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Abstract

Recent research has made significant progress on
the problem of bounding log partition functions
for exponential family graphical models. Such
bounds have associated dual parameters that are
often used as heuristic estimates of the marginal
probabilities required in inference and learning.
However these variational estimates do not give
rigorous bounds on marginal probabilities, nor
do they give estimates for probabilities of more
general events than simple marginals. In this pa-
per we build on this recent work by deriving rig-
orous upper and lower bounds on event probabil-
ities for graphical models. Our approach is based
on the use of generalized Chernoff bounds to ex-
press bounds on event probabilities in terms of
convex optimization problems; these optimiza-
tion problems, in turn, require estimates of gen-
eralized log partition functions. Simulations in-
dicate that this technique can result in useful, rig-
orous bounds to complement the heuristic varia-
tional estimates, with comparable computational
cost.

1 Introduction

Undirected graphical models are natural and widely used in
many domains, from statistical physics and image process-
ing to social networks and contingency table analysis. For
such models the log partition function, which arises in the
exponential family representation, plays a fundamental role
in most aspects of inference and learning. Although the log
partition function is in general intractable to compute ex-
actly, recent research has made considerable progress in ob-
taining effective bounds, opening up new possibilities for
the further development and application of this important
class of graphical models.

Variational methods and convex optimization have been the
primary tools used in obtaining bounds on the log partition

function. A key aspect of this method is that the bounds of-
ten have associated dual parameters, and these parameters
can be used as heuristic estimates of the marginal proba-
bilities required in inference and learning. Unfortunately,
there is currently a gap in our understanding of how such
dual parameters can be quantitatively related to the param-
eters of actual interest in the graphical model. In particular,
the variational estimates do not give rigorous bounds on
marginal probabilities, nor do they give estimates for prob-
abilities of more general events than simple marginals.

In this paper we build upon this recent work by deriving
rigorous upper and lower bounds on event probabilities for
undirected graphical models. Our approach is based on the
use of generalized Chernoff bounds to express bounds on
event probabilities in terms of convex optimization prob-
lems. In the classical Chernoff bounding technique for in-
dependent and identically distributed random variables, lin-
ear bounds via the Markov inequality are further approxi-
mated in order to obtain analytic expressions for tail in-
equalities. As observed by Boyd and Vandenberghe (2004),
this basic technique can be considerably generalized to ob-
tain general event probability bounds using convex opti-
mization. Although the idea behind such bounds is thought
to be widely known, it has not been widely exploited
(Stephen Boyd, personal communication).

Like their classical predecessors, generalized Chernoff
bounds are obtained by minimizing a parameterized fam-
ily of upper bounds—thus, they are naturally thought of
as variational bounds. However, in our application of the
Chernoff bound idea to graphical models, we introduce
additional variational bounds to approximate log partition
functions. We thus refer to the resulting bounds, somewhat
redundantly for emphasis, as variational Chernoff bounds.
For upper bounds we employ the approach of Wainwright
and Jordan (2003b) based on semidefinite relaxations. In
addition, we investigate the use of the tree-reweighted be-
lief propagation algorithms of Wainwright et al. (2003), as
well as a more direct approach based on barrier functions.
For the lower bounds, available methods include structured
mean field approximations andM -best approximations us-
ing belief propagation (Yanover & Weiss, 2003).



Classical Chernoff bounds are used almost exclusively for
tail estimates of small probability events, where the course-
ness of the approximation does not affect asymptotic anal-
ysis. By using numerical optimization, the generalized ap-
proach has the potential to obtain much tighter bounds,
which may be useful for more general events, and for
smaller sample sizes. We carry out experiments with small
graphical models which indicate that this technique can in-
deed result in effective bounds. Moreover, the bounds are
obtained at comparable computational cost to the heuris-
tic variational estimates. The technique thus provides a
new tool for graphical modeling, giving rigorous bounds to
complement the more heuristic estimates of mean param-
eters for which variational methods have been previously
employed.

The remainder of the paper is organized as follows. In
the following section we establish some notation and re-
view some basic definitions associated with convex analy-
sis and exponential representations of graphical models. In
Section 3 we explain the idea behind generalized Chernoff
bounds, and express the corresponding bounds for graphi-
cal models in terms of the log partition function. In this sec-
tion we also review the classical Chernoff bounds, and give
an example of how the generalized bounds apply to Markov
and hidden Markov models as a simple special case. In
Section 4 the variational approximations to log partition
functions are used to derive manageable optimization prob-
lems. In Section 5 we show that the general bounds are, in
fact, exact in certain cases. In Section 6 the results of simu-
lations are presented that indicate the bounds can give non-
trivial estimates of marginal probabilities, showing that the
framework is not only appropriate for tail probabilities.

2 Background and Basic Definitions

We begin by establishing some notation and reviewing the
basic properties of undirected graphical models and expo-
nential family representations. We then review some basic
concepts from convex analysis that are required.

2.1 Exponential family representations

Let X = (X1, X2, . . . , Xn) denote a random variable with
n components indexed by the nodes in a graphG = (V,E),
where eachXi takes values in a finite setX . We assume
thatX has an exponential family distribution of the form

pθ(x) = exp

(∑
α

〈θ, φ(x)〉 − Φ(θ)

)
(1)

where〈θ, φ(x)〉 =
∑

α θαφα(x), andφ(x) is the vector of
sufficient statistics. The index setI = {α} is determined
by the clique structure of the graph; for example, we may
haveα = (s, t; i, j) corresponding to an indicator function
φα = δ(xs, i) δ(xt, j) for an edge(s, t) ∈ E. In a non-
minimal representation, there are dependencies among the

functionsφα, and the number of parametersm = |I| is
larger than the dimension of the model.

The log partition functionΦ(θ) is the logarithm of the nor-
malizing constant of the model, and is a convex function of
θ satisfying∂Φ(θ)/∂θα = Eθ [φα(X)]. The convex con-
jugateΦ∗ is defined byΦ∗(µ) = supθ∈Rm 〈µ, θ〉 − Φ(θ).
If θ̂ = θ(µ) is the parameter attaining the supremum, a
calculation shows thatΦ∗(µ) can be expressed as a nega-
tive entropyΦ∗(µ) =

∑
x p(x | θ̂) log p(x | θ̂) andµα =

Ebθ [φα(X)]. These relations show that the dual parameters
µ are the set of vectors that can be realized as marginals of
φ. The collection of such dual parameters is themarginal
polytope

MARG(G,φ) = (2){
µ ∈ Rm |

∑
x

p(x | θ)φ(x) = µ for someθ ∈ Rm

}

and plays a central role in the analysis ofΦ(θ). SinceX is
finite, the closure of MARG(G,φ) is a finite intersection of
halfspaces, and is thus indeed a polytope. It can be shown
that

Φ(θ) = sup
µ∈MARG(G,φ)

〈θ, µ〉 − Φ∗(µ) (3)

= sup
µ∈M(φ)

〈θ, µ〉 − Φ∗(µ) (4)

whereM(φ) = {µ ∈ Rn | ∑
x φ(x)p(x) = µ for some

p}. We refer to (Wainwright & Jordan, 2003a) for a com-
prehensive introduction to these constructions and their rel-
evance to variational approximations.

2.2 Conjugacy and support functions

We now recall some basic definitions and conventions from
convex analysis, referring to (Rockafellar, 1970) for fur-
ther detail. Since generalized Chernoff bounds are based on
linear approximations of convex (or possibly non-convex)
sets, the notion of support function arises naturally. The
indicator functionδC of a set is defined as

δC(x) =

{
0 if x ∈ C

∞ otherwise
(5)

Thesupport functionof C ⊂ Rm is defined as

δ∗C(λ) = sup
x∈C

〈x, λ〉 (6)

The suggestive notation comes from the fact that ifC is
convex then the support functionδ∗ is in fact the convex
conjugate of the the indicator function. IfC is convex, then
x lies in the closure clC if and only if 〈x, λ〉 ≤ δ∗C(λ)
for everyλ. In this case(δ∗C)∗ = δclC . This shows that
a closed convex setC can be represented as the solution
set of a family of linear inequalities, and thus the support



function characterizesC. We will also denote the support
function bySC(λ).

For an undirected graphical model with parameterθ, vec-
tor of sufficient statisticsφ(x) and log partition function
Φ(θ), we will denote byΦ(f, θ) the log partition function
for the (generally non-graphical) model with probabilities
proportional toexp (〈θ, φ(x)〉+ f(x)); thus,

Φ(f, θ) =
∑

x

exp (〈θ, φ(x)〉+ f(x)) (7)

As a special case that will be useful below,

log p(x ∈ C | θ) = Φ(−δC , θ)− Φ(θ) (8)

We will also use the notationΦ(−δC , θ) = ΦC(θ).

3 Classical and Generalized Chernoff
Bounds

Let X be a real-valued random variable with distribution
determined by some parameterθ. The Markov inequality
implies that for anyλ > 0,

pθ(X ≥ u) = pθ

(
eλX ≥ eλu

)
(9)

≤ Eθ[eλ(X−u)] (10)

From this it follows that

log pθ(X ≥ u) ≤ inf
λ≥0

(−λu + log Eθ

[
eλX

])
(11)

In the classical formulations of Chernoff bounds that are
so widely used in probabilistic analysis, the relation (11)
is further manipulated so that the upper bound has an an-
alytic form. For example, if the random variable isX ∼
Binomial(n, p), it can easily be shown (see below) that

pθ (X < np (1− δ)) ≤ e−nδ2/2 (12)

Boyd and Vandenberghe (2004) observe that the basic idea
behind inequality (11) can be considerably generalized in
a way that involves convex optimization. Rather than de-
riving an expression that can be used to reason about tail
probabilities analytically, one expresses an upper bound on
the desired probability in terms of a convex optimization
problem, and obtains a rigorous numerical bound on the
probability by solving the optimization problem.

Let X now denote aRm-valued random variable, whose
distribution is indicated by a parameterθ, and letC ⊂ Rm.
To bound the probabilitypθ(X ∈ C), consider a param-
eterized family of upper bounds on the indicator function
−δC ; that is, letfλ(x) ≥ 0 if x ∈ C. Then clearly

pθ(X ∈ C) ≤ inf
λ

Eθ

[
efλ

]
(13)

In casefλ = 〈λ, x〉+u is affine, whereλ andu are chosen
subject to the constraint that〈λ, x〉+ u ≥ 0 for x ∈ C, we
have that

log pθ(X ∈ C) ≤ inf
λ,u

log Eθ

[
e〈λ,x〉+u

]
(14)

= inf
λ,u

(
u + log Eθ

[
e〈λ,x〉

])
(15)

Now, sinceu ≥ 〈−λ, x〉 − δC(x), it follows that inf u =
supx 〈−λ, x〉 − δC(x) = δ∗C(−λ). Therefore,

log pθ(X ∈ C) ≤ inf
λ

(
δ∗C(−λ) + log Eθ

[
e〈λ,x〉

])
(16)

For exponential family models, this line of argument leads
to the following bounds.

Proposition 1. Suppose thatX = (X1, . . . , Xm) is an
exponential model with (non-minimal) sufficient statistic
φ(x) ∈ Rn, and letC ⊂ Rm. Then

log pθ(X ∈ C) = Φ(−δC , θ)− Φ(θ) (17)

≤ inf
λ

Φ(fλ, θ)− Φ(θ) (18)

for any family of functionsfλ ≥ −δC bounding the indica-
tor function. In particular,

log pθ(X ∈ C) ≤ inf
λ∈Rn

SC,φ(−λ)+Φ(λ+θ)−Φ(θ) (19)

whereSC,φ(y) = supx∈C 〈y, φ(x)〉, for y ∈ Rn.

Proof. The equality in (17) follows from

log pθ(X ∈ C) = log
∑

x∈C

e〈θ,φ(x)〉 − Φ(θ)

= log
∑

x

e−δC(x)+〈θ,φ(x)〉 − Φ(θ)

= ΦC(θ)− Φ(θ)

Let fλ(x) = 〈λ, φ(x)〉 + u be an affine upper bound
on −δC . Then following the argument above, the bound
in (19) follows from observing thatlog Eθ

[
e〈λ,φ(X)〉] =

Φ(λ + θ)− Φ(θ).

In case the vector of sufficient statistics includes eachXi,
by restricting the linear function to one of the formfλ =
〈λ, x〉 + u rather thanfλ = 〈λ, φ(x)〉 + u, we obtain a
generally weaker bound of the form

log pθ(X ∈ C) ≤ inf
λ∈Rm

SC(−λ) + Φ(λ + θ)− Φ(θ) (20)

where nowSC = δ∗C is the standard support function.

3.1 Classical Chernoff bounds

Classical Chernoff bounds (Chernoff, 1952; Motwani &
Raghavan, 1995) are widely used to obtain rough, analyti-
cally convenient bounds on tail probabilities for iid obser-
vations. IfX1, X2, . . . , Xn are independent Bernoulli(p)
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Figure 1: Classical and optimized Chernoff bounds for independent Bernoulli trials (left) and a Markov model (right) for
Cδ = {X | ∑

Xi > np (1 + δ)} with p = 1
2 andδ = 1

2 . Left: n = 30 Bernoulli trials—the classical Chernoff bound
log P (X ∈ Cδ) < −npδ2/4 (top horizontal line),log P (X ∈ Cδ) < np (δ − (1 + δ) log(1 + δ)) (second horizontal
line), and true probability (lower horizontal line); the curve shows the variational approximationlog P (X ∈ Cδ) <
−λnp(1 + δ) − Φ(θ + λ) − Φ(θ). Right: bounds for a Markov model withn = 30, θ1,1 = −1 andθ1 = log p/(1− p).
The curved line is the variational approximation, where the log partition functions are computed exactly using dynamic
programming; the bottom horizontal line is the true probability. The dashed curve is the variational approximation that
assumes independentXi (same as curve in left plot).

trials, the upper Chernoff bound is established by using the
Markov inequality to obtain

log p(X ∈ Cδ) ≤ inf
λ

(
−λnp (1 + δ) + E

[
eλ
P

i X
])

for Cδ = {X | ∑
i Xi ≥ np (1 + δ)}; this is equivalent

to using the linear approximation to the indicator function
employed above. Using the convexity ofexp, in the form
1− x < e−x, the moment generating functionE[eλ

P
i Xi ]

is bounded from above as

log E[eλ
P

i Xi ] =
∑

i

log
(
eλp + 1− p

)
(21)

≤ np (1− eλ) (22)

This upper bound is then minimized to obtain the optimal
λ = log(1 + δ), and thus the Chernoff bound

p(X ∈ Cδ) ≤
(

eδ

(1 + δ)(1+δ)

)np

(23)

A more commonly used form, because of its simplicity, is
the weaker bound

p(X ∈ Cδ) ≤ e−np δ2/4 (24)

which is valid whenδ < 2e− 1.

We review this elementary analysis to point out that our ap-
proach in the general case for exponential family graphical
models is parallel. A family of upper bounds is expressed
using a linear approximation to the indicator function, and
this family of upper bounds is expressed in terms of the log
partition function (or moment generating function). The

log partition function is then approximated by an upper
bound that is more amenable to computation—however, in
the general case, such computation will involve more so-
phisticated approximations and convex optimization.

3.2 Example: Chernoff bounds for Markov models

One of the simplest extensions of the classical Chernoff
bounds for independent Bernoulli trials is the case of a
Markov or hidden Markov model. For illustration we con-
sider a Markov model on two states, where the joint distri-
bution forX1, . . . , Xm with Xi ∈ {0, 1} is given by

p(X1, . . . , Xn) ∝ exp

(
n∑

i=1

θXi +
m−1∑

i=1

θXi,Xi+1

)

(25)
Thusθ = (θ0, θ1, θ0,0, θ0,1, θ1,0, θ1,1), with the caseθ0,0 =
θ0,1 = θ1,0 = θ1,1 = 0 corresponding to independent
Bernoulli(p) trials withp = eθ1/(eθ0 + eθ1).

Since the random variables are not independent, the clas-
sical Chernoff bound forpθ(

∑
i Xi > np (1 + δ)) will

be highly biased. The generalized Chernoff bound for the
eventCδ = {X | ∑

i Xi ≥ np(1 + δ)} is

pθ(X ∈ Cδ) ≤ inf
λ
−λnp (1 + δ) + Φ(θ + λ̄)− Φ(θ)

where λ̄ = (0, λ, 0, 0, 0, 0). In this case the log parti-
tion functionsΦ(θ + λ) andΦ(θ) are easily computed in
O(n) time using dynamic programming. However, com-
puting the probabilitypθ(X ∈ Cδ) exactly using dynamic
programing requiresO(n2) time—auxiliary states to count∑

i Xi must be introduced, requiringO(n) states at each



position. Similar statements can be made for graphical
models where the underlying graph is a tree.

An example of these bounds for a simple Markov model
is shown in Figure 1, where the bounds are compared to
the classical bounds for the iid case. The left plot shows
bounds for Bernoulli trials withp = 1

2 ; the right plot shows
bounds for a Markov model of the form (25) withθ1 =
log p

1−p andθ1,1 = −1, which discourages neighboring 1s.

Such a tree-based graphical model is the simplest case of
the generalized Chernoff bounds we consider. For more
general graphical models, where dynamic programming
may not be available, we must resort to more elaborate ap-
proximations.

4 Variational Chernoff Bounds

The exact log probability (17) and the generalized Chernoff
bounds (19) require computation of log partition functions.
In order to derive tractable bounds, we apply upper and
lower variational bounds. LetΦ(U)(θ) andΦ(L)(θ) be up-
per and lower bounds onΦ(θ), respectively. Then clearly

log pθ(X ∈ C) ≤ Φ(U)
C (θ)− Φ(L)(θ) (26)

log pθ(X ∈ C) ≥ Φ(L)
C (θ)− Φ(U)(θ) (27)

and, in addition, applying the bounds to (19) gives

log pθ(X ∈ C) ≤ (28)

inf
λ∈Rn

SC,φ(−λ) + Φ(U)(λ + θ)− Φ(L)(θ)

In this section we describe the application of semidefinite
relaxations and tree-based belief propagation in this frame-
work.

4.1 Semidefinite relaxation

Wainwright and Jordan (2003b) develop a semidefinite re-
laxation ofΦ(θ) which leads to a log determinant optimiza-
tion problem. The idea behind this approach is to bound the
dual functionΦ∗, which is a negative entropy, in terms of
the entropy of a Gaussian. Since the entropy of a Gaussian
is a log determinant, the semidefinite upper bound follows.
The analysis in (Wainwright & Jordan, 2003b) is restricted
to the case ofX = {−1, 1} and vertex and pairwise inter-
action potentials on the complete graphKn; this is the case
we now assume, although the approach generalizes.

Recalling some of the notation of (Wainwright & Jordan,
2003b), forµ ∈ Rm, M1[µ] is the(n+1)× (n+1) matrix

M1[µ] =




1 µ1 · · · µn

µ1 1 · · · µ1n

µ2 µ21 · · · µ2n

...
...

...
...

µn−1 µ(n−1),1 · · · µ(n−1),n

µn µn1 · · · 1




(29)

and SDEF1(Kn) = {µ |M1[µ] º 0}.

Proposition 2. Let M ⊃ MARG(Kn) be any convex set
that contains SDEF1(Kn). Then

log pθ(X ∈ C) ≤ (30)

sup
µ∈M

{
〈θ, µ〉+

1
2

log det A(µ)− S∗C,φ(µ)
}

+ cn − Φ(θ)

with A(µ) = M1[µ] + 1
3 Ĩ, whereĨ = [0, In] is an (n +

1)× (n + 1) block diagonal matrix, andcn = n
2 log

(
πe
2

)
.

The proof of this proposition follows from inequality (28)
and Theorem 1 of (Wainwright & Jordan, 2003b) after ob-
serving thatSC,φ(λ), as a supremum of linear functions, is
a convex function even ifC is not convex, and that

S∗C,φ(µ) = sup
λ
〈λ, µ〉 − SC,φ(λ) (31)

= − inf
λ
〈λ, µ〉+ SC,φ(−λ) (32)

In particular,−S∗C,φ(µ) is a concave function ofµ. Thus,
solving the log determinant optimization problem above
and replacingΦ(θ) with any lower boundΦ(L)(θ) gives
an upper bound onpθ(X ∈ C).

4.2 Tree-reweighted belief propagation

An alternative approach to obtaining upper bounds on
Φ(θ + λ) is based on belief propagation. Wainwright et al.
(2003) show thatΦ(θ + λ) can be bounded from above by
minimizing a certain functional over “pseudomarginals” on
the nodes and edges in the graph that satisfy certain consis-
tency constraints. In order to use this method to obtain up-
per bounds onlog pθ(X ∈ C), it is necessary to minimize
over λ. This is possible using a kind of pseudo-gradient
descent algorithm that mirrors the approximate maximum
likelihood estimation given in (Wainwright et al., 2003);
we do not pursue this approach here. For simplicity, in
the experiments reported in Section 6 we instead use the
tree-reweighted BP algorithm to derivelower bounds on
log pθ(X ∈ C) using inequality (27).

However, the tree-based approach is somewhat limited.
SinceΦ(−δC , θ) = log

∑
x exp(〈θ, φ(x)〉 − δC(x)), we

see thatδC(x) may introduce additional couplings among
the nodes, forcing one to use more complicated variational
methods. For example, ifφ(x) contains only node and
edge potentials, then we can use normal tree-based vari-
ational methods to compute a bound forΦ(θ). However, if
δC(x) introduces coupling of more than two nodes, then
one cannot use simple tree-based methods anymore, but
would have to resort to hyper-tree based methods to com-
pute a bound forΦ(−δC , θ).



4.3 Lower bounds onΦ

At least two techniques are available for the required lower
boundsΦ(L)(θ). By conjugate duality we have that

Φ(θ) = sup
µ∈MARG(G,φ)

(〈θ, µ〉 − Φ∗(µ)) (33)

≥ max
Mtract(G,φ)

(〈θ, µ〉 − Φ∗(µ)) (34)

whereMtract(G,φ) ⊂ MARG(G,φ) is any subset con-
tained within the marginal polytope. The structured mean
field approximation adopts a tractable subset of smaller di-
mension than MARG(G,φ), for which themax can be
carried out using efficient iterative algorithms. However,
Mtract(G,φ) is typically not convex, and the iterative al-
gorithms generally suffer from the presence of many lo-
cal maxima; see (Wainwright & Jordan, 2003a) for an
overview.

An alternative approach is to make the approximation

Φ(θ) ≥ log

( ∑

x∈M -Best

exp (〈θ, φ(x)〉)
)

(35)

whereM -best is a set of (approximately) most probable
configurations. Yanover and Weiss (2003) develop an algo-
rithm based on loopy belief propagation to efficiently com-
pute an approximateM -best set. Such an approximation is
expected to be good when there are a few highly probable
configurations. We have obtained good results with this ap-
proach, but report below on the use of the structured mean
field approximation.

5 Tightness of Chernoff Bounds

In this section we show that the generalized Chernoff
bounds with linear approximations to the indicator func-
tion are actuallyexactexpressions of event probabilities
in an exponential family graphical model in certain cases.
While the actual computation of the Chernoff bounds may
be highly nontrivial, this result gives an indication of the
power of the framework.

Proposition 3. Let pθ(X) = exp(〈θ, φ(X)− Φ(θ)〉) be
an exponential model withX = (X1, . . . , Xm), where
X 7→ φ(X) ∈ Rn is a one-to-one mapping. Then for
C ⊂ Rm,

log pθ(X ∈ C) = inf
λ∈Rn

SC,φ(−λ) + Φ(λ + θ)− Φ(θ)

Thus the inequality in (19) is in fact an equality. In order
to show this we first give two lemmas. Recall thatM(φ) is
the polytope of mean parameters associated withφ. Define
MC(φ) to be the mean parameters over probabilities re-
stricted toC: MC(φ) =

{
µ ∈ Rn | ∑

x∈C p(x)φ(x) = µ

for somep with
∑

x∈C p(x) = 1
}

. The first lemma we
state without proof, referring to (Rockafellar, 1970) for de-
tails on support functions.

Lemma 1. S∗C,φ(µ) is the indicator functionδMC(φ).

Lemma 2. For µ ∈MC(φ), Φ∗(µ) = Φ∗C(µ).

Proof. Let µ ∈ MC , with µ =
∑

x φ(x)q(x) and∑
x∈C q(x) = 1. Suppose thatµ ∈ bdM. Then since

M is closed andθ 7→ Λ(θ) =
∑

x φ(x) p(x | θ) is onto
riM (Wainwright & Jordan, 2003a), there exists a se-
quenceµn ∈ riM with µn =

∑
x φ(x) p(x | θn), where

p(x | θn) → q(x) andµn → µ. Thus,limn p(x | θn) = 0
if x /∈ C, and hencelimΦ(θn) = lim ΦC(θn). Since
Φ∗(µn) = supθ(〈θ, µn〉 − Φ(θ)) = 〈θn, µn〉 − Φ(θn), for
this optimal value ofθn we have that

lim
n

Φ∗(µn) = lim
n
〈θn, µn〉 − Φ(θn)

= lim
n
〈θn, µn〉 − ΦC(θn)

= lim
n

Φ∗C(µn) = Φ∗C(µ)

The analysis forµ ∈ riM is similar.

Proof of Proposition 3.Define

h(µ, λ; θ) = SC,φ(−λ) + 〈θ + λ, µ〉 − Φ∗(µ)− Φ(θ)

Then the Chernoff bound (19) can be expressed as

log pθ(X ∈ C) ≤ inf
λ

SC,φ(−λ) + Φ(θ + λ)− Φ(θ)

= inf
λ

sup
µ∈M

SC(−λ) + 〈θ + λ, µ〉 − Φ∗(µ)− Φ(θ)

= inf
λ

sup
µ∈M

h(µ, λ; θ)

Now, reversing thesup andinf, we have that

sup
µ∈M

inf
λ

h(µ, λ; θ)

= sup
µ∈M

inf
λ

SC,φ(−λ) + 〈θ + λ, µ〉 − Φ∗(µ)− Φ(θ)

= sup
µ∈M

〈θ, µ〉 − Φ∗(µ)− S∗C,φ(µ)− Φ(θ)

= sup
µ∈MC

〈θ, µ〉 − Φ∗C(µ)− Φ(θ)

= ΦC(θ)− Φ(θ) = log pθ(X ∈ C)

where the third equality follows from Lemma 1 and the
fourth equality follows from Lemma 2.

Now, note that sinceSC,φ(−λ) is convex inλ, 〈θ + λ, µ〉−
Φ∗(µ) is concave inµ, the marginal polytopeM(φ)
is convex and compact, and−Φ∗(µ) and consequently
〈θ + λ, µ〉 − Φ∗(µ) are upper semicontinuous onM
(Wainwright & Jordan, 2003a), we can conclude that
supµ∈M infλ h(µ, λ; θ) = infλ supµ∈M h(µ, λ; θ) from
standard minimax results (Peck & Dumage, 1957).



AverageL1 error± std
Problem type Approximation method

Graph Coupling Strength MF/Tree lower MF/SDP lower Tree/MF upper SDP heuristic

Repulsive (0.25,1.0) 0.093± 0.003 0.297± 0.009 0.166± 0.008 0.010± 0.002

Repulsive (0.25,2.0) 0.127± 0.009 0.290± 0.007 0.327± 0.059 0.024± 0.002

Grid Mixed (0.25,1.0) 0.054± 0.028 0.452± 0.047 0.070± 0.038 0.026± 0.002

Mixed (0.25,2.0) 0.095± 0.012 0.421± 0.053 0.138± 0.011 0.017± 0.003

Attractive (0.25,1.0) 0.026± 0.001 0.770± 0.019 0.025± 0.002 0.023± 0.001

Attractive (0.25,2.0) 0.001± 0.001 0.791± 0.026 0.001± 0.001 0.016± 0.002

Repulsive (0.25,0.25) 0.072± 0.010 0.290± 0.006 0.069± 0.011 0.021± 0.001

Repulsive (0.25,0.50) 0.132± 0.009 0.238± 0.007 0.156± 0.016 0.016± 0.001

Full Mixed (0.25,0.25) 0.032± 0.001 0.393± 0.014 0.029± 0.001 0.013± 0.004

Mixed (0.25,0.50) 0.120± 0.027 0.450± 0.037 0.127± 0.034 0.024± 0.004

Attractive (0.25,0.06) 0.009± 0.001 0.445± 0.009 0.007± 0.001 0.019± 0.003

Attractive (0.25,0.12) 0.037± 0.006 0.520± 0.023 0.033± 0.006 0.040± 0.003

Table 1:L1 approximation error of single node marginals for the fully connected graphK9 and the 4 nearest neighbour
grid with 9 nodes, with varying potential and coupling strengths(dpot, dcoup). Three different variational methods are
compared: MF/Tree derives a lower bound with mean field approximation forΦC and tree-reweighted belief propagation
for Φ; MF/SDP derives a lower bound with the SDP relaxation used forΦ; Tree/MF derives an upper bound using tree-
reweighted belief propagation forΦC and mean field forΦ. SDP denotes the heuristic use of the dual parameters in the
SDP relaxation, with no provable upper or lower bounds.

6 Experimental Results

To test the performance of the upper and lower bound meth-
ods, we performed experiments for binary random fields
on both a complete graph and a 2-D nearest-neighbor grid
graph, closely following the experiments in (Wainwright
& Jordan, 2003b). In order to be able to compare the
bounds with the exact probabilities, we show results for
small graphs with 9 nodes. For different qualitative charac-
teristics of the exponential distributions (repulsive, mixed,
or attractive), we construct many randomly generated mod-
els, and compute the mean error for each type of graph.

The graphical models were randomly generated according
to the following specification. First, the parameters were
randomly generated in the following manner:

Single node potentials: For each trial, we sampleθs ∼
Uniform(−dpot, +dpot) independently for each node, where
dpot = 1

4 .

Edge coupling potentials: For a given coupling strength
dcoup, three types of coupling are used:

Repulsive: θst ∼ Uniform(−2dcoup, 0)
Mixed: θst ∼ Uniform(−dcoup, +dcoup)

Attractive: θst ∼ Uniform(0, 2dcoup)

For a given model, the marginal probabilitiespθ(Xs = 1)
andpθ(Xs = 1, Xt = 1) are computed exactly for each
node and edge by calculating the log partition function ex-
actly. Then, the variational Chernoff bounds on these prob-

abilities are computed using different approximations to the
log partition functions. As described in Sections 3 and 4,
we have thatlog pθ(X ∈ C) = ΦC(θ)−Φ(θ). In the case
of the marginal at a single node,C = {x ∈ Rn |xs = 1}.
We compute the bounds using the following methods:

MF/Tree: A lower bound onlog pθ(X ∈ C) is computed
by applying the structured mean field approximation to
ΦC(θ) and the tree-reweighted belief propagation approxi-
mation toΦ(θ).

MF/SDP: A lower bound onlog pθ(X ∈ C) is computed
by the applying structured mean field approximation to
ΦC(θ) and the semidefinite relaxation, resulting in a log
determinant problem forΦ(θ).

Tree/MF: An upper bound is derived using tree-reweighted
belief propagation to upper boundΦC(θ), and using struc-
tured mean field to derive a lower bound onΦ(θ).

SDP: The semidefinite relaxation is used to heuristically
estimate the marginal probability, as in (Wainwright & Jor-
dan, 2003b), with no provable upper or lower bound.

To assess the accuracy of each approximation, we use the
L1 error, defined as

1
n

n∑
s=1

|pθ(X ∈ C)− p̂θ(X ∈ C)| (36)

wherep̂θ denotes the estimated marginal. The results are
shown in Table 1 for the single node case, and in Table 2
for the case of node pairs.



AverageL1 error± std
Problem type Approximation method

Graph Coupling Strength MF/Tree lower MF/SDP lower Tree/MF upper SDP heuristic

Repulsive (0.25,1.0) 0.025± 0.003 0.118± 0.012 0.047± 0.008 0.005± 0.003

Repulsive (0.25,2.0) 0.034± 0.005 0.108± 0.010 0.101± 0.022 0.013± 0.001

Grid Mixed (0.25,1.0) 0.026± 0.004 0.243± 0.022 0.037± 0.009 0.019± 0.005

Mixed (0.25,2.0) 0.056± 0.024 0.250± 0.035 0.087± 0.031 0.021± 0.006

Attractive (0.25,1.0) 0.029± 0.008 0.621± 0.076 0.043± 0.015 0.016± 0.012

Attractive (0.25,2.0) 0.002± 0.001 0.791± 0.012 0.003± 0.001 0.036± 0.007

Repulsive (0.25,0.25) 0.011± 0.002 0.081± 0.024 0.015± 0.001 0.021± 0.004

Repulsive (0.25,0.50) 0.008± 0.005 0.046± 0.003 0.021± 0.002 0.021± 0.003

Full Mixed (0.25,0.25) 0.040± 0.006 0.216± 0.013 0.014± 0.001 0.012± 0.007

Mixed (0.25,0.50) 0.068± 0.011 0.250± 0.033 0.052± 0.005 0.016± 0.011

Attractive (0.25,0.06) 0.020± 0.004 0.257± 0.017 0.003± 0.001 0.026± 0.007

Attractive (0.25,0.12) 0.061± 0.009 0.367± 0.019 0.015± 0.003 0.061± 0.005

Table 2:L1 approximation error of pairwise node marginals. Approximation methods are as described for Table 1.

7 Conclusion

In this paper a framework for deriving rigorous bounds on
probabilities for graphical models was proposed. Using
generalized Chernoff bounds, the technique derives prob-
ability bounds in terms of convex optimization problems
involving certain support functions and a difference of log
partition functions. We showed that these bounds are in
fact exact under certain conditions, which gives an indica-
tion of the power of the framework. Semidefinite relax-
ations and tree-reweighted belief propagation were used to
derive tractable forms of the bounds. Experimental results
on small graphs indicated that the approach can give use-
ful bounds that are comparable, though generally weaker
than, the heuristic estimates obtained using dual parame-
ters, with tree-based approximations giving better accuracy
than semidefinite relaxations.

Recent progress in bounding log partition functions has
both enabled this work, and highlighted the need for rigor-
ous bounds to complement the heuristic use of dual param-
eters in variational methods. Interesting directions for fur-
ther developing this approach include the use of alternative
approximations, such as spanning tree methods that permit
estimates for more general events than simple marginals,
and the application of the approach to tail probability esti-
mates for complex models.
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