Splitting a Logic Program

Vladimir Lifschitz

Department of Computer Sciences and Department of Philosophy
University of Texas at Austin

Austin, TX 78712

vl@cs.utexas.edu

Hudson Turner

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

hudson@cs.utexas.edu
Abstract

In many cases, a logic program can be divided into two parts, so that one
of them, the “bottom” part, does not refer to the predicates defined in the
“top” part. The “bottom” rules can be used then for the evaluation of the
predicates that they define, and the computed values can be used to sim-
plify the “top” definitions. We discuss this idea of splitting a program in
the context of the answer set semantics. The main theorem shows how com-
puting the answer sets for a program can be simplified when the program is
split into parts. The programs covered by the theorem may use both nega-
tion as failure and classical negation, and their rules may have disjunctive
heads. The usefulness of the concept of splitting for the investigation of
answer sets is illustrated by several applications. First, we show that a con-
servative extension theorem by Gelfond and Przymusinska and a theorem on
the closed world assumption by Gelfond and Lifschitz are easy consequences
of the splitting theorem. Second, (locally) stratified programs are shown
to have a simple characterization in terms of splitting. The existence and
uniqueness of an answer set for such a program can be easily derived from
this characterization. Third, we relate the idea of splitting to the notion of
order-consistency.

1 Introduction

In many cases, a logic program can be divided into two parts, so that one
of them, the “bottom” part, does not refer to the predicates defined in the
“top” part. The “bottom” rules can be used then for the evaluation of the
predicates that they define, and the computed values can be used to simplify
the “top” definitions.

This idea of splitting a logic program into parts has a rather long history.
Although it is applicable even to positive programs, it turned out to be



particularly useful when negation as failure is involved. The best known
application of splitting is found in the notion of a stratification [Apt et al.,
1988]. In a stratified program P, the first stratum is a bottom part that
does not contain negation as failure. Having substituted the values of the
bottom predicates in the bodies of the remaining rules, we reduce P to a
program with fewer strata. By applying the splitting step several times, and
computing every time the “minimal model” of a positive bottom, we will
arrive at the “intended model” of P. In fact, this step-by-step reduction
to a series of positive programs is sometimes applicable even when P is not
stratified. This observation leads to the notion of a weakly stratified program
[Przymusinska and Przymusinski, 1988].

The notion of a stratification has been also extended in two other direc-
tions. First, it may be possible to split a program into an infinite—or even
transfinite—sequence of parts, instead of a finite number. This is what hap-
pens in locally stratified programs [Przymusinski, 1988]. (As observed above,
splitting a program into finitely many parts can be achieved by repeatedly
splitting into two; introducing infinite splittings is a nontrivial generaliza-
tion.) Second, the bottom does not need to be a positive program. This idea
has led Schlipf [1992] to the definition of a “stratified pair,” and Dix [1992]
to the definitions of “relevance” and “modularity.”

In this paper, we discuss splitting in the context of the “answer set se-
mantics” of [Gelfond and Lifschitz, 1991]. The main theorem shows how
computing the answer sets for a program can be simplified when the pro-
gram is split into parts. The programs covered by the theorem may use
both negation as failure and classical negation, and their rules may have
disjunctive heads.

The usefulness of the concept of splitting for the investigation of answer
sets is illustrated by several applications. First, we generalize a conservative
extension theorem from [Gelfond and Przymusinska, 1991] and the theo-
rem on the closed world assumption from [Gelfond and Lifschitz, 1991], and
show that these generalizations can be easily proved as consequences of the
splitting theorem. Second, (locally) stratified programs are shown to have a
simple characterization in terms of splitting. This characterization leads to
a new proof of the existence and uniqueness of an answer set for a stratified
program. Third, we relate the idea of splitting to the syntactic property of
programs called “order-consistency”; that property is important in view of
the fact that it implies the existence of at least one answer set [Fages, 1994].
Order-consistent programs can be characterized in terms of splitting also.

After a brief review of the syntax and semantics of (disjunctive) programs
(Section 2), we state the special case of the main theorem that deals with
splitting a program into two parts (Section 3) and show how it can be applied
to the study of conservative extensions (Section 4) and of the closed world
assumption (Section 5). Then the main theorem is stated in full generality
(Section 6); it allows us to split a program into a transfinite sequence of
parts. The theorem is applied to stratified programs in Section 7 and to



order-consistent programs in Section 8. We conclude with Section 9.

2 Programs

We begin with a brief review of the syntax and semantics of disjunctive
logic programs. Consider a nonempty set of symbols called atoms. A literal
is an atom possibly preceded by the classical negation symbol —. A rule
is determined by three finite sets of literals—the set of head literals, the
set of positive subgoals and the set of negated subgoals. The rule with the
head literals Lq,..., L;, the positive subgoals L;,1,..., L, and the negated
subgoals L1, ..., L, is written as

Li|...|Li+ Ly, .., Ly,not Ly, ... not L.

We will denote the three parts of a rule r by head(r), pos(r) and neg(r);
lit(r) stands for head(r) U pos(r) U neg(r).

A program is a set of rules. For any program P, by lit(P) we denote the
union of the sets lit(r) for all r € P; the literals in this set are said to occur
in P.

Note that this description of the syntax of programs is in some ways
different from what is usually found in the literature. First, a program is
a set of rules, rather than a list; similarly, the literals in the head and in
the body of a rule are not supposed to be ordered. The order of rules and
subgoals is essential for query evaluation, but it is irrelevant as long as we are
interested in the declarative semantics of the program. Second, we accept
an abstract view of what atoms are and say nothing about their internal
structure. The most important case is when the set of atoms is defined as
the set of ground atoms of a first-order language; then a large (even infinite)
set of rules can be specified by a single “schematic rule” with variables. Here
again, the difference between a “schematic rule” and the set of its “ground
instances,” fundamental for the procedural view, is irrelevant for the study
of declarative properties.

A program P is positive if, for every rule r € P, neg(r) = (). The notion
of an answer set is first defined for positive programs, as follows. A set X of
literals is closed under a positive program P if, for every rule » € P such that
pos(r) C X, head(r) N X # 0. (We write X C Y when X is a subset of Y,
not necessarily proper.) A set of literals is logically closed if it is consistent
or contains all literals. An answer set for a positive program P is a minimal
set of literals that is both closed under P and logically closed.

Now let P be an arbitrary program. Take a set X of literals. For each
rule r € P such that neg(r) N X = 0, consider the rule r’ defined by

head(r') = head(r), pos(r') = pos(r), neg(r') = 0.

The positive program consisting of all rules r’ obtained in this way is the
reduct of P relative to X, denoted by PX. We say that X is an answer set
for P if X is an answer set for PX.



For example, {a} is an answer set for the program

a 4+ notb,
b + nota,

because the reduct of this program relative to {a} is { ¢ «+ }, and {a} is
an answer set for this reduct. The only other answer set for this program is
{b}.

A literal L is a consequence of a program P if L belongs to all answer
sets for P.

For future reference, we will summarize here some simple facts about
answer sets.

Fact 1. If X is a consistent answer set for a program P, then every literal
in X belongs to the head of one of the rules of P.

Fact 2. If a program P has a consistent answer set, then all answer sets for
P are consistent.

Fact 3. A literal L is a consequence of a program P if and only if I belongs
to all consistent answer sets for P.

3 Splitting Sets

A splitting set for a program P is any set U of literals such that, for every
rule r € P, if head(r) N U # () then lit(r) C U. If U is a splitting set for P,
we also say that U splits P. The set of rules r € P such that lit(r) C U is
called the bottom of P relative to the splitting set U and denoted by by (P).
The set P\ by (P) is the top of P relative to U. It is clear that the head
literals of all rules in P\ by (F) belong to lit(P) \ U.

Every program P is split, trivially, by the empty set and by lit(P). For
an example of a nontrivial splitting, consider the following program P;:

a 4+ b,not c,
b + ¢, not a,
C

The set U = {c} splits P;; the last rule of P, belongs to the bottom, and the
first two rules form the top.

A splitting set for a program P can be used to break the task of com-
puting the answer sets for P into several tasks of the same kind for smaller
programs. This process involves the “partial evaluation” of the top of P
with respect to each of the answer sets for the bottom of P.

Consider, for instance, the unique answer set for the bottom of P, which
is {c}. The “partial evaluation” of the top part of P, consists in dropping its



first rule, because the negated subgoal ¢ makes it “useless,” and in dropping
the “trivial” positive subgoal ¢ in the second rule. The result of simplification
is the program consisting of one rule:

b+ not a. (1)

The only answer set for P, can be obtained by adding the only answer set
for (1), which is {b}, to the answer set for the bottom used in the evaluation
process, {c}.

To define how this procedure works in general, we need the following
notation. Consider two sets of literals U, X and a program P. For each rule
r € P such that pos(r)NU is a part of X and neg(r)NU is disjoint from X,
take the rule r’ defined by

head(r') = head(r), pos(r') = pos(r) \ U, neg(r') = neg(r)\ U.

The program consisting of all rules »* obtained in this way will be denoted
by ey (P, X). For example,

ev(PL\bu(P),{c})={b+ nota}.

Let U be a splitting set for a program P. A solution to P (with respect
to U) is a pair (X, Y) of sets of literals such that

e X is an answer set for by (P),
e Y is an answer set for ey (P \ by (P), X),
e X UY is consistent.

For example, ({c}, {b}) is the only solution to P, (with respect to {c}).

Every literal occurring in by (P) belongs to lit(P) N U, and every lit-
eral occurring in ey (P \ by (P), X) belongs to lit(P) \ U. In view of Fact 1
(Section 2), it follows that, for any solution (X,Y) to P,

X C lit(P)nU,
Y C Lit(P)\ U,

and consequently X NY = 0.

Splitting Set Theorem. Let U be a splitting set for a program P. A set
A of literals is a consistent answer set for P if and only if A = X UY for
some solution (X,Y) to P with respect to U.

In Section 6, this theorem is extended to sequences of splitting sets.
In view of Fact 2 (Section 2), we conclude:



Corollary 1. Let U be a splitting set for a program P, such that there
exists at least one solution to P with respect to U. Program P is consistent,
and a set A of literals is an answer set for P if and only if A= X UY for
some solution (X,Y) to P with respect to U.

As another example, take the following program P;:

c — a,

c b,

a 4+ notb,

b + nota.
Let U = {a,b}. The bottom consists of the last two rules and has two
answer sets, {a} and {b}. Program ey (P, \ by (%), {a}) consists of one rule,

¢ <, and has one answer set, {c}. Thus the first solution to P is ({a}, {c}).
Similarly, the second solution is ({b},{c}). By Corollary 1, the answer sets
for P, are {a,c} and {b, c}.

In view of Fact 3 (Section 2), the Splitting Set Theorem implies:
Corollary 2. Let U be a splitting set for a program P. A literal L is a

consequence of P if and only if, for every solution (X,Y) to P with respect
toU,Le XUY.

The next example illustrates the role of the consistency condition in the

definition of a solution. Let P5 be the program
—-b s
alb «

The only solution to P; with respect to {a,b} is ({a},{=b}). The pair
({b},{—b}) is not a solution, because the set {b,=b} is inconsistent. This
set is not an answer set for Ps.

The proof of the Splitting Set Theorem is based on the following obser-
vations. The statement of the theorem can be reformulated as follows: If U

is a splitting set for P, then a consistent set X of literals is an answer set
for PX if and only if

e X NU is an answer set for by (P)*"Y,
e X\ U is an answer set for ey (P \ by (P), X NU)X\Y.

Since these reducts have no common literals, the last two conditions can be
combined into one: X is an answer set for

by (P)*"Y Uey (P \ by(P), X nU)*\Y. (2)
On the other hand, it is easy to see that P¥ is the same as
by (P)*™ U (P \ by (P))*. (3)

In the proof, we verify that X is an answer set for (2) if and only if it is an
answer set for (3).



4 Application: Conservative Extensions

If we extend a program P by rules whose heads do not occur in P, then,
typically, we do not expect to see any new consequences of the program
among the literals occurring in P. This conservative extension property
(called “the weak principle of stratification” by Schlipf [1992] and “relevance”
by Dix [1992]) is not valid without additional restrictions, however. For
instance, after we extend a program by the contradictory rules ¢ <+ and
—a 4, every literal in the language will become its consequence.

One case when the conservative extension property does hold is described
in [Gelfond and Przymusinska, 1991], Proposition 2.1. In this section, we
state a slightly more general fact and prove it as a corollary to the Splitting
Set Theorem.

A program is nondisjunctive if the head of each of its rules is a singleton.

Proposition 1. Let P be a program, and let C' be a consistent set of literals
that do not occur in P and whose complements also do not occur in P. Let
Q) be a nondisjunctive program such that, for every rule r € @, head(r) C C
and neg(r) C lit(P). For any literal L ¢ C, L is a consequence of P U Q if
and only if L is a consequence of P.

For instance, after adding the first two rules of program F; to its last
two rules, ¢ and b cannot turn into its consequences (take C' = {c}).

The theorem by Gelfond and Przymusinska mentioned above is the spe-
cial case when, additionally, P is assumed to be nondisjunctive, neither P
nor () uses classical negation, and pos(r) C lit(P) for every r € Q.

Proof of Proposition 1. Let U = lit(P). From the fact that no literal in
C occurs in P, we conclude that U splits PUQ), with the bottom P and the
top Q. Take any consistent answer set X for P. The program ey (Q, X) is
nondisjunctive and positive, and the heads of all its rules are contained in C.
Since C'is consistent, it follows that this program has a unique answer set Y,
and Y C C. Furthermore, since no literal in C' has its complement in lit(P),
and since X C lit(P), the set X UY is consistent. Thus, (X,Y) is a solution
to P U Q) with respect to U. Consequently, for every consistent answer set
X for P there exists a set Y C C such that (X,Y) is a solution to P U Q);
moreover, if (X,Y) is a solution to PUQ, then Y C C. By Corollary 2 to
the Splitting Set Theorem, it follows that a literal L ¢ C'is a consequence
of PUQ if and only if it is a consequence of P.

5 Application: Closed World Assumption
The closed world assumption rule for a literal L is the rule

L+ not L,



where L stands for the literal complementary to L. Rules of this kind play an
important part in knowledge representation ([Gelfond and Lifschitz, 1991],
Section 3).

The following theorem describes the effect of adding a set of closed world
assumption rules to a program:

Proposition 2. Let P be a program, let C' be a consistent set of literals
that do not occur in P, and let P' be the program obtained from P by adding
the closed world assumption rules for all literals in C'. If X is a consistent
answer set for P, then

Xu{LeC:L¢X} (4)

is a consistent answer set for P'. Moreover, every consistent answer set for
P’ can be represented in form (4) for some consistent answer set X for P.

This theorem can be illustrated by the following example. Let the set of
atoms be {p(1),p(2),4(1),¢(2)}, let Py be the program

p(l) «
—q(2) +

and let P; be obtained from P, by adding the closed world assumption rules

—p(e) «  not p(x),
() « not ~q(z),

(z € {1,2}). Since the only answer set for P, is {p(1), —¢(2)}, Proposition 2
shows that the only answer set for P is

{p(1),~q(2) U {=p(2),q(1)}.

Proposition 4 from [Gelfond and Lifschitz, 1991] is the special case of
Proposition 2 in which P is a nondisjunctive program without classical nega-
tion, and (' is the set of all negative literals.

Proof of Proposition 2. Let U = [it(P). From the fact that no literal
in C' occurs in P we conclude that U splits P' and by (FP') = P. Take any
consistent answer set X for P. The program ey (P’ \ by (F’), X) consists of
the rules L « for all literals L € C such that L ¢ X. Obviously, the only
answer set Y for this program is {L € C' : L ¢ X}. Since X and C are
consistent, X UY is consistent also. It follows that the solutions to P’ are
the pairs (X,{L € C': L ¢ X}), where X is an answer set for P. Now the
assertion of Proposition 2 follows from the Splitting Set Theorem.

6 Splitting Sequences

A (transfinite) sequence is a family whose index set is an initial segment
of ordinals, {a : @ < p}. The ordinal p is the length of the sequence. A



sequence (U,)qo<, of sets is monotone if U, C Uz whenever o < 3, and
continuous if, for each limit ordinal o < p, Uy = U, <, Uy-

A splitting sequence for a program P is a monotone, continuous sequence
(Ua)acy of splitting sets for P such that U,., Uy = lit(P).

For instance, if Uy is a splitting set for P, then (U, lit(P)) is a splitting
sequence for P of length 2. Consider the well-known “even number” program
Fs:

p(S(z)) « not p(x)

(z =10,5(0),5(5(0)),...). The following sequence of length w is a splitting
sequence for Ps:

{p(0)},{p(0), p(S(0))},{p(0), p(:5(0)), p(S(S(0)))}; - - - (5)

The definition of a solution with respect to a splitting set is extended to
splitting sequences as follows. Let U = (U,)a<, be a splitting sequence for
a program P. A solution to P (with respect to U) is a sequence (X,)q<, of
sets of literals such that

e X, is an answer set for by, (P),

e for any «a such that o+ 1 < p, X,y is an answer set for

€u,, (on(_‘_1 \ bU U X

v<a

e for any limit ordinal o < u, X, = 0,
® Uy<y Xo is consistent.

It is easy to see that the solutions to P with respect to a splitting sequence
(Uy, lit(P)) are the same as the solutions to P with respect to the splitting
set Uy. The only solution (X,, Xy,...) to Ps with respect to (5) is defined
by the equations:

X _ { {p(57(0))}, if nis even,
" 0, otherwise.
This is easy to check by induction on n.
Let U = (Ua)a<u be a splitting sequence for a program P, and let
(Xa)acu be asequence of sets of literals. Every literal occurring in by, (P)
belongs to lit(P) N Uy, and every literal occurring in

Ua (bUa+1 \ bU U X

v<a



(v +1 < p) belongs to lit(P) N (Uayr \ Uy). In view of Fact 1 (Section 2),
it follows that, if (X,)s<, is a solution, then

Xo C Uit(P) N Uy,
Xesr Clit(P) O (Unsr \ Us).

It follows that the members of any solution are pairwise disjoint.
The following propositions generalize the Splitting Set Theorem and its
corollaries.

Splitting Sequence Theorem. Let U = (U,).<, be a splitting sequence
for a program P. A set A of literals is a consistent answer set for P if and

only if A=J,., Xao for some solution (Xo)ac, to P with respect to U.

Corollary 1. Let U = (U,)a<, be a splitting sequence for a program P,
such that there exists at least one solution to P with respect to U. Program
P is consistent, and a set A of literals is an answer set for P if and only if
A = U<, Xao for some solution (Xo)ac, to P with respect to U.

Corollary 2. Let U = (U,)a<, be a splitting sequence for a program P. A
literal L is a consequence of P if and only if, for every solution (X,)a<, to
P with respect to U, L € U,., Xa-

By Corollary 1, it follows that the only answer set for P is
{p(5"(0)) : nis even}.

The proof of the Splitting Sequence Theorem is based on the Splitting
Set Theorem.

7 Components

Let U = (Uy) o<y be a splitting sequence for a program P, and let (X, )<,
be a sequence of sets of literals. Some applications of the Splitting Sequence
Theorem depend on the syntactic form of the programs whose answer sets
can be members of a solution:

ol 1) (6
ev, (bv (P)\ bu (P);U <0 X0) (a+1 < p).

It is clear that each rule of each of these programs is obtained from a rule
of P by removing some of its subgoals. A more specific claim regarding the
structure of programs (6) can be made, using the following terminology.

For any program P and any set X of literals, let rm(P, X') be the part
of P obtained by removing all subgoals that belong to X, both positive and
negated, from each of the rules of PP. For any program P and any splitting
sequence U = (Uy)q<, for P, the programs

qu(P)7
rm(by, ., (P) \ bu, (P),Us,) (v +1<p)



will be called the U-components of P.

For example, the U-components of Ps are the programs { p(5™(0)) < }
for all n.

It is easy to see that for any set X of literals, ey (by, ., (P) \ by, (P), X)
is a subset of rm(by,,, (P) \ by, (P),U,). Consequently, each program in (6)
is a subset of a U-component of P.

To demonstrate the usefulness of the notion of a U-component, we will
show now that it leads to a simple characterization of the class of stratified
programs.

A level mapping is a function from literals to ordinals. A program P is
stratified if there exists a level mapping f such that, for every rule r € P
and any literals L, Lo,

o if Ly, Ly € head(r) then f(Ly) = f(L2),
o if L, € head(r) and L, € pos(r) then f(L,) > f(L,),
o if L; € head(r) and L, € neg(r) then f(L;) > f(Ls).

For instance, every positive program is stratified: take f(L) = 0 for
every literal L. Program P is a stratified program: take f(p(5"(0))) =
Programs P, and P, are not stratified.

The definition given above is equivalent to the usual definition of a “lo-
cally stratified” program [Przymusinski, 1988] when the set of atoms is de-
fined as the set of ground atoms of a first-order language, and there is no
classical negation. (A “nonlocal stratification” does not make sense in the
context of the abstract view of atoms accepted here.)

A rule ris a constraint if head(r) = (. Clearly, if a program is stratified,
this property will not be affected by adding or deleting constraints.

n.

Proposition 3. A program P that does not contain constraints is stratified
if and only if it has a splitting sequence U such that all U-components of P
are positive.

Proof. Assume that P is stratified, and let f be the corresponding level
mapping. Take p to be the smallest ordinal that is greater than all values
of f, and define, for every a < p,

U,={L : f(L) < a}.

It is easy to check that U = (U,)a<, is a splitting sequence for P, and that
all U-components of P are positive. Conversely, if U = (U,)4<, is a splitting
sequence for P such that all U-components of P are positive, then we can
define f(L) as the smallest a such that L € U,.

Proposition 3 leads to a new proof of a familiar property of stratified

nondisjunctive programs without classical negation ([Gelfond and Lifschitz,
1988], Corollary 1):



Proposition 4. Every stratified, nondisjunctive program without classical
negation has a unique answer set.

Proof. Let P be a stratified, nondisjunctive program without classical nega-
tion, and let U = (U,)a<, be a splitting sequence for P such that all U-
components of P are positive. Then, for any sequence (X,)q<, of sets of
literals, every program in (6) is a positive nondisjunctive program without
classical negation. Consequently, each of these programs has a unique an-
swer set. It follows that the definition of a solution can be reformulated in
this case as follows: (X,)q<, is a solution to P if

e X, is the answer set for by, (P),

e for any « such that o+ 1 < p, X,y is the answer set for

ev, (bu.,, (P)\ by, (P), | X.),

v<a

for any limit ordinal o < u, X, = 0,

o U,<, Xq is consistent.

The first three conditions provide a recursive definition of (X,)a<,. Con-
sequently, there is exactly one sequence satisfying these conditions. Every
element of every member of this sequence is an atom, so that the last con-
dition is satisfied also.

8 Splitting and Order-Consistency

The notions of a “signed” program (program with a signing) [Kunen, 1989]
and an “order-consistent” program [Sato, 1990] can be defined as follows.
In the definitions, P is assumed to be a nondisjunctive program without
classical negation.

We say that P is signed if there exists a set S of atoms such that, for
every rule r in P,

head(r) U pos(r) C S, neg(r)NS =10

or

(head(r) U pos(r))N.S =0, neg(r) C S.

To define the much wider class of order-consistent programs, we need
the following notation. For any atom A, P and P are the smallest sets of
atoms such that A € Pf and, for every rule r € P,

e if head(r) C Pf then pos(r) C Pf and neg(r) C Py,
e if head(r) C Py then pos(r) C Py and neg(r) C Pf.

Program P is called order-consistent if there exists a level mapping f such
that f(B) < f(A) whenever B € Pf N Pjy.

The following theorem describes the relationship between these classes
of programs:



Proposition 5. Let P be a nondisjunctive program without classical nega-
tion. Program P is order-consistent if and only if it has a splitting sequence
U such that all U-components of P are signed.

For instance, the following program F; is order-consistent, but not signed:

a + b,
a <+ not b.

Let U be the sequence ({b},{a,b}). This sequence splits Fs, and the U-
components of P are the signed programs { @ « } and 0.

Using Proposition 5 and the Splitting Sequence Theorem, we can de-
rive Fages’s theorem [Fages, 1994] on the existence of an answer set for an
order-consistent program from a similar—and easier—theorem for signed
programs.

Proof of Proposition 5 (sketch). Let P be a program with a splitting
sequence U = (U,)q<, such that all U-components of P are signed. A level
mapping f required in the definition of order-consistency can be defined as
follows: For each atom A, f(A) is the least ordinal « such that A € U,.
Assume, on the other hand, that P is order-consistent, and let f be the
corresponding level mapping. Arrange all atoms in a transfinite sequence
(Aa)a<yu so that f(A,) < f(Ag) whenever @ < . A splitting sequence
for P can be defined by U, = Uz (P4, U Py,). For this sequence U, all
U-components of P are signed.

9 Conclusion

The usefulness of splitting is illustrated in this paper by several applications.
The Splitting Set Theorem is also employed in the paper “Language Inde-
pendence and Language Tolerance in Logic Programs” [McCain and Turner,
1993], which appears in this volume. It is used there to prove one of the
central results—Theorem 6.1, which shows that, under some conditions, one
can ignore the fact that the language of a logic program is many-sorted. We
expect that, in the future, the idea of splitting will find many other uses.

Acknowledgements

The authors would like to thank Norman McCain for useful discussions on
the subject of this paper. We are also grateful to Enrico Giunchiglia and
G. N. Kartha for their comments. This work was partially supported by
National Science Foundation under grants IRI-9101078 and IRI-9306751.



References

[Apt et al., 1988] Krzysztof Apt, Howard Blair, and Adrian Walker. To-
wards a theory of declarative knowledge. In Jack Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages 89-148.
Morgan Kaufmann, San Mateo, CA, 1988.

[Dix, 1992] Jiirgen Dix. Classifying semantics of disjunctive logic programs
(extended abstract). In Krzysztof Apt, editor, Proc. Joint Int’l Conf. and
Symp. on Logic Programming, pages 798-812, 1992.

[Fages, 1994] Francois Fages. Consistency of Clark’s completion and exis-
tence of stable models. Journal of Methods of Logic in Computer Science,
1(1):51-60, 1994. To appear.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The
stable model semantics for logic programming. In Robert Kowalski and
Kenneth Bowen, editors, Logic Programming: Proc. of the Fifth Int’l
Conf. and Symp., pages 1070-1080, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Clas-
sical negation in logic programs and disjunctive databases. New Genera-
tion Computing, 9:365-385, 1991.

[Gelfond and Przymusinska, 1991] Michael Gelfond and Halina Przymusin-
ska. Definitions in epistemic specifications. In Anil Nerode, Wiktor Marek,
and V. S. Subramanian, editors, Logic Programming and Non-monotonic

Reasoning: Proceedings of the First International Workshop, pages 245—
259, 1991.

[Kunen, 1989] Kenneth Kunen. Signed data dependencies in logic programs.
Journal of Logic Programming, 7(3):231-245, 1989.

[McCain and Turner, 1993] Norman McCain and Hudson Turner. Language
independence and language tolerance in logic programs. Submitted for
publication, 1993.

[Przymusinska and Przymusinski, 1988] Halina Przymusinska and Teodor
Przymusinski.  Weakly perfect model semantics for logic programs.
In Robert Kowalski and Kenneth Bowen, editors, Logic Programming:
Proc. of the Fifth Int’l Conf. and Symp., pages 1106-1120, 1988.

[Przymusinski, 1988] Teodor Przymusinski. On the declarative semantics of
deductive databases and logic programs. In Jack Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages 193-216.
Morgan Kaufmann, San Mateo, CA, 1988.

[Sato, 1990] Taisuke Sato. Completed logic programs and their consistency.
Journal of Logic Programming, 9:33-44, 1990.



[Schlipf, 1992] John Schlipf. Formalizing a logic for logic programming. An-
nals of Mathematics and Artificial Intelligence, 5:279-302, 1992.



