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Abstract

We consider the problem of estimating the graph structure associated with a Gaussian
Markov random field (GMRF) from i.i.d. samples. We study the performance of study the
performance of theℓ1-regularized maximum likelihood estimator in the high-dimensional
setting, where the number of nodes in the graphp, the number of edges in the graphs and
the maximum node degreed, are allowed to grow as a function of the number of samples
n. Our main result provides sufficient conditions on(n, p, d) for theℓ1-regularized MLE
estimator to recover all the edges of the graph with high probability. Under some conditions
on the model covariance, we show that model selection can be achieved for sample sizes
n = Ω(d2 log(p)), with the error decaying asO(exp(−c log(p))) for some constantc. We
illustrate our theoretical results via simulations and show good correspondences between
the theoretical predictions and behavior in simulations.

1 Introduction

The area of high-dimensional statistics deals with estimation in the “largep, smalln” setting, where
p andn correspond, respectively, to the dimensionality of the data and the sample size. Such high-
dimensional problems arise in a variety of applications, among them remote sensing, computational
biology and natural language processing, where the model dimension may be comparable or sub-
stantially larger than the sample size. It is well-known that such high-dimensional scaling can lead to
dramatic breakdowns in many classical procedures. In the absence of additional model assumptions,
it is frequently impossible to obtain consistent procedures whenp ≫ n. Accordingly, an active line
of statistical research is based on imposing various restrictions on the model—-for instance, spar-
sity, manifold structure, or graphical model structure—-and then studying the scaling behavior of
different estimators as a function of sample sizen, ambient dimensionp and additional parameters
related to these structural assumptions.

In this paper, we study the problem of estimating the graph structure of a Gauss Markov random field
(GMRF) in the high-dimensional setting. This graphical model selection problem can be reduced to
the problem of estimating the zero-pattern of the inverse covariance or concentration matrixΘ∗. A
line of recent work [1, 2, 3, 4] has studied estimators based on minimizing Gaussian log-likelihood
penalized by theℓ1 norm of the entries (or the off-diagonal entries) of the concentration matrix. The
resulting optimization problem is a log-determinant program, which can be solved in polynomial
time with interior point methods [5], or by faster co-ordinate descent algorithms [3, 4]. In recent
work, Rothman et al. [1] have analyzed some aspects of high-dimensional behavior, in particular
establishing consistency in Frobenius norm under certain conditions on the model covariance and
under certain scalings of the sparsity, sample size, and ambient model dimension.

The main contribution of this paper is to provide sufficient conditions for model selection consis-
tency ofℓ1-regularized Gaussian maximum likelihood. It is worth noting that such a consistency
result for structure learning of Gaussian graphical modelscannot be derived from Frobenius norm
consistency alone. For any concentration matrixΘ, denote the set of its non-zero off-diagonal entries
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by E(Θ) = {s 6= t | Θst 6= 0}. (As will be clarified below, the notationE alludes to the fact that
this set corresponds to the edges in the graph defining the GMRF.) Under certain technical condi-
tions to be specified, we prove that theℓ1-regularized (on off-diagonal entries ofΘ) Gaussian MLE
recovers this edge set with high probability, meaning thatP[E(Θ̂) = E(Θ∗)] → 1. In many appli-
cations of graphical models (e.g., protein networks, social network analysis), it is this edge structure
itself, as opposed to the weightsΘ∗

st on the edges, that is of primary interest. Moreover, we note
that model selection consistency is useful even when one is interested in convergence in spectral or
Frobenius norm; indeed, having extracted the setE(Θ∗), we could then restrict to this subset, and
estimate the non-zero entries ofΘ∗ at the faster rates applicable to the reduced dimension.

The remainder of this paper is organized as follows. In Section 2, we state our main result, discuss
its connections to related work, and some of its consequences. Section 3 provides an outline of the
proof. In Section 4, we provide some simulations that illustrate our results.

Notation For the convenience of the reader, we summarize here notation to be used throughout
the paper. Given a vectoru ∈ R

d and parametera ∈ [1,∞], we use‖u‖a to denote the usual
ℓa norm. Given a matrixU ∈ R

p×p and parametersa, b ∈ [1,∞], we use|||U |||a,b to denote the
induced matrix-operator normmax‖y‖a=1 ‖Uy‖b; see [6] for background. Three cases of particular
importance in this paper are thespectral norm|||U |||2, corresponding to the maximal singular value
of U ; theℓ∞/ℓ∞-operator norm, given by

|||U |||∞ := max
j=1,...,p

p∑

k=1

|Ujk|, (1)

and theℓ1/ℓ1-operator norm, given by |||U |||1 = |||UT |||∞. Finally, we use‖U‖∞ to denote the
element-wise maximummaxi,j |Uij |; note that this is not a matrix norm, but rather a norm on the
vectorized form of the matrix. For any matrixU ∈ R

p×p, we usevec(U) or equivalentlyU ∈ R
p2

to
denote itsvectorized form, obtained by stacking up the rows ofU . We use〈〈U, V 〉〉 :=

∑
i,j UijVij

to denote thetrace inner producton the space of symmetric matrices. Note that this inner product

induces theFrobenius norm|||U |||F :=
√∑

i,j U2
ij . Finally, for asymptotics, we use the following

standard notation: we writef(n) = O(g(n)) if f(n) ≤ cg(n) for some constantc < ∞, and
f(n) = Ω(g(n)) if f(n) ≥ c′g(n) for some constantc′ > 0. The notationf(n) ≍ g(n) means that
f(n) = O(g(n)) andf(n) = Ω(g(n)).

2 Background and statement of main result

In this section, we begin by setting up the problem, with somebackground on Gaussian MRFs and
ℓ1-regularization. We then state our main result, and discusssome of its consequences.

2.1 Gaussian MRFs and ℓ1 penalized estimation

Consider an undirected graphG = (V, E) with p = |V | vertices, and letX = (X1, . . . , Xp)
denote ap-dimensional Gaussian random vector, with variateXi identified with vertexi ∈ V . A
Gauss-Markov random field (MRF) is described by a density of the form

f(x1, . . . , xp; Θ
∗) =

1

(2π det(Θ∗))p/2
exp

{
−1

2
xT Θ∗x

}
. (2)

As illustrated in Figure 1, Markov structure is reflected in the sparsity pattern of the inverse co-
variance or concentration matrixΘ∗, ap × p symmetric matrix. In particular, by the Hammersley-
Clifford theorem [7], it must satisfyΘ∗

ij = 0 for all (i, j) /∈ E. Consequently, the problem of
graphical model selection is equivalent to estimating the off-diagonal zero-pattern of the concentra-
tion matrix—that is, the setE(Θ∗) := {i, j ∈ V | i 6= j, Θ∗

ij 6= 0}.

In this paper, we study the minimizer of theℓ1-penalized Gaussian negative log-likelihood. Let-
ting 〈〈A, B〉〉 :=

∑
i,j AijBij be the trace inner product on the space of symmetric matrices, this

objective function takes the form

Θ̂ = argmin
Θ�0

{
〈〈Θ, Σ̂〉〉 − logdet(Θ) + λn‖Θ‖1,off

}
= argmin

Θ�0
g(Θ; Σ̂, λn). (3)
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Figure 1. (a) Simple undirected graph. A Gauss Markov random field has aGaussian variableXi

associated with each vertexi ∈ V . This graph hasp = 5 vertices, maximum degreed = 3 ands = 6
edges. (b) Zero pattern of the inverse covarianceΘ∗ associated with the GMRF in (a). The setE(Θ∗)
corresponds to the off-diagonal non-zeros (white blocks);the diagonal is also non-zero (grey squares),
but these entries do not correspond to edges. The black squares correspond to non-edges, or zeros in
Θ∗.

Here Σ̂ denotes the sample covariance—that is,Σ̂ := 1
n

∑n
ℓ=1 X(ℓ)[X(ℓ)]T , where eachX(ℓ) is

drawn in an i.i.d. manner according to the density (2). The quantity λn > 0 is a user-defined
regularization parameter. and‖Θ‖1,off :=

∑
i6=j |Θij | is theoff-diagonalℓ1 regularizer; note that it

doesnot include the diagonal. Since the negative log-determinant is a strictly convex function [5],
this problem always has a unique solution, so that there is noambiguity in equation (3).

We let E(Θ̂) = {(i, j) | i 6= j, Θ̂ij 6= 0} denote the edge set associated with the estimate. Of
interest in this paper is studying the probabilityP[E(Θ∗) = E(Θ̂)] as a function of the graph sizep
(which serves as the “model dimension” for the Gauss-Markovmodel), the sample sizen, and the
structural properties of̂Θ. In particular, we define both thesparsity index

s := |E(Θ∗)| = {i, j ∈ V | i 6= j, Θ∗
ij 6= 0}|. (4)

corresponding to the total number of edges, and themaximum degree or row cardinality

d := max
j=1,...,p

|{i | Θ∗
ij 6= 0}, (5)

corresponding to the maximum number of non-zeros in any row of Θ∗, or equivalently the maximum
degree in the graphG, where we include the diagonal in the degree count.

2.2 Statement of main result

Our assumptions involve the Hessian with respect toΘ of the objective functiong defined in equa-
tion (3), evaluated at the true modelΘ∗. Using standard results on matrix derivatives [5], it can be
shown that this Hessian takes the form

Γ∗ := ∇2
Θg(Θ)

∣∣∣
Θ=Θ∗

= Θ∗−1 ⊗ Θ∗−1, (6)

where⊗ denotes the Kronecker matrix product. By definition,Γ∗ is ap2 × p2 matrix indexed by
vertex pairs, so that entryΓ∗

(j,k),(ℓ,m) corresponds to the second partial derivative∂2g
∂Θjk∂Θℓm

, evalu-
ated atΘ = Θ∗. WhenX has multivariate Gaussian distribution, thenΓ∗ is the Fisher information
of the model, and by standard results on cumulant functions in exponential families [8], we have the
more specific expressionΓ∗

(j,k),(ℓ,m) = cov{XjXk, XℓXm}. For this reason,Γ∗ can be viewed as
an edge-based counterpart to the usual covariance matrixΣ∗.

We define the set of non-zero off-diagonal entries in the model concentration matrixΘ∗:

S(Θ∗) := {(i, j) ∈ V × V | i 6= j, Θ∗
ij 6= 0}, (7)

and letS(Θ∗) = {S(Θ∗)∪ {(1, 1), . . . , (p, p)} be the augmented set including the diagonal. We let
Sc(Θ∗) denote the complement ofS(Θ∗) in the set{1, . . . , p} × {1, . . . , p}, corresponding to all
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pairs(ℓ, m) for which Θ∗
ℓm = 0. When it is clear from context, we shorten our notation for these

sets toS andSc, respectively. Finally, for any two subsetsT andT ′ of V × V , we useΓ∗
TT ′ to

denote the|T | × |T ′| matrix with rows and columns ofΓ∗ indexed byT andT ′ respectively.

We require the following conditions on the Fisher information matrixΓ∗:

[A1] Incoherence condition: This condition captures the intuition that variable-pairswhich are
non-edges cannot exert an overtly strong effect on variable-pairs which form edges of the Gaussian
graphical model.

|||Γ∗
ScS(Γ∗

SS)−1|||∞ ≤ (1 − α), for some fixedα > 0. (8)

We note that similar conditions arise in the analysis of the Lasso in linear regression [9, 10, 11].

[A2] Covariance control: There exist constantsKΣ∗ , KΓ∗ < ∞ such that

|||Θ∗−1|||∞ ≤ KΣ∗ , and |||(Γ∗
SS)−1|||∞ ≤ KΓ∗ . (9)

These assumptions require that the covariance elements along any row of(Θ∗)−1 and(Γ∗
SS)−1 have

boundedℓ1 norms. Note that similar assumptions are are also required for consistency in Frobenius
norm [1].

Recall from equations (4) and (5) the definitions of the sparsity index s and maximum degreed,
respectively. With this notation, we have:

Theorem 1. Consider a Gaussian distribution with concentration matrixΘ∗ that satisfies conditions

(A1) and (A2). Suppose the penalty is set asλn = C1

√
log p

n , and the minimum edge-weightΘ∗
min :=

min(i,j)∈S |Θ∗
ij | scales asΘ∗

min > C2

√
log p

n for some constantsC1, C2 > 0. Further, suppose the

triple (n, d, p) satisfies the scaling

n > L d2 log(p), (10)

for some constantL > 0. Then the edge setE(Θ̂) specified by the estimator specifies the true edge
set w.h.p.—in particular,

P[E(Θ̂) = E(Θ∗)] ≥ 1 − exp(−c log p) → 1. (11)

for some constantc > 0.

Remarks: Rothman et al. [1] prove that the error of the estimator in Frobenius norm obeys the
bound|||Θ̂ − Θ∗|||2F = O{((s + p) log p)/n}, with high probability. We note that model selection
consistency does not follow from this result, since an estimate may be close in Frobenius norm while
differing substantially in terms of zero-pattern. In one sense, the model selection criterion is more
demanding, since given knowledge of the edge setE(Θ∗), one could restrict estimation procedures
to this subset, and so achieve faster rates. On the other hand, Theorem 1 requires incoherence
conditions[A1] on the covariance matrix, which are not required for Frobenius norm consistency [1].

2.3 Comparison to neighbor-based graphical model selection

It is interesting to compare the estimator to the Gaussian neighborhood regression method studied
by Meinshausen and Bühlmann [9], in which each node is linearly regressed with anℓ1 penalty
(Lasso) on the rest of the nodes; and the location of the non-zero regression weights is taken as the
neighborhood estimate of that node. These neighborhoods are then combined, by either an OR rule
or an AND rule, to estimate the full graph. Wainwright [12] shows that the raten ≍ d log p is a
sharp threshold for the success/failure of neighborhood selection by Lasso. By a union bound over
thep nodes, it follows this threshold holds for the Meinshausen and Bühlmann approach as well.
This is superior to the scaling in our result (10). However, the two methods rely on slightly different
underlying assumptions, and the current form of the neighborhood-based approach requires solving
a total ofp Lasso programs, as opposed to a single log-determinant problem. Below we show two
cases where the Lasso irrepresentability condition holds,while the log-determinant requirement
fails. However, in general, we do not know whether the log-determinant irrepresentability strictly
dominates its analog for the Lasso.
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2.3.1 Illustration of irrepresentability: Diamond graph

Consider the following Gaussian MRF example from [13]. Figure 2(a) shows a diamond-shaped
graphG = (V, E), with vertex setV = {1, 2, 3, 4} and edge-set as the fully connected graph overV
with the edge(1, 4) removed. The covariance matrixΣ∗ is parameterized by the correlation param-

1

2

3

4 1

2 3

4
(a) (b)

Figure 2: (a) Graph of the example discussed by [13]. (b) A simple4-node star graph.

eterρ ∈ [0, 1/
√

2]: the diagonal entries are set toΣ∗
ii = 1, for all i ∈ V ; the entries corresponding

to edges are set toΣ∗
ij = ρ for (i, j) ∈ E\{(2, 3)}, Σ∗

23 = 0; and finally the entry corresponding to

the non-edge is set asΣ∗
14 = 2ρ2. For this model, [13] showed that theℓ1-regularized MLEΘ̂ fails

to recover the graph structure for any sample size, ifρ > −1 + (3/2)1/2 ≈ 0.23. It is instructive
to compare this necessary condition to the sufficient condition provided in our analysis, namely the
incoherence Assumption [A1] as applied to the HessianΓ∗. For this particular example, a little cal-
culation shows that Assumption [A1] is equivalent to the constraint4|ρ|(|ρ|+ 1) < 1, an inequality
which holds for allρ ∈ (−0.2017, 0.2017). Note that the upper value0.2017 is just below the nec-
essary threshold discussed by [13]. On the other hand, the irrepresentability condition for the Lasso
requires only that2|ρ| < 1, i.e.,ρ ∈ (−0.5, 0.5). Thus, in the regime|ρ| ∈ [0.2017, 0.5), the Lasso
irrepresentability condition holds while our log-determinant counterpart fails.

2.3.2 Illustration of irrepresentability: Star graphs

A second interesting example is the star-shaped graphical model, illustrated in Figure 2(b), which
consists of a single hub node connected to the rest of the spoke nodes. We consider a four node
graph, with vertex setV = {1, 2, 3, 4} and edge-setE = {(1, s) | s ∈ {2, 3, 4}}. The covariance
matrix Σ∗ is parameterized the correlation parameterρ ∈ [−1, 1]: the diagonal entries are set to
Σ∗

ii = 1, for all i ∈ V ; the entries corresponding to edges are set toΣ∗
ij = ρ for (i, j) ∈ E; while

the non-edge entries are set asΣ∗
ij = ρ2 for (i, j) /∈ E. Consequently, for this particular example,

Assumption [A1] reduces to the constraint|ρ|(|ρ|+2) < 1, which holds for allρ ∈ (−0.414, 0.414).
The irrepresentability condition for the Lasso on the otherhand allows the full rangeρ ∈ (−1, 1).
Thus there is again a regime,|ρ| ∈ [0.414, 1), where the Lasso irrepresentability condition holds
while the log-determinant counterpart fails.

3 Proof outline

Theorem 1 follows as a corollary to Theorem 2 in Ravikumar et al [14], an extended and more
general version of this paper. There we consider the more general problem of estimation of the
covariance matrix of a random vector (that need not necessarily be Gaussian) from i.i.d. samples;
and where we relax Assumption [A2], and allow quantitiesKΣ∗ , KΓ∗ to grow with sample sizen.

We provide here a high-level outline of the proof of Theorem 1, deferring details to the extended
version [14]. Our proofs are based on a technique that we calla primal-dual witness method, used
previously in analysis of the Lasso [12]. It involves following a specific sequence of steps to con-
struct a pair(Θ̃, Z̃) of symmetric matrices that together satisfy the optimalityconditions associated
with the convex program (3)with high probability. Thus, when the constructive procedure succeeds,
Θ̃ is equalto the unique solution̂Θ of the convex program (3), and̃Z is an optimal solution to its
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dual. In this way, the estimator̂Θ inherits fromΘ̃ various optimality properties in terms of its dis-
tance to the truthΘ∗, and its recovery of the signed sparsity pattern. To be clear, our procedure for
constructing̃Θ is not a practical algorithm for solving the log-determinant problem (3), but rather is
used as a proof technique for certifying the behavior of theℓ1-regularized MLE (3).

3.1 Primal-dual witness approach

At the core of the primal-dual witness method are the standard convex optimality conditions that
characterize the optimum̂Θ of the convex program (3). For future reference, we note thatthe sub-
differential of the norm‖ · ‖1,off evaluated at someΘ consists the set of all symmetric matrices
Z ∈ R

p×p such that

Zij =





0 if i = j

sign(Θij) if i 6= j andΘij 6= 0

∈ [−1, +1] if i 6= j andΘij = 0.
(12)

Lemma 1. For any λn > 0 and sample covariancêΣ with strictly positive diagonal, theℓ1-
regularized log-determinant problem(3) has a unique solution̂Θ ≻ 0 characterized by

Σ̂ − Θ̂−1 + λnZ̃ = 0, (13)

whereZ̃ is an element of the subdifferential∂‖Θ̂‖1,off .

Based on this lemma, we construct the primal-dual witness solution (Θ̃, Z̃) as follows:

(a) We determine the matrix̃Θ by solving the restricted log-determinant problem

Θ̃ := arg min
Θ≻0, ΘSc=0

{
〈〈Θ, Σ̂〉〉 − log det(Θ) + λn‖Θ‖1,off

}
. (14)

Note that by construction, we havẽΘ ≻ 0, and moreover̃ΘSc = 0.

(b) We choosẽZS as a member of the sub-differential of the regularizer‖ · ‖1,off , evaluated at
Θ̃.

(c) We setZ̃Sc as

Z̃Sc =
1

λn

{
− Σ̂Sc + [Θ̃−1]Sc

}
, (15)

which ensures that constructed matrices(Θ̃, Z̃) satisfy the optimality condition (13).

(d) We verify thestrict dual feasibilitycondition

|Z̃ij | < 1 for all (i, j) ∈ Sc.

To clarify the nature of the construction, steps (a) through(c) suffice to obtain a pair(Θ̃, Z̃) that
satisfy the optimality conditions (13), but donot guarantee that̃Z is an element of sub-differential
∂‖Θ̃‖1,off . By construction, specifically step (b) of the constructionensures that the entries̃Z in S

satisfy the sub-differential conditions, sincẽZS is a member of the sub-differential of∂‖Θ̃S‖1,off .
The purpose of step (d), then, is to verify that the remainingelements ofZ̃ satisfy the necessary
conditions to belong to the sub-differential.

If the primal-dual witness construction succeeds, then it acts as awitnessto the fact that the solution
Θ̃ to the restricted problem (14) is equivalent to the solutionΘ̂ to the original (unrestricted) prob-
lem (3). We exploit this fact in our proof of Theorem 1: we firstshow that the primal-dual witness
technique succeeds with high-probability, from which we can conclude that the support of the opti-
mal solutionΘ̂ is contained within the support of the trueΘ∗. The next step requires checking that
none of the entries iñΘS constructed in Equation (14) are zero. It is to verify this that we require
the lower bound assumption in Theorem 1 on the value of the minimum valueΘ∗

min.
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4 Experiments

In this section, we describe some experiments which illustrate the model selection rates in Theo-
rem 1. We solved theℓ1 penalized log-determinant optimization problem using the“glasso” pro-
gram [4], which builds on the block co-ordinate descent algorithm of [3]. We report experiments
for star-shaped graphs, which consist of one node connectedto the rest of the nodes. These graphs
allow us to vary bothd andp, since the degree of the central hub can be varied between1 andp− 1.
Applying the algorithm to these graphs should therefore provide some insight on how the required
number of samplesn is related tod andp. We tested varying graph sizesp from p = 64 upwards
to p = 375. The edge-weights were set as entries in the inverse of a covariance matrixΣ∗ with
diagonal entries set asΣ∗

ii = 1 for all i = 1, . . . , p, andΣ∗
ij = 2.5/d for all (i, j) ∈ E, so that the

quantities(KΣ∗ , KΓ∗ , α) remain constant.

Dependence on graph size:
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Figure 3. Simulations for a star graph with varying number of nodesp, fixed maximal degreed = 40,
and edge covariancesΣ∗

ij = 1/16 for all edges. Plots of probability of correct signed edge-set recovery
versus the sample sizen in panel (a), and versus the rescaled sample sizen/ log p in panel (b). Each
point corresponds to the average overN = 100 trials.

Panel (a) of Figure 3 plots the probability of correct signededge-set recovery against the sample size
n for a star-shaped graph of three different graph sizesp. For each curve, the probability of success
starts at zero (for small sample sizesn), but then transitions to one as the sample size is increased.
As would be expected, it is more difficult to perform model selection for larger graph sizes, so
that (for instance) the curve forp = 375 is shifted to the right relative to the curve forp = 64.
Panel (b) of Figure 3 replots the same data, with the horizontal axis rescaled by(1/ log p). This
scaling was chosen because our theory predicts that the sample size should scale logarithmically
with p (see equation (10)). Consistent with this prediction, whenplotted against the rescaled sample
sizen/ log p, the curves in panel (b) all stack up. Consequently, the ratio (n/ log p) acts as an
effective sample size in controlling the success of model selection, consistent with the predictions
of Theorem 1.

Dependence on the maximum node degree:

Panel (a) of Figure 4 plots the probability of correct signededge-set recovery against the sample size
n for star-shaped graphs; each curve corresponds to a different choice of maximum node degreed,
allowing us to investigate the dependence of the sample sizeon this parameter. So as to control these
comparisons, we fixed the number of nodes top = 200. Observe how the plots in panel (a) shift to
the right as the maximum node degreed is increased, showing that star-shaped graphs with higher
degrees are more difficult. In panel (b) of Figure 4, we plot the same data versus the rescaled sample
sizen/d. Recall that if all the curves were to stack up under this rescaling, then it means the required
sample sizen scales linearly withd. These plots are closer to aligning than the unrescaled plots, but
the agreement is not perfect. In particular, observe that the curved (right-most in panel (a)) remains
a bit to the right in panel (b), which suggests that a somewhatmore aggressive rescaling—perhaps
n/dγ for someγ ∈ (1, 2)—is appropriate. The sufficient condition from Theorem 1, assummarized
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Figure 4. Simulations for star graphs with fixed number of nodesp = 200, varying maximal (hub)
degreed, edge covariancesΣ∗

ij = 2.5/d. Plots of probability of correct signed edge-set recovery
versus the sample sizen in panel (a), and versus the rescaled sample sizen/d in panel (b).

in equation (10), isn = Ω(d2 log p), which appears to be overly conservative based on these data.
Thus, it might be possible to tighten our theory under certain regimes.
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