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Abstract

We present a family of approximation techniques for prolisthd graph-
ical models, based on the use of graphical preconditiorsrsldped in
the scientific computing literature. Our framework yiel@grous upper
and lower bounds on event probabilities and the log pantifimction
of undirected graphical models, using non-iterative pdoices that have
low time complexity. As in mean field approaches, the appnations
are built upon tractable subgraphs; however, we recasttidgm of op-
timizing the tractable distribution parameters and apipnate inference
in terms of the well-studied linear systems problem of abiteg a good
matrix preconditioner. Experiments are presented thaipeoenthe new
approximation schemes to variational methods.

1 Introduction

Approximate inference techniques are enabling sophtsticaew probabilistic models to
be developed and applied to a range of practical problems ddithe primary uses of
approximate inference is to estimate the partition fumcéind event probabilities for undi-
rected graphical models, which are natural tools in manyalog) from image processing
to social network modeling. A central challenge is to imgrdive accuracy of existing ap-
proximation methods, and to derive rigorous rather thamisgzibounds on probabilities in
such graphical models. In this paper, we present a simpleapgwoach to the approximate
inference problem, based upon non-iterative proceduegittve low time complexity. We
follow the variational mean field intuition of focusing orattable subgraphs, however we
recast the problem of optimizing the tractable distribui@rameters as a generalized lin-
ear system problem. In this way, the task of deriving a tiaetdistribution conveniently
reduces to the well-studied problem of obtaining a gpretonditionerfor a matrix (Bo-
man and Hendrickson, 2003). This framework has the addeazhsalye that tighter bounds
can be obtained by reducing the sparsity of the preconditgyrat the expense of increasing
the time complexity for computing the approximation.

In the following section we establish some notation and Qemlnd. In Section 3, we
outline the basic idea of our proposed framework, and exlaiv to use preconditioners
for deriving tractable approximate distributions. In See$ 3.1 and 4, we then describe
the underlying theory, which we call the generalized supth@ory for graphical models.
In Section 5 we present experiments that compare the newxdppation schemes to some
of the standard variational and optimization based methods



2 Notation and Background

Consider a grapldé: = (V, E), whereV denotes the set of nodes aftdenotes the set
of edges. LetX; be a random variable associated with nadéor i € V, yielding a
random vectorX = {X;,...,X,}. Let¢ = {¢,,a € I} denote the set gbotential
functionsor sufficient statisticsfor a set/ of cliques in G. Associated with is a vector of
parameterd = {0, « € I}. With this notation, the exponential family of distributi® of
X, associated witlh andG, is given by

p(l‘;@) = exp (Z ea(ba - \11(0)> . (1)

For traditional reasons through connections with staasphysicsZ = exp ¥(6) is called
the partition function As discussed in (Yedidia et al., 2001), at the expense ireasing
the state space one can assume without loss of generalityhthgraphical model is a
pairwise Markov random field,e, the set of cliqued is the set of edge$§(s,t) € E}.
We shall assume a pairwise random field, and thus can expres®otential function and
parameter vectors in more compact form as matrices:

O ... b ¢11(CU17$1) ¢1n($17$n)
o= | %= s 5 5 )
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In the following we will denote the trace of the product of tmatricesA and B by the in-
ner product(A, B)). Assuming that eacl; is finite-valued, the partition functiof(0) is
then given byZ(©) = >_ . exp (O, ®(x))). The computation of (©) has a complex-
ity exponential in the tree-width of the grajghand hence is intractable for large graphs.
Our goal is to obtain rigorous upper and lower bounds forghigition function, which can
then be used to obtain rigorous upper and lower bounds fargeeavent probabilities; this
is discussed further in (Ravikumar and Lafferty, 2004).

2.1 Preconditioners in Linear Systems

Consider a linear systemixz = ¢, where the variable: is n dimensional, and4 is an

n X nm matrix with m non-zero entries. Solving far via direct methods such as Gaussian
elimination has a computational complexi®(n?), which is impractical for large values
of n. Multiplying both sides of the linear system by the invergean invertible matrix
B, we get an equivalent “preconditioned” systeRT,' Az = B~ 'c. If B is similar to A,
B~!Ais in turn similar tol, the identity matrix, making the preconditioned systeniezas
to solve. Such an approximating mateixis called a preconditioner.

The computational complexity of preconditioned conjuggeadient is given by

1
T(4) = VR B) (m + 7(5) g ©
whereT(A) is the time required for ag-approximate solutionz(A, B) is thecondition
numberof A and B which intuitively corresponds to the quality of the approgition B,
andT'(B) is the time required to solvBy = c.

Recent developments in the theory of preconditioners apaihbased oisupport graph

theory, where the linear system matrix is viewed as the Laplaciaam gfaph, and graph-
based techniques can be used to obtain good approximativhde these methods re-
quire diagonally dominant matricest{ > Z#i |4;;]), they yield “ultra-sparse” (tree
plus a constant number of edges) preconditioners with a lowdition number. In our



experiments, we use two elementary tree-based precomeliidn this family, Vaidya’s
Spanning Tree preconditioner Vaidya (1990), and Grembadlef'd Support Tree precon-
ditioner Gremban (1996).

3 Graphical Model Preconditioners

Our proposed framework follows the generalized mean figldgtion of looking at sparse
graph approximations of the original graph, but solving feedént optimization problem.
We begin by outlining the basic idea, and then develop theuyidg theory.

Consider the graphical model with gragh potential-function matrix(x), and parameter
matrix ©. For purposes of intuition, think of the graphical modeléegy” (©, ®(z))) as
the matrix normz ™ ©x. We would like to obtain a sparse approximatiBrfor ©. If B
approximate® well, then the condition numberis small:

x'Ox . 'Oz
k(©,B) = max —— /mlln By = Amaz (0, B) /Amin(©, B) 4)
This suggests the following procedure for approximatergriee. First, choose a matrix
that minimizes the condition number wiéh (rather than KL divergence as in mean-field).
Then, scaleB appropriately, as detailed in the following sections. Hinaise the scaled
matrix B as the parameter matrix for approximate inference. Notgftliacorresponds to
a tree, approximate inference has linear time complexity.

3.1 Generalized Eigenvalue Bounds

Given a graphical model with grapfi, potential-function matrixp(x), and parameter
matrix ©, our goal is to obtain parameter matric®@g and©,, corresponding to sparse
graph approximations @, such that

Z(0r) < Z(©) < Z(6v). (®)

That is, the partition functions of the sparse graph paramrmatrice$;; and©, are upper
and lower bounds, respectively, of the partition functidrihe original graph. However,
we will instead focus on a seemingly mustiongercondition; in particular, we will look
for @, and©y that satisfy

(©1,2(z)) <((©,2(z)) < (Ov,2(x))) (6)

for all x. By monotonicity ofexp, this stronger condition implies condition (5) on the
partition function, by summing over the valuesXf However, this stronger condition will
give us greater flexibility, and rigorous bounds for genexant probabilities since then

exp (O, () exp (Ou, 2(x)))
< p(z;0) < . 7
Z(©v) < p(a:©) Z(©r) )
In contrast, while variational methods give bounds on tigeplartition function, the derived
bounds on general event probabilities via the variatioasghmeters are only heuristic.

Let S be a set of sparse graphs; for examplanay be the set of all trees. Focusing on the
upper bound, we for now would like to obtain a gra@h € S with parameter matrixB,
which approximatess, and whose partition function upper bounds the partitiorcfion

of the original graph. Following (6), we require,

(0,®(x)) < (B,®(x)), suchthatG(B) € S ®)

whereG(B) denotes the graph corresponding to the parameter niatriow, we would
like the distribution corresponding t8 to be as close as possible to the distribution corre-
sponding ta®; that is, (B, ®(x))) should not only upper boungd®, ®(z))) but should be



close to it. The distance measure we use for this is the mindiistance. In other words,
while the upper bound requires that

(O, ®(z)))
(B.a@) - @)
we would like
(0, 8(x)) 10)

n
= (B, ®(x)))
to be as high as possible. Expressing these desiderataforthef an optimization prob-
lem, we have

B* = argmax min {22@)  gych that {2:2@) <1,
argmax min - (Eaa) (B0

Before solving this problem, we first make some definitiorfsiciv are generalized versions
of standard concepts in linear systems theory.

Definition 3.1. For a pairwise Markov random field with potential functiontma®(z);
the generalized eigenvalues of a pair of parameter matriteB) are defined as

Amad A B) = 022221};&2;; ()
Aminl 4 B) - = m~<<3%23>>>¢0m' (12)
Note that
Ama4,0B) = x:<<a§3&‘i‘€i>>>¢o<<«w<1£2§>>> =
B ém:«B%a(?)»#o EEB <I>E ;>>i o AnalA. ). (1)

We state the basic properties of the generalized eigerwaiube following lemma.

Lemma 3.2. The generalized eigenvalues satisfy

Amin(A, B) < m < Amad 4, B) (15)
A2 (A aB) =a 'A\? (A B) (16)
)‘ﬁﬁn(A O‘B) = ail/\giun(fLB) (17)

Amin(A, B) = m (18)

In the following, we will useA to generically denote the parameter ma@iof the model.
We can now rewrite the optimization problem for the upperrzbin equation (11) as

(ProblemA) 5 B Arin(A, B), suchthatAf, (A, B) <1 (19)

We shall express the optimal solution of Probldmin terms of the optimal solution of a
companion problem. Towards that end, consider the optimiz@roblem

L AR(ALC)
c:G(C)es A2 (A, C)

The following proposition shows the sense in which theséleros are equivalent.

(ProblemAs) (20)

min



Proposition 3.3. If C attains the optimum in Problef,, thenC = AP (A, @) C attains
the optimum of Problem ;.

Proof. For any feasible solutio® of ProblemA, we have

M(4.8) < 33D (sincent,(4.5) < 1 1)
< //\M (since@istheoptimumofProbIemg) (22)
= 2 (A,)\E;ax(A,(j‘)é> (from Lemma 3.2) (23)
= A2.(A,0). (24)

Thus,C upper bounds all feasible solutions in Problam However, it itself is a feasible
solution, since

~ PR 1 ~
N4, C) = Mo (4, N4, C)C) = AT e C) =1 @)
max ?

from Lemma 3.2. Thug,' attains the maximum in the upper bound Problem O
The analysis for obtaining an upper bound parameter mBtfor a given parameter matrix

A carries over for the lower bound; we need to replace a maximghlem with a minimax
problem. For the lower bound, we want a matixsuch that

: (A, @(z))) (A, @()))
B, = min ma —— = suchthat———~<->1 (26
B: GUB)ES {a: (Brba)y£0} (B, ®(x))) (B,o@) = @
This leads to the following lower bound optimization prahle
(ProblemAs) g%an) s e (A, B), suchthat\® (4,B) > 1. (27)

The proof of the following statement closely parallels theqgf of Proposition 3.3.

Proposition 3.4. If C' attains the optimum in Probler,, thenC = A%, (A, C)C attains
the optimum of the lower bound Probleks.

Finally, we state the following basic lemma, whose proofasily verified.

Lemma 3.5. For any pair of parameter-matriced, B), we have
(\min(A, B)B, ®())) < (A, ®(2))) < (AmadA, B)B, @())) . (28)

3.2 Main Procedure

We now have in place the machinery necessary to describerdicegure for solving the
main problem in equation (6), to obtain upper and lower boonadrices for a graphical
model. Lemma 3.5 shows how to obtain upper and lower bourahpeter matrices with
respect to any matri®, given a parameter matrig, by solving a generalized eigenvalue
problem. Propositions 3.3 and 3.4 tell us, in principle, howobtain the optimal such
upper and lower bound matrices. We thus have the followirngeunture. First, obtain a
parameter matrix’ such that(C) € S, which minimizes\2,,(0,C)/\%..(©,C). Then

A (6, C) C gives the optimal upper bound parameter matrix afid(©, C') C gives the
optimal lower bound parameter matrix. However, as thingadt this recipe appears to
be even more challenging to work with than the generalizedmiield procedures. The
difficulty lies in obtaining the matrixC. In the following section we offer a series of
relaxations that help to simplify this task.



4 Generalized Support Theory for Graphical Models

In what follows, we begin by assuming that the potential fiorcmatrix is positive semi-
definite,®(z) > 0, and later extend our results to genebal

Definition 4.1. For a pairwise MRF with potential function matrixxz) = 0, thegener-
alized support numbeof a pair of parameter matricés, B), whereB = 0, is

0®(A,B) = min {1 € R| (tB, ®(x))) > (A, ®(x))) for all 2} (29)

The generalized support number can be thought of as the “euoflcopies”r of B re-
quired to “support’A so that{(rB — A, ®(x))) > 0. The usefulness of this definition is
demonstrated by the following result.

Proposition 4.2. If B = 0 then\%,(A, B) < 0®(A, B).

Proof. From the definition of the generalized support number faaplical model,
we have that(c® (A, B)B — A, ®(x))) > 0. Now, since we assume thé{(z) = 0, if

alsoB > 0 then({(B, ®(x))) > 0. Therefore, it follows tha ggig;g < o%(A,B), and
thus

Ay (A, B) = max m <o®(A, B) (30)

giving the statement of the propositiono
This leads to our first relaxation of the generalized eigkmvéound for a model. From
Lemma 3.2 and Proposition 4.2 we see that
Avax(A, B)
/\%n(A, B)

Thus, this result suggests that to approximate the grajphiodel (O, ) we can search for
a parameter matri®*, with corresponding simple graghi(B*) € S, such that

B* = argmin 0®(©, B)o®(B, ©) (32)
B

= )‘ﬁax(A7B))‘$ax(BaA) < U‘b(AvB)U(b(BvA) (31)

While this relaxation may lead to effective bounds, we willwngo further, to derive an
additional relaxation that relates our generalized gregdhinodel support number to the
“classical” support number.

Proposition 4.3. For a potential function matrig(x) = 0, 0®(A, B) < o(A, B), where
o(A,B) =min{r| (tB — A) = 0}.

Proof. Sinces(A, B)B—A > 0 by definition andb(z) > 0 by assumption, we have
that((oc(A, B)B — A, ®(z))) > 0. Thereforeg® (A, B) < o(A, B) from the definition of
generalized support numbero

The above result reduces the problem of approximating ahgzapmodel to the problem
of minimizing classical support numbers, the latter prableeing well-studied in the sci-
entific computing literature (Boman and Hendrickson, 2@&;n et al., 2001), where the
expressions (4, C)o(C, A) is called thecondition numberand a matrix that minimizes
it within a simple family of graphs is called greconditioner We can thus plug in any
algorithm for finding a sparse preconditioner &y carrying out the optimization

B* = argmino (0, B) o(B, 0) (33)
B



and then use that matri®* in our basic procedure.

One example is Vaidya’s preconditioner Vaidya (1990), Wwhicessentially the maximum
spanning tree of the graph. Another is the support tree ofmBam (1996), which intro-
duces Steiner nodes, in this case auxiliary nodes intrabutzea recursive partitioning
of the graph. We present experiments with these basic pdégmmers in the following

section.

Before turning to the experiments, we comment that our gdized support number anal-
ysis assumed that the potential function mafbix:) was positive semi-definite. The case
when it is not can be handled as follows. We first add a largé@ipesliagonal matrixD

so that®’(z) = ®(z) + D = 0. Then, for a given parameter mattx we use the above
machinery to get an upper bound parameter marbuch that

(A, ®(x) + D)) < (B, ®(z) + D)) = (4, ®(x)) < {(B,2(z))) + (B - 4, D>>(34)
Exponentiating and summing both sides over x, we then getetipgired upper bound for
the parameter matrix A; the same can be done for the lowerdoun

5 Experiments

As the previous sections detailed, the preconditionerdasends are in principle quite
easy to compute—we compute a sparse preconditioner for tlempter matrix (typi-
cally O(n) to O(n?)) and use the preconditioner as the parameter matrix for ched
computation (which is linear if the preconditioner matrigriesponds to a tree). This
yields a simple, non-iterative deterministic procedureaspared to the more complex
propagation-based or iterative update procedures. Irsétton we evaluate these bounds
on small graphical models for which exact answers can belysammputed, and compare
the bounds to variational approximations.

We show simulation results averaged over a randomly gesesat of graphical models.
The graphs used were 2D grid graphs, and the edge potengeadsselected according to a
uniform distribution Uniforni—2d.,.,, 0) for various coupling strength.,.,,,. We report
the relative error(bound— log-partition-function /log-partition-function.

As a baseline, we use the mean field and structured mean fithddssfor the lower bound,
and the Wainwright et al. (2003) tree-reweighted beliefyagation approximation for the
upper bound. For the preconditioner based bounds, we useerysimple precondition-
ers, (a) Vaidya’'s maximum spanning tree preconditioneidixé 1990), which assumes the
input parameter matrix to be a Laplacian, and (b) Gremba8§Jl® support tree precon-
ditioner, which also gives a sparse parameter matrix coorading to a tree, with Steiner
(auxiliary) nodes. To compute bounds over these largetgrayith Steiner nodes we aver-
age an internal node over its children; this is the techniggesl with such preconditioners
for solving linear systems. We note that these precondit®are quite basic, and the use
of better preconditioners (yielding a better condition tuem) has the potential to achieve
much better bounds, as shown in Propositions 3.3 and 3.4 140eeiterate that while our
approach can be used to derive bounds on event probabiliteegariational methods yield
bounds only for the partition function, and only apply hsetidally to estimating simple
event probabilities such as marginals.

As the plots in Figure 1 show, even for the simple precondéis used, the new bounds
are quite close to the actual values, outperforming the rfiekhmethod and giving com-
parable results to the tree-reweighted belief propagatiethod. The spanning tree pre-
conditioner provides a good lower bound, while the supged preconditioner provides a
good upper bound, however not as tight as the bound obtaisiad tree-reweighted be-
lief propagation. Although we cannot compute the exacttsmiufor large graphs, we can
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compare bounds. The bottom plot of Figure 1 compares lowend®for graphs with up
to 900 nodes; a larger bound is necessarily tighter, andréepditioner bounds are seen
to outperform mean field.
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