
Splitting a Logic ProgramVladimir LifschitzDepartment of Computer Sciences and Department of PhilosophyUniversity of Texas at AustinAustin, TX 78712vl@cs.utexas.eduHudson TurnerDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712hudson@cs.utexas.eduAbstractIn many cases, a logic program can be divided into two parts, so that oneof them, the \bottom" part, does not refer to the predicates de�ned in the\top" part. The \bottom" rules can be used then for the evaluation of thepredicates that they de�ne, and the computed values can be used to sim-plify the \top" de�nitions. We discuss this idea of splitting a program inthe context of the answer set semantics. The main theorem shows how com-puting the answer sets for a program can be simpli�ed when the program issplit into parts. The programs covered by the theorem may use both nega-tion as failure and classical negation, and their rules may have disjunctiveheads. The usefulness of the concept of splitting for the investigation ofanswer sets is illustrated by several applications. First, we show that a con-servative extension theorem by Gelfond and Przymusinska and a theorem onthe closed world assumption by Gelfond and Lifschitz are easy consequencesof the splitting theorem. Second, (locally) strati�ed programs are shownto have a simple characterization in terms of splitting. The existence anduniqueness of an answer set for such a program can be easily derived fromthis characterization. Third, we relate the idea of splitting to the notion oforder-consistency.1 IntroductionIn many cases, a logic program can be divided into two parts, so that oneof them, the \bottom" part, does not refer to the predicates de�ned in the\top" part. The \bottom" rules can be used then for the evaluation of thepredicates that they de�ne, and the computed values can be used to simplifythe \top" de�nitions.This idea of splitting a logic program into parts has a rather long history.Although it is applicable even to positive programs, it turned out to be



particularly useful when negation as failure is involved. The best knownapplication of splitting is found in the notion of a strati�cation [Apt et al.,1988]. In a strati�ed program P , the �rst stratum is a bottom part thatdoes not contain negation as failure. Having substituted the values of thebottom predicates in the bodies of the remaining rules, we reduce P to aprogram with fewer strata. By applying the splitting step several times, andcomputing every time the \minimal model" of a positive bottom, we willarrive at the \intended model" of P . In fact, this step-by-step reductionto a series of positive programs is sometimes applicable even when P is notstrati�ed. This observation leads to the notion of a weakly strati�ed program[Przymusinska and Przymusinski, 1988].The notion of a strati�cation has been also extended in two other direc-tions. First, it may be possible to split a program into an in�nite|or eventrans�nite|sequence of parts, instead of a �nite number. This is what hap-pens in locally strati�ed programs [Przymusinski, 1988]. (As observed above,splitting a program into �nitely many parts can be achieved by repeatedlysplitting into two; introducing in�nite splittings is a nontrivial generaliza-tion.) Second, the bottom does not need to be a positive program. This ideahas led Schlipf [1992] to the de�nition of a \strati�ed pair," and Dix [1992]to the de�nitions of \relevance" and \modularity."In this paper, we discuss splitting in the context of the \answer set se-mantics" of [Gelfond and Lifschitz, 1991]. The main theorem shows howcomputing the answer sets for a program can be simpli�ed when the pro-gram is split into parts. The programs covered by the theorem may useboth negation as failure and classical negation, and their rules may havedisjunctive heads.The usefulness of the concept of splitting for the investigation of answersets is illustrated by several applications. First, we generalize a conservativeextension theorem from [Gelfond and Przymusinska, 1991] and the theo-rem on the closed world assumption from [Gelfond and Lifschitz, 1991], andshow that these generalizations can be easily proved as consequences of thesplitting theorem. Second, (locally) strati�ed programs are shown to have asimple characterization in terms of splitting. This characterization leads toa new proof of the existence and uniqueness of an answer set for a strati�edprogram. Third, we relate the idea of splitting to the syntactic property ofprograms called \order-consistency"; that property is important in view ofthe fact that it implies the existence of at least one answer set [Fages, 1994].Order-consistent programs can be characterized in terms of splitting also.After a brief review of the syntax and semantics of (disjunctive) programs(Section 2), we state the special case of the main theorem that deals withsplitting a program into two parts (Section 3) and show how it can be appliedto the study of conservative extensions (Section 4) and of the closed worldassumption (Section 5). Then the main theorem is stated in full generality(Section 6); it allows us to split a program into a trans�nite sequence ofparts. The theorem is applied to strati�ed programs in Section 7 and to



order-consistent programs in Section 8. We conclude with Section 9.2 ProgramsWe begin with a brief review of the syntax and semantics of disjunctivelogic programs. Consider a nonempty set of symbols called atoms. A literalis an atom possibly preceded by the classical negation symbol :. A ruleis determined by three �nite sets of literals|the set of head literals, theset of positive subgoals and the set of negated subgoals. The rule with thehead literals L1; : : : ; Ll, the positive subgoals Ll+1; : : : ; Lm and the negatedsubgoals Lm+1; : : : ; Ln is written asL1 j : : : j Ll  Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln:We will denote the three parts of a rule r by head(r), pos(r) and neg(r);lit(r) stands for head(r) [ pos(r) [ neg(r).A program is a set of rules. For any program P , by lit(P ) we denote theunion of the sets lit(r) for all r 2 P ; the literals in this set are said to occurin P .Note that this description of the syntax of programs is in some waysdi�erent from what is usually found in the literature. First, a program isa set of rules, rather than a list; similarly, the literals in the head and inthe body of a rule are not supposed to be ordered. The order of rules andsubgoals is essential for query evaluation, but it is irrelevant as long as we areinterested in the declarative semantics of the program. Second, we acceptan abstract view of what atoms are and say nothing about their internalstructure. The most important case is when the set of atoms is de�ned asthe set of ground atoms of a �rst-order language; then a large (even in�nite)set of rules can be speci�ed by a single \schematic rule" with variables. Hereagain, the di�erence between a \schematic rule" and the set of its \groundinstances," fundamental for the procedural view, is irrelevant for the studyof declarative properties.A program P is positive if, for every rule r 2 P , neg(r) = ;. The notionof an answer set is �rst de�ned for positive programs, as follows. A set X ofliterals is closed under a positive program P if, for every rule r 2 P such thatpos(r) � X , head(r) \X 6= ;. (We write X � Y when X is a subset of Y ,not necessarily proper.) A set of literals is logically closed if it is consistentor contains all literals. An answer set for a positive program P is a minimalset of literals that is both closed under P and logically closed.Now let P be an arbitrary program. Take a set X of literals. For eachrule r 2 P such that neg(r) \X = ;, consider the rule r0 de�ned byhead(r0) = head(r); pos(r0) = pos(r); neg(r0) = ;:The positive program consisting of all rules r0 obtained in this way is thereduct of P relative to X , denoted by PX . We say that X is an answer setfor P if X is an answer set for PX .



For example, fag is an answer set for the programa  not b;b  not a;because the reduct of this program relative to fag is f a  g, and fag isan answer set for this reduct. The only other answer set for this program isfbg.A literal L is a consequence of a program P if L belongs to all answersets for P .For future reference, we will summarize here some simple facts aboutanswer sets.Fact 1. If X is a consistent answer set for a program P , then every literalin X belongs to the head of one of the rules of P .Fact 2. If a program P has a consistent answer set, then all answer sets forP are consistent.Fact 3. A literal L is a consequence of a program P if and only if L belongsto all consistent answer sets for P .3 Splitting SetsA splitting set for a program P is any set U of literals such that, for everyrule r 2 P , if head(r) \ U 6= ; then lit(r) � U . If U is a splitting set for P ,we also say that U splits P . The set of rules r 2 P such that lit(r) � U iscalled the bottom of P relative to the splitting set U and denoted by bU(P ).The set P n bU(P ) is the top of P relative to U . It is clear that the headliterals of all rules in P n bU(P ) belong to lit(P ) n U .Every program P is split, trivially, by the empty set and by lit(P ). Foran example of a nontrivial splitting, consider the following program P1:a  b; not c;b  c; not a;c  :The set U = fcg splits P1; the last rule of P1 belongs to the bottom, and the�rst two rules form the top.A splitting set for a program P can be used to break the task of com-puting the answer sets for P into several tasks of the same kind for smallerprograms. This process involves the \partial evaluation" of the top of Pwith respect to each of the answer sets for the bottom of P .Consider, for instance, the unique answer set for the bottom of P1, whichis fcg. The \partial evaluation" of the top part of P1 consists in dropping its



�rst rule, because the negated subgoal c makes it \useless," and in droppingthe \trivial" positive subgoal c in the second rule. The result of simpli�cationis the program consisting of one rule:b not a: (1)The only answer set for P1 can be obtained by adding the only answer setfor (1), which is fbg, to the answer set for the bottom used in the evaluationprocess, fcg.To de�ne how this procedure works in general, we need the followingnotation. Consider two sets of literals U , X and a program P . For each ruler 2 P such that pos(r)\U is a part of X and neg(r)\U is disjoint from X ,take the rule r0 de�ned byhead(r0) = head(r); pos(r0) = pos(r) n U; neg(r0) = neg(r) n U:The program consisting of all rules r0 obtained in this way will be denotedby eU(P;X). For example,eU(P1 n bU(P1); fcg) = f b not a g:Let U be a splitting set for a program P . A solution to P (with respectto U) is a pair hX; Y i of sets of literals such that� X is an answer set for bU(P ),� Y is an answer set for eU(P n bU(P ); X),� X [ Y is consistent.For example, hfcg; fbgi is the only solution to P1 (with respect to fcg).Every literal occurring in bU(P ) belongs to lit(P ) \ U , and every lit-eral occurring in eU(P n bU(P ); X) belongs to lit(P ) n U . In view of Fact 1(Section 2), it follows that, for any solution hX; Y i to P ,X � lit(P ) \ U;Y � lit(P ) n U;and consequently X \ Y = ;.Splitting Set Theorem. Let U be a splitting set for a program P . A setA of literals is a consistent answer set for P if and only if A = X [ Y forsome solution hX; Y i to P with respect to U .In Section 6, this theorem is extended to sequences of splitting sets.In view of Fact 2 (Section 2), we conclude:



Corollary 1. Let U be a splitting set for a program P , such that thereexists at least one solution to P with respect to U . Program P is consistent,and a set A of literals is an answer set for P if and only if A = X [ Y forsome solution hX; Y i to P with respect to U .As another example, take the following program P2:c  a;c  b;a  not b;b  not a:Let U = fa; bg. The bottom consists of the last two rules and has twoanswer sets, fag and fbg. Program eU(P2 n bU(P2); fag) consists of one rule,c , and has one answer set, fcg. Thus the �rst solution to P2 is hfag; fcgi.Similarly, the second solution is hfbg; fcgi. By Corollary 1, the answer setsfor P2 are fa; cg and fb; cg.In view of Fact 3 (Section 2), the Splitting Set Theorem implies:Corollary 2. Let U be a splitting set for a program P . A literal L is aconsequence of P if and only if, for every solution hX; Y i to P with respectto U , L 2 X [ Y .The next example illustrates the role of the consistency condition in thede�nition of a solution. Let P3 be the program:b  ;a j b  :The only solution to P3 with respect to fa; bg is hfag; f:bgi. The pairhfbg; f:bgi is not a solution, because the set fb;:bg is inconsistent. Thisset is not an answer set for P3.The proof of the Splitting Set Theorem is based on the following obser-vations. The statement of the theorem can be reformulated as follows: If Uis a splitting set for P , then a consistent set X of literals is an answer setfor PX if and only if� X \ U is an answer set for bU(P )X\U ,� X n U is an answer set for eU(P n bU(P ); X \ U)XnU .Since these reducts have no common literals, the last two conditions can becombined into one: X is an answer set forbU(P )X\U [ eU(P n bU(P ); X \ U)XnU : (2)On the other hand, it is easy to see that PX is the same asbU(P )X\U [ (P n bU(P ))X : (3)In the proof, we verify that X is an answer set for (2) if and only if it is ananswer set for (3).



4 Application: Conservative ExtensionsIf we extend a program P by rules whose heads do not occur in P , then,typically, we do not expect to see any new consequences of the programamong the literals occurring in P . This conservative extension property(called \the weak principle of strati�cation" by Schlipf [1992] and \relevance"by Dix [1992]) is not valid without additional restrictions, however. Forinstance, after we extend a program by the contradictory rules a  and:a  , every literal in the language will become its consequence.One case when the conservative extension property does hold is describedin [Gelfond and Przymusinska, 1991], Proposition 2.1. In this section, westate a slightly more general fact and prove it as a corollary to the SplittingSet Theorem.A program is nondisjunctive if the head of each of its rules is a singleton.Proposition 1. Let P be a program, and let C be a consistent set of literalsthat do not occur in P and whose complements also do not occur in P . LetQ be a nondisjunctive program such that, for every rule r 2 Q, head(r) � Cand neg(r) � lit(P ). For any literal L =2 C, L is a consequence of P [ Q ifand only if L is a consequence of P .For instance, after adding the �rst two rules of program P2 to its lasttwo rules, a and b cannot turn into its consequences (take C = fcg).The theorem by Gelfond and Przymusinska mentioned above is the spe-cial case when, additionally, P is assumed to be nondisjunctive, neither Pnor Q uses classical negation, and pos(r) � lit(P ) for every r 2 Q.Proof of Proposition 1. Let U = lit(P ). From the fact that no literal inC occurs in P , we conclude that U splits P [Q, with the bottom P and thetop Q. Take any consistent answer set X for P . The program eU(Q;X) isnondisjunctive and positive, and the heads of all its rules are contained in C.Since C is consistent, it follows that this program has a unique answer set Y ,and Y � C. Furthermore, since no literal in C has its complement in lit(P ),and since X � lit(P ), the set X [Y is consistent. Thus, hX; Y i is a solutionto P [ Q with respect to U . Consequently, for every consistent answer setX for P there exists a set Y � C such that hX; Y i is a solution to P [ Q;moreover, if hX; Y i is a solution to P [ Q, then Y � C. By Corollary 2 tothe Splitting Set Theorem, it follows that a literal L =2 C is a consequenceof P [Q if and only if it is a consequence of P .5 Application: Closed World AssumptionThe closed world assumption rule for a literal L is the ruleL not L;



where L stands for the literal complementary to L. Rules of this kind play animportant part in knowledge representation ([Gelfond and Lifschitz, 1991],Section 3).The following theorem describes the e�ect of adding a set of closed worldassumption rules to a program:Proposition 2. Let P be a program, let C be a consistent set of literalsthat do not occur in P , and let P 0 be the program obtained from P by addingthe closed world assumption rules for all literals in C. If X is a consistentanswer set for P , then X [ fL 2 C : L =2 Xg (4)is a consistent answer set for P 0. Moreover, every consistent answer set forP 0 can be represented in form (4) for some consistent answer set X for P .This theorem can be illustrated by the following example. Let the set ofatoms be fp(1); p(2); q(1); q(2)g, let P4 be the programp(1)  ;:q(2)  ;and let P 04 be obtained from P4 by adding the closed world assumption rules:p(x)  not p(x);q(x)  not :q(x);(x 2 f1; 2g). Since the only answer set for P4 is fp(1);:q(2)g, Proposition 2shows that the only answer set for P 04 isfp(1);:q(2)g[ f:p(2); q(1)g:Proposition 4 from [Gelfond and Lifschitz, 1991] is the special case ofProposition 2 in which P is a nondisjunctive program without classical nega-tion, and C is the set of all negative literals.Proof of Proposition 2. Let U = lit(P ). From the fact that no literalin C occurs in P we conclude that U splits P 0 and bU(P 0) = P . Take anyconsistent answer set X for P . The program eU(P 0 n bU(P 0); X) consists ofthe rules L  for all literals L 2 C such that L =2 X . Obviously, the onlyanswer set Y for this program is fL 2 C : L =2 Xg. Since X and C areconsistent, X [ Y is consistent also. It follows that the solutions to P 0 arethe pairs hX; fL 2 C : L =2 Xgi, where X is an answer set for P . Now theassertion of Proposition 2 follows from the Splitting Set Theorem.6 Splitting SequencesA (trans�nite) sequence is a family whose index set is an initial segmentof ordinals, f� : � < �g. The ordinal � is the length of the sequence. A



sequence hU�i�<� of sets is monotone if U� � U� whenever � < �, andcontinuous if, for each limit ordinal � < �, U� = S�<�U�.A splitting sequence for a program P is a monotone, continuous sequencehU�i�<� of splitting sets for P such that S�<� U� = lit(P ).For instance, if U0 is a splitting set for P , then hU0; lit(P )i is a splittingsequence for P of length 2. Consider the well-known \even number" programP5: p(0)  ;p(S(x))  not p(x)(x = 0; S(0); S(S(0)); : : :). The following sequence of length ! is a splittingsequence for P5:hfp(0)g; fp(0); p(S(0))g; fp(0); p(S(0)); p(S(S(0)))g; : : :i: (5)The de�nition of a solution with respect to a splitting set is extended tosplitting sequences as follows. Let U = hU�i�<� be a splitting sequence fora program P . A solution to P (with respect to U) is a sequence hX�i�<� ofsets of literals such that� X0 is an answer set for bU0(P ),� for any � such that �+ 1 < �, X�+1 is an answer set foreU�(bU�+1(P ) n bU�(P ); [���X�);� for any limit ordinal � < �, X� = ;,� S�<�X� is consistent.It is easy to see that the solutions to P with respect to a splitting sequencehU0; lit(P )i are the same as the solutions to P with respect to the splittingset U0. The only solution hX0; X1; : : :i to P5 with respect to (5) is de�nedby the equations: Xn = ( fp(Sn(0))g; if n is even;;; otherwise:This is easy to check by induction on n.Let U = hU�i�<� be a splitting sequence for a program P , and lethX�i�<� be a sequence of sets of literals. Every literal occurring in bU0(P )belongs to lit(P ) \ U0, and every literal occurring ineU�(bU�+1(P ) n bU�(P ); [���X�)



(� + 1 < �) belongs to lit(P ) \ (U�+1 n U�). In view of Fact 1 (Section 2),it follows that, if hX�i�<� is a solution, thenX0 � lit(P ) \ U0;X�+1 � lit(P ) \ (U�+1 nU�):It follows that the members of any solution are pairwise disjoint.The following propositions generalize the Splitting Set Theorem and itscorollaries.Splitting Sequence Theorem. Let U = hU�i�<� be a splitting sequencefor a program P . A set A of literals is a consistent answer set for P if andonly if A = S�<�X� for some solution hX�i�<� to P with respect to U .Corollary 1. Let U = hU�i�<� be a splitting sequence for a program P ,such that there exists at least one solution to P with respect to U . ProgramP is consistent, and a set A of literals is an answer set for P if and only ifA = S�<�X� for some solution hX�i�<� to P with respect to U .Corollary 2. Let U = hU�i�<� be a splitting sequence for a program P . Aliteral L is a consequence of P if and only if, for every solution hX�i�<� toP with respect to U , L 2 S�<�X�.By Corollary 1, it follows that the only answer set for P5 isfp(Sn(0)) : n is eveng:The proof of the Splitting Sequence Theorem is based on the SplittingSet Theorem.7 ComponentsLet U = hU�i�<� be a splitting sequence for a program P , and let hX�i�<�be a sequence of sets of literals. Some applications of the Splitting SequenceTheorem depend on the syntactic form of the programs whose answer setscan be members of a solution:bU0(P );eU�(bU�+1(P ) n bU�(P );S���X�) (�+ 1 < �): (6)It is clear that each rule of each of these programs is obtained from a ruleof P by removing some of its subgoals. A more speci�c claim regarding thestructure of programs (6) can be made, using the following terminology.For any program P and any set X of literals, let rm(P;X) be the partof P obtained by removing all subgoals that belong to X , both positive andnegated, from each of the rules of P . For any program P and any splittingsequence U = hU�i�<� for P , the programsbU0(P );rm(bU�+1(P ) n bU�(P ); U�) (� + 1 < �)



will be called the U -components of P .For example, the U -components of P5 are the programs f p(Sn(0)) gfor all n.It is easy to see that for any set X of literals, eU�(bU�+1(P ) n bU�(P ); X)is a subset of rm(bU�+1(P ) n bU�(P ); U�). Consequently, each program in (6)is a subset of a U -component of P .To demonstrate the usefulness of the notion of a U -component, we willshow now that it leads to a simple characterization of the class of strati�edprograms.A level mapping is a function from literals to ordinals. A program P isstrati�ed if there exists a level mapping f such that, for every rule r 2 Pand any literals L1, L2,� if L1; L2 2 head(r) then f(L1) = f(L2),� if L1 2 head(r) and L2 2 pos(r) then f(L1) � f(L2),� if L1 2 head(r) and L2 2 neg(r) then f(L1) > f(L2).For instance, every positive program is strati�ed: take f(L) = 0 forevery literal L. Program P5 is a strati�ed program: take f(p(Sn(0))) = n.Programs P1 and P2 are not strati�ed.The de�nition given above is equivalent to the usual de�nition of a \lo-cally strati�ed" program [Przymusinski, 1988] when the set of atoms is de-�ned as the set of ground atoms of a �rst-order language, and there is noclassical negation. (A \nonlocal strati�cation" does not make sense in thecontext of the abstract view of atoms accepted here.)A rule r is a constraint if head(r) = ;. Clearly, if a program is strati�ed,this property will not be a�ected by adding or deleting constraints.Proposition 3. A program P that does not contain constraints is strati�edif and only if it has a splitting sequence U such that all U -components of Pare positive.Proof. Assume that P is strati�ed, and let f be the corresponding levelmapping. Take � to be the smallest ordinal that is greater than all valuesof f , and de�ne, for every � < �,U� = fL : f(L) < �g:It is easy to check that U = hU�i�<� is a splitting sequence for P , and thatall U -components of P are positive. Conversely, if U = hU�i�<� is a splittingsequence for P such that all U -components of P are positive, then we cande�ne f(L) as the smallest � such that L 2 U�.Proposition 3 leads to a new proof of a familiar property of strati�ednondisjunctive programs without classical negation ([Gelfond and Lifschitz,1988], Corollary 1):



Proposition 4. Every strati�ed, nondisjunctive program without classicalnegation has a unique answer set.Proof. Let P be a strati�ed, nondisjunctive program without classical nega-tion, and let U = hU�i�<� be a splitting sequence for P such that all U -components of P are positive. Then, for any sequence hX�i�<� of sets ofliterals, every program in (6) is a positive nondisjunctive program withoutclassical negation. Consequently, each of these programs has a unique an-swer set. It follows that the de�nition of a solution can be reformulated inthis case as follows: hX�i�<� is a solution to P if� X0 is the answer set for bU0(P ),� for any � such that �+ 1 < �, X�+1 is the answer set foreU�(bU�+1(P ) n bU�(P ); [���X�);� for any limit ordinal � < �, X� = ;,� S�<�X� is consistent.The �rst three conditions provide a recursive de�nition of hX�i�<�. Con-sequently, there is exactly one sequence satisfying these conditions. Everyelement of every member of this sequence is an atom, so that the last con-dition is satis�ed also.8 Splitting and Order-ConsistencyThe notions of a \signed" program (program with a signing) [Kunen, 1989]and an \order-consistent" program [Sato, 1990] can be de�ned as follows.In the de�nitions, P is assumed to be a nondisjunctive program withoutclassical negation.We say that P is signed if there exists a set S of atoms such that, forevery rule r in P , head(r) [ pos(r) � S; neg(r) \ S = ;or (head(r) [ pos(r))\ S = ;; neg(r) � S.To de�ne the much wider class of order-consistent programs, we needthe following notation. For any atom A, P+A and P�A are the smallest sets ofatoms such that A 2 P+A and, for every rule r 2 P ,� if head(r) � P+A then pos(r) � P+A and neg(r) � P�A ,� if head(r) � P�A then pos(r) � P�A and neg(r) � P+A .Program P is called order-consistent if there exists a level mapping f suchthat f(B) < f(A) whenever B 2 P+A \ P�A .The following theorem describes the relationship between these classesof programs:



Proposition 5. Let P be a nondisjunctive program without classical nega-tion. Program P is order-consistent if and only if it has a splitting sequenceU such that all U -components of P are signed.For instance, the following program P6 is order-consistent, but not signed:a  b;a  not b:Let U be the sequence hfbg; fa; bgi. This sequence splits P6, and the U -components of P6 are the signed programs f a g and ;.Using Proposition 5 and the Splitting Sequence Theorem, we can de-rive Fages's theorem [Fages, 1994] on the existence of an answer set for anorder-consistent program from a similar|and easier|theorem for signedprograms.Proof of Proposition 5 (sketch). Let P be a program with a splittingsequence U = hU�i�<� such that all U -components of P are signed. A levelmapping f required in the de�nition of order-consistency can be de�ned asfollows: For each atom A, f(A) is the least ordinal � such that A 2 U�.Assume, on the other hand, that P is order-consistent, and let f be thecorresponding level mapping. Arrange all atoms in a trans�nite sequencehA�i�<� so that f(A�) < f(A�) whenever � < �. A splitting sequencefor P can be de�ned by U� = S�<�(P+A� [ P�A� ). For this sequence U , allU -components of P are signed.9 ConclusionThe usefulness of splitting is illustrated in this paper by several applications.The Splitting Set Theorem is also employed in the paper \Language Inde-pendence and Language Tolerance in Logic Programs" [McCain and Turner,1993], which appears in this volume. It is used there to prove one of thecentral results|Theorem 6.1, which shows that, under some conditions, onecan ignore the fact that the language of a logic program is many-sorted. Weexpect that, in the future, the idea of splitting will �nd many other uses.AcknowledgementsThe authors would like to thank Norman McCain for useful discussions onthe subject of this paper. We are also grateful to Enrico Giunchiglia andG. N. Kartha for their comments. This work was partially supported byNational Science Foundation under grants IRI-9101078 and IRI-9306751.
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