
A Comparison of String Metrics for Matching Names and Records

William W. Cohen Pradeep Ravikumar Stephen E. Fienberg
Center for Automated Center for Automated Department of Statistics,

Learning and Discovery, Learning and Discovery, Center for Computer & Communications Security,

School of Computer Science, School of Computer Science, & Center for Automated Learning & Discovery

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

wcohen@wcohen.com pradeepr@cs.cmu.edu fienberg@stat.cmu.edu

Abstract

We describe an open-source Java toolkit of methods
for matching names and records. We summarize re-
sults obtained from using various string distance met-
rics on the task of matching entity names: these metrics
include distance functions proposed by several differ-
ent communities, including edit-distance metrics, fast
heuristic string comparators, token-based distance met-
rics, and hybrid methods. We then describe an exten-
sion to the toolkit which allows records to be compared.
We discuss some issues involved in performing a similar
comparison for record-matching techniques, and finally
present results for some baseline record-matching algo-
rithms which are based on string comparisons between
fields.

Introduction
The task of matching entity names has been explored by a
number of communities, including statistics, databases, and
artificial intelligence. Each community has formulated the
problem differently, and different techniques have been pro-
posed.

In statistics, a long line of research has been conducted
in probabilistic record linkage, largely based on the sem-
inal paper by Fellegi and Sunter (1969). This paper for-
mulates entity matching as a classification problem, where
the basic goal is to classify entity pairs as matching or
non-matching. Fellegi and Sunter propose using largely
unsupervised methods for this task, based on a feature-
based representation of pairs which is manually designed
and to some extent problem-specific. These proposals have
been, by and large, adopted by subsequent researchers, al-
though often with elaborations of the underlying statisti-
cal model (Jaro 1989; 1995; Winkler 1999; Larsen 1999;
Belin & Rubin 1997). These methods have been used to
match individuals and/or families between samples and cen-
suses, e.g., in evaluation of the coverage of the U.S. decen-
nial census; or between administrative records and survey
data bases, e.g., in the creation of an anonymized research
data base combining tax information from the Internal Rev-
enue Service and data from the Current Population Survey.

Copyright c
�

2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In the database community, some work on record match-
ing has been based on knowledge-intensive approaches
(Hernandez & Stolfo 1995; Galhardas et al. 2000; Raman
& Hellerstein 2001). However, the use of string-edit dis-
tances as a general-purpose record matching scheme was
proposed by Monge and Elkan (Monge & Elkan 1997;
1996), and in previous work, we proposed use of the
TFIDF distance metric for the same purpose (Cohen 2000).
In the AI community, supervised learning has been used
for learning the parameters of string-edit distance metrics
(Ristad & Yianilos 1998; Bilenko & Mooney 2002) and
combining the results of different distance functions (Te-
jada, Knoblock, & Minton 2001; Cohen & Richman 2002;
Bilenko & Mooney 2002). More recently, probabilistic ob-
ject identification methods have been adapted to matching
tasks (Pasula et al. 2002). In these communities there has
been more emphasis on developing autonomous matching
techniques which require little or or no configuration for
a new task, and less emphasis on developing “toolkits” of
methods that can be applied to new tasks by experts.

Recently, we have begun implementing an open-source,
Java toolkit of name-matching methods (Cohen & Raviku-
mar 2003) that includes a variety of different techniques. In
previous work (Cohen, Ravikumar, & Fienberg 2003), we
used this toolkit to conduct a comparison of several string
distances on the tasks of matching and clustering lists of en-
tity names. In addition to evaluating existing string-distance
methods, we also proposed some new ones, including a hy-
brid of cosine similarity and the Jaro-Winkler method (Win-
kler 1999), which performed well on many of our bench-
mark problems.

These previous experiments, while similar to previous ex-
periments in the database and AI communities, represent a
departure from the usual assumptions made in statistics. In
statistics, databases tend to have more structure and speci-
fication, by design. Thus the statistical literature on proba-
bilistic record linkage represents pairs of entities not by pairs
of strings, but by vectors of “match features” such as names
and categories for variables in survey databases. In this pa-
per we will review the previous experiments with matching
individual strings, and then discuss some recent, preliminary
experiments in extending our toolkit to matching structured
objects (i.e., records).

The SecondString Toolkit
Overall Architecture
SecondString is an open-source Java toolkit of name-
matching methods. One fundamental type of object in Sec-
ondString is a distance function. A distance function maps a
pair of strings � and

�
to a real number � , where a smaller

value of � indicates greater similarity between � and
�
.

Since SecondString is designed to support learnable distance
functions, a distance function is always produced by a dis-
tance function learner. A distance function learner can be
“trained” in any of two ways:� It can observe a set of strings from the distribution of

strings to be matched. (We call this step string obser-
vation).� It can be presented with a pool of unlabeled pairs of
strings, some of which must be matched. The learner may
then query an associated distance function teacher for la-
bels for pairs in the pool. In controlled experiments the
teacher answers queries using pre-labeled pairs; in real-
world settings, it would ask a user for labels. The teacher
may also refuse to answer a query. (We call this step ac-
tive learning).

At any point in the learning process, the learner can be asked
to produce a distance function—which will presumably be
trained on all evidence available so far. Thus the architec-
ture supports a range of types of learning, including unsu-
pervised, semi-supervised, supervised, batch and incremen-
tal.

Although designed to support learning, SecondString also
supports non-adaptive matching methods by including a de-
generate distance function “learner” that simply produces
a particular constant distance function. This allows non-
adaptive methods (e.g., Levenstein edit distance) to be easily
evaluated side-by-side with learned methods.

Implemented Distance Functions
SecondString supports a large number of non-adaptive dis-
tance functions, some of which are listed below. For more
details, the reader is referred to our previous paper (Cohen,
Ravikumar, & Fienberg 2003).

SecondString supports a range of metrics based on edit
distance, including Levenstein distance, which assigns a
unit cost to all edit operations); and the Monge-Elkan dis-
tance function (Monge & Elkan 1996), a well-tuned affine
variant of the Smith-Waterman distance function (Durban
et al. 1998). It also supports the Jaro metric (Jaro 1995;
1989), a metric widely used in the record-linkage commu-
nity, with and without a variation due to Winkler (1999).
Briefly, for two strings � and

�
, let ��� be the characters in �

which are “common with”
�
, and let � � be analogous; roughly

speaking, a character � in � is “in common” with
�

if the
same character � appears in about the place in

�
. Let �	��
 �

measure the number of transpositions of characters in �� rel-
ative to

� � . The Jaro similarity metric for � and
�

is�������� ��� �������� � !#" �$� "" � "&% " � � "" � "'% " �(� "�) � �+*,
 �,*- " � � " .

and the Winkler variant modifies this by slightly improving
the weight of poorly matching pairs ��� � that share a common
prefix.

SecondString also supports a number of token-based dis-
tance metrics, which are defined by considering two strings� and

�
to be multisets of words (or tokens). The Jaccard

similarity between the word sets / and � is simply 0 13254	00 13654	0 .TFIDF or cosine similarity is another measure, widely used
in the information retrieval community. Like Jaccard, the
TFIDF scheme depends on common terms, but terms are
weighted; these weights are larger for words 7 that are rare
in the collection of strings from which � and

�
were drawn.

(Acquiring these weights is an example of “string obser-
vation”.) We have also implemented token-based distance
metrics based on Jensen-Shannon distance (Dagan, Lee, &
Pereira 1999) with various smoothing methods, and a sim-
plified form of Fellegi and Sunter’s method (1969) (called
SFS below.)

SecondString also supports some hybrid distance func-
tions, which combine token-based and string-based match-
ing schemes. In addition to a variant of Monge and Elkan’s
“recursive matching scheme”, we have implemented a “soft”
version of TFIDF, in which similar tokens are considered
as well as tokens in /98:� . Again let ;=<?> � be a sec-
ondary similarity function. Let @BA'C&D�E �,F �GDH�5I � be the
set of words 7KJL/ such that there is some MNJO� such
that PQ<R;TS � � 7U��M �WV F , and for 7XJY@BA'C&D�E �ZF ��/[��� � , let\]� 7U��� ���_^a`b�c(d 4 PQ<R;TS � 7e��M � . We define

SoftTFIDF
� /[��� ���fg dihBjlk 13m[npo
 1
 4rqQsut <wv(x�S

� 7e��/ � � sut <wv�x5S
� 7U��� � � \y� 7U��� �

In the experiments, we used Jaro-Winkler as a secondary
distance and

F �:zl{ |
.

SecondString also supports tools for systematic experi-
mentation, and tools for “blocking”, or finding plausible
pairs of names to match.

Experiments with SecondString

The data used to evaluate these methods is shown in Table 1.
Most been described elsewhere in the literature. The Census
dataset is a synthetic, census-like dataset, from which only
textual fields were used (last name, first name, middle initial,
house number, and street).

To evaluate a method on a dataset, we ranked by distance
all candidate pairs from the appropriate blocking algorithm.
We computed the non-interpolated average precision of this
ranking, the maximum F1 score of the ranking, and also in-
terpolated precision at the eleven recall levels 0.0, 0.1, . . . ,
0.9, 1.0. The non-interpolated average precision of a rank-
ing containing } pairs for a task with ~ correct matches is����:���� �'� np��q,��n��pq� , where � �,� � is the number of correct pairs
ranked before position

�
, and � �,� �u� � if the pair at rank

�
is

correct and
z

otherwise. Interpolated precision at recall � is
the
^�`b � � n��pq� , where the max is taken over all ranks

�
such

that � n���q��� � .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Monge-Elkan
Levenstein

Smith-Waterman
Jaro

Jaro-Winkler

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

TFIDF
Jensen-Shannon

SFS
Jaccard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

SoftTFIDF
Level2 Jaro-Winkler

Level2 Jaro
Level2 Levenstein

Level2 Monge-Elkan

Figure 1: Relative performance of edit-distance measures compared to Monge-Elkan (left); token-based measures compared to TFIDF
(middle); and hybrid measures compared to SoftTFIDF.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

 F
1

of
 S

of
tT

F
ID

F

max F1 of other distance metric

vs Monge-Elkan
vs Jaro

vs Jaro-Winkler
vs TFIDF

vs SFS
vs Level2 Jaro-Winkler

y=x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

SoftTFIDF
Level2 Jaro-Winkler

TFIDF
SFS

Monge-Elkan
Jaro

Jaro-Winkler

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

SoftTFIDF
Learned metric

Figure 2: Relative performance of some “good” distance measures of each type on matching problems, relative to the SoftTFIDF metric,
viewed as a scatter plot of maximum F1 values (left) and as 11-pt interpolated average precision (middle). SoftTFIDF compared to a learned
combination of distance metrics (right).

Name Src #Strings #Tokens
animal 1 5709 30,006
bird1 1 377 1,977
bird2 1 982 4,905
bird3 1 38 188
bird4 1 719 4,618
business 1 2139 10,526
game 1 911 5,060
park 1 654 3,425
fodorZagrat 2 863 10,846
ucdFolks 3 90 454
census 4 841 5,765

Table 1: Datasets used in experiments. Column 2 indicates
the source of the data. Original sources are 1. (Cohen 2000)
2. (Tejada, Knoblock, & Minton 2001) 3. (Monge & Elkan
1996) 4. William Winkler (personal communication)

From Figure 1, we see that, on average, Monge-Elkan
performs best of the edit-distance-like methods; that TFIDF
performs best of the token-based methods; and that Soft-
TFIDF performs of the hybrid measures. Figure 2 provides
some more detail on the performance of SoftTFIDF com-
pared to the three best performing edit-distance like meth-
ods, the two best token-based methods, and the two best
hybrid methods, using a similar methodology. Generally

speaking, SoftTFIDF is the best overall distance measure for
these datasets. In the scatter plot of the Figure, each point is
a dataset, positioned so that its maximum F1 score for Soft-
TFIDF is the x-axis position, and the max F1 score for some
other method is the y-axis position; thus points above the
line � ��� indicate better performance of TFIDF.

Following previous researchers (Tejada, Knoblock, &
Minton 2001; Cohen & Richman 2002; Bilenko & Mooney
2002) we also used a learning scheme to combine several
of the distance functions above. Specifically, we repre-
sented pairs as feature vectors, using as features the nu-
meric scores of Monge-Elkan, Jaro-Winkler, TFIDF, SFS,
and SoftTFIDF. We then trained a binary SVM classifier (us-
ing SVM Light (Joachims 2002)) using these features, and
used its confidence in the “match” class as a score. The re-
sults are summarized again in Figure 2 (using a three-fold
cross-validation on nine of the matching problems). The
learned combination generally slightly outperforms the in-
dividual metrics, including SoftTFIDF, particularly at ex-
treme recall levels; however, it requires labeled training data,
which the other metrics do not.

Record Matching
Extending the Architecture
For performance reasons, it is frequently crucial to avoid re-
computing certain properties of a string—for instance, the
tokenized form of the string. For this reason, SecondString

interally manipulates objects called string wrappers, rather
than strings. The string wrapper for � allows additional in-
formation about � to be cached as needed.

Extending SecondString to handle record-matching is
straightforward. We introduced a new type of string wrap-
per, called a multi-string wrapper. At creation time, this
string wrapper splits a string � into subfields � � � {${G{ �����
according to a specified scheme (for instance, comma-
separated fields). Subsequently any caller can access these
pre-constructed fields of a string. In parallel, we introduced
a multi-string distance function which can holds different
distance functions to the individual fields of a string.

Properties of the Datasets
We now discuss some preliminary experiments in using Sec-
ondString on record (rather than string) matching. These
experiments are preliminary in part because of lack of
datasets with associated fields. Although the problem of
record-linkage is well-motivated statistically, only two of the
datasets used in our previous work—the Census and Cora
datasets—and each of these are somewhat problematic.

The Cora dataset (McCallum, Nigam, & Ungar 2000)
was collected from postcript papers which were converted
to ascii text by a particular automatic program. This pro-
cedure is error-prone, and introduces certain types of errors
which are perhaps not representative of most text—for in-
stance, a space is often mistakenly inserted after a capital
“T”. Tokens were grouped into fields by another automatic
process, which again introduces errors of a particular type.

The Census dataset was artificially produced, although
care was taken to generate representative data. Nonetheless,
the Census dataset is generally speaking an outlier compared
to the other data sets in our test suite, with respect to relative
performance of many of the string matching algorithms.

For example, the simple Levenstein distance metric per-
forms worst, on average, of the distance metrics considered
above. The differences between Levenstein and the stronger
methods are also quite consistent. Compared to SoftTFIDF,
for instance, Levenstein performs worse on 10 of the 11
datasets considered, and as shown by scatter plot of maxi-
mum F1 scores in Figure 3, the difference is often substan-
tial. The one dataset on which Levenstein outperforms Soft-
TFIDF is the Census dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
ax

F
1

of
 L

ev
en

st
ei

n

MaxF1 of SoftTFIDF

Figure 3: Max F1 score of Levenstein compared to the Max F1
score of SoftTFIDF

It also appears that in the Census dataset, word frequency
statistics do not appear to carry the same importance as
they do in other settings. The weights used in TFIDF, and
many other token-based distance metrics, assume that fre-
quent words (like “Brown”) are less important than infre-
quent ones (like “Zubinsky”). The relative performance
of the token-based distance metrics suggests that, on the
Census dataset, this assumption is incorrect1. On Census,
TFIDF has a lower average precision precision than the Jac-
card distance. Again, this result is an outlier; Jaccard only
outperforms TFIDF on one other (smallish) dataset.

For these reasons, we begin by exploring the Census
dataset a little more carefully. We will focus our remarks on
performance as measured by non-interpolated average pre-
cision (but other metrics behave similarly).

None of the token-based methods perform well on the
Census dataset. Unusually, Jaccard performs about as well
as any of the more complex methods. The hybrid methods
perform somewhat better—but are still generally worse than
the pure string-based methods. The best hybrid method for
average precision is SoftTFIDF, and the best hybrid method
for maximum F1 is Level 2 Jaro-Winkler (an version of
Monge and Elkan’s recursive matching scheme). Results for
TFIDF, Jaccard, Level2 Jaro-Winkler, and SoftTFIDF are
shown in Table 2.

The Jaro method performs well, with an average precision
of 0.731, and a maximum F1 value slightly higher than the
best hybrid method. This is surprising since it is does not
seem to be intended for data of this type.2 Motivated by this
(and Jaro’s usefulness in hybrid methods), we considered
two variations of the Jaro method.

To understand them, we will first review the method itself.

1This is possibly due to fact that the Census dataset includes
several households with a moderate number of individuals—for in-
stance, there is a family of seven Mosqueras at one address, and a
family of five Hoerrlings at another.

2Jaro seems designed for short strings, such as a last name,
while Census contains contains first name, last name, middle ini-
tial, street number, and street name appended together.

MaxF1 AvgPrec
Simple F-S 0.528 0.357
TFIDF 0.518 0.369
Jaccard 0.567 0.402
L2 Jaro-Winkler 0.746 0.770
SoftTFIDF 0.685 0.782
Jaro-Winkler 0.648 0.703
Jaro 0.687 0.731
NaiveAvgOverlap 0.697 0.731
AvgOverlap 0.701 0.736
Levenstein 0.832 0.901
Jaro 0.728 0.789 trimmed
Levenstein 0.865 0.925 trimmed
Scaled Levenstein 0.851 0.930 trimmed

Table 2: Performance of various matching methods on Cen-
sus

Consider the matrix
�

below, which compares the strings� � “WILLIAM” and
�'�

“WILLLAIM”. The boxed entries
are the main diagonal, and

� �,� ��� �[� � iff the
�
-th character

of � equals the � -th character of
�
.

W I L L I A M

W 1 0 0 0 0 0 0

I 0 1 0 0 1 0 0

L 0 0 1 1 0 0 0

L 0 0 1 1 0 0 0

L 0 0 1 1 0 0 0

A 0 0 0 0 0 1 0

I 0 1 0 0 1 0 0
M 0 0 0 0 0 0 1

The Jaro metric is based on the degree to which strings �
and
�

have characters “in common.” In terms of the matrix
above, the

�
-th character of � is defined to be in common with�

if
� �
 � � � for some entry

�,� ��� � that is “sufficiently close”
to the main diagonal of

�
. In the Jaro metric, “sufficiently

close” means that
" �) � "�� ^��	� � " � " � " � " ��
 - (shown in the

matrix in bold.)
We looked at two variants of this rule. Let� ��
 � � � {${G{ � � �	�
 � � be the matrix entries that contain a “1”,

and let ��� � � �) ��� . Notice that if � and
�

are highly similar,
then most of the

� �
 � entries will be near the main diagonal,
so most of ��� ’s will be near zero; conversely, if the strings
are dissimilar, the ��� ’s will be widely scattered. The first
Jaro variant we explored fits a mixture of two Gaussians to
the � � ’s, where one “wide” Gaussian is constrained to have a
high variance and zero mean, and the second’s variance and
mean are unconstrained, and are set using E/M. The non-
zero matrix entries

� ���
 � � that have a high posterior proba-
bility of being generated by the “wide” Gaussian are consid-
ered to represent accidental matches, and the other matrix
entries are considered to be related to the “common struc-
ture” of � and

�
. We thus measure overlap between � and

�
as ���

t
������� � ;i�GS �&� 0 � 0f

� � �
� �) �

��� ��� ! � ��"$#&%('*) �,�) � ���
where "+#+%('*)

� � � is the posterior probability of generation

MaxF1 AvgPrec
SoftTFIDF SVM 0.792 0.830
SoftTFIDF AVG 0.803 0.810
Levenstein SVM 0.890 0.928
Levenstein AVG 0.870 0.920
Jaro SVM 0.917 0.932
Jaro AVG 0.897 0.922
Jaro-Winkler SVM 0.930 0.933
Jaro-Winkler AVG 0.915 0.900
Levenstein-Winkler SVM 0.936 0.951
Levenstein-Winkler AVG 0.912 0.916

Table 3: Performance of various structure-exploiting meth-
ods on Census

by the “wide” Gaussian. Similarity under this method is then
the average of

�,�
t
������� � ;��GS � and

���
t
�����-�[� S��G; � .

This method has slightly improved performance over the
Jaro metric (shown in Table 2 as AvgOverlap). Further ex-
periments, however, showed that replacing ".#+%('/) in the
formula above with zero (shown in Table 2 as NaiveAvgOv-
erlap) works nearly as well.

The best off-the-shelf method for the Census dataset is the
Levenstein method. We conjectured that one reason for this
was that in our copy of the Census dataset, the fields (like
last name, first name, street name, etc.) are padded with
blanks to be a uniform length. Intuitively, this should make
comparisons easier with methods like Levenstein, which as-
signs a high cost to a sequence of insertions. This conjec-
ture proved false: “trimming” the fields (by replacing mul-
tiple blanks with a single blank throughout) improves per-
formance for the Levenstein method, as well as for the Jaro
one.

Record Matching Results
As a baseline for record matching, we consider first a very
simple method which exploits record structure. Let 0 � ��� ���
be a distance function on strings, and let � � � � � � {${G{ ��� � �
and

� � � � � � {${G{ � � � � be a decomposition of � and
�

into
fields. One extension of 0 to handle this field structure is
to use the average distance between corresponding fields:�
� � � 0 � � � � � � � . Alternate rows of Table 3 (rows with “AVG”
tagged distances) show performance of this baseline record-
matching method.

As the second baseline extension to handle field struc-
ture, we adaptively combine the distances between the cor-
responding fields using a binary classifier. Specifically, we
represented record-pairs as feature vectors, using as features
the distances between corresponding fields. We then trained
a binary SVM classifier (using SVM Light (Joachims 2002))
using these features, and used its confidence in the “match”
class as a score. Rows with “SVM” tagged distances in Ta-
ble 3 show performance of this record-matching method.

Using the field-structure in the above manner produces
little improvement for Levenstein, but (not unexpectedly)
substantially improves all the Jaro variants. With fields, the
Winkler variant also seems to slightly improve rather than
slightly degrade performance for the Jaro variants.

The Winkler variant is not immediately applicable to Lev-
enstein method, since it requires a distance metric which is
scaled between 0 and 1, whereas Levenstein counts the num-
ber of edit operations required to transform � to

�
. Follow-

ing the same technique used by Monge and Elkan (1996),
however, we can appropriately rescale the Levenstein dis-
tance. Applying the Winkler variant to the scaled Levenstein
distance gives the best average precision and maximum F1
score among the baseline methods.

Concluding Remarks
In previous work (Cohen, Ravikumar, & Fienberg 2003), we
described an open-source Java toolkit of methods for match-
ing names and records, and presented results obtained by
using various string distance metrics on the task of match-
ing entity names. These metrics include distance functions

proposed by several different communities, including edit-
distance metrics, fast heuristic string comparators, token-
based distance metrics, and hybrid methods.

While string distances are often useful, they are not suit-
able for comparing entities with non-trivial structures. In
many contexts, databases tend to have more structure and
specification, by design, and in many settings—most no-
tably for highly structure statistical databases and probabilis-
tic record linkage—pairs of entities are represented not by
pairs of strings, but by vectors of “match features” such as
names and categories for variables in survey databases. Mo-
tivated by this issue, we describe an extension to our toolkit
which allows records to be compared.

To our knowledge, there are few publicly available
datasets that are naturally formed into records. This makes a
similar multi-technique, multi-dataset comparison difficult.
We thus focused on a single dataset, and presented a series
of experiments with various baseline record-matching algo-
rithms based on string comparisons between fields.

The best method described here is a scaled version of
the Levenstein edit-distance metric, modified by a method
proposed by Winkler for the Jaro distance metric, with the
scores for corresponding fields being adaptively combined
by a (SVM) binary classifier. This method can be imple-
mented in a few lines of code using our toolkit, and it
substantially improves over SoftTFIDF, the method which
worked best on average on simple string comparisons in our
previous paper. For instance, non-interpolated precision is
improved from 0.782 (for SoftTFIDF) to 0.951 (for the new
method).

We plan to collect additional structured datasets and to
explore other approaches to record matching in order to im-
prove this baseline performance.

Acknowledgments
The preparation of this paper was supported in part by Na-
tional Science Foundation Grant No. EIA-0131884 to the
National Institute of Statistical Sciences and by Contract
No. DAAD19-02-1-0389 from the Army Research Office
to the Center for Computer and Communications Security,
Carnegie Mellon University.

References
Belin, T. R., and Rubin, D. B. 1997. A method for calibrating
false-match rates in record linkage. In Record Linkage – 1997:
Proceedings of an International Workshop and Exposition, 81–
94. U.S. Office of Management and Budget (Washington).

Bilenko, M., and Mooney, R. 2002. Learning to combine
trained distance metrics for duplicate detection in databases.
Technical Report Technical Report AI 02-296, Artificial Intel-
ligence Lab, University of Texas at Austin. Available from
http://www.cs.utexas.edu/users/ml/papers/marlin-tr-02.pdf.

Cohen, W. W., and Ravikumar, P. 2003. Secondstring: An open-
source java toolkit of approximate string-matching techniques.
Project web page, http://secondstring.sourceforge.net.

Cohen, W. W., and Richman, J. 2002. Learning to match and
cluster large high-dimensional data sets for data integration. In
Proceedings of The Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-2002).

Cohen, W. W.; Ravikumar, P.; and Fienberg, S. E. 2003. A com-
parison of string distance metrics for name-matching tasks. In
Proceedings of the IJCAI-2003 Workshop on Information Inte-
gration on the Web (IIWeb-03). To appear.

Cohen, W. W. 2000. Data integration using similarity joins and a
word-based information representation language. ACM Transac-
tions on Information Systems 18(3):288–321.

Dagan, I.; Lee, L.; and Pereira, F. 1999. Similarity-based models
of word cooccurrence probabilities. Machine Learning 34(1-3).

Durban, R.; Eddy, S. R.; Krogh, A.; and Mitchison, G. 1998.
Biological sequence analysis - Probabilistic models of proteins
and nucleic acids. Cambridge: Cambridge University Press.

Fellegi, I. P., and Sunter, A. B. 1969. A theory for record linkage.
Journal of the American Statistical Society 64:1183–1210.

Galhardas, H.; Florescu, D.; Shasha, D.; and Simon, E. 2000. An
extensible framework for data cleaning. In ICDE, 312.

Hernandez, M., and Stolfo, S. 1995. The merge/purge problem
for large databases. In Proceedings of the 1995 ACM SIGMOD.

Jaro, M. A. 1989. Advances in record-linkage methodology as
applied to matching the 1985 census of Tampa, Florida. Journal
of the American Statistical Association 84:414–420.

Jaro, M. A. 1995. Probabilistic linkage of large public health data
files (disc: P687-689). Statistics in Medicine 14:491–498.

Joachims, T. 2002. Learning to Classify Text Using Support Vec-
tor Machines. Kluwer.

Larsen, M. 1999. Multiple imputation analysis of records linked
using mixture models. In Statistical Society of Canada Proceed-
ings of the Survey Methods Section, 65–71. Statistical Society of
Canada (McGill University, Montreal).

McCallum, A.; Nigam, K.; and Ungar, L. H. 2000. Efficient clus-
tering of high-dimensional data sets with application to reference
matching. In Knowledge Discovery and Data Mining, 169–178.

Monge, A., and Elkan, C. 1996. The field-matching problem:
algorithm and applications. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining.

Monge, A., and Elkan, C. 1997. An efficient domain-independent
algorithm for detecting approximately duplicate database records.
In The proceedings of the SIGMOD 1997 workshop on data min-
ing and knowledge discovery.

Pasula, H.; Marthi, B.; Milch, B.; Russell, S.; and Shpitser, I.
2002. Identity uncertainty and citation matching. In Advances
in Neural Processing Systems 15. Vancouver, British Columbia:
MIT Press.

Raman, V., and Hellerstein, J. 2001. Potter’s wheel: An interac-
tive data cleaning system. In The VLDB Journal, 381–390.

Ristad, E. S., and Yianilos, P. N. 1998. Learning string edit
distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 20(5):522–532.

Tejada, S.; Knoblock, C. A.; and Minton, S. 2001. Learning ob-
ject identification rules for information integration. Information
Systems 26(8):607–633.

Winkler, W. E. 1999. The state of record linkage and cur-
rent research problems. Statistics of Income Division, In-
ternal Revenue Service Publication R99/04. Available from
http://www.census.gov/srd/www/byname.html.

