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Abstract

Recent research has made significant progress on
the problem of bounding log partition functions
for exponential family graphical models. Such
bounds have associated dual parameters that are
often used as heuristic estimates of the marginal
probabilities required in inference and learning.
However these variational estimates do not give
rigorous bounds on marginal probabilities, nor
do they give estimates for probabilities of more
general events than simple marginals. In this pa-
per we build on this recent work by deriving rig-
orous upper and lower bounds on event probabil-
ities for graphical models. Our approach is based
on the use of generalized Chernoff bounds to ex-
press bounds on event probabilities in terms of
convex optimization problems; these optimiza-
tion problems, in turn, require estimates of gen-
eralized log partition functions. Simulations in-
dicate that this technique can result in useful, rig-
orous bounds to complement the heuristic varia-
tional estimates, with comparable computational
cost.
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function. A key aspect of this method is that the bounds of-
ten have associated dual parameters, and these parameters
can be used as heuristic estimates of the marginal proba-
bilities required in inference and learning. Unfortunately,
there is currently a gap in our understanding of how such
dual parameters can be quantitatively related to the param-
eters of actual interest in the graphical model. In particular,
the variational estimates do not give rigorous bounds on
marginal probabilities, nor do they give estimates for prob-
abilities of more general events than simple marginals.

In this paper we build upon this recent work by deriving
rigorous upper and lower bounds on event probabilities for
undirected graphical models. Our approach is based on the
use of generalized Chernoff bounds to express bounds on
event probabilities in terms of convex optimization prob-
lems. In the classical Chernoff bounding technique for in-
dependent and identically distributed random variables, lin-
ear bounds via the Markov inequality are further approxi-
mated in order to obtain analytic expressions for tail in-
equalities. As observed by Boyd and Vandenberghe (2004),
this basic technique can be considerably generalized to ob-
tain general event probability bounds using convex opti-
mization. Although the idea behind such bounds is thought
to be widely known, it has not been widely exploited
(Stephen Boyd, personal communication).

Like their classical predecessors, generalized Chernoff
bounds are obtained by minimizing a parameterized fam-
ily of upper bounds—thus, they are naturally thought of

Undirected graphical models are natural and widely used is variational bounds. However, in our application of the
many domains, from statistical physics and image procesd=hernoff bound idea to graphical models, we introduce
ing to social networks and contingency table analysis. Fordditional variational bounds to approximate log partition
such models the log partition function, which arises in thefunctions. We thus refer to the resulting bounds, somewhat
exponential family representation, plays a fundamental roléedundantly for emphasis, as variational Chernoff bounds.
in most aspects of inference and learning. Although the log-or upper bounds we employ the approach of Wainwright
partition function is in general intractable to compute ex-and Jordan (2003b) based on semidefinite relaxations. In
actly, recent research has made considerable progress in ciddition, we investigate the use of the tree-reweighted be-
taining effective bounds, opening up new possibilities forlief propagation algorithms of Wainwright et al. (2003), as
the further development and application of this importantwell as a more direct approach based on barrier functions.
class of graphical models. For the lower bounds, available methods include structured

_ L mean field approximations and -best approximations us-
Variational methods and convex optimization have been th?ng belief propagation (Yanover & Weiss, 2003)

primary tools used in obtaining bounds on the log partition



Classical Chernoff bounds are used almost exclusively fofunctions¢,,, and the number of parametets = |I| is
tail estimates of small probability events, where the courselarger than the dimension of the model.

ness of the. apprommaﬂon dqeg nqt affect asymptquc anal"I'he log partition functionb(0) is the logarithm of the nor-
ysis. By using numerical optimization, the generalized 8P malizing constant of the model, and is a convex function of
proach has the potential to obtain much tighter bounds 9 '

which may be useful for more general events, and forg Satistyingd®(0)/90a = Ep[¢a(X)]. The convex con-

smaller sample sizes. We carry out experiments with smaIIIUQBte(I)* 'S dgfmed oy (1) = Sup_"e_Rm . 0) — 2(6).
graphical models which indicate that this technique can in!f ¢ = () is the parameter attaining the supremum, a
deed result in effective bounds. Moreover, the bounds ar&alculation shows thab* () can be expressed as a nega-
obtained at comparable computational cost to the heurigive entropy®*(u) = > p(x|0)logp(x|0) andpu, =

tic variational estimates. The technique thus provides & [¢«(X)]. These relations show that the dual parameters
new tool for graphical modeling, giving rigorous bounds to © are the set of vectors that can be realized as marginals of
complement the more heuristic estimates of mean paran#. The collection of such dual parameters is tharginal
eters for which variational methods have been previouslypolytope

employed.

MARG(G, ¢) = 2
The remainder of the paper is organized as follows. In
the following sgctioq we establish. some 'notation and re- peER™| Zp(x 10) ¢(z) = p for somed € R™
view some basic definitions associated with convex analy- .
sis and exponential representations of graphical models. In _ . . _
Section 3 we explain the idea behind generalized Chernofind plays a central role in the analysisieff)). SinceX’ is
bounds, and express the corresponding bounds for grapHinite, the closure of MARGG, ¢) is a finite intersection of
cal models in terms of the log partition function. In this sec-halfspaces, and is thus indeed a polytope. It can be shown
tion we also review the classical Chernoff bounds, and givéhat
an example of how the generalized bounds apply to Markov

and hidden Markov models as a simple special case. In ®(0) = MASIgg)G (0, 1) — 2" (1) 3)
Section 4 the variational approximations to log partition He (@.9) .
functions are used to derive manageable optimization prob- = S (0, 1) — (1) 4)

lems. In Section 5 we show that the general bounds are, in
fact, exact in certain cases. In Section 6 the results of SimL\NhereM(@ = {LeR"| Y. ¢(z)p(z) = pu for some

lations are presented that indicate the bounds can give N We refer to (Wainwright & Jordan, 2003a) for a com-
trivial estimates of marginal probabilities, showing that the yrehensive introduction to these constructions and their rel-
framework is not only appropriate for tail probabilities. evance to variational approximations.

2 Background and Basic Definitions 2.2 Conjugacy and support functions

We begin by establishing some notation and reviewing th&/Ve now recall some basic definitions and conventions from
basic properties of undirected graphical models and expofonvex analysis, referring to (Rockafellar, 1970) for fur-
nential family representations. We then review some basi¢her detail. Since generalized Chernoff bounds are based on

concepts from convex analysis that are required. linear approximations of convex (or possibly non-convex)
sets, the notion of support function arises naturally. The

2.1 Exponential family representations indicator functiond of a set is defined as

Let X = (X1, Xo, ..., X,) denote a random variable with Sol(z) = {0 ifzeC )
n components indexed by the nodes in a grépk (V, E), oo otherwise

where eachX; takes values in a finite séf. We assume

that X has an exponential family distribution of the form  Thesupport functiorof C € R™ is defined as

05 (A) = sup (x, A 6
polz) = exp (Z<0,¢<w>>—<1><9>> 1) 6l =g (= %) ©

The suggestive notation comes from the fact thaf'ifs
where(0, ¢(z)) = >, 0ada(x), ande(x) is the vector of  convex then the support functiaif is in fact the convex
sufficient statistics. The index sét= {a} is determined conjugate of the the indicator function.dfis convex, then
by the clique structure of the graph; for example, we mayz lies in the closure @' if and only if (x,\) < §&(N)
havea = (s, t; 1, j) corresponding to an indicator function for every A. In this cased;)* = dac. This shows that
do = 0(xs,1)8(z¢,7) for an edge(s,t) € E. Inanon- a closed convex sef' can be represented as the solution
minimal representation, there are dependencies among tlset of a family of linear inequalities, and thus the support



function characterize§'. We will also denote the support In casefy = (\, z) + u is affine, where\ andu are chosen

function by Sc (). subject to the constraint thék, z) + u > 0 for z € C, we

For an undirected graphical model with paramétevec- have that

tor of sufficient statistics(z) and log partition function logpe(X € C) < inflog By [6<A,w>+u] (14)

®(0), we will denote byd( f, ) the log partition function Au

for the (generally non-graphical) model with probabilities — inf (u + log Ey [6<M>D (15)
Au

proportional teexp ({6, ¢(z)) + f(z)); thus,

Now, sinceu > (—A,z) — dc(x), it follows thatinf u =
O(f,0) =Y exp ({6, 6(x)) + f(x)) (") sup, (A, z) — 6c(x) = 65(—N). Therefore,

. Y (\,z)
As a special case that will be useful below, logpo(X € C) < H)\If (5C( A) +log By {e D (16)

logp(x e C|0) = @(—=dc,0)— ®(0) (8)  For exponential family models, this line of argument leads
to the following bounds.

Proposition 1. Suppose thalX = (Xi,...,X,,) is an
exponential model with (non-minimal) sufficient statistic

3 Classical and Generalized Chernoff ¢(x) € R", and letC' C R™. Then
Bounds logpe(X € C) = @(—0¢,0) — D(9) (17)
< ir/{f O(fr,0) —@(0) (18)

We will also use the notatioft(—dc, 0) = P (0).

Let X be a real-valued random variable with distribution
determined by some parameter The Markov inequality

implies that for any\ > 0, for any family of functiongy, > —dc bounding the indica-

tor function. In particular,

po(X >u) = pg (e >eM) (©)  logpe(X € C) < inf Sc (=N +@(A+0)-®(0) (19)
< B[] (10)
whereSc 4(y) = sup,cc (y, ¢(x)), fory € R™,
From this it follows that
Proof. The equality in (17) follows from
logpg(X > u) < inf (—Au + log Ep [ (12)
ol ) AZO( o[e]) logpg(X € C) = log Z el02@) _ o (9)

In the classical formulations of Chernoff bounds that are e

so widely used in probabilistic analysis, the relation (11) log » e ocn 00 _ ¢(g)
is further manipulated so that the upper bound has an an- z

alytic form. For example, if the random variable s ~ = Oc(0) — 2(0)

Binomial(n, p), it can easily be shown (see below) that

Let fa(z) = (A ¢(z)) + u be an affine upper bound
—ns?/2 on —d¢. Then following the argument above, the bound
po(X <np(l-d))<e (2) i (19) follows from observing thalog £y [eAoCENT] =
DA+ 6) — D(0).

Boyd and Vandenberghe (2004) observe that the basic idea

behind inequality (11) can be considerably generalized irln case the vector of sufficient statistics includes e&¢h

a way that involves convex optimization. Rather than de-by restricting the linear function to one of the forf =

riving an expression that can be used to reason about ta{l\, z) + « rather thanfy = (X, ¢(z)) + u, we obtain a

probabilities analytically, one expresses an upper bound ogenerally weaker bound of the form

the desired probability in terms of a convex optimization .

problem, and obtains a rigorous numerical bound on theegpo(X € ) < Agﬁ{fm Sc(=A) + @(A +0) — ©(0) (20)

probability by solving the optimization problem. ) i
where nowS¢c = J¢ is the standard support function.
Let X now denote &™-valued random variable, whose

distribution is indicated by a parametgrand letC C R™.
To bound the probabilitpy(X € C), consider a param-
eterized family of upper bounds on the indicator functionClassical Chernoff bounds (Chernoff, 1952; Motwani &
—dc; thatis, letfy(z) > 0if z € C. Then clearly Raghavan, 1995) are widely used to obtain rough, analyti-
cally convenient bounds on tail probabilities for iid obser-
po(X € C) < inf By [e/] (13)  vations. If Xy, X,,..., X, are independent Bernou(i)

3.1 Classical Chernoff bounds
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Figure 1: Classical and optimized Chernoff bounds for independent Bernoulli trials (left) and a Markov model (right) for
Cs = {X| X Xi >np(1+6)} withp = 1 andd = 3. Left: n = 30 Bernoulli trials—the classical Chernoff bound

log P(X € Cs5) < —npd?/4 (top horizontal line)log P(X € Cs5) < np(d — (1 + 6)log(1 + d)) (second horizontal

line), and true probability (lower horizontal line); the curve shows the variational approximatidd(X € Cjs) <
—Anp(l+9§) — (0 + ) — ®(6). Right: bounds for a Markov model with = 30, 6, ; = —1 andf; = logp/(1 — p).

The curved line is the variational approximation, where the log partition functions are computed exactly using dynamic

programming; the bottom horizontal line is the true probability. The dashed curve is the variational approximation that
assumes independekit (same as curve in left plot).

trials, the upper Chernoff bound is established by using théog partition function is then approximated by an upper

Markov inequality to obtain bound that is more amenable to computation—however, in
the general case, such computation will involve more so-
logp(X € C5) < irAlf (—)\np (1+6)+FE [e)‘ 2 XD phisticated approximations and convex optimization.

for C5; = {X| Y, X; >np(1+0)}; this is equivalent 3.2 Example: Chernoff bounds for Markov models
to using the linear approximation to the indicator function
employed above. Using the convexity fp, in the form  One of the simplest extensions of the classical Chernoff

1 — z < e~*, the moment generating functidie* = X+] bounds for independent Bernoulli trials is the case of a
is bounded from above as Markov or hidden Markov model. For illustration we con-
sider a Markov model on two states, where the joint distri-
log E[e* 2 Xi] = Zlog (e*p+1-p) (21) butionforXy,..., X,, with X; € {0,1} is given by
‘ n m—1
< oA
< np(l—et) (22) p(X1,...,X,) x exp <Z€Xi—|— ZeXhXiJrl
=1 =1

This upper bound is then minimized to obtain the optimal

25
A =log(1 + §), and thus the Chernoff bound (25)

Thust = (90, 91, 90’0, 30’1, 91’0, 91@), with the CaS@O’O =
s 6o1 = 010 = 61,1 = 0 corresponding to independent

np
p(X € Cs) < <(1+§)(1+5)> (23)  Bernoulli(p) trials withp = e /(e% + ).

~___ Since the random variables are not independent, the clas-
A more commonly used form, because of its simplicity, issical Chernoff bound fope (3™, X; > np (1 + 3)) will
the weaker bound be highly biased. The generalized Chernoff bound for the

p(X €Cy) < o—np8%/4 (24) eventCs; = {X | >, X; >np(1+9)}is

which is valid whens < 2¢ — 1. po(X € Cy) S inf—dnp(1+0)+ (6+ 1) — 2(9)

We review this elementary analysis to point out that our apwhere A = (0, ,0,0,0,0). In this case the log parti-
proach in the general case for exponential family graphication functions®(8 + A) and®(8) are easily computed in
models is parallel. A family of upper bounds is expressedO(n) time using dynamic programming. However, com-
using a linear approximation to the indicator function, andputing the probabilityyo (X € Cjs) exactly using dynamic
this family of upper bounds is expressed in terms of the logorograming require®(n?) time—auxiliary states to count
partition function (or moment generating function). The ). X; must be introduced, requirin@(n) states at each



position. Similar statements can be made for graphicadnd SDER(K,,) = {u| Mi[u] = 0}.
models where the underlying graph is a tree.

An example of these bounds for a simple Markov modelPTOPOSition 2. Let M 5 MARG(K,,) be any convex set
is shown in Figure 1, where the bounds are compared t§1at contains SDERK,). Then
the classical bounds for the iid case. The left plot shows

bounds for Bernoulli trials withy = %; the right plot shows  logpy(X € C) < (30)

bounds for a Markov model of the form (25) with = 1

log 72 andf; ; = —1, which discourages neighboring 1s. sup {(9, ) + 5 logdet Alp) — SE,¢(M)} +cn — ()
ne

Such a tree-based graphical model is the simplest case of

the generalized Chernoff bounds we consider. For more . 15 = .

general graphical models, where dynamic programmingyvIth A(p) = Milu] + g1, wherel = [0, 1] is an (n +
may not be available, we must resort to more elaborate apt) * (7 + 1) block diagonal matrix, and,, = 4 log (%)

proximations.
The proof of this proposition follows from inequality (28)

and Theorem 1 of (Wainwright & Jordan, 2003b) after ob-
serving thatS¢ 4 (), as a supremum of linear functions, is
ﬁal convex function even if' is not convex, and that

4 Variational Chernoff Bounds

The exact log probability (17) and the generalized Cherno
bounds (19) require computation of log partition functions.

In order to derive tractable bounds, we apply upper and S¢,6(1)
lower variational bounds. L&b(V)(#) and®(X)(9) be up-

per and lower bounds ob(6), respectively. Then clearly

sup (A ) = Sop(N) (31)
= — irif (A, 1) + Sc,p(=A) (32)

W) gy _ L)
logps(X €C) < & 7(0) —2(0)  (26) In particular,—S¢ ; (1) is a concave function of. Thus,
logpe(X € C) > <I>(CL>(9) —oW(g) (27) solving the log determinant optimization problem above
and replacing®(#) with any lower bound®®) () gives

and, in addition, applying the bounds to (19) gives an upper bound opy (X € C).

logpg(X € C) < (28)
Aieann Sc.o(—=A) + @ (A +0) — 2H)(9) 4.2 Tree-reweighted belief propagation

In this section we describe the application of SemideﬁniteAn alternative approach to obtaining upper bounds on
relaxations and tree-based belief propagation in this frameg (9 1 )) is based on belief propagation. Wainwright et al.

work. (2003) show thaf (¢ + A) can be bounded from above by
minimizing a certain functional over “pseudomarginals” on
4.1 Semidefinite relaxation the nodes and edges in the graph that satisfy certain consis-

tency constraints. In order to use this method to obtain up-
Wainwright and Jordan (2003b) develop a semidefinite reper hounds ofog py(X € C), it is necessary to minimize
laxation of®(#) which leads to a log determinant optimiza- gver ). This is possible using a kind of pseudo-gradient
tion problem. The idea behind this approach is to bound thejescent algorithm that mirrors the approximate maximum
dual function®*, which is a negative entropy, in terms of |ikelihood estimation given in (Wainwright et al., 2003);
the entropy of a Gaussian. Since the entropy of a Gaussiafe do not pursue this approach here. For simplicity, in
is a log determinant, the semidefinite upper bound followsthe experiments reported in Section 6 we instead use the

The analySiS in (Walnwrlght & Jordan, 2003b) is reStriCtEdtree_reweighted BP a|gorithm to derivewer bounds on
to the case ot = {—1,1} and vertex and pairwise inter- 1o ,(X € C) using inequality (27).

action potentials on the complete grafih; this is the case ) o

we now assume, although the approach generalizes. However, the tree-based approach is somewhat limited.
. | e Since ®(—dc, 0) = log>, exp((6, ¢(x)) — dc(x)), we

Recalling some of the notation of (Wainwright & Jordan, gee thatic (x) may introduce additional couplings among

2003b), foru € R™, Mi[u]isthe(n+1) x (n+1) matrix  the nodes, forcing one to use more complicated variational

methods. For example, ib(x) contains only node and

! “11 Hn edge potentials, then we can use normal tree-based vari-
Hr Hin ational methods to compute a bound (). However, if

H2 par e Han (29) 9c(z) introduces coupling of more than two nodes, then
: : : : one cannot use simple tree-based methods anymore, but
L1 HMn-1)1 - Hn-1)n would have to resort to hyper-tree based methods to com-

fhn, il e 1 pute a bound fo®(—d¢, 9).



4.3 Lower bounds on® Lemmal. S ,(u) is the indicator functio vy, (4)-

At least two techniques are available for the required lowelLemma 2. For i € M (), * (1) = D5 (p).
boundsd (") (). By conjugate duality we have that

o0) = v ¢)(<97#> —® (1) (B3)  proof. Let 4 € Me, with u = 3. é(x)q(z) and
: ’ . > wcca(x) = 1. Suppose that, € bdM. Then since
= Mot ) ({0, ) — @ (p)) (34)  A'is closed and — A(6) = S, o(x)p(z| ) is onto

] rimM (Wainwright & Jordan, 2003a), there exists a se-
where Miaci(G, ¢) C MARG(G, ¢) is any subset con-  quencey,, € riM with p, = S, () p(x|6,), where
tained within the marginal polytope. The structured meany, ;. 10,) — q(z) andp,, — p. Thus,lim, p(z]6,) = 0
field approximation adopts a tractable subset of smaller dif ,. ¢ C, and hencdim ®(6,) = lim ®c(6,). Since

n nj-

mension than MARG, ¢), for which themax can be ¢+ (1,,) = supy((0, tn) — ®(0)) = (O, ptn) — ®(6,,), for
carried out using efficient iterative algorithms. However, thjs optimal value of),, we have that

Muact(G, @) is typically not convex, and the iterative al-

gorithms generally suffer from the presence of many lo- Em®* (1) = lim (B, 1) — ®(60,,)
cal maxima; see (Wainwright & Jordan, 2003a) for an n " no VR "
overview. = 1i711n (Ony tin) — P (0r)
An alternative approach is to make the approximation = lim P (un) = P& ()
n
d(0) > log < > exp(<0,¢(x)>)> (35)  The analysis foy. € ri M is similar. O
xze M-Best

where M-best is a set of (approximately) most probable - .
configurations. Yanover and Weiss (2003) develop an algol-:)roOf of Proposition 3.Define
rithm based on loopy belief propagation to efficiently com-
pute an approximat&/-best set. Such an approximation is
expected to be good when there are a few highly probable

configurations. We have obtained good results with this apd NN the Chemoff bound (19) can be expressed as
proach, but report below on the use of the structured mean

h(p, As 0) = Sc.p(=A) + (0 + A, p) — O (n) — B(0)

field approximation. logpo(X € C) < inf Sg,o(=A) + (0 + ) — 2(6)
_ = inf sup So(=A) + (0 + A, ) — @ (n) — ©(6)
5 Tightness of Chernoff Bounds HeM
= inf sup h(u, A; 6)
A pneEM

In this section we show that the generalized Chernoff
bounds with linear approximations to the indicator func-
tion are actuallyexactexpressions of event probabilities
in an exponential family graphical model in certain cases.
While the actual computation of the Chernoff bounds may
be highly nontrivial, this result gives an indication of the

Now, reversing theup andinf, we have that

sup inf h(u, A; )
pneM A

= sup inf See(—A)+ 0+ A, u) — () — ©(6)

power of the framework. peM A

Proposition 3. Let pp(X) = exp({d, (X)) — ®(0))) be = sup (0, p) — D" (1) — S& 4 (1) — ©(0)
an exponential model wittk = (Xi,...,X,,), where peM '

X — ¢(X) € R" is a one-to-one mapping. Then for = sup (0, u) — @5 (u) — ®(0)

C CR™, HeMc

= P(0)—2(0) =1 XeC
logpa(X € C) = inf Sc.a(—A) + (A +6) - 2(0) c(6) = 2(0) = logpo(X € C)

where the third equality follows from Lemma 1 and the
Thus the inequality in (19) is in fact an equality. In order fourth equality follows from Lemma 2.

to show this we first give two lemmas. Recall thet(¢) is . . .
: o Now, note that sincéc 4 (—\) is convexin\, (0 + A, i) —
the polytope of mean parameters associated gitDefine ®* (1) is concave iny, the marginal polytopeM(e)

M to be the mean parameters over probabilities re- ;
stri?:t(gg 100 M (¢) = {56 Re |3 Cp(xp) (z) = 1 is convex and compact, and®*(x) and consequently
) xE

e R
for somep with > - p(z) =1}. The first lemma we {6+ 1) (1) are upper semicontinuous oM

. ) Wainwright & Jordan, 2003a), we can conclude that
state without proof, referring to (Rockafellar, 1970) forde—( .gf h(i, A 0) = inf ) R, \;0) from
ils on support functions Subye g Infa hlge, A 6) = infa subyen hlp, A
tal : standard minimax results (Peck & Dumage, 1957). O



AverageL; error =+ std

Problem type Approximation method
Graph | Coupling \ Strength || MF/Tree lower | MF/SDP lower | Tree/MF upper| SDP heuristic
Repulsive| (0.25,1.0) || 0.0934+ 0.003 | 0.297+ 0.009 | 0.166+ 0.008 | 0.010+ 0.002
Repulsive| (0.25,2.0) || 0.1274+ 0.009 | 0.290+ 0.007 | 0.3274 0.059 | 0.024+ 0.002
Grid Mixed (0.25,1.0) || 0.054+ 0.028 | 0.4524+ 0.047 | 0.070+ 0.038 | 0.0264+ 0.002
Mixed (0.25,2.0) || 0.095+ 0.012 | 0.421+ 0.053 | 0.1384+ 0.011 | 0.0174 0.003
Attractive | (0.25,1.0) || 0.026+ 0.001 | 0.770+ 0.019 | 0.025+ 0.002 | 0.023+ 0.001
Attractive | (0.25,2.0) || 0.001+ 0.001 | 0.791+ 0.026 | 0.001+ 0.001 | 0.0164 0.002
Repulsive | (0.25,0.25)|| 0.072+ 0.010 | 0.290+ 0.006 | 0.069+ 0.011 | 0.021+ 0.001
Repulsive | (0.25,0.50)|| 0.132+ 0.009 | 0.238+ 0.007 | 0.156+ 0.016 | 0.016+ 0.001
Full Mixed (0.25,0.25)|| 0.032+ 0.001 | 0.393+ 0.014 | 0.029+ 0.001 | 0.013+ 0.004
Mixed (0.25,0.50) || 0.120+ 0.027 | 0.450+ 0.037 | 0.127+ 0.034 | 0.024+ 0.004
Attractive | (0.25,0.06)|| 0.009+ 0.001 | 0.445+ 0.009 | 0.007+ 0.001 | 0.019+ 0.003
Attractive | (0.25,0.12)|| 0.037+ 0.006 | 0.520+ 0.023 | 0.033+ 0.006 | 0.040+ 0.003

Table 1: L, approximation error of single node marginals for the fully connected giaphand the 4 nearest neighbour
grid with 9 nodes, with varying potential and coupling strendiffis:, dcoup). Three different variational methods are
compared: MF/Tree derives a lower bound with mean field approximatioffoand tree-reweighted belief propagation
for ®; MF/SDP derives a lower bound with the SDP relaxation usedbfofree/MF derives an upper bound using tree-
reweighted belief propagation fdro and mean field fo. SDP denotes the heuristic use of the dual parameters in the
SDP relaxation, with no provable upper or lower bounds.

6 Experimental Results abilities are computed using different approximations to the
log partition functions. As described in Sections 3 and 4,
To test the performance of the upper and lower bound methwe have thalogpy(X € C) = @ (6) — (6). In the case
ods, we performed experiments for binary random fieldsof the marginal at a single nod€, = {z € R" |z, = 1}.

on both a complete graph and a 2-D nearest-neighbor grite compute the bounds using the following methods:
graph, closely following the experiments in (Wainwright .

& Jordan, 2003b). In order to be able to compare theMF/Tree A lower bound orlogpy(X € C) is computed
bounds with the exact probabilities, we show results forPY applying the structured mean field approximation to
small graphs with 9 nodes. For different qualitative charac-®c (¢) and the tree-reweighted belief propagation approxi-

teristics of the exponential distributions (repulsive, mixed,mation to®(6).

olrattragtlve),W(ta ct%nstruct many rfandomrllytgenerfated ?Odl'\/lF/SDP. A lower bound orlog pg(X € C) is computed
€IS, and compute the mean error for each type of grapn. by the applying structured mean field approximation to
The graphical models were randomly generated accordin@c (6) and the semidefinite relaxation, resulting in a log
to the following specification. First, the parameters weredeterminant problem fob(6).

randomly generated in the following manner: . . . .
9 9 Tree/ME An upper bound is derived using tree-reweighted

Single node potentialsFor each trial, we samplé, ~  belief propagation to upper bourde(6), and using struc-
Uniform(—dpor, +dpor) independently for each node, where tured mean field to derive a lower bound &(v)).
1

dpot = - SDP. The semidefinite relaxation is used to heuristically

Edge Coup"ng potentiajsFor a given Coup“ng Strength estimate the marginal probablllty, asin (Wa|nWr|ght & Jor-
deoup three types of coupling are used: dan, 2003b), with no provable upper or lower bound.

Repulsive: 8, ~ Uniform(—2d oy, 0) To assess the accuracy of each approximation, we use the
Mixed: 6 ~ Uniform(—deoup +dcoup) Ly error, defined as
Attractive: 8¢ ~ Uniform(0, 2dcoup)

=3 lpe(X €C) = By(X €C) (36)
s=1

For a given model, the marginal probabilitieg(X; = 1)

andpy(Xs = 1,X; = 1) are computed exactly for each wherep, denotes the estimated marginal. The results are
node and edge by calculating the log partition function ex-shown in Table 1 for the single node case, and in Table 2
actly. Then, the variational Chernoff bounds on these probfor the case of node pairs.



AverageL; error =+ std

Problem type Approximation method
Graph | Coupling \ Strength || MF/Tree lower | MF/SDP lower | Tree/MF upper| SDP heuristic
Repulsive| (0.25,1.0) || 0.0254+ 0.003 | 0.1184+ 0.012 | 0.047+ 0.008 | 0.005+ 0.003
Repulsive| (0.25,2.0) || 0.034+ 0.005 | 0.108+ 0.010 | 0.101+ 0.022 | 0.013+ 0.001
Grid Mixed (0.25,1.0) || 0.026+ 0.004 | 0.243+0.022 | 0.037+ 0.009 | 0.0194+ 0.005
Mixed (0.25,2.0) || 0.056+ 0.024 | 0.250+ 0.035 | 0.0874 0.031 | 0.021+ 0.006
Attractive | (0.25,1.0) || 0.029+ 0.008 | 0.621+ 0.076 | 0.043+ 0.015 | 0.016+ 0.012
Attractive | (0.25,2.0) || 0.002+ 0.001 | 0.791+ 0.012 | 0.003+ 0.001 | 0.036+ 0.007
Repulsive | (0.25,0.25)|| 0.011+ 0.002 | 0.081+ 0.024 | 0.015+ 0.001 | 0.021+ 0.004
Repulsive | (0.25,0.50)|| 0.008+ 0.005 | 0.046+ 0.003 | 0.021+ 0.002 | 0.021+ 0.003
Full Mixed (0.25,0.25) || 0.040+ 0.006 | 0.216+ 0.013 | 0.014+ 0.001 | 0.012+ 0.007
Mixed (0.25,0.50)|| 0.068+ 0.011 | 0.250+ 0.033 | 0.052+ 0.005 | 0.016+ 0.011
Attractive | (0.25,0.06)|| 0.020+ 0.004 | 0.257+ 0.017 | 0.003+ 0.001 | 0.026+ 0.007
Attractive | (0.25,0.12)|| 0.061+ 0.009 | 0.367+ 0.019 | 0.0154+ 0.003 | 0.061+ 0.005

Table 2: L, approximation error of pairwise node marginals. Approximation methods are as described for Table 1.
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