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Abstract

We present a family of approximation techniques for probabilistic graph-
ical models, based on the use of graphical preconditioners developed in
the scientific computing literature. Our framework yields rigorous upper
and lower bounds on event probabilities and the log partition function
of undirected graphical models, using non-iterative procedures that have
low time complexity. As in mean field approaches, the approximations
are built upon tractable subgraphs; however, we recast the problem of op-
timizing the tractable distribution parameters and approximate inference
in terms of the well-studied linear systems problem of obtaining a good
matrix preconditioner. Experiments are presented that compare the new
approximation schemes to variational methods.

1 Introduction

Approximate inference techniques are enabling sophisticated new probabilistic models to
be developed and applied to a range of practical problems. One of the primary uses of
approximate inference is to estimate the partition function and event probabilities for undi-
rected graphical models, which are natural tools in many domains, from image processing
to social network modeling. A central challenge is to improve the accuracy of existing ap-
proximation methods, and to derive rigorous rather than heuristic bounds on probabilities in
such graphical models. In this paper, we present a simple newapproach to the approximate
inference problem, based upon non-iterative procedures that have low time complexity. We
follow the variational mean field intuition of focusing on tractable subgraphs, however we
recast the problem of optimizing the tractable distribution parameters as a generalized lin-
ear system problem. In this way, the task of deriving a tractable distribution conveniently
reduces to the well-studied problem of obtaining a goodpreconditionerfor a matrix (Bo-
man and Hendrickson, 2003). This framework has the added advantage that tighter bounds
can be obtained by reducing the sparsity of the preconditioners, at the expense of increasing
the time complexity for computing the approximation.

In the following section we establish some notation and background. In Section 3, we
outline the basic idea of our proposed framework, and explain how to use preconditioners
for deriving tractable approximate distributions. In Sections 3.1 and 4, we then describe
the underlying theory, which we call the generalized support theory for graphical models.
In Section 5 we present experiments that compare the new approximation schemes to some
of the standard variational and optimization based methods.



2 Notation and Background

Consider a graphG = (V,E), whereV denotes the set of nodes andE denotes the set
of edges. LetXi be a random variable associated with nodei, for i ∈ V , yielding a
random vectorX = {X1, . . . ,Xn}. Let φ = {φα, α ∈ I} denote the set ofpotential
functionsor sufficient statistics, for a setI of cliques in G. Associated withφ is a vector of
parametersθ = {θα, α ∈ I}. With this notation, the exponential family of distributions of
X, associated withφ andG, is given by

p(x; θ) = exp

(
∑

α

θαφα − Ψ(θ)

)
. (1)

For traditional reasons through connections with statistical physics,Z = exp Ψ(θ) is called
thepartition function. As discussed in (Yedidia et al., 2001), at the expense in increasing
the state space one can assume without loss of generality that the graphical model is a
pairwise Markov random field,i.e., the set of cliquesI is the set of edges{(s, t) ∈ E}.
We shall assume a pairwise random field, and thus can express the potential function and
parameter vectors in more compact form as matrices:

Θ :=




θ11 . . . θ1n

...
...

...
θn1 . . . θnn


 Φ(x) :=




φ11(x1, x1) . . . φ1n(x1, xn)
...

...
...

φn1(xn, x1) . . . φnn(xn, xn)


 (2)

In the following we will denote the trace of the product of twomatricesA andB by the in-
ner product〈〈A,B〉〉. Assuming that eachXi is finite-valued, the partition functionZ(Θ) is
then given byZ(Θ) =

∑
x∈χ exp 〈〈Θ,Φ(x)〉〉. The computation ofZ(Θ) has a complex-

ity exponential in the tree-width of the graphG and hence is intractable for large graphs.
Our goal is to obtain rigorous upper and lower bounds for thispartition function, which can
then be used to obtain rigorous upper and lower bounds for general event probabilities; this
is discussed further in (Ravikumar and Lafferty, 2004).

2.1 Preconditioners in Linear Systems

Consider a linear system,Ax = c, where the variablex is n dimensional, andA is an
n × n matrix with m non-zero entries. Solving forx via direct methods such as Gaussian
elimination has a computational complexityO(n3), which is impractical for large values
of n. Multiplying both sides of the linear system by the inverse of an invertible matrix
B, we get an equivalent “preconditioned” system,B−1Ax = B−1c. If B is similar toA,
B−1A is in turn similar toI, the identity matrix, making the preconditioned system easier
to solve. Such an approximating matrixB is called a preconditioner.

The computational complexity of preconditioned conjugategradient is given by

T (A) =
√

κ(A,B) (m + T (B)) log

(
1

ε

)
(3)

whereT (A) is the time required for anε-approximate solution;κ(A,B) is thecondition
numberof A andB which intuitively corresponds to the quality of the approximationB,
andT (B) is the time required to solveBy = c.

Recent developments in the theory of preconditioners are inpart based onsupport graph
theory, where the linear system matrix is viewed as the Laplacian ofa graph, and graph-
based techniques can be used to obtain good approximations.While these methods re-
quire diagonally dominant matrices (Aii ≥

∑
j 6=i |Aij |), they yield “ultra-sparse” (tree

plus a constant number of edges) preconditioners with a low condition number. In our



experiments, we use two elementary tree-based preconditioners in this family, Vaidya’s
Spanning Tree preconditioner Vaidya (1990), and Gremban-Miller’s Support Tree precon-
ditioner Gremban (1996).

3 Graphical Model Preconditioners

Our proposed framework follows the generalized mean field intuition of looking at sparse
graph approximations of the original graph, but solving a different optimization problem.
We begin by outlining the basic idea, and then develop the underlying theory.

Consider the graphical model with graphG, potential-function matrixΦ(x), and parameter
matrix Θ. For purposes of intuition, think of the graphical model “energy” 〈〈Θ,Φ(x)〉〉 as
the matrix normx>Θx. We would like to obtain a sparse approximationB for Θ. If B
approximatesΘ well, then the condition numberκ is small:

κ(Θ, B) = max
x

x>Θx

x>Bx

/
min

x

x>Θx

x>Bx
= λmax(Θ, B) /λmin(Θ, B) (4)

This suggests the following procedure for approximate inference. First, choose a matrixB
that minimizes the condition number withΘ (rather than KL divergence as in mean-field).
Then, scaleB appropriately, as detailed in the following sections. Finally, use the scaled
matrixB as the parameter matrix for approximate inference. Note that if B corresponds to
a tree, approximate inference has linear time complexity.

3.1 Generalized Eigenvalue Bounds

Given a graphical model with graphG, potential-function matrixΦ(x), and parameter
matrix Θ, our goal is to obtain parameter matricesΘU andΘL, corresponding to sparse
graph approximations ofG, such that

Z(ΘL) ≤ Z(Θ) ≤ Z(ΘU ). (5)

That is, the partition functions of the sparse graph parameter matricesΘU andΘL are upper
and lower bounds, respectively, of the partition function of the original graph. However,
we will instead focus on a seemingly muchstrongercondition; in particular, we will look
for ΘL andΘU that satisfy

〈〈ΘL,Φ(x)〉〉 ≤ 〈〈Θ,Φ(x)〉〉 ≤ 〈〈ΘU ,Φ(x)〉〉 (6)

for all x. By monotonicity ofexp, this stronger condition implies condition (5) on the
partition function, by summing over the values ofX. However, this stronger condition will
give us greater flexibility, and rigorous bounds for generalevent probabilities since then

exp 〈〈ΘL,Φ(x)〉〉

Z(ΘU )
≤ p(x; Θ) ≤

exp 〈〈ΘU ,Φ(x)〉〉

Z(ΘL)
. (7)

In contrast, while variational methods give bounds on the log partition function, the derived
bounds on general event probabilities via the variational parameters are only heuristic.

Let S be a set of sparse graphs; for example,S may be the set of all trees. Focusing on the
upper bound, we for now would like to obtain a graphG′ ∈ S with parameter matrixB,
which approximatesG, and whose partition function upper bounds the partition function
of the original graph. Following (6), we require,

〈〈Θ,Φ(x)〉〉 ≤ 〈〈B,Φ(x)〉〉 , such thatG(B) ∈ S (8)

whereG(B) denotes the graph corresponding to the parameter matrixB. Now, we would
like the distribution corresponding toB to be as close as possible to the distribution corre-
sponding toΘ; that is,〈〈B,Φ(x)〉〉 should not only upper bound〈〈Θ,Φ(x)〉〉 but should be



close to it. The distance measure we use for this is the minimax distance. In other words,
while the upper bound requires that

〈〈Θ,Φ(x)〉〉

〈〈B,Φ(x)〉〉
≤ 1, (9)

we would like

min
x

〈〈Θ,Φ(x)〉〉

〈〈B,Φ(x)〉〉
(10)

to be as high as possible. Expressing these desiderata in theform of an optimization prob-
lem, we have

B? = arg max
B: G(B)∈S

min
x

〈〈Θ,Φ(x)〉〉
〈〈B,Φ(x)〉〉 , such that 〈〈Θ,Φ(x)〉〉

〈〈B,Φ(x)〉〉 ≤ 1.

Before solving this problem, we first make some definitions, which are generalized versions
of standard concepts in linear systems theory.

Definition 3.1. For a pairwise Markov random field with potential function matrix Φ(x);
the generalized eigenvalues of a pair of parameter matrices(A,B) are defined as

λΦ
max(A,B) = max

x: 〈〈B,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉
(11)

λΦ
min(A,B) = min

x: 〈〈B,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉
. (12)

Note that

λΦ
max(A,αB) = max

x: 〈〈αB,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉

〈〈αB,Φ(x)〉〉
(13)

=
1

α
max

x: 〈〈B,Φ(x)〉〉6=0

〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉
= α−1λΦ

max(A,B). (14)

We state the basic properties of the generalized eigenvalues in the following lemma.

Lemma 3.2. The generalized eigenvalues satisfy

λΦ
min(A,B) ≤

〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉
≤ λΦ

max(A,B) (15)

λΦ
max(A,αB) = α−1λΦ

max(A,B) (16)

λΦ
min(A,αB) = α−1λΦ

min(A,B) (17)

λΦ
min(A,B) =

1

λΦ
max(B,A)

. (18)

In the following, we will useA to generically denote the parameter matrixΘ of the model.
We can now rewrite the optimization problem for the upper bound in equation (11) as

(ProblemΛ1) max
B: G(B)∈S

λΦ
min(A,B), such thatλΦ

max(A,B) ≤ 1 (19)

We shall express the optimal solution of ProblemΛ1 in terms of the optimal solution of a
companion problem. Towards that end, consider the optimization problem

(ProblemΛ2) min
C: G(C)∈S

λΦ
max(A,C)

λΦ
min(A,C)

. (20)

The following proposition shows the sense in which these problems are equivalent.



Proposition 3.3. If Ĉ attains the optimum in ProblemΛ2, thenC̃ = λΦ
max(A, Ĉ) Ĉ attains

the optimum of ProblemΛ1.

Proof. For any feasible solutionB of ProblemΛ1, we have

λΦ
min(A,B) ≤

λΦ
min(A,B)

λΦ
max(A,B)

(sinceλΦ
max(A,B) ≤ 1) (21)

≤
λΦ

min(A, Ĉ)

λΦ
max(A, Ĉ)

(sinceĈ is the optimum of ProblemΛ2) (22)

= λΦ
min

(
A, λΦ

max(A, Ĉ)Ĉ
)

(from Lemma 3.2) (23)

= λΦ
min(A, C̃). (24)

Thus,C̃ upper bounds all feasible solutions in ProblemΛ1. However, it itself is a feasible
solution, since

λΦ
max(A, C̃) = λΦ

max

(
A, λΦ

max(A, Ĉ)Ĉ
)

=
1

λΦ
max(A, Ĉ)

λΦ
max(A, Ĉ) = 1 (25)

from Lemma 3.2. Thus,̃C attains the maximum in the upper bound ProblemΛ1. �

The analysis for obtaining an upper bound parameter matrixB for a given parameter matrix
A carries over for the lower bound; we need to replace a maximinproblem with a minimax
problem. For the lower bound, we want a matrixB such that

B? = min
B: G(B)∈S

max
{x: 〈〈B,Φ(x)〉〉6=0}

〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉
, such that

〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉
≥ 1 (26)

This leads to the following lower bound optimization problem.

(ProblemΛ3) min
B: G(B)∈S

λΦ
max(A,B), such thatλΦ

min(A,B) ≥ 1. (27)

The proof of the following statement closely parallels the proof of Proposition 3.3.

Proposition 3.4. If Ĉ attains the optimum in ProblemΛ2, thenC = λΦ
min(A, Ĉ)Ĉ attains

the optimum of the lower bound ProblemΛ3.

Finally, we state the following basic lemma, whose proof is easily verified.

Lemma 3.5. For any pair of parameter-matrices(A,B), we have
〈〈

λΦ
min(A,B)B,Φ(x)

〉〉
≤ 〈〈A,Φ(x)〉〉 ≤

〈〈
λΦ

max(A,B)B,Φ(x)
〉〉

. (28)

3.2 Main Procedure

We now have in place the machinery necessary to describe the procedure for solving the
main problem in equation (6), to obtain upper and lower boundmatrices for a graphical
model. Lemma 3.5 shows how to obtain upper and lower bound parameter matrices with
respect to any matrixB, given a parameter matrixA, by solving a generalized eigenvalue
problem. Propositions 3.3 and 3.4 tell us, in principle, howto obtain the optimal such
upper and lower bound matrices. We thus have the following procedure. First, obtain a
parameter matrixC such thatG(C) ∈ S, which minimizesλΦ

max(Θ, C)/λΦ
min(Θ, C). Then

λΦ
max(Θ, C)C gives the optimal upper bound parameter matrix andλΦ

min(Θ, C)C gives the
optimal lower bound parameter matrix. However, as things stand, this recipe appears to
be even more challenging to work with than the generalized mean field procedures. The
difficulty lies in obtaining the matrixC. In the following section we offer a series of
relaxations that help to simplify this task.



4 Generalized Support Theory for Graphical Models

In what follows, we begin by assuming that the potential function matrix is positive semi-
definite,Φ(x) � 0, and later extend our results to generalΦ.

Definition 4.1. For a pairwise MRF with potential function matrixΦ(x) � 0, thegener-
alized support numberof a pair of parameter matrices(A,B), whereB � 0, is

σΦ(A,B) = min {τ ∈ R | 〈〈τB,Φ(x)〉〉 ≥ 〈〈A,Φ(x)〉〉 for all x} (29)

The generalized support number can be thought of as the “number of copies”τ of B re-
quired to “support”A so that〈〈τB − A,Φ(x)〉〉 ≥ 0. The usefulness of this definition is
demonstrated by the following result.

Proposition 4.2. If B � 0 thenλΦ
max(A,B) ≤ σΦ(A,B).

Proof. From the definition of the generalized support number for a graphical model,
we have that

〈〈
σΦ(A,B)B − A,Φ(x)

〉〉
≥ 0. Now, since we assume thatΦ(x) � 0, if

alsoB � 0 then〈〈B,Φ(x)〉〉 ≥ 0. Therefore, it follows that〈〈A,Φ(x)〉〉
〈〈B,Φ(x)〉〉 ≤ σΦ(A,B), and

thus

λΦ
max(A,B) = max

x

〈〈A,Φ(x)〉〉

〈〈B,Φ(x)〉〉
≤ σΦ(A,B) (30)

giving the statement of the proposition.�

This leads to our first relaxation of the generalized eigenvalue bound for a model. From
Lemma 3.2 and Proposition 4.2 we see that

λΦ
max(A,B)

λΦ
min(A,B)

= λΦ
max(A,B)λΦ

max(B,A) ≤ σΦ(A,B)σΦ(B,A) (31)

Thus, this result suggests that to approximate the graphical model(Θ,Φ) we can search for
a parameter matrixB?, with corresponding simple graphG(B?) ∈ S, such that

B? = arg min
B

σΦ(Θ, B)σΦ(B,Θ) (32)

While this relaxation may lead to effective bounds, we will now go further, to derive an
additional relaxation that relates our generalized graphical model support number to the
“classical” support number.

Proposition 4.3. For a potential function matrixΦ(x) � 0, σΦ(A,B) ≤ σ(A,B), where
σ(A,B) = min{τ | (τB − A) � 0}.

Proof. Sinceσ(A,B)B−A � 0 by definition andΦ(x) � 0 by assumption, we have
that〈〈σ(A,B)B − A,Φ(x)〉〉 ≥ 0. Therefore,σΦ(A,B) ≤ σ(A,B) from the definition of
generalized support number.�

The above result reduces the problem of approximating a graphical model to the problem
of minimizing classical support numbers, the latter problem being well-studied in the sci-
entific computing literature (Boman and Hendrickson, 2003;Bern et al., 2001), where the
expressionσ(A,C)σ(C,A) is called thecondition number, and a matrix that minimizes
it within a simple family of graphs is called apreconditioner. We can thus plug in any
algorithm for finding a sparse preconditioner forΘ, carrying out the optimization

B? = arg min
B

σ(Θ, B)σ(B,Θ) (33)



and then use that matrixB? in our basic procedure.

One example is Vaidya’s preconditioner Vaidya (1990), which is essentially the maximum
spanning tree of the graph. Another is the support tree of Gremban (1996), which intro-
duces Steiner nodes, in this case auxiliary nodes introduced via a recursive partitioning
of the graph. We present experiments with these basic preconditioners in the following
section.

Before turning to the experiments, we comment that our generalized support number anal-
ysis assumed that the potential function matrixΦ(x) was positive semi-definite. The case
when it is not can be handled as follows. We first add a large positive diagonal matrixD
so thatΦ′(x) = Φ(x) + D � 0. Then, for a given parameter matrixΘ, we use the above
machinery to get an upper bound parameter matrixB such that

〈〈A,Φ(x) + D〉〉 ≤ 〈〈B,Φ(x) + D〉〉 ⇒ 〈〈A,Φ(x)〉〉 ≤ 〈〈B,Φ(x)〉〉 + 〈〈B − A,D〉〉 .
(34)

Exponentiating and summing both sides over x, we then get therequired upper bound for
the parameter matrix A; the same can be done for the lower bound.

5 Experiments

As the previous sections detailed, the preconditioner based bounds are in principle quite
easy to compute—we compute a sparse preconditioner for the parameter matrix (typi-
cally O(n) to O(n3)) and use the preconditioner as the parameter matrix for the bound
computation (which is linear if the preconditioner matrix corresponds to a tree). This
yields a simple, non-iterative deterministic procedure ascompared to the more complex
propagation-based or iterative update procedures. In thissection we evaluate these bounds
on small graphical models for which exact answers can be readily computed, and compare
the bounds to variational approximations.

We show simulation results averaged over a randomly generated set of graphical models.
The graphs used were 2D grid graphs, and the edge potentials were selected according to a
uniform distribution Uniform(−2dcoup, 0) for various coupling strengthsdcoup. We report
the relative error,(bound− log-partition-function)/log-partition-function.

As a baseline, we use the mean field and structured mean field methods for the lower bound,
and the Wainwright et al. (2003) tree-reweighted belief propagation approximation for the
upper bound. For the preconditioner based bounds, we use twovery simple precondition-
ers, (a) Vaidya’s maximum spanning tree preconditioner (Vaidya, 1990), which assumes the
input parameter matrix to be a Laplacian, and (b) Gremban (1996)’s support tree precon-
ditioner, which also gives a sparse parameter matrix corresponding to a tree, with Steiner
(auxiliary) nodes. To compute bounds over these larger graphs with Steiner nodes we aver-
age an internal node over its children; this is the techniqueused with such preconditioners
for solving linear systems. We note that these preconditioners are quite basic, and the use
of better preconditioners (yielding a better condition number) has the potential to achieve
much better bounds, as shown in Propositions 3.3 and 3.4. We also reiterate that while our
approach can be used to derive bounds on event probabilities, the variational methods yield
bounds only for the partition function, and only apply heuristically to estimating simple
event probabilities such as marginals.

As the plots in Figure 1 show, even for the simple preconditioners used, the new bounds
are quite close to the actual values, outperforming the meanfield method and giving com-
parable results to the tree-reweighted belief propagationmethod. The spanning tree pre-
conditioner provides a good lower bound, while the support tree preconditioner provides a
good upper bound, however not as tight as the bound obtained using tree-reweighted be-
lief propagation. Although we cannot compute the exact solution for large graphs, we can
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Figure 1: Comparison of lower
bounds (top left), and upper bounds
(top right) for small grid graphs, and
lower bounds for grid graphs of in-
creasing size (left).

compare bounds. The bottom plot of Figure 1 compares lower bounds for graphs with up
to 900 nodes; a larger bound is necessarily tighter, and the preconditioner bounds are seen
to outperform mean field.
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