 4

The proof of Theorem 4 is based on the fact that a DCA-interpretation I satisfies
a first-order sentence F of the signature σ iff the Herbrand interpretation D(I)=Eq

satisfies F=
Eq . This is easy to verify by induction on the size of F . What we need

actually is a similar proposition for second-order sentences, because the formulas
obtained by applying the operator SMp contain predicate variables. The straight-
forward generalization to second-order sentences is invalid, however. For instance,
let F be the formula

∃v(v(a) ∧ ¬v(b)) (17)

(v is a unary predicate variable). This formula is equivalent to a 6= b. If the
universe of an interpretation I is a singleton then I does not satisfy F . On
the other hand, the result of replacing = with Eq in F is F itself, because this
formula does not contain equality. It is satisfied by every Herbrand interpretation,
including D(I)=Eq .

To overcome this difficulty, we will define the transformation F 7→ F=
Eq for

second-order sentences in such a way that it will involve, in addition to replacing =
with Eq , restricting the second-order quantifiers in F .

In this section, a second-order formula is a formula that may involve predicate
variables, either free or existentially quantified, but not function variables. (An
extension to universally quantified predicate variables is straightforward, but it is
not needed for our purposes.) For any predicate variable v, Sub(v) stands for the
formula

∀x1 · · ·xny1 · · · yn(v(x1, . . . , xn) ∧ Eq(x1, y1) ∧ · · · ∧ Eq(xn, yn) → v(y1, . . . , yn)),

where n is the arity of v. For any second-order formula F of the signature σ, F=
Eq

stands for the second-order formula of the signature σ∪{Eq} obtained from F by

• replacing each subformula of the form t1 = t2 with Eq(t1, t2), and

• restricting each second-order quantifier ∃v to Sub(v).

For instance, is F is (17) then F=
Eq is

∃v(Sub(v) ∧ v(a) ∧ ¬v(b)).

In application to first-order formulas, the notation F=
Eq has the same meaning as

before (Section 4.2).

Lemma 2. A DCA-interpretation I satisfies a second-order sentence F of the
signature σ iff the Herbrand interpretation D(I)=Eq satisfies F=

Eq .

Proof. The proof is by induction on the size of F , understood as follows. About
second-order sentences F and G we say that F is smaller than G if
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• F has fewer second-order quantifiers than G, or

• F has the same number of second-order quantifiers as G, and the total
number of first-order quantifiers and propositional connectives in F is less
than in G.

The induction hypothesis is that the assertion of the lemma holds for all sentences
that are smaller than F . If F is atomic then

I |= F iff F ∈ D(I)
iff F=

Eq ∈ D(I)=Eq

iff D(I)=Eq |= F=
Eq .

If F is G∧H then F=
Eq is G=

Eq ∧H=
Eq . Using the induction hypothesis, we calculate:

I |= F iff I |= G and I |= H

iff D(I)=Eq |= G=
Eq and D(I)=Eq |= H=

Eq

iff D(I)=Eq |= F=
Eq .

For other propositional connectives the reasoning is similar. If F is ∀xG(x) then

F=
Eq is ∀x

(

G(x)=Eq

)

. Using the induction hypothesis and the fact that I satisfies

DCA, we calculate:

I |= F iff for all object constants a, I |= G(a)
iff for all object constants a, D(I)=Eq |= G(a)=Eq

iff D(I)=Eq |= F=
Eq .

For the first-order existential quantifier the reasoning is similar.
It remains to consider the case when F is ∃vG(v), where v is a predicate

variable. To simplify notation, we will assume that the arity of v is 1. For any set V

of object constants, by expV we denote the lambda-expression12 λx
∨

a∈V (x = a).
Since I is a DCA-interpretation, I |= F iff

for some V, I |= G(expV ).

By the induction hypothesis, this is equivalent to the condition

for some V, D(I)=Eq |= H((expV )=Eq), (18)

where H(v) stands for G(v)=Eq . On the other hand, F=
Eq is ∃v(Sub(v)∧H(v)). The

Herbrand interpretation D(I)=Eq satisfies this formula iff

for some V, D(I)=Eq |= Sub(expV ) and D(I)=Eq |= H(expV ). (19)

12On the use of lambda-expressions in logical formulas, see [Lifschitz, 1994, Section 3.1].

17



We need to show that (19) is equivalent to (18).
Consider first the part

D(I)=Eq |= Sub(expV ) (20)

of condition (19), that is,

D(I)=Eq |= ∀xy(expV (x) ∧ Eq(x, y) → expV (y)).

It is equivalent to

D(I)=Eq |= ∀y(∃x(expV (x) ∧ Eq(x, y)) → expV (y)).

Interpretation D(I)=Eq satisfies the inverse of this implication, because it satisfies
∀xEq(x, x). Consequently condition (20) can be equivalently rewritten as

D(I)=Eq |= ∀y(∃x(expV (x) ∧ Eq(x, y)) ↔ expV (y)).

The left-hand side of this equivalence can be rewritten as
∨

a∈V Eq(a, y). It follows
that condition (20) is equivalent to

D(I)=Eq |= ∀y
(
∨

a∈V Eq(a, y) ↔ expV (y)
)

.

Furthermore, Eq(a, y) can be replaced here by Eq(y, a), because D(I)=Eq satisfies
∀xy(Eq(x, y) ↔ Eq(y, x)). Hence (20) is equivalent to

D(I)=Eq |= (expV )=Eq = expV .

It follows that (19) is equivalent to the condition

for some V, D(I)=Eq |= (expV )=Eq = expV and D(I)=Eq |= H((expV )=Eq). (21)

It is clear that (21) implies (18).
It remains to check that (18) implies (21). Assume that

D(I)=Eq |= H((expV )=Eq), (22)

and let V ′ be the set of object constants a such that, for some b ∈ V , I |= a = b.
We will show that V ′ can be taken as V in (21). The argument uses two properties
of the set V ′ that are immediate from its definition:

(a) V ⊆ V ′;

(b) if I |= a = b and a ∈ V ′ then b ∈ V ′.
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Consider the first half of (21) with V ′ as V :

D(I)=Eq |= (expV ′)=Eq = expV ′ .

This condition can be restated as follows: for every object constant a,

D(I)=Eq |=
∨

b∈V ′ Eq(a, b) iff D(I)=Eq |=
∨

b∈V ′(a = b),

or, equivalently,
I |=

∨

b∈V ′(a = b) iff a ∈ V ′.

The implication left-to-right follows from property (b) of V ′; the implication right-
to-left is obvious (take b to be a).

Consider now the second half of (21) with V ′ as V :

D(I)=Eq |= H((expV ′)=Eq).

To derive it from (22), we only need to check that

D(I)=Eq |= (expV ′)=Eq = (expV )=Eq .

This claim is equivalent to
I |= expV ′ = expV (23)

and can be restated as follows: for every object constant a,

I |=
∨

b∈V ′(a = b) iff I |=
∨

b∈V (a = b).

The implication left-to-right is immediate from the definition of V ′; the implication
righ-to-left is immediate from property (a).

In the following lemma, as in the statement of Theorem 4, F is an arbitrary
sentence of the signature σ, and p stands for the set of all predicate constants
of σ.

Lemma 3. For any DCA-interpretation I of the signature σ,

I |= SMp[F ] iff D(I)=Eq |= SMp[(F ∧ Eσ)=Eq ].

Proof. Recall that SMp[F ] is defined as

F ∧ ¬∃v((v < p) ∧ F ∗(v))

[Ferraris et al., 2011, Section 2.3], so that SMp[(F ∧ Eσ)=Eq ] is

F=
Eq ∧ (Eσ)=Eq ∧ ¬∃v((v < p) ∧ F ∗(v)=Eq ∧ E∗

σ(v)=Eq). (24)
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From the definitions of Eσ (Section 4.2) and of the transformation F 7→ F ∗(v)
[Ferraris et al., 2011, Section 2.3] we see that E∗

σ(v) is the conjunction of Eσ and
the formulas

∀xy(v(x) ∧ x = y → v(y))

for all members v of tuple v. Consequently E∗

σ(v)=Eq is the conjunction of (Eσ)=Eq

and the formulas Sub(v) for all members v of tuple v. It follows that (24) can be
written as

F=
Eq ∧ (Eσ)=Eq ∧ ¬∃v

(

(v < p) ∧ F ∗(v)=Eq ∧ (Eσ)=Eq ∧
∧

v

Sub(v)

)

.

This formula is equivalent to

F=
Eq ∧ ¬∃v

(

∧

v

Sub(v) ∧ ((v < p) ∧ F ∗(v))=Eq

)

∧ (Eσ)=Eq ,

which can be written as
SMp[F ]=Eq ∧ (Eσ)=Eq .

The interpretation D(I)=Eq satisfies the second conjunctive term. By Lemma 2, D(I)=Eq

satisfies the first conjunctive term iff I satisfies SMp[F ].

Theorem 4. For any DCA-interpretation I of the signature σ that satisfies
SMp[F ], the Herbrand interpretation D(I)=Eq of the signature σ ∪ {Eq} satisfies

SMp[(F ∧ Eσ)=Eq ].

Conversely, any Herbrand model of this formula is D(I)=Eq for some DCA-interpreta-
tion I of σ satisfying SMp[F ].

Proof. The first assertion is identical to the only-if part of Lemma 4. To prove
the second assertion, consider an Herbrand model J of SMp[(F∧Eσ)=Eq ]. Since this
formula entails (Eσ)=Eq , J is a model of (Eσ)=Eq as well. It follows that the subset X

of EDBσ such that X=
Eq = J is closed under substitution, and the set of equalities

in X is closed under reflexivity, symmetry, and transitivity. By Theorem 3, there
exists a DCA-interpretation I such that D(I) = X, so that D(I)=Eq = J . By the
if part of Lemma 3, I satisfies SMp[F ].

6 Conclusion

This paper contributes to the direction of research on the semantics of null values
started in [Reiter, 1984] and [Traylor and Gelfond, 1994]. It shows, in particular,
how answer set solvers can be used for computing models of relational theories
with null values.
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On the other hand, this paper improves our understanding of the role of non-
Herbrand stable models. Are they merely a mathematical curiosity, or can they
have serious applications to knowledge representation? We have provided argu-
ments in favor of the usefulness of this generalization of the stable model semantics
by showing, first, how non-Herbrand stable models can serve for representing null
values, and second, how they can be generated using existing software systems.

The generalization of the stable model semantics proposed in [Ferraris et al.,
2011] extends the original definition of a stable model in two ways: syntacti-
cally (it is applicable to arbitrary first-order formulas) and semantically (a stable
model can be non-Herbrand). The preprocessor f2lp [Lee and Palla, 2009] al-
lows us to use the existing answer set solvers for generating stable models of some
syntactically complex formulas. On the other hand, the preprocessor nonH.py,
described in this paper, allows us to use answer set solvers for generating some
non-Herbrand stable models—those that satisfy the domain closure assumption
but not the unique name assumption. The two programs can be used together.
For instance, the stable DCA-models of the formula

(P (a) ∧ P (b)) ∨ (P (c) ∧ P (d))

(there are 23 of them) can be generated by running f2lp on the file

(p(a) & p(b)) | (p(c) & p(d)).

and then running consecutively nonH.py, gringo, and claspD.
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mentation of the well-founded and stable model semantics. In Proceedings Joint
Int’l Conf. and Symp. on Logic Programming, pages 289–303, 1996.

22
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