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Abstract

We present a new class of models for high-dimensional nonparametric regression
and classification called sparse additive models (SpAM). Our methods combine
ideas from sparse linear modeling and additive nonparametric regression. We de-
rive a method for fitting the models that is effective even when the number of
covariates is larger than the sample size. A statistical analysis of the properties of
SpAM is given together with empirical results on synthetic and real data, show-
ing that SpAM can be effective in fitting sparse nonparametric models in high
dimensional data.

1 Introduction

Substantial progress has been made recently on the problem of fitting high dimensional linear re-
gression models of the formYi = X T

i β + εi , for i = 1, . . . , n. HereYi is a real-valued response,X i
is a p-dimensional predictor andεi is a mean zero error term. Finding an estimate ofβ whenp > n
that is both statistically well-behaved and computationally efficient has proved challenging; how-
ever, the lasso estimator (Tibshirani (1996)) has been remarkably successful. The lasso estimatorβ̂
minimizes thè 1-penalized sums of squares

∑

i

(Yi − X T
i β)+ λ

p∑

j=1

|β j | (1)

with the`1 penalty‖β‖1 encouraging sparse solutions, where many componentsβ̂ j are zero. The
good empirical success of this estimator has been recently backed up by results confirming that it has
strong theoretical properties; see (Greenshtein and Ritov, 2004; Zhao and Yu, 2007; Meinshausen
and Yu, 2006; Wainwright, 2006).

The nonparametric regression modelYi = m(X i )+εi , wherem is a general smooth function, relaxes
the strong assumptions made by a linear model, but is much more challenging in high dimensions.
Hastie and Tibshirani (1999) introduced the class of additive models of the form

Yi =
p∑

j=1

m j (X i j )+ εi (2)

which is less general, but can be more interpretable and easier to fit; in particular, an additive model
can be estimated using a coordinate descent Gauss-Seidel procedure called backfitting. An extension
of the additive model is the functional ANOVA model

Yi =
∑

1≤ j≤p

m j (X i j )+
∑

j<k

m j,k(X i j , X ik)+
∑

j<k<`

m j,k,`(X i j , X ik, X i`)+ · · · + εi (3)
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which allows interactions among the variables. Unfortunately, additive models only have good
statistical and computational behavior when the number of variablesp is not large relative to the
sample sizen.

In this paper we introduce sparse additive models (SpAM) that extend the advantages of sparse linear
models to the additive, nonparametric setting. The underlying model is the same as in (2), but con-
straints are placed on the component functions{m j }1≤ j≤p to simultaneously encourage smoothness
of each component and sparsity across components; the penalty is similar to that used by the COSSO
of Lin and Zhang (2006). The SpAM estimation procedure we introduce allows the use of arbitrary
nonparametric smoothing techniques, and in the case where the underlying component functions are
linear, it reduces to the lasso. It naturally extends to classification problems using generalized addi-
tive models. The main results of the paper are (i) the formulation of a convex optimization problem
for estimating a sparse additive model, (ii) an efficient backfitting algorithm for constructing the
estimator, (iii) simulations showing the estimator has excellent behavior on some simulated and real
data, even whenp is large, and (iv) a statistical analysis of the theoreticalproperties of the estimator
that support its good empirical performance.

2 The SpAM Optimization Problem

In this section we describe the key idea underlying SpAM. We first present a population version
of the procedure that intuitively suggests how sparsity is achieved. We then present an equivalent
convex optimization problem. In the following section we derive a backfitting procedure for solving
this optimization problem in the finite sample setting.

To motivate our approach, we first consider a formulation that scales each component functiong j

by a scalarβ j , and then imposes aǹ1 constraint onβ = (β1, . . . , βp)
T . For j ∈ {1, . . . , p}, letH j

denote the Hilbert space of measurable functionsf j (x j ) of the single scalar variablex j , such that
E( f j (X j )) = 0 andE( f j (X j )

2) <∞, furnished with the inner product
〈

f j , f ′j

〉
= E

(
f j (X j ) f ′j (X j )

)
. (4)

Let Hadd = H1 + H2 + . . . ,Hp denote the Hilbert space of functions of(x1, . . . , x p) that have
an additive form: f (x) =

∑
j f j (x j ). The standard additive model optimization problem, in the

population setting, is

min
f j∈H j ,1≤ j≤p

E

(
Y −

∑p
j=1 f j (X j )

)2
(5)

andm(x) = E(Y | X = x) is the unknown regression function. Now consider the following modifi-
cation of this problem that imposes additional constraints:

(P) min
β∈Rp,g j∈H j

E

(
Y −

∑p
j=1 β j g j (X j )

)2
(6a)

subject to
p∑

j=1

|β j | ≤ L (6b)

E

(
g2

j

)
= 1, j = 1, . . . , p (6c)

E
(
g j

)
= 0, j = 1, . . . , p (6d)

noting thatg j is a function whileβ is a vector. Intuitively, the constraint thatβ lies in the`1-ball
{β : ‖β‖1 ≤ L} encourages sparsity of the estimatedβ, just as for the parametric lasso. Whenβ is
sparse, the estimated additive functionf (x) =

∑p
j=1 f j (x j ) =

∑p
j=1 β j g j (x j ) will also be sparse,

meaning that many of the component functionsf j (·) = β j g j (·) are identically zero. The constraints
(6c) and (6c) are imposed for identifiability; without (6c),for example, one could always satisfy (6a)
by rescaling.

While this optimization problem makes plain the role`1 regularization ofβ to achieve sparsity, it has
the unfortunate drawback of not being convex. More specifically, while the optimization problem is
convex inβ and{g j } separately, it is not convex inβ and{g j } jointly.
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However, consider the following related optimization problem:

(Q) min
f j∈H j

E

(
Y −

∑p
j=1 f j (X j )

)2
(7a)

subject to
p∑

j=1

√
E( f 2

j (X j )) ≤ L (7b)

E( f j ) = 0, j = 1, . . . , p. (7c)

This problem is convex in{ f j }. Moreover, the solutions to problems(P) and(Q) are equivalent:
({
β∗j

}
,
{

g∗j

})
optimizes(P) implies

{
f ∗j = β

∗
j g∗j

}
optimizes(Q);

{
f ∗j

}
optimizes(Q) implies

({
β∗j = (‖ f j‖2)

T
}
,
{

g∗j = f ∗j /‖ f ∗j ‖2
})

optimizes(P).

While optimization problem(Q) has the important virtue of being convex, the way it encourages
sparsity is not intuitive; the following observation provides some insight. Consider the setC ⊂ R

4

defined byC =
{
( f11, f12, f21, f22)

T ∈ R
4 :

√
f 2
11+ f 2

12+
√

f 2
21+ f 2

22 ≤ L

}
. Then the projec-

tion π12C onto the first two components is an`2 ball. However, the projectionπ13C onto the first
and third components is aǹ1 ball. In this way, it can be seen that the constraint

∑
j

∥∥ f j
∥∥

2 ≤ L
acts as aǹ1 constraint across components to encourage sparsity, whileit acts as aǹ 2 constraint
within components to encourage smoothness, as in a ridge regression penalty. It is thus crucial that
the norm

∥∥ f j
∥∥

2 appears in the constraint, and not its square
∥∥ f j

∥∥2
2. For the purposes of sparsity,

this constraint could be replaced by
∑

j

∥∥ f j
∥∥

q ≤ L for any q ≥ 1. In case eachf j is linear,
( f j (x1 j ), . . . , f (xnj )) = β j (x1 j , . . . , xnj ), the optimization problem reduces to the lasso.

The use of scaling coefficients together with a nonnegative garrote penalty, similar to our problem
(P), is considered by Yuan (2007). However, the component functions g j are fixed, so that the
procedure is not asymptotically consistent. The form of theoptimization problem(Q) is similar
to that of the COSSO for smoothing spline ANOVA models (Lin and Zhang, 2006); however, our
method differs significantly from the COSSO, as discussed below. In particular, our method is
scalable and easy to implement even whenp is much larger thann.

3 A Backfitting Algorithm for SpAM

We now derive a coordinate descent algorithm for fitting a sparse additive model. We assume that
we observeY = m(X)+ ε, whereε is mean zero Gaussian noise. We write the Lagrangian for the
optimization problem(Q) as

L( f, λ, µ) =
1

2
E

(
Y −

∑p
j=1 f j (X j )

)2
+ λ

p∑

j=1

√
E( f 2

j (X j ))+
∑

j

µ j E( f j ). (8)

Let R j = Y −
∑

k 6= j fk(Xk) be the j th residual. The stationary condition for minimizingL as a
function of f j , holding the other componentsfk fixed fork 6= j , is expressed in terms of the Frechet
derivativeδL as

δL( f, λ, µ; δ f j ) = E
[
( f j − R j + λv j )δ f j

]
= 0 (9)

for any δ f j ∈ H j satisfyingE(δ f j ) = 0, wherev j ∈ ∂
√

E( f 2
j ) is an element of the subgradient,

satisfying
√

Ev2
j ≤ 1 andv j = f j

/√
E( f 2

j ) if E( f 2
j ) 6= 0. Therefore, conditioning onX j , the

stationary condition (9) implies
f j + λv j = E(R j | X j ). (10)

Letting Pj = E[ R j | X j ] denote the projection of the residual ontoH j , the solution satisfies

1+

λ√
E( f 2

j )


 f j = Pj if E(P2

j ) > λ (11)
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Input: Data(X i ,Yi ), regularization parameterλ.

Initialize f j = f (0)j , for j = 1, . . . , p.

Iterate until convergence:

For each j = 1, . . . , p:
Compute the residual:R j = Y −

∑
k 6= j fk(Xk);

Estimate the projectionPj = E[ R j | X j ] by smoothing:P̂j = S j R j ;

Estimate the norms j =
√

E[ Pj ]2 using, for example, (15) or (35);

Soft-threshold:f j =
[
1−

λ

ŝ j

]

+
P̂j ;

Center: f j ← f j −mean( f j ).

Output: Component functionsf j and estimator̂m(X i ) =
∑

j f j (X i j ).

Figure 1: THE SPAM B ACKFITTING ALGORITHM

and f j = 0 otherwise. Condition (11), in turn, implies

1+

λ√
E( f 2

j )




√
E( f 2

j ) =
√

E(P2
j ) or

√
E( f 2

j ) =
√

E(P2
j )− λ. (12)

Thus, we arrive at the following multiplicative soft-thresholding update forf j :

f j =


1−

λ√
E(P2

j )




+

Pj (13)

where [·]+ denotes the positive part. In the finite sample case, as in standard backfitting (Hastie and
Tibshirani, 1999), we estimate the projectionE[ R j | X j ] by a smooth of the residuals:

P̂j = S j R j (14)

whereS j is a linear smoother, such as a local linear or kernel smoother. Let ŝ j be an estimate of√
E[ P2

j ]. A simple but biased estimate is

ŝ j =
1
√

n
‖P̂j‖2 =

√
mean(P̂2

j ). (15)

More accurate estimators are possible; an example is given in the appendix. We have thus derived
the SpAM backfitting algorithm given in Figure 1.

While the motivating optimization problem(Q) is similar to that considered in the COSSO (Lin
and Zhang, 2006) for smoothing splines, the SpAM backfittingalgorithm decouples smoothing and
sparsity, through a combination of soft-thresholding and smoothing. In particular, SpAM backfitting
can be carried out with any nonparametric smoother; it is notrestricted to splines. Moreover, by
iteratively estimating over the components and using soft thresholding, our procedure is simple to
implement and scales to high dimensions.

3.1 SpAM for Nonparametric Logistic Regression

The SpAM backfitting procedure can be extended to nonparametric logistic regression for classifi-
cation. The additive logistic model is

P(Y = 1 | X) ≡ p(X ; f ) =
exp

(∑p
j=1 f j (X j )

)

1+ exp
(∑p

j=1 f j (X j )
) (16)
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whereY ∈ {0,1}, and the population log-likelihood is̀( f ) = E
[
Y f (X)− log(1+ exp f (X))

]
.

Recall that in the local scoring algorithm for generalized additive models (Hastie and Tibshirani,
1999) in the logistic case, one runs the backfitting procedure within Newton’s method. Here one
iteratively computes the transformed response for the current estimatef0

Zi = f0(X i )+
Yi − p(X i ; f0)

p(X i ; f0)(1− p(X i ; f0))
(17)

and weightsw(X i ) = p(X i ; f0)(1− p(X i ; f0), and carries out a weighted backfitting of(Z , X)
with weightsw. The weighted smooth is given by

P̂j =
S j (wR j )

S jw
. (18)

To incorporate the sparsity penalty, we first note that the Lagrangian is given by

L( f, λ, µ) = E
[
log(1+ exp f (X))− Y f (X)

]
+ λ

p∑

j=1

√
E( f 2

j (X j ))+
∑

j

µ j E( f j ) (19)

and the stationary condition for component functionf j is E
(

p − Y | X j
)
+ λv j = 0 wherev j is an

element of the subgradient∂
√

E( f 2
j ). As in the unregularized case, this condition is nonlinear in f ,

and so we linearize the gradient of the log-likelihood around f0. This yields the linearized condition
E

[
w(X)( f (X)− Z) | X j

]
+ λv j = 0. WhenE( f 2

j ) 6= 0, this implies the condition

E

(
w | X j

)
+

λ√
E( f j )2


 f j (X j ) = E(wR j | X j ). (20)

In the finite sample case, in terms of the smoothing matrixS j , this becomes

f j =
S j (wR j )

S jw + λ
/√

E( f 2
j )
. (21)

If ‖S j (wR j )‖2 < λ, then f j = 0. Otherwise, this implicit, nonlinear equation forf j cannot be
solved explicitly, so we propose to iterate until convergence:

f j ←
S j (wR j )

S jw + λ
√

n
/
‖ f j‖2

. (22)

Whenλ = 0, this yields the standard local scoring update (18). An example of logistic SpAM is
given in Section 5.

4 Properties of SpAM

4.1 SpAM is Persistent

The notion of risk consistency, or persistence, was studiedby Juditsky and Nemirovski (2000) and
Greenshtein and Ritov (2004) in the context of linear models. Let (X,Y ) denote a new pair (inde-
pendent of the observed data) and define the predictive risk when predictingY with f (X) by

R( f ) = E(Y − f (X))2. (23)

Since we consider predictors of the formf (x) =
∑

j β j g j (x j ) we also write the risk asR(β, g)
whereβ = (β1, . . . , βp) andg = (g1, . . . , gp). Following Greenshtein and Ritov (2004), we say
that an estimator̂mn is persistent relative to a class of functionsMn if

R(m̂n)− R(m∗n)
P→ 0 (24)

wherem∗n = argminf ∈Mn
R( f ) is the predictive oracle. Greenshtein and Ritov (2004) showed

that the lasso is persistent for the class of linear modelsMn = { f (x) = xTβ : ‖β‖1 ≤ Ln} if
Ln = o((n/ logn)1/4). We show a similar result for SpAM.

Theorem 4.1. Suppose thatpn ≤ enξ for someξ < 1. Then SpAM is persistent relative to the

class of additive modelsMn =
{

f (x) =
∑p

j=1 β j g j (x j ) : ‖β‖1 ≤ Ln

}
if Ln = o

(
n(1−ξ)/4

)
.
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4.2 SpAM is Sparsistent

In the case of linear regression, withm j (X j ) = βT
j X j , Wainwright (2006) shows that under certain

conditions onn, p, s = |supp(β)|, and the design matrixX , the lasso recovers the sparsity pattern
asymptotically; that is, the lasso estimatorβ̂n is sparsistent: P

(
supp(β) = supp(β̂n)

)
→ 1. We

show a similar result for SpAM with the sparse backfitting procedure.

For the purpose of analysis, we use orthogonal function regression as the smoothing procedure. For
each j = 1, . . . , p let ψ j be an orthogonal basis forH j . We truncate the basis to finite dimension
dn , and letdn → ∞ such thatdn/n → 0. Let9 j denote then × d matrix9 j (i, k) = ψ jk(X i j ).
If A ⊂ {1, . . . , p}, we denote by9A the n × d|A| matrix where for eachi ∈ A, 9i appears as a
submatrix in the natural way. The SpAM optimization problemcan then be written as

min
β

1

2n

(
Y −

∑p
j=19 jβ j

)2
+ λn

p∑

j=1

√
1

n
βT

j 9
T
j 9 jβ j (25)

where eachβ j is ad-dimensional vector. LetS denote the true set of variables{j : m j 6= 0}, with
s = |S|, and letSc denote its complement. Let̂Sn = {j : β̂ j 6= 0} denote the estimated set of
variables from the minimizer̂βn of (25).

Theorem 4.2. Suppose that9 satisfies the conditions

3max

(
1

n
9T

S 9S

)
≤ Cmax<∞ and 3min

(
1

n
9T

S 9S

)
≥ Cmin > 0 (26)

∥∥∥∥
(

1
n9

T
Sc9S

) (
1
n9

T
S 9S

)−1
∥∥∥∥

2

2
≤

√
Cmin

Cmax

1− δ
√

s
, for some0< δ ≤ 1 (27)

Let the regularization parameterλn → 0 be chosen to satisfy

λn

√
sdn → 0,

s

dnλn
→ 0, and

dn(logdn + log(p − s))

nλ2
n

→ 0. (28)

Then SpAM is sparsistent:P
(
Ŝn = S

)
−→ 1.

5 Experiments

In this section we present experimental results for SpAM applied to both synthetic and real data,
including regression and classification examples that illustrate the behavior of the algorithm in vari-
ous conditions. We first use simulated data to investigate the performance of the SpAM backfitting
algorithm, where the true sparsity pattern is known. We thenapply SpAM to some real data. If not
explicitly stated otherwise, the data are always rescaled to lie in ad-dimensional cube [0,1]d , and
a kernel smoother with Gaussian kernel is used. To tune the penalization parameterλ, we use aC p
statistic, which is defined as

C p( f̂ ) =
1

n

n∑

i=1

(
Yi −

∑p
j=1 f̂ j (X j )

)2
+

2̂σ 2

n

p∑

j=1

trace(S j )1[ f̂ j 6= 0] (29)

whereS j is the smoothing matrix for thej-th dimension and̂σ 2 is the estimated variance.

5.1 Simulations

We first apply SpAM to an example from (Härdle et al., 2004). A dataset with sample sizen = 150
is generated from the following 200-dimensional additive model:

Yi = f1(xi1)+ f2(xi2)+ f3(xi3)+ f4(xi4)+ εi (30)

f1(x) = −2 sin(2x), f2(x) = x2− 1
3, f3(x) = x − 1

2, f4(x) = e−x + e−1− 1 (31)

and f j (x) = 0 for j ≥ 5 with noiseεi ∼ N (0,1). These data therefore have 196 irrelevant
dimensions. The results of applying SpAM with the plug-in bandwidths are summarized in Figure 2.
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Figure 2: (Simulated data) Upper left: The empirical`2 norm of the estimated components as plotted
against the tuning parameterλ; the value on thex-axis is proportional to

∑
j ‖ f̂ j‖2. Upper center:

TheC p scores against the tuning parameterλ; the dashed vertical line corresponds to the value of
λ which has the smallestC p score. Upper right: The proportion of 200 trials where the correct
relevant variables are selected, as a function of sample size n. Lower (from left to right): Estimated
(solid lines) versus true additive component functions (dashed lines) for the first 6 dimensions; the
remaining components are zero.

5.2 Boston Housing

The Boston housing data was collected to study house values in the suburbs of Boston; there are
altogether 506 observations with 10 covariates. The dataset has been studied by many other authors
(Härdle et al., 2004; Lin and Zhang, 2006), with various transformations proposed for different
covariates. To explore the sparsistency properties of our method, we add 20 irrelevant variables. Ten
of them are randomly drawn from Uniform(0,1), the remaining ten are a random permutation of the
original ten covariates, so that they have the same empirical densities.

The full model (containing all 10 chosen covariates) for theBoston Housing data is:

medv = α + f1(crim)+ f2(indus)+ f3(nox)+ f4(rm)+ f5(age)

+ f6(dis)+ f7(tax)+ f8(ptratio)+ f9(b)+ f10(lstat) (32)

The result of applying SpAM to this 30 dimensional dataset isshown in Figure 3. SpAM identifies 6
nonzero components. It correctly zeros out both types of irrelevant variables. From the full solution
path, the important variables are seen to berm, lstat, ptratio, andcrim. The importance
of variablesnox andb are borderline. These results are basically consistent with those obtained
by other authors (Härdle et al., 2004). However, usingC p as the selection criterion, the variables
indux, age, dist, andtax are estimated to be irrelevant, a result not seen in other studies.

5.3 SpAM for Spam

Here we consider an email spam classification problem, usingthe logistic SpAM backfitting algo-
rithm from Section 3.1. This dataset has been studied by Hastie et al. (2001), using a set of 3,065
emails as a training set, and conducting hypothesis tests tochoose significant variables; there are a
total of 4,601 observations withp = 57 attributes, all numeric. The attributes measure the percent-
age of specific words or characters in the email, the average and maximum run lengths of upper case
letters, and the total number of such letters. To demonstrate how SpAM performs well with sparse
data, we only samplen = 300 emails as the training set, with the remaining 4301 data points used
as the test set. We also use the test data as the hold-out set totune the penalization parameterλ. The
results of a typical run of logistic SpAM are summarized in Figure 4, using plug-in bandwidths.
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Figure 3: (Boston housing) Left: The empirical`2 norm of the estimated components versus the
regularization parameterλ. Center: TheC p scores againstλ; the dashed vertical line corresponds to
bestC p score. Right: Additive fits for four relevant variables.
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Figure 4: (Email spam) Classification accuracies and variable selection for logistic SpAM.
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