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We present a new class of methods for high-dimensional non-
parametric regression and classification called sparse additive models
(SpAM). Our methods combine ideas from sparse linear modeling
and additive nonparametric regression. We derive an algorithm for
fitting the models that is practical and effective even when the num-
ber of covariates is larger than the sample size. SpAM is essentially
a functional version of the grouped lasso of Yuan and Lin (2006).
SpAM is also closely related to the COSSO model of Lin and Zhang
(2006), but decouples smoothing and sparsity, enabling the use of
arbitrary nonparametric smoothers. We give an analysis of the the-
oretical properties of sparse additive models, and present empirical
results on synthetic and real data, showing that SpAM can be ef-
fective in fitting sparse nonparametric models in high dimensional
data.

1. Introduction. Substantial progress has been made recently on the
problem of fitting high dimensional linear regression models of the form
Yi = XT

i β + ǫi, for i = 1, . . . , n. Here Yi is a real-valued response, Xi is a
predictor and ǫi is a mean zero error term. Finding an estimate of β when
p > n that is both statistically well-behaved and computationally efficient
has proved challenging; however, under the assumption that the vector β
is sparse, the lasso estimator (Tibshirani (1996)) has been remarkably suc-
cessful. The lasso estimator β̂ minimizes the ℓ1-penalized sum of squares∑

i(Yi − XT
i β)2 + λ

∑p
j=1 |βj | with the ℓ1 penalty ‖β‖1 encouraging sparse

solutions, where many components β̂j are zero. The good empirical success
of this estimator has been recently backed up by results confirming that it
has strong theoretical properties; see (Bunea et al., 2007; Greenshtein and
Ritov, 2004; Meinshausen and Yu, 2006; Wainwright, 2006; Zhao and Yu,
2007).

Keywords and phrases: lasso, nonparametric regression, additive model, sparsity



2 RAVIKUMAR, LAFFERTY, LIU, AND WASSERMAN

The nonparametric regression model Yi = m(Xi)+ǫi, where m is a general
smooth function, relaxes the strong assumptions made by a linear model,
but is much more challenging in high dimensions. Hastie and Tibshirani
(1999) introduced the class of additive models of the form

(1) Yi =
p∑

j=1

fj(Xij) + ǫi.

This additive combination of univariate functions—one for each covariate
Xj—is less general than joint multivariate nonparametric models, but can
be more interpretable and easier to fit; in particular, an additive model
can be estimated using a coordinate descent Gauss-Seidel procedure, called
backfitting. Unfortunately, additive models only have good statistical and
computational behavior when the number of variables p is not large relative
to the sample size n, so their usefulness is limited in the high dimensional
setting.

In this paper we investigate sparse additive models (SpAM), which ex-
tend the advantages of sparse linear models to the additive, nonparametric
setting. The underlying model is the same as in (1), but we impose a spar-
sity constraint on the index set {j : fj 6≡ 0} of functions fj that are not
identically zero. Lin and Zhang (2006) have proposed COSSO, an extension
of lasso to this setting, for the case where the component functions fj be-
long to a reproducing kernel Hilbert space (RKHS). They penalize the sum
of the RKHS norms of the component functions. Yuan (2007) proposed an
extension of the non-negative garrote to this setting. As with the paramet-
ric non-negative garrote, the success of this method depends on the initial
estimates of component functions fj .

In Section 3, we formulate an optimization problem in the population
setting that induces sparsity. Then we derive a sample version of the solution.
The SpAM estimation procedure we introduce allows the use of arbitrary
nonparametric smoothing techniques, effectively resulting in a combination
of the lasso and backfitting. The algorithm extends to classification problems
using generalized additive models. As we explain later, SpAM can also be
thought of as a functional version of the grouped lasso (Antoniadis and Fan,
2001; Yuan and Lin, 2006).

The main results of this paper include the formulation of a convex opti-
mization problem for estimating a sparse additive model, an efficient back-
fitting algorithm for constructing the estimator, and theoretical results that
analyze the effectiveness of the estimator in the high dimensional setting.
Our theoretical results are of two different types. First, we show that, under
suitable choices of the design parameters, the SpAM backfitting algorithm
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recovers the correct sparsity pattern asymptotically; this is a property we
call sparsistency, as a shorthand for “sparsity pattern consistency.” Second,
we show that that the estimator is persistent, in the sense of Greenshtein
and Ritov (2004), which is a form of risk consistency.

In the following section we establish notation and assumptions. In Sec-
tion 3 we formulate SpAM as an optimization problem and derive a scalable
backfitting algorithm. Examples showing the use of our sparse backfitting
estimator on high dimensional data are included in Section 5. In Section 6.1
we formulate the sparsistency result, when orthogonal function regression
is used for smoothing. In Section 6.2 we give the persistence result. Sec-
tion 7 contains a discussion of the results and possible extensions. Proofs
are contained in Section 8.

The statements of the Theorems in this paper were given, without proof,
in Ravikumar et al. (2008). The backfitting algorithm was also presented
there. Related results were obtained independently in Meier et al. (2008)
and Koltchinskii and Yuan (2008).

2. Notation and Assumptions. We assume that we are given inde-
pendent data (X1, Y1), . . . , (Xn, Yn) where Xi = (Xi1, . . . , Xij , . . . , Xip)

T ∈
[0, 1]p and

(2) Yi = m(Xi) + ǫi

with ǫi ∼ N(0, σ2) independent of Xi and

(3) m(x) =
p∑

j=1

fj(xj).

Let µ denote the distribution of X, and let µj denote the marginal distribu-
tion of Xj for each j = 1, . . . , p. For a function fj on [0, 1] denote its L2(µj)
norm by

(4) ‖fj‖µj
=

√∫ 1

0
f2

j (x) dµj(x) =
√

E(fj(Xj)2).

When the variable Xj is clear from the context, we remove the dependence
on µj in the notation ‖ · ‖µj

and simply write ‖fj‖.
For j ∈ {1, . . . , p}, let Hj denote the Hilbert subspace L2(µj) of mea-

surable functions fj(xj) of the single scalar variable xj with zero mean,
E(fj(Xj)) = 0. Thus, Hj has the inner product

(5)
〈
fj , f

′
j

〉
= E

(
fj(Xj)f

′
j(Xj)

)
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and ‖fj‖ =
√

E(fj(Xj)2) < ∞. Let H = H1 ⊕ H2 ⊕ . . . ⊕ Hp denote the

Hilbert space of functions of (x1, . . . , xp) that have the additive form: m(x) =∑
j fj(xj), with fj ∈ Hj , j = 1, . . . , p.
Let {ψjk, k = 0, 1, . . .} denote a uniformly bounded, orthonormal basis

with respect to L2[0, 1]. Unless stated otherwise, we assume that fj ∈ Tj

where

(6) Tj =

{
fj ∈ Hj : fj(xj) =

∞∑

k=0

βjkψjk(xj),
∞∑

k=0

β2
jkk

2νj ≤ C2

}

for some 0 < C < ∞. We shall take νj = 2 although the extension to other
levels of smoothness is straightforward. It is also possible to adapt to νj

although we do not pursue that direction here.
Let Λmin(A) and Λmax(A) denote the minimum and maximum eigenvalues

of a square matrix A. If v = (v1, . . . , vk)
T is a vector, we use the norms

(7) ‖v‖ =

√√√√√
k∑

j=1

v2
j , ‖v‖1 =

k∑

j=1

|vj |, ‖v‖∞ = max
j

|vj |.

3. Sparse Backfitting. The outline of the derivation of our algorithm
is as follows. We first formulate a population level optimization problem, and
show that the minimizing functions can be obtained by iterating through a
series of soft-thresholded univariate conditional expectations. We then plug
in smoothed estimates of these univariate conditional expectations, to derive
our sparse backfitting algorithm.

Population SpAM. For simplicity, assume that E(Yi) = 0. The standard
additive model optimization problem in L2(µ) (the population setting) is

(8) min
fj∈Hj , 1≤j≤p

E

(
Y − ∑p

j=1 fj(Xj)
)2

where the expectation is taken with respect to X and the noise ǫ. Now
consider the following modification of this problem that introduces a scaling
parameter for each function, and that imposes additional constraints:

min
β∈Rp,gj∈Hj

E

(
Y − ∑p

j=1 βjgj(Xj)
)2

(9)

subject to:
p∑

j=1

|βj | ≤ L,(10)

E

(
g2
j

)
= 1, j = 1, . . . , p.(11)
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noting that gj is a function while β = (β1, . . . , βp)
T is a vector. The con-

straint that β lies in the ℓ1-ball {β : ‖β‖1 ≤ L} encourages sparsity of the
estimated β, just as for the parametric lasso (Tibshirani, 1996). It is conve-
nient to absorb the scaling constants βj into the functions fj , and re-express
the minimization in the following equivalent Lagrangian form:

(12) L(f, λ) =
1

2
E

(
Y − ∑p

j=1 fj(Xj)
)2

+ λ
p∑

j=1

√
E(f2

j (Xj)).

Theorem 3.1. The minimizers fj ∈ Hj of (12) satisfy

(13) fj =


1 − λ√

E(P 2
j )




+

Pj a.s.

where [·]+ denotes the positive part, and Pj = E[Rj |Xj ] denotes the projec-
tion of the residual Rj = Y − ∑

k 6=j fk(Xk) onto Hj.

An outline of the proof of this theorem appears in Ravikumar et al. (2008).
A formal proof is given in Section 8. At the population level, the fj ’s can be
found by a coordinate descent procedure that fixes (fk : k 6= j) and fits fj

by equation (13), then iterates over j.

Data version of SpAM. To obtain a sample version of the population
solution, we insert sample estimates into the population algorithm, as in
standard backfitting (Hastie and Tibshirani, 1999). Thus, we estimate the
projection Pj = E(Rj |Xj) by smoothing the residuals:

(14) P̂j = SjRj

where Sj is a linear smoother, such as a local linear or kernel smoother. Let

(15) ŝj =
1√
n
‖P̂j‖ =

√
mean(P̂ 2

j )

be the estimate of
√

E(P 2
j ). Using these plug-in estimates in the coordinate

descent procedure yields the SpAM backfitting algorithm given in Figure 1.
This algorithm can be seen as a functional version of the coordinate de-

scent algorithm for solving the lasso. In particular, if we solve the lasso
by iteratively minimizing with respect to a single coordinate, each itera-
tion is given by soft thresholding; see Figure 2. Convergence properties of
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SpAM Backfitting Algorithm

Input : Data (Xi, Yi), regularization parameter λ.
Initialize f̂j = 0, for j = 1, . . . , p.
Iterate until convergence:

For each j = 1, . . . , p:

(1) Compute the residual: Rj = Y − ∑
k 6=j f̂k(Xk);

(2) Estimate Pj = E[Rj |Xj ] by smoothing: P̂j = SjRj ;

(3) Estimate norm: ŝ2
j = 1

n

∑n
i=1 P̂ 2

j (i);

(4) Soft-threshold: f̂j = [1 − λ/ŝj ]+ P̂j ;

(5) Center: f̂j ← f̂j − mean(f̂j).

Output : Component functions f̂j and estimator m̂(Xi) =
∑

j f̂j(Xij).

Fig 1. The SpAM backfitting algorithm. The first two steps in the iterative algorithm are
the usual backfitting procedure; the remaining steps carry out functional soft thresholding.

variants of this simple algorithm have been recently treated by Daubechies
et al. (2004, 2007). Our sparse backfitting algorithm is a direct generaliza-
tion of this algorithm, and it reduces to it in case where the smoothers are
local linear smoothers with large bandwidths. That is, as the bandwidth
approaches infinity, the local linear smoother approaches a global linear fit,
yielding the estimator P̂j(i) = β̂jXij . When the variables are standardized,

ŝj =
√

1
n

∑n
i=1 β̂2

j X2
ij = |β̂j | so that the soft thresholding in step (4) of the

SpAM backfitting algorithm is the same as the soft thresholding in step (3)
in the coordinate descent lasso algorithm.

Basis Functions. It is useful to express the model in terms of basis func-
tions. Recall that Bj = (ψjk : k = 1, 2, . . .) is an orthonormal basis for Tj

and that supx |ψjk(x)| ≤ B for some B. Then

(16) fj(xj) =
∞∑

k=1

βjkψjk(xj)

where βjk =
∫

fj(xj)ψjk(xj)dxj .
Let us also define

(17) f̃j(xj) =
d∑

k=1

βjkψjk(xj)
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Coordinate Descent Lasso

Input : Data (Xi, Yi), regularization parameter λ.
Initialize β̂j = 0, for j = 1, . . . , p.
Iterate until convergence:

For each j = 1, . . . , p:

(1) Compute the residual: Rj = Y − ∑
k 6=j β̂kXk;

(2) Project residual onto Xj : Pj = XT
j Rj

(3) Soft-threshold: β̂j = [1 − λ/|Pj |]+ Pj ;

Output : Estimator m̂(Xi) =
∑

j β̂jXij .

Fig 2. The SpAM backfitting algorithm is a functional version of the coordinate descent
algorithm for the lasso, which computes β̂ = arg min 1

2
‖Y − Xβ‖2

2 + λ‖β‖1.

where d = dn is a truncation parameter. For the Sobolev space Tj of order

two we have that
∥∥∥fj − f̃j

∥∥∥
2

= O(1/d4). Let S = {j : fj 6= 0}. Assum-

ing the sparsity condition |S| = O(1) it follows that ‖m − m̃‖2 = O(1/d4)
where m̃ =

∑
j f̃j . The usual choice is d ≍ n1/5 yielding truncation bias

‖m − m̃‖2 = O(n−4/5).
In this setting, the smoother can be taken to be the least squares pro-

jection onto the truncated set of basis functions {ψj1, . . . , ψjd}; this is also
called orthogonal series smoothing. Let Ψj denote the n × dn matrix given
by Ψj(i, ℓ) = ψj,ℓ(Xij). The smoothing matrix is the projection matrix
Sj = Ψj(Ψ

T
j Ψj)

−1ΨT
j . In this case, the backfitting algorithm in Figure 1

is a coordinate descent algorithm for minimizing

1

2n

∥∥∥Y − ∑p
j=1Ψjβj

∥∥∥
2

2
+ λ

p∑

j=1

√
1

n
βT

j ΨT
j Ψjβj

which is the sample version of (12). This is the Lagrangian of a second-order
cone program (SOCP), and standard convexity theory implies existence of a
minimizer. In Section 6.1 we prove theoretical properties of SpAM assuming
that this particular smoother is being used.

Connection with the Grouped Lasso. The SpAM model can be thought
of as a functional version of the grouped lasso (Yuan and Lin, 2006) as we
now explain. Consider the following linear regression model with multiple
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factors,

(18) Y =
pn∑

j=1

Xjβj + ǫ = Xβ + ǫ,

where Y is an n × 1 response vector, ǫ is an n × 1 vector of iid mean zero
noise, Xj is an n × dj matrix corresponding to the j-th factor, and βj is
the corresponding dj × 1 coefficient vector. Assume for convenience (in this
subsection only) that each Xj is orthogonal, so that XT

j Xj = Idj
, where Idj

is the dj × dj identity matrix. We use X = (X1, . . . , Xpn) to denote the full
design matrix and use β = (βT

1 , . . . , βT
pn

)T to denote the parameter.
The grouped lasso estimator is defined as the solution of the following

convex optimization problem:

β̂(λn) = arg min
β

‖Y − Xβ‖2
2 + λn

pn∑

j=1

√
dj‖βj‖(19)

where
√

dj scales the jth term to compensate for different group sizes.
It is obvious that when dj = 1 for j = 1, . . . , pn, the grouped lasso becomes

the standard lasso. From the KKT optimality conditions, a necessary and
sufficient condition for β̂ = (β̂T

1 , . . . , β̂T
p )T to be the grouped lasso solution

is

−XT
j (Y − Xβ̂) +

λ
√

dj β̂j

‖β̂j‖
= 0, ∀β̂j 6= 0,(20)

‖XT
j (Y − Xβ̂)‖ ≤ λ

√
dj , ∀β̂j = 0.

Based on this stationary condition, an iterative blockwise coordinate descent
algorithm can be derived; as shown by Yuan and Lin (2006), a solution to
(20) satisfies

β̂j =

[
1 − λ

√
dj

‖Sj‖

]

+

Sj(21)

where Sj = XT
j (Y −Xβ\j), with β\j = (βT

1 , . . . , βT
j−1,0

T , βT
j+1, . . . , β

T
pn

). By
iteratively applying (21), the grouped lasso solution can be obtained.

As discussed in the introduction, the COSSO model of Lin and Zhang
(2006) replaces the lasso constraint on

∑
j |βj | with a RKHS constraint. The

advantage of our formulation is that it decouples smoothness (gj ∈ Tj) and
sparsity (

∑
j |βj | ≤ L). This leads to a simple algorithm that can be carried

out with any nonparametric smoother and scales easily to high dimensions.
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4. Choosing the Regularization Parameter. We choose λ by min-
imizing an estimate of the risk. Let νj be the effective degrees of freedom
for the smoother on the jth variable, that is, νj = trace(Sj) where Sj is the
smoothing matrix for the j-th dimension. Also let σ̂2 be an estimate of the
variance. Define the total effective degrees of freedom as

(22) df(λ) =
∑

j

νjI
(∥∥∥f̂j

∥∥∥ 6= 0
)

.

Two estimates of risk are

(23) Cp =
1

n

n∑

i=1


Yi −

p∑

j=1

f̂j(Xj)




2

+
2σ̂2

n
df(λ)

and

(24) GCV(λ) =
1
n

∑n
i=1(Yi −

∑
j f̂j(Xij))

2

(1 − df(λ)/n)2
.

The first is Cp and the second is generalized cross validation but with degrees
of freedom defined by df(λ). A proof that these are valid estimates of risk is
not currently available; thus, these should be regarded as heuristics.

Based on the results in Wasserman and Roeder (2007) about the lasso, it
seems likely that choosing λ by risk estimation can lead to overfitting. One
can further clean the estimate by testing H0 : fj = 0 for all j such that

f̂j 6= 0. For example, the tests in Fan and Jiang (2005) could be used.

5. Examples. To illustrate the method, we consider a few examples.

Synthetic Data. We generated n = 100 observations for an additive model
with p = 100 and four relevant variables,

Yi =
4∑

j=1

fj(Xij) + ǫi,

where ǫi ∼ N(0, 1) and the relevant component functions are given by

f1(x) = 2 exp(−2x) + 4 cos(x) + 2x2 + 3x3

f2(x) = 2(x − 1)2 + φ(x) + sin(2πx) + cos(2πx2)

f3(x) =
sin(2πx)

2 − sin(2πx)
+ 5 · Beta(x, 2, 3)

f4(x) = Φ
(
0.1 sin(2πx) + 0.2 cos(2πx) + 0.2 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx)

)−1
.
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where φ and Φ are pdf and cdf for the standard Gaussian and Beta(3, 2)
is the pdf function for a Beta distribution with parameters 3 and 2. These
data therefore have 96 irrelevant dimensions. The covariates are generated
as

Xj = (Wj + tU)/(1 + t), j = 1, . . . , 100

where W1, . . . , W100 and U are i.i.d. sampled from Uniform(−2.5, 2.5). Thus,
the correlation between Xj and Xj′ is t2/(1 + t2) for j 6= j′. In the illustra-
tions below, we set t = 1.

The results of applying SpAM with the plug-in bandwidths are summa-
rized in Figure 3. The top-left plot in Figure 3 shows regularization paths
as the parameter λ varies; each curve is a plot of ‖f̂j(λ)‖ versus

(25)

∑p
k=1 ‖f̂k(λ)‖

maxλ
∑p

k=1 ‖f̂k(λ)‖

for a particular variable Xj . The estimates are generated efficiently over a se-

quence of λ values by “warm starting” f̂j(λt) at the previous value f̂j(λt−1).
The top-right plot shows the Cp statistic as a function of regularization level.

Functional Sparse Coding. Olshausen and Field (1996) propose a method
of obtaining sparse representations of data such as natural images; the mo-
tivation comes from trying to understand principles of neural coding. In this
example we suggest a nonparametric form of sparse coding.

Let {yi}i=1,...,N be the data to be represented with respect to some learned
basis, where each instance yi ∈ R

n is an n-dimensional vector. The linear
sparse coding optimization problem is

min
β,X

N∑

i=1

{
1

2n

∥∥∥yi − Xβi
∥∥∥
2
+ λ

∥∥∥βi
∥∥∥
1

}
(26)

such that ‖Xj‖ ≤ 1(27)

Here X is an n × p matrix with columns Xj , representing the “dictionary”
entries or basis vectors to be learned. It is not required that the basis vectors
are orthogonal. The ℓ1 penalty on the coefficients βi encourages sparsity, so
that each data vector yi is represented by only a small number of dictionary
elements. Sparsity allows the features to specialize, and to capture salient
properties of the data.

This optimization problem is not jointly convex in βi and X. However, for
fixed X, each weight vector βi is computed by running the lasso. For fixed βi,
the optimization is similar to ridge regression, and can be solved efficiently.
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Fig 3. (Simulated data) Upper left: The empirical ℓ2 norm of the estimated components
as plotted against the regularization parameter λ; the value on the x-axis is proportional
to

∑
j
‖f̂j‖. Upper right: The Cp scores against the amount of regularization; the dashed

vertical line corresponds to the value of λ which has the smallest Cp score. Lower two
rows: Estimated (solid lines) versus true additive component functions (dashed lines) for
the first four relevant dimensions, and the first four irrelevant dimensions; the remaining
components are zero.



12 RAVIKUMAR, LAFFERTY, LIU, AND WASSERMAN

Lasso
Original patch RSS = 0.0561

SpAM
Original patch RSS = 0.0206

Fig 4. Comparison of sparse reconstruction using the lasso (left) and SpAM (right).

Thus, an iterative procedure for (approximately) solving this optimization
problem is easy to derive.

In the case of sparse coding of natural images, as in Olshausen and Field
(1996), the basis vectors Xj encode basic edge features at different scales
and spatial orientations. In the functional version, we no longer assume a
linear, parametric fit between the dictionary X and the data y. Instead, we
model the relationship using an additive model. This leads to the following
optimization problem for functional sparse coding:

min
f,X

N∑

i=1





1

2n

∥∥∥yi − ∑p
j=1 f i

j(Xj)
∥∥∥
2
+ λ

p∑

j=1

∥∥∥f i
j

∥∥∥



(28)

such that ‖Xj‖ ≤ 1, j = 1, . . . , p.(29)

Figure 4 illustrates the reconstruction of different image patches using the
sparse linear model compared with the sparse additive model. Local linear
smoothing was used with a Gaussian kernel having fixed bandwidth h = 0.05
for all patches and all codewords. The codewords Xj are those obtained
using the Olshausen-Field procedure; these become the design points in the
regression estimators. Thus, a codeword for a 16 × 16 patch corresponds to
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a vector Xj of dimension 256, with each Xij the gray level for a particular
pixel.

6. Theoretical Properties.

6.1. Sparsistency. In the case of linear regression, with fj(Xj) = β∗T
j Xj ,

several authors have shown that, under certain conditions on n, p, the num-
ber of relevant variables s = |supp(β∗)|, and the design matrix X, the lasso
recovers the sparsity pattern asymptotically; that is, the lasso estimator β̂n

is sparsistent :

(30) P

(
supp(β∗) = supp(β̂n)

)
→ 1.

Here, supp(β) = {j : βj 6= 0}. References include Wainwright (2006), Mein-
shausen and Bühlmann (2006), Zou (2005), Fan and Li (2001), and Zhao
and Yu (2007). We show a similar result for sparse additive models under
orthogonal function regression.

In terms of an orthogonal basis ψ, we can write

(31) Yi =
p∑

j=1

∞∑

k=1

β∗
jkψjk(Xij) + ǫi.

To simplify notation, let βj be the dn dimensional vector {βjk, k =
1, . . . , dn} and let Ψj be the n × dn matrix Ψj [i, k] = ψjk(Xij). If A ⊂
{1, . . . , p}, we denote by ΨA the n × d|A| matrix where for each j ∈ A, Ψj

appears as a submatrix in the natural way.
We now analyze the sparse backfitting algorithm of Figure 1 assuming an

orthogonal series smoother is used to estimate the conditional expectation in
its Step (2). As noted earlier, an orthogonal series smoother for a predictor
Xj is the least squares projection onto a truncated set of basis functions
{ψj1, . . . , ψjd}. Our optimization problem in this setting is

(32) min
β

1

2n

∥∥∥Y − ∑p
j=1Ψjβj

∥∥∥
2

2
+ λ

p∑

j=1

√
1

n
βT

j ΨT
j Ψjβj .

Combined with the soft-thresholding step, the update for fj in algorithm of
Figure 1 can thus be seen to solve the following problem,

min
β

1

2n
‖Rj − Ψjβj‖2

2 + λn

√
1

n
βT

j ΨT
j Ψjβj
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where ‖v‖2
2 denotes

∑n
i=1 v2

i and Rj = Y − ∑
l 6=j Ψlβl is the residual for fj .

The sparse backfitting algorithm thus solves

min
β

{Rn(β) + λnΩ(β)} = min
β

1

2n

∥∥∥∥∥∥
Y −

p∑

j=1

Ψjβj

∥∥∥∥∥∥

2

2

(33)

+λn

p∑

j=1

∥∥∥∥
1√
n

Ψjβj

∥∥∥∥
2

where Rn denotes the squared error term and Ω denotes the regularization
term, and each βj is a dn-dimensional vector. Let S denote the true set of
variables {j : fj 6= 0}, with s = |S|, and let Sc denote its complement.

Let Ŝn = {j : β̂j 6= 0} denote the estimated set of variables from the mini-

mizer β̂n, with corresponding function estimates f̂j(xj) =
∑dn

k=1 β̂jkψjk(xj).
For the results in this section, we will treat the covariates as fixed. A prelim-
inary version of the following result is stated, without proof, in Ravikumar
et al. (2008).

Theorem 6.1. Suppose that the following conditions hold on the design
matrix X in the orthogonal basis ψ:

Λmax

(
1

n
ΨT

SΨS

)
≤ Cmax < ∞(34)

Λmin

(
1

n
ΨT

SΨS

)
≥ Cmin > 0(35)

max
j∈Sc

∥∥∥∥
(

1
nΨT

j ΨS

) (
1
nΨT

SΨS

)−1
∥∥∥∥ ≤

√
Cmin

Cmax

1 − δ√
s

, for some 0 < δ ≤ 1.

(36)

Assume that the truncation dimension dn satisfies dn → ∞ and dn = o(n).
Furthermore, suppose the following conditions, which relate the regulariza-
tion parameter λn to the design parameters n, p, the number of relevant
variables s, and the truncation size dn:

s

dnλn
−→ 0(37)

dn log (dn(p − s))

nλ2
n

−→ 0(38)

1

ρ∗n




√
log(sdn)

n
+

s3/2

dn
+ λn

√
sdn


 −→ 0(39)
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where ρ∗n = minj∈S ‖β∗
j ‖∞. Then the solution β̂n to (32) is unique and sat-

isfies Ŝn = S with probability approaching one.

This result parallels the theorem of Wainwright (2006) on model selection
consistency of the lasso; however, technical subtleties arise because of the
truncation dimension dn which is increasing with sample size, and the matrix
ΨT

j Ψ which appears in the regularization of βj . As a result, the operator
norm rather than the ∞-norm appears in the incoherence condition (36).
Note, however, that condition (36) implies that

∥∥∥∥ΨT
ScΨS

(
ΨT

SΨS

)−1
∥∥∥∥
∞

= max
j∈Sc

∥∥∥∥ΨT
j ΨS

(
ΨT

SΨS

)−1
∥∥∥∥
∞

(40)

≤
√

Cmin dn

Cmax
(1 − δ)(41)

since 1√
n
‖A‖∞ ≤ ‖A‖ ≤ √

m ‖A‖∞ for an m × n matrix A. This relates

it to the more standard incoherence conditions that have been used for
sparsistency in the case of the lasso.

The following corollary, which imposes the additional condition that the
number of relevant variables is bounded, follows directly. It makes explicit
how to choose the design parameters dn and λn, and implies a condition on
the fastest rate at which the minimum norm ρ∗n can approach zero.

Corollary 6.2. Suppose that s = O(1), and assume the design condi-
tions (34), (35) and (36) hold. If the truncation dimension dn, regularization
parameter λn, and minimum norm ρ∗n satisfy

dn ≍ n1/3(42)

λn ≍ log np

n1/3
(43)

1

ρ∗n
= o

(
n1/6

log np

)
(44)

then P

(
Ŝn = S

)
→ 1.

The following proposition clarifies the implications of condition (44), by
relating the sup-norm ‖βj‖∞ to the function norm ‖fj‖2.

Proposition 6.3. Suppose that f(x) =
∑

k βkψk(x) is in the Sobolev
space of order ν > 1/2, so that

∑∞
i=1 β2

i i2ν ≤ C2 for some constant C. Then

(45) ‖f‖2 = ‖β‖2 ≤ c‖β‖
2ν

2ν+1∞
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for some constant c.

For instance, the result of Corollary 6.2 allows the norms of the coefficients
βj to decrease as ‖βj‖∞ = log2(np)/n1/6. In the case ν = 2, this would
allow the norms ‖fj‖2 of the relevant functions to approach zero at the rate

log8/5(np)/n2/15.

6.2. Persistence. The previous assumptions are very strong. They can
be weakened at the expense of getting weaker results. In particular, in the
section we do not assume that the true regression function is additive. We
use arguments like those in Juditsky and Nemirovski (2000) and Green-
shtein and Ritov (2004) in the context of linear models. In this section we
treat X as random and we use triangular array asymptotics, that is, the
joint distribution for the data can change with n. Let (X, Y ) denote a new
pair (independent of the observed data) and define the predictive risk when
predicting Y with v(X) by

(46) R(v) = E(Y − v(X))2.

When v(x) =
∑

j βjgj(xj) we also write the risk as R(β, g) where β =
(β1, . . . , βp) and g = (g1, . . . , gp). Following Greenshtein and Ritov (2004)
we say that an estimator m̂n is persistent (risk consistent) relative to a class
of functions Mn, if

(47) R(m̂n) − R(m∗
n)

P→ 0

where

(48) m∗
n = arg min

v∈Mn

R(v)

is the predictive oracle. Greenshtein and Ritov (2004) show that the lasso is
persistent for Mn = {ℓ(x) = xT β : ‖β‖1 ≤ Ln} and Ln = o((n/ log n)1/4).
Note that m∗

n is the best linear approximation (in prediction risk) in Mn

but the true regression function is not assumed to be linear. Here we show
a similar result for SpAM.

In this section, we assume that the SpAM estimator m̂n is chosen to
minimize

(49)
1

n

n∑

i=1

(Yi −
∑

j

βjgj(Xij))
2
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subject to ‖β‖1 ≤ Ln and gj ∈ Tj . We make no assumptions about the
design matrix. Let Mn ≡ Mn(Ln) be defined by
(50)

Mn =

{
m : m(x) =

pn∑

j=1

βjgj(xj) : E(gj) = 0, E(g2
j ) = 1,

∑

j

|βj | ≤ Ln

}

and let m∗
n = arg minv∈Mn

R(v).

Theorem 6.4. Suppose that pn ≤ enξ

for some ξ < 1. Then,

(51) R(m̂n) − R(m∗
n) = OP

(
L2

n

n(1−ξ)/2

)

and hence , if Ln = o(n(1−ξ)/4) then SpAM is persistent.

7. Discussion. The results presented here show how many of the re-
cently established theoretical properties of ℓ1 regularization for linear models
extend to sparse additive models. The sparse backfitting algorithm we have
derived is attractive because it decouples smoothing and sparsity, and can be
used with any nonparametric smoother. It thus inherits the nice properties
of the original backfitting procedure. However, our theoretical analyses have
made use of a particular form of smoothing, using a truncated orthogonal ba-
sis. An important problem is thus to extend the theory to cover more general
classes of smoothing operators. Convergence properties of the SpAM back-
fitting algorithm should also be investigated; convergence of special cases of
standard backfitting is studied by Buja et al. (1989).

An additional direction for future work is to develop procedures for auto-
matic bandwidth selection in each dimension. We have used plug-in band-
widths and truncation dimensions dn in our experiments and theory. It is
of particular interest to develop procedures that are adaptive to different
levels of smoothness in different dimensions. It would also be of interest is
to consider more general penalties of the form pλ(‖fj‖), as in Fan and Li
(2001).

Finally, we note that while we have considered basic additive models that
allow functions of individual variables, it is natural to consider interactions,
as in the functional ANOVA model. One challenge is to formulate suitable
incoherence conditions on the functions that enable regularization based
procedures or greedy algorithms to recover the correct interaction graph.
In the parametric setting, one result in this direction is Wainwright et al.
(2007).
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8. Proofs.

Proof of Theorem 3.1. Consider the minimization of the Lagrangian

(52) min
{fj∈Hj}

L(f, λ) ≡ 1

2
E

(
Y − ∑p

j=1 fj(Xj)
)2

+ λ
p∑

j=1

√
E(fj(Xj)2)

with respect to fj ∈ Hj , holding the other components {fk, k 6= j} fixed.
The stationary condition is obtained by setting the Fréchet derivative to
zero. Denote by ∂jL(f, λ; ηj) the directional derivative with respect to fj

in the direction ηj(Xj) ∈ Hj (E(ηj) = 0, E(η2
j ) < ∞). Then the stationary

condition can be formulated as

∂jL(f, λ; ηj) =
1

2
E [(fj − Rj + λvj) ηj ] = 0(53)

where Rj = Y − ∑
k 6=j fk is the residual for fj , and vj ∈ Hj is an element

of the subgradient ∂
√

E(f2
j ), satisfying vj = fj/

√
E(f2

j ) if E(f2
j ) 6= 0 and

vj ∈ {uj ∈ Hj | E(u2
j ) ≤ 1} otherwise.

Using iterated expectations, the above condition can be rewritten as

E [(fj + λvj − E(Rj |Xj)) ηj ] = 0.(54)

But since fj − E(Rj |Xj) + λvj ∈ Hj , we can compute the derivative in the
direction ηj = fj − E(Rj |Xj) + λvj ∈ Hj , implying that

E

[
(fj(xj) − E(Rj |Xj = xj) + λvj(xj))

2
]

= 0;(55)

that is,

fj + λvj = E(Rj |Xj) a.e.(56)

Denote the conditional expectation E(Rj |Xj)—also the projection of the

residual Rj onto Hj—by Pj . Now if E(f2
j ) 6= 0, then vj =

fj√
E(f2

j
)
, which

from condition (56) implies

√
E(P 2

j ) =

√

E

[(
fj + λfj/

√
E(f2

j )
)2

]
(57)

=


1 +

λ√
E(f2

j )




√
E(f2

j )(58)

=
√

E(f2
j ) + λ(59)

≥ λ.(60)
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If E(f2
j ) = 0, then fj = 0 a.e., and

√
E(v2

j ) ≤ 1. Equation (56) then implies

that
√

E(P 2
j ) ≤ λ.(61)

We thus obtain the equivalence

√
E(P 2

j ) ≤ λ ⇔ fj = 0 a.e.(62)

Rewriting equation (56) in light of (62), we obtain


1 +

λ√
E(f2

j )


 fj = Pj if

√
E(P 2

j ) > λ

fj = 0 otherwise.

Using (59), we thus arrive at the soft thresholding update for fj :

(63) fj =


1 − λ√

E(P 2
j )




+

Pj

where [·]+ denotes the positive part and Pj = E[Rj |Xj ]. ¤

Proof of Theorem 6.1. A vector β̂ ∈ R
dnp is an optimum of the objec-

tive function in (33) if and only if there exists a subgradient ĝ ∈ ∂Ω(β̂), such
that

(64)
1

n
Ψ⊤




∑

j

Ψj β̂j − Y


 + λnĝ = 0.

The subdifferential ∂Ω(β) is the set of vectors g ∈ R
pdn satisfying

gj =
1
nΨT

j Ψjβj√
1
nβT

j ΨT
j Ψjβj

if βj 6= 0,

gT
j

(
1

n
ΨT

j Ψj

)−1

gj ≤ 1 if βj = 0.

Our argument is based on the technique of a primal-dual witness, used
previously in the analysis of the Lasso (Wainwright, 2006). In particular,
we construct a coefficient-subgradient pair (β̂, ĝ) which satisfies supp(β̂) =
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supp(β∗), and in addition satisfies the optimality conditions for the objec-
tive (33) with high probability. Thus, when the procedure succeeds, the
constructed coefficient vector β̂ is equal to the solution of the convex objec-
tive (33), and ĝ is an optimal solution to its dual. From its construction, the
support of β̂ is equal to the true support supp(β∗), from which we can con-
clude that the solution of the objective (33) is sparsistent. The construction
of the primal-dual witness proceeds as follows:

(a) Set β̂Sc = 0.
(b) Set ĝS = ∂Ω(β∗)S .
(c) With these settings of β̂Sc and ĝS , obtain β̂S and ĝSc from the station-

ary conditions in (64).

For the witness procedure to succeed, we have to show that (β̂, ĝ) is
optimal for the objective (33), meaning that

β̂j 6= 0 for j ∈ S.(65a)

gT
j

(
1

n
ΨT

j Ψj

)−1

gj < 1 for j ∈ Sc.(65b)

For uniqueness of the solution, we require strict dual feasibility, meaning
strict inequality in (65b). In what follows, we show these two conditions
hold with high probability.

Condition (65a). Setting β̂Sc = 0 and ĝj =
1

n
ΨT

j
Ψjβ∗

j√
1

n
β∗T

j
ΨT

j
Ψjβ∗

j

for j ∈ S, the

stationary condition for β̂S is given by,

(66)
1

n
Ψ⊤

S

(
ΨS β̂S − Y

)
+ λnĝS = 0.

Let V = Y −ΨSβ∗
S −W denote the error due to finite truncation of the or-

thogonal basis, where W = (ǫ1, . . . , ǫn)T . Then the stationary condition (66)
can be simplified as,

1
nΨT

SΨS

(
β̂S − β∗

S

)
− 1

nΨT
SW − 1

nΨT
SV + λnĝS = 0, so that,

β̂S − β∗
S =

(
1
nΨT

SΨS

)−1 (
1
nΨT

SW + 1
nΨT

SV − λnĝS

)
,(67)

where we have used the assumption that 1
nΨT

SΨS is nonsingular. Recalling
our definition of the minimum function norm ρ∗n = minj∈S ‖β∗

j ‖∞ > 0, it

suffices to show that ‖β̂S − β∗
S‖∞ < ρ∗n

2 , in order to ensure that

supp(β∗
S) = supp(β̂S) =

{
j : ‖β̂j‖∞ 6= 0

}
,
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so that condition (65a) would be satisfied. Using ΣSS = 1
n (Ψ⊤

SΨS) to sim-
plify notation, we have the ℓ∞ bound,

‖β̂S − β∗
S‖∞ ≤

∥∥∥Σ−1
SS

(
1
nΨ⊤

SW
)∥∥∥

∞︸ ︷︷ ︸
T1

+
∥∥∥Σ−1

SS

(
1
nΨ⊤

SV
)∥∥∥

∞︸ ︷︷ ︸
T2

+λn

∥∥∥Σ−1
SS ĝS

∥∥∥
∞︸ ︷︷ ︸

T3

.

(68)

We now proceed to bound the quantities T1, T2, T3.
Bounding T3. Note that for j ∈ S,

1 = gT
j

(
1
nΨT

j Ψj

)−1
gj ≥

1

Cmax
‖gj‖2,

and thus ‖gj‖ ≤
√

Cmax. Noting further that,

(69) ‖gS‖∞ = max
j∈S

‖gj‖∞ ≤ max
j∈S

‖gj‖2 ≤
√

Cmax,

it follows that,

(70) T3 :=
∥∥∥Σ−1

SS ĝS

∥∥∥
∞

≤
√

Cmax

∥∥∥Σ−1
SS

∥∥∥
∞

.

Bounding T2. We proceed in two steps; we first bound ‖V ‖∞, and use this

to bound
∥∥∥ 1

nΨT
SV

∥∥∥
∞

. Note that, as we are working over the Sobolev spaces

Sj of order two,

|Vi| =

∣∣∣∣∣∣

∑

j∈S

∞∑

k=dn+1

β∗
jkΨjk(Xij)

∣∣∣∣∣∣
≤ B

∑

j∈S

∞∑

k=dn+1

∣∣∣β∗
jk

∣∣∣

= B
∑

j∈S

∞∑

k=dn+1

∣∣∣β∗
jk

∣∣∣ k2

k2
≤ B

∑

j∈S

√√√√
∞∑

k=dn+1

β∗2
jkk4

√√√√
∞∑

k=dn+1

1

k4

≤ sBC

√√√√
∞∑

k=dn+1

1

k4
≤ sB′

d
3/2
n

,

for some constant B′ > 0. It follows that,

(71)

∣∣∣∣
1

n
Ψ⊤

jkV

∣∣∣∣ ≤
∣∣∣∣∣
1

n

∑

i

Ψjk(Xij)

∣∣∣∣∣ ‖V ‖∞ ≤ Ds

d
3/2
n

,

where D denotes a generic constant. Thus,

T2 :=
∥∥∥Σ−1

SS

(
1
nΨ⊤

SV
)∥∥∥

∞
≤

∥∥∥Σ−1
SS

∥∥∥
∞

Ds

d
3/2
n

(72)
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Bounding T1. Let Z = T1 = Σ−1
SS

(
1
nΨ⊤

SW
)
. Note that W ∼ N(0, σ2I),

so that Z is Gaussian as well, with mean zero. Consider its l-th component,
Zl = e⊤

l Z. Then E[Zl] = 0, and

Var(Zl) =
σ2

n
e⊤

l Σ−1
SSel ≤

σ2

Cminn
.

By Gaussian comparison results (Ledoux and Talagrand, 1991), we have
then that

(73) E [‖Z‖∞] ≤ 3
√

log(sdn) ‖Var(Z)‖∞ ≤ 3σ

√
log(sdn)

nCmin
.

Substituting the bounds for T2, T3 from equations (72),(70) respectively
into equation (68), and using the bound for the expected value of T1 from
(73), it follows from an application of Markov’s inequality that,

P

(
‖β̂S − β∗

S‖∞ >
ρ∗n
2

)

≤ P

(
‖Z‖∞ +

∥∥∥Σ−1
SS

∥∥∥
∞

(
Dsd−3/2

n + λn

√
Cmax

)
>

ρ∗n
2

)

≤ 2

ρ∗n

{
E [‖Z‖∞] +

∥∥∥Σ−1
SS

∥∥∥
∞

(
Dsd−3/2

n + λn

√
Cmax

)}

≤ 2

ρ∗n



3σ

√
log(sdn)

nCmin
+

∥∥∥Σ−1
SS

∥∥∥
∞

(
Ds

d
3/2
n

+ λn

√
Cmax

)

 ,

which converges to zero under the condition that

(74)
1

ρ∗n





√
log(sdn)

n
+

∥∥∥∥
(

1
nΨT

SΨS

)−1
∥∥∥∥
∞

(
s

d
3/2
n

+ λn

)

 −→ 0.

Noting that

∥∥∥∥
(

1
nΨT

SΨS

)−1
∥∥∥∥
∞

≤
√

sdn

Cmin
,(75)

it follows that condition (74) holds when

(76)
1

ρ∗n




√
log(sdn)

n
+

s3/2

dn
+ λn

√
sdn


 −→ 0.

But this is satisfied by assumption (39) in the theorem. We have thus shown
that condition (65a) is satisfied with probability converging to one.
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Condition (65b). We now have to consider the dual variables ĝSc . Recall
that we have set β̂Sc = β∗

Sc = 0. The stationary condition for j ∈ Sc is thus
given by

1

n
Ψ⊤

j

(
ΨS β̂S − ΨSβ∗

S − W − V
)

+ λnĝj = 0.

It then follows from equation (67) that

ĝSc =
1

λn

{
1

n
Ψ⊤

ScΨS

(
β∗

S − β̂S

)
+

1

n
Ψ⊤

Sc (W + V )

}

=
1

λn

{
1

n
Ψ⊤

ScΨS

(
1

n
ΨT

SΨS

)−1 (
λnĝS − 1

n
ΨT

SW − 1

n
ΨT

SV

)

+
1

n
Ψ⊤

Sc (W + V )

}
,

so that,

ĝSc =
1

λn

{
ΣScSΣ−1

SS

(
λnĝS − 1

n
ΨT

SW − 1

n
ΨT

SV

)
+

1

n
Ψ⊤

Sc (W + V )

}
.

(77)

Condition (65b) requires that

(78) gT
j

(
1

n
ΨT

j Ψj

)−1

gj < 1,

for all j ∈ Sc. Since

(79) gT
j

(
1

n
ΨT

j Ψj

)−1

gj ≤ 1

Cmin
‖gj‖2

it suffices to show that maxj∈Sc ‖gj‖ <
√

Cmin. From (77), we see that ĝj is
Gaussian, with mean µj as

µj = E(ĝj) = ΣjSΣ−1
SS

(
ĝS − 1

λn

(
1

n
ΨT

SV

))
− 1

λn

(
1

n
ΨT

j V

)
.

This can be bounded as

‖µj‖ ≤
∥∥∥ΣjSΣ−1

SS

∥∥∥
(
‖ĝS‖ +

1

λn

∥∥∥ 1
nΨT

SV
∥∥∥
)

+
1

λn

∥∥∥ 1
nΨT

j V
∥∥∥

=
∥∥∥ΣjSΣ−1

SS

∥∥∥
(√

sCmax +
1

λn

∥∥∥ 1
nΨT

SV
∥∥∥
)

+
1

λn

∥∥∥ 1
nΨT

j V
∥∥∥ .(80)
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Using the bound ‖ΨT
j V ‖∞ ≤ D s/d

3/2
n from equation (71), we have,

‖ 1
nΨT

j V ‖ ≤
√

dn ‖ 1
nΨT

j V ‖∞ ≤ Ds

dn
, and hence,

‖ 1
nΨT

SV ‖ ≤
√

s ‖ 1
nΨT

SV ‖∞ ≤ Ds3/2

dn
.

Substituting in the bound (80) on the mean µj ,

‖µj‖ ≤
∥∥∥ΣjSΣ−1

SS

∥∥∥
(

√
sCmax +

Ds3/2

λndn

)
+

Ds

λndn
.(81)

Assumptions (36) and (37) of the theorem can be rewritten as,

∥∥∥ΣjSΣ−1
SS

∥∥∥ ≤
√

Cmin

Cmax

1 − δ√
s

for some δ > 0(82)

s

λndn
→ 0.(83)

Thus the bound on the mean becomes

‖µj‖ ≤
√

Cmin(1 − δ) +
2Ds

λndn
<

√
Cmin,

for sufficiently large n. It therefore suffices in order for condition (65b) to
be satisfied, to show that

P

(
max
j∈Sc

‖ĝj − µj‖∞ >
δ

2
√

dn

)
−→ 0,(84)

since this implies that

‖ĝj‖ ≤ ‖µj‖ + ‖ĝj − µj‖
≤ ‖µj‖ +

√
dn‖ĝj − µj‖∞

≤
√

Cmin(1 − δ) +
δ

2
+ o(1),

with probability approaching one. To show (84), we again appeal to Gaussian
comparison results. Define

(85) Zj = ΨT
j

(
I − ΨS(ΨT

SΨS)−1ΨT
S

) W

n
,

for j ∈ Sc. Then Zj are zero mean Gaussian random variables, and we need
to show that

P

(
max
j∈Sc

‖Zj‖∞
λn

≥ δ

2
√

dn

)
−→ ∞.(86)
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A calculation shows that E(Z2
jk) ≤ σ2/n. Therefore, we have by Markov’s

inequality and Gaussian comparison that

P

(
max
j∈Sc

‖Zj‖∞
λn

≥ δ

2
√

dn

)
≤ 2

√
dn

δλn
E

(
max

jk
|Zjk|

)

≤ 2
√

dn

δλn

(
3
√

log((p − s)dn) max
jk

√
E

(
Z2

jk

))

≤ 6σ

δλn

√
dn log((p − s)dn)

n
,

which converges to zero given the assumption (38) of the theorem that

λ2
nn

dn log((p − s)dn)
−→ ∞.

Thus condition (65b) is also satisfied with probability converging to one,
which completes the proof. ¤

Proof of Proposition 6.3. For any index k we have that

‖f‖2
2 =

∞∑

i=1

β2
i(87)

≤ ‖β‖∞
∞∑

i=1

|βi|(88)

= ‖β‖∞
k∑

i=1

|βi| + ‖β‖∞
∞∑

i=k+1

|βi|(89)

≤ k‖β‖2
∞ + ‖β‖∞

∞∑

i=k+1

iν |βi|
iν

(90)

≤ k‖β‖2
∞ + ‖β‖∞

√√√√
∞∑

i=1

β2
i i2ν

√√√√
∞∑

i=k+1

1

i2ν
(91)

≤ k‖β‖2
∞ + ‖β‖∞C

√
k1−2ν

2ν − 1
,(92)

where the last inequality uses the bound

(93)
∞∑

i=k+1

i−2ν ≤
∫ ∞

k
x−2ν dx =

k1−2ν

2ν − 1
.
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Let k⋆ be the index that minimizes (92). Some calculus shows that k⋆ satisfies

(94) c1‖β‖−2/(2ν+1)
∞ ≤ k⋆ ≤ c2‖β‖−2/(2ν+1)

∞

for some constants c1 and c2. Using the above in (92) then yields

‖f‖2
2 ≤ ‖β‖∞

(
c2‖β‖(2ν−1)/(2ν+1)

∞ + c′1‖β‖(2ν−1)/(2ν+1)
∞

)
(95)

= c‖β‖4ν/(2ν+1)
∞(96)

for some constant c, and the result follows. ¤

Proof of Theorem 6.4. We begin with some notation. If M is a class
of functions then the L∞ bracketing number N[ ](ǫ,M) is defined as the
smallest number of pairs B = {(ℓ1, u1), . . . , (ℓk, uk)} such that ‖uj − ℓj‖∞ ≤
ǫ, 1 ≤ j ≤ k, and such that for every m ∈ M there exists (ℓ, u) ∈ B such
that ℓ ≤ m ≤ u. For the Sobolev space Tj ,

(97) log N[ ](ǫ, Tj) ≤ K

(
1

ǫ

)1/2

for some K > 0. The bracketing integral is defined to be

(98) J[ ](δ,M) =

∫ δ

0

√
log N[ ](u,M)du.

From Corollary 19.35 of van der Vaart (1998),

(99) E

(
sup
g∈M

|µ̂(g) − µ(g)|
)

≤
C J[ ](‖F‖∞ ,M)√

n

for some C > 0, where F (x) = supg∈M |g(x)|, µ(g) = E(g(X)) and µ̂(g) =
n−1 ∑n

i=1 g(Xi).
Set Z ≡ (Z0, . . . , Zp) = (Y, X1, . . . , Xp) and note that

(100) R(β, g) =
p∑

j=0

p∑

k=0

βjβkE(gj(Zj)gk(Zk))

where we define g0(z0) = z0 and β0 = −1. Also define

(101) R̂(β, g) =
1

n

n∑

i=1

p∑

j=0

p∑

k=0

βjβkgj(Zij)gk(Zik).
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Hence m̂n is the minimizer of R̂(β, g) subject to the constraint
∑

j βjgj(xj) ∈
Mn(Ln) and gj ∈ Tj . For all (β, g),

(102) |R̂(β, g) − R(β, g)| ≤ ‖β‖2
1 max

jk
sup

gj∈Sj ,gk∈Sk

|µ̂jk(g) − µjk(g)|

where µ̂jk(g) = n−1 ∑n
i=1

∑
jk gj(Zij)gk(Zik) and µjk(g) = E(gj(Zj)gk(Zk)).

From (97) it follows that

(103) log N[ ](ǫ,Mn) ≤ 2 log pn + K

(
1

ǫ

)1/2

.

Hence, J[ ](C,Mn) = O(
√

log pn) and it follows from (99) and Markov’s
inequality that
(104)

max
jk

sup
gj∈Sj ,gk∈Sk

|µ̂jk(g) − µjk(g)| = OP




√
log pn

n


 = OP

(
1

n(1−ξ)/2

)
.

We conclude that

(105) sup
g∈M

|R̂(g) − R(g)| = OP

(
L2

n

n(1−ξ)/2

)
.

Therefore,

R(m∗) ≤ R(m̂n) ≤ R̂(m̂n) + OP

(
L2

n

n(1−ξ)/2

)

≤ R̂(m∗) + OP

(
L2

n

n(1−ξ)/2

)
≤ R(m∗) + OP

(
L2

n

n(1−ξ)/2

)

and the conclusion follows. ¤
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