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Abstract

We consider the problem of estimating the graph structuseaated with a Gaussian
Markov random field (GMRF) from i.i.d. samples. We study tleefprmance of study the
performance of thé, -regularized maximum likelihood estimator in the high-dimsional
setting, where the number of nodes in the grapthe number of edges in the graptand
the maximum node degrek are allowed to grow as a function of the number of samples
n. Our main result provides sufficient conditions @n p, d) for the ¢;-regularized MLE
estimator to recover all the edges of the graph with highalodlty. Under some conditions
on the model covariance, we show that model selection carchiewed for sample sizes
n = Q(d? log(p)), with the error decaying a8(exp(—clog(p))) for some constant We
illustrate our theoretical results via simulations andvslymod correspondences between
the theoretical predictions and behavior in simulations.

1 Introduction

The area of high-dimensional statistics deals with estonah the “largep, smalln” setting, where

p andn correspond, respectively, to the dimensionality of thendeatd the sample size. Such high-
dimensional problems arise in a variety of applicationspagthem remote sensing, computational
biology and natural language processing, where the modemsion may be comparable or sub-
stantially larger than the sample size. It is well-knowrt thech high-dimensional scaling can lead to
dramatic breakdowns in many classical procedures. In therate of additional model assumptions,
it is frequently impossible to obtain consistent proceduvbenp > n. Accordingly, an active line
of statistical research is based on imposing various o#isins on the model—-for instance, spar-
sity, manifold structure, or graphical model structureretdhen studying the scaling behavior of
different estimators as a function of sample sizembient dimensiop and additional parameters
related to these structural assumptions.

In this paper, we study the problem of estimating the grapitiire of a Gauss Markov random field
(GMRF) in the high-dimensional setting. This graphical ralogklection problem can be reduced to
the problem of estimating the zero-pattern of the invers@gance or concentration matré*. A
line of recent work [1, 2, 3, 4] has studied estimators basechimimizing Gaussian log-likelihood
penalized by thé, norm of the entries (or the off-diagonal entries) of the @mration matrix. The
resulting optimization problem is a log-determinant peogr which can be solved in polynomial
time with interior point methods [5], or by faster co-ordi@alescent algorithms [3, 4]. In recent
work, Rothman et al. [1] have analyzed some aspects of higlertsional behavior, in particular
establishing consistency in Frobenius norm under certamitions on the model covariance and
under certain scalings of the sparsity, sample size, andesntnimodel dimension.

The main contribution of this paper is to provide sufficieahditions for model selection consis-
tency of¢,-regularized Gaussian maximum likelihood. It is worth ngtthat such a consistency
result for structure learning of Gaussian graphical modaimot be derived from Frobenius norm
consistency alone. For any concentration matrjxienote the set of its non-zero off-diagonal entries



by E(©) = {s #t | ©4 # 0}. (As will be clarified below, the notatioR alludes to the fact that
this set corresponds to the edges in the graph defining the EMURder certain technical condi-
tions to be specified, we prove that theregularized (on off-diagonal entries 6f) Gaussian MLE
recovers this edge set with high probability, meaning E’{aﬁ(@)) = E(©*)] — 1. In many appli-
cations of graphical models (e.qg., protein networks, $o@awvork analysis), it is this edge structure
itself, as opposed to the weights;, on the edges, that is of primary interest. Moreover, we note
that model selection consistency is useful even when omgésasted in convergence in spectral or
Frobenius norm; indeed, having extracted thefs@*), we could then restrict to this subset, and
estimate the non-zero entries®f at the faster rates applicable to the reduced dimension.

The remainder of this paper is organized as follows. In $a@i we state our main result, discuss
its connections to related work, and some of its consequser8gction 3 provides an outline of the
proof. In Section 4, we provide some simulations that itas our results.

Notation For the convenience of the reader, we summarize here notatibe used throughout
the paper. Given a vectar € R¢ and parametes € [1, 00|, we use||u||, to denote the usual
¢, norm. Given a matribXy' € RP*? and parameters, b € [1, c0], we use||U||,,» to denote the
induced matrix-operator normax;, . —1 ||Uyl|s; see [6] for background. Three cases of particular
importance in this paper are tlspectral norm|U||2, corresponding to the maximal singular value
of U; the (., /{~-Operator norm given by

p
Ul = max > [Ul, 1)
A
and the(; /¢1-operator norm given by||U[l; = [|UT||. Finally, we use|U||~ to denote the

element-wise maximumax; ; |U;;|; note that this is not a matrix norm, but rather a norm on the
vectorized form of the matrix. For any matiik € RP*?, we usevec(U) or equivalentlyl/ € R?” to
denote itsvectorized formobtained by stacking up the rows @t We use(U, V) :=3_, ; U;;V;

to denote therace inner producbn the space of symmetric matrices. Note that this inneryrbd

induces theFrobenius normj|U||r := /3=, ; UZ. Finally, for asymptotics, we use the following
standard notation: we writ¢(n) = O(g(n)) if f(n) < cg(n) for some constant < oo, and

f(n) = Q(g(n))if f(n) > g(n) for some constant > 0. The notationf(n) =< g(n) means that
f(n) = O(g(n)) andf(n) = Q(g(n)).

2 Background and statement of main result

In this section, we begin by setting up the problem, with stsaekground on Gaussian MRFs and
£1-regularization. We then state our main result, and dissas® of its consequences.

2.1 Gaussian MRFsand ¢; penalized estimation

Consider an undirected graggh = (V, E) with p = |V| vertices, and lefX = (Xq,...,X,)
denote g-dimensional Gaussian random vector, with vari&teidentified with vertexi € V. A
Gauss-Markov random field (MRF) is described by a densitheffiorm

flz,...,2p;0%) = Wexp{—%gﬂ@*x}. (2)

As illustrated in Figure 1, Markov structure is reflected lire tsparsity pattern of the inverse co-
variance or concentration matré*, ap x p symmetric matrix. In particular, by the Hammersley-
Clifford theorem [7], it must satisfp; = 0 for all (4,j) ¢ E. Consequently, the problem of
graphical model selection is equivalent to estimating tifieliagonal zero-pattern of the concentra-
tion matrix—thatis, the seb(0*) := {i,j € V' | i # j,0; # 0}.

In this paper, we study the minimizer of tlig-penalized Gaussian negative log-likelihood. Let-
ting (A, B)) := >_, ; Ai; Bi; be the trace inner product on the space of symmetric maftiiciss
objective function takes the form

© = argmin {<<9, X)) —logdet®©) + /\n||®H1,off} = argming(6; 3, An). ®3)



Zero pattern of inverse covariance
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Figure 1. (a) Simple undirected graph. A Gauss Markov random field h&aassian variablé;
associated with each vertéxc V. This graph hap = 5 vertices, maximum degret= 3 ands = 6
edges. (b) Zero pattern of the inverse covariaBteassociated with the GMRF in (a). The 4e{0*)
corresponds to the off-diagonal non-zeros (white blodk&)diagonal is also non-zero (grey squares),
but these entries do not correspond to edges. The blackesjoarrespond to non-edges, or zeros in
or.
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HereY denotes the sample covariance—thatis;= 1 77 | X [X]T, where eachX ) is
drawn in an i.i.d. manner according to the density (2). Thantity \,, > 0 is a user-defined
regularization parameter. afi®||1 o := Zi# |©,,| is theoff-diagonall; regularizer, note that it
doesnotinclude the diagonal. Since the negative log-determirgatstrictly convex function [5],
this problem always has a unique solution, so that there awmuaiguity in equation (3).

We let E(©) = {(i,j) | i # j, (:)ij # 0} denote the edge set associated with the estimate. Of

~

interest in this paper is studying the probabilfty(©*) = E(©)] as a function of the graph size
(which serves as the “model dimension” for the Gauss-Markodel), the sample size, and the

structural properties @. In particular, we define both treparsity index

s = |EOY)] = {i,jeV|]i#j 65 #0} (4)
corresponding to the total number of edges, andthgimum degree or row cardinality
d = max [{i| O #0}, ®)
Jj=1,...,p

corresponding to the maximum number of non-zeros in any fad*por equivalently the maximum
degree in the grapff, where we include the diagonal in the degree count.

2.2 Statement of main result

Our assumptions involve the Hessian with respe@ tof the objective functiory defined in equa-
tion (3), evaluated at the true modef. Using standard results on matrix derivatives [5], it can be
shown that this Hessian takes the form

" = V3g(® = lewe 6
09(0) oo ® (6)
where® denotes the Kronecker matrix product. By definitidri,is ap? x p? matrix indexed by
2
vertex pairs, so that entﬂyf(“j k), (€m) corresponds to the second patrtial derivat{%e%"Te, evalu-

ated at9 = ©*. WhenX has multivariate Gaussian distribution, tHehis the Fisher information
of the model, and by standard results on cumulant functioesponential families [8], we have the
more specific expressidf'{j k), (6m) = cov{X; Xy, X,X,,}. For this reasor* can be viewed as

an edge-based counterpart to the usual covariance matrix
We define the set of non-zero off-diagonal entries in the rhoalecentration matri¥©*:

and letS(©*) = {S(©*)U{(1,1),...,(p,p)} be the augmented set including the diagonal. We let
S¢(©*) denote the complement 6f(©*) in the set{1,...,p} x {1,...,p}, corresponding to all



pairs(¢,m) for which®}, = 0. When it is clear from context, we shorten our notation fask
sets toS and .S, respectively. Finally, for any two subséfsand7” of V' x V, we usel's.;, to
denote theT'| x |T’| matrix with rows and columns df* indexed byT" andT"” respectively.

We require the following conditions on the Fisher informatmatrixI™:

[A1] Incoherence condition: This condition captures the intuition that variable-paitsich are
non-edges cannot exert an overtly strong effect on varghles which form edges of the Gaussian
graphical model.

IThes(Ths) Moo < (1—a), forsome fixeda > 0. (8)

We note that similar conditions arise in the analysis of thedo in linear regression [9, 10, 11].

[A2] Covariancecontrol: There exist constan&s«, K+ < oo such that
x—1 % \—
16 o <Ks-, and [[(T&g) oo < Kr-. )

These assumptions require that the covariance elementgahy row of( ©*)~! and(I';4) ! have
bounded’; norms. Note that similar assumptions are are also requirecbihsistency in Frobenius
norm [1].

Recall from equations (4) and (5) the definitions of the dpaisdex s and maximum degreé,
respectively. With this notation, we have:

Theorem 1. Consider a Gaussian distribution with concentration ma®i* that satisfies conditions

(A1) and (A2). Suppose the penalty is sekas= Cy 4/ 1"’%, and the minimum edge-weidBf, ;, :=
ming jes |O;;| scales a®y;, > Co “’% for some constants';, C; > 0. Further, suppose the

triple (n, d, p) satisfies the scaling
n > L d*log(p), (20)

~

for some constant > 0. Then the edge sé(O) specified by the estimator specifies the true edge
set w.h.p.—in particular,

P[E(©) = BE(©%)] > 1—exp(—clogp) — L (11)
for some constant > 0.

Remarks: Rothman et al. [1] prove that the error of the estimator inbéraus norm obeys the

bound||© — O*||% = O{((s + p)logp)/n}, with high probability. We note that model selection
consistency does not follow from this result, since an estiinmay be close in Frobenius norm while
differing substantially in terms of zero-pattern. In oness the model selection criterion is more
demanding, since given knowledge of the edgergh*), one could restrict estimation procedures
to this subset, and so achieve faster rates. On the other Rdwedrem 1 requires incoherence
conditiong A1] on the covariance matrix, which are not required for Frobgnbrm consistency [1].

2.3 Comparison to neighbor-based graphical model selection

It is interesting to compare the estimator to the Gaussi&ghberhood regression method studied
by Meinshausen and Buhlmann [9], in which each node is ligeagressed with ar; penalty
(Lasso) on the rest of the nodes; and the location of the wom+2gression weights is taken as the
neighborhood estimate of that node. These neighborhoedb@n combined, by either an OR rule
or an AND rule, to estimate the full graph. Wainwright [12]os¥s that the rater < dlogp is a
sharp threshold for the success/failure of neighborholetsen by Lasso. By a union bound over
the p nodes, it follows this threshold holds for the Meinshausees Biihimann approach as well.
This is superior to the scaling in our result (10). Howeuee, tivo methods rely on slightly different
underlying assumptions, and the current form of the neigindad-based approach requires solving
a total ofp Lasso programs, as opposed to a single log-determinanigpnolBelow we show two
cases where the Lasso irrepresentability condition holdsle the log-determinant requirement
fails. However, in general, we do not know whether the lotedainant irrepresentability strictly
dominates its analog for the Lasso.



2.3.1 lllustration of irrepresentability: Diamond graph

Consider the following Gaussian MRF example from [13]. Feg@(a) shows a diamond-shaped
graphG = (V, E), with vertex sel = {1, 2, 3, 4} and edge-set as the fully connected graph &ver
with the edg€1, 4) removed. The covariance matfiX is parameterized by the correlation param-
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Figure2: (a) Graph of the example discussed by [13]. (b) A simpleode star graph.

eterp € [0,1/+/2]: the diagonal entries are set¥tj, = 1, for all i € V; the entries corresponding
to edges are set @;; = p for (i,7) € E\{(2,3)}, X35 = 0; and finally the entry corresponding to
the non-edge is set as;, = 2p?. For this model, [13] showed that tiig-regularized MLEO fails

to recover the graph structure for any sample sizg, 3 —1 + (3/2)/? ~ 0.23. It is instructive
to compare this necessary condition to the sufficient cardgrovided in our analysis, namely the
incoherence Assumptiond[l] as applied to the Hessidri. For this particular example, a little cal-
culation shows that Assumptior[] is equivalent to the constraidtp|(|p| + 1) < 1, an inequality
which holds for allp € (—0.2017,0.2017). Note that the upper value2017 is just below the nec-
essary threshold discussed by [13]. On the other hand,rér@sentability condition for the Lasso
requires only tha2|p| < 1,i.e.,p € (—0.5,0.5). Thus, in the regimép| € [0.2017,0.5), the Lasso
irrepresentability condition holds while our log-detenait counterpart fails.

2.3.2 lllugtration of irrepresentability: Star graphs

A second interesting example is the star-shaped graphicdehillustrated in Figure 2(b), which
consists of a single hub node connected to the rest of theespottes. We consider a four node
graph, with vertex set” = {1,2, 3,4} and edge-sef = {(1,s) | s € {2,3,4}}. The covariance
matrix X* is parameterized the correlation parameter [—1, 1]: the diagonal entries are set to
35 = 1,foralli € V; the entries corresponding to edges are sétito= p for (i, j) € E; while
the non-edge entries are setgs = p? for (i,§) ¢ E. Consequently, for this particular example,
Assumption A1] reduces to the constraift|(|p|+2) < 1, which holds for allp € (—0.414,0.414).
The irrepresentability condition for the Lasso on the otieend allows the full rangg € (—1,1).
Thus there is again a regimg| € [0.414,1), where the Lasso irrepresentability condition holds
while the log-determinant counterpart fails.

3 Proof outline

Theorem 1 follows as a corollary to Theorem 2 in RavikumarldiL4], an extended and more
general version of this paper. There we consider the morergeproblem of estimation of the
covariance matrix of a random vector (that need not necgsbar Gaussian) from i.i.d. samples;
and where we relax Assumptiod ], and allow quantitied(s-, K- to grow with sample size.

We provide here a high-level outline of the proof of Theorenuéferring details to the extended
version [14]. Our proofs are based on a technique that weagalmal-dual witness methodised
previously in analysis of the Lasso [12]. It involves follmg a specific sequence of steps to con-
struct a pain©, Z) of symmetric matrices that together satisfy the optimaldnditions associated
with the convex program (3yith hlgh probability Thus, when the constructive procedure succeeds,
Ois equalto the unique solutio® of the convex program (3), and is an optimal solution to its



dual. In this way, the estimat@® inherits from® various optimality properties in terms of its dis-
tance to the trutl®*, and its recovery of the signed sparsity pattern. To be ctearprocedure for

constructing§ is nota practical algorithm for solving the log-determinant gesb (3), but rather is
used as a proof technique for certifying the behavior offtheegularized MLE (3).

3.1 Primal-dual witness approach

At the core of the primal-dual witness method are the stahdanvex optimality conditions that

characterize the optimu@ of the convex program (3). For future reference, we notetti@sub-
differential of the norm|| - || s evaluated at som® consists the set of all symmetric matrices
Z € RP*P such that

0 if i —
Zij = Slgl"(@”) if 4 #£j and@ij #0 (12)

Lemma 1. For any \,, > 0 and sample covarianc® with strictly positive diagonal, thé;-
regularized log-determinant proble(8) has a unique solutio® > 0 characterized by

S-01'+MZ = 0, (13)

whereZ is an element of the subdiﬁerentiﬁl@”l,og.
Based on this lemma, we construct the primal-dual witnelgisa (©, Z) as follows:

(a) We determine the matri@ by solving the restricted log-determinant problem

O = arg onmin {(©, X)) —logdet(O©) + A\ [|O]|1,0f }- (14)

Note that by construction, we hage - 0, and moreove® g = 0.
(b) We choosé?s as a member of the sub-differential of the regularizefi; o«, evaluated at
O.
(c) We setZg. as
~ 1 ~ ~
Lge = A_{_ESC+[@ 1]5“}7 (15)

which ensures that constructed matri¢€s Z) satisfy the optimality condition (13).
(d) We verify thestrict dual feasibilitycondition

|Z;| < 1 forall(i,j) € S°.

To clarify the nature of the construction, steps (a) thro(mhsuffice to obtain a pai@C:), Z) that
satisfy the optimality conditions (13), but dwt guarantee thak is an element of sub-differential
8||®||1 off - By Constructlon speC|f|caIIy step (b) of the construcmmures that the entn%m S

The purpose of step (d), then, is to verlfy that the remalmmynents otz satisfy the necessary
conditions to belong to the sub-differential.

If the primal-dual witness construction succeeds, theat# as avitnessto the fact that the solution
O to the restricted problem (14) is equivalent to the solu@pto the original (unrestricted) prob-
lem (3). We exploit this fact in our proof of Theorem 1: we fisbiow that the primal-dual witness
technique succeeds with high-probability, from which wa canclude that the support of the opti-
mal solution® is contained within the support of the tr@. The next step requires checking that

none of the entries i®g constructed in Equation (14) are zero. It is to verify thiattive require
the lower bound assumption in Theorem 1 on the value of thémaim value®;, ;.



4 Experiments

In this section, we describe some experiments which ikdstthe model selection rates in Theo-
rem 1. We solved thé, penalized log-determinant optimization problem using“djasso” pro-
gram [4], which builds on the block co-ordinate descent athm of [3]. We report experiments
for star-shaped graphs, which consist of one node connextbeé rest of the nodes. These graphs
allow us to vary bothl andp, since the degree of the central hub can be varied betivaadp — 1.
Applying the algorithm to these graphs should thereforeipisome insight on how the required
number of samples is related tad andp. We tested varying graph sizefrom p = 64 upwards

to p = 375. The edge-weights were set as entries in the inverse of aiaoce matrixX* with
diagonal entries set @5}, = 1foralli = 1,...,p, and¥;j; = 2.5/d for all (i,j) € E, so that the

quantities( K-, K+, &) remain constant.
Dependence on graph size:
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Figure 3. Simulations for a star graph with varying number of noglefixed maximal degre€ = 40,
and edge covariances; = 1/16 for all edges. Plots of probability of correct signed edgerscovery
versus the sample sizein panel (a), and versus the rescaled samplessideg p in panel (b). Each
point corresponds to the average oér= 100 trials.

Panel (a) of Figure 3 plots the probability of correct sigedde-set recovery against the sample size
n for a star-shaped graph of three different graph sizd=or each curve, the probability of success
starts at zero (for small sample siz€s but then transitions to one as the sample size is increased
As would be expected, it is more difficult to perform modelestion for larger graph sizes, so
that (for instance) the curve far = 375 is shifted to the right relative to the curve fpr= 64.
Panel (b) of Figure 3 replots the same data, with the horatantis rescaled byl/logp). This
scaling was chosen because our theory predicts that thelesamp should scale logarithmically
with p (see equation (10)). Consistent with this prediction, wpletted against the rescaled sample
sizen/logp, the curves in panel (b) all stack up. Consequently, th@ r@ij logp) acts as an
effective sample size in controlling the success of modeelcsien, consistent with the predictions
of Theorem 1.

Dependence on the maximum node degr ee:

Panel (a) of Figure 4 plots the probability of correct sigedde-set recovery against the sample size
n for star-shaped graphs; each curve corresponds to a diffelneice of maximum node degrée
allowing us to investigate the dependence of the sampl@sitieis parameter. So as to control these
comparisons, we fixed the number of nodep te 200. Observe how the plots in panel (a) shift to
the right as the maximum node degrées increased, showing that star-shaped graphs with higher
degrees are more difficult. In panel (b) of Figure 4, we pletthme data versus the rescaled sample
sizen/d. Recall that if all the curves were to stack up under thisalsg, then it means the required
sample size: scales linearly withi. These plots are closer to aligning than the unrescaled,giat

the agreement is not perfect. In particular, observe tleattived (right-mostin panel (a)) remains

a bit to the right in panel (b), which suggests that a somewltat aggressive rescaling—perhaps
n/d" for somey € (1, 2)—is appropriate. The sufficient condition from Theorem Is@asmarized



Truncated Star with Varying d Truncated Star with Varying d

2300t
08 0.8
0 193
0 %]
806 g 06
3 3
0 2
G G
go4 g o4
o o
0.2 0.2
1000 500 2000 2500 3000 3500 % "% " =0 T
n n
(@) (b)

Figure 4. Simulations for star graphs with fixed number of noges- 200, varying maximal (hub)
degreed, edge covarianceE;; = 2.5/d. Plots of probability of correct signed edge-set recovery
versus the sample sizein panel (a), and versus the rescaled samplersizkin panel (b).

in equation (10), is: = Q(d? log p), which appears to be overly conservative based on these data
Thus, it might be possible to tighten our theory under centagimes.
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