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Abstract—A baby experiencing the world for the first time
faces a considerable challenge sorting through what William
James called the “blooming, buzzing confusion” of the senses
[1]. With the increasing capacity of modern sensors and the
complexity of modern robot bodies, a robot in an unknown or
unfamiliar body faces a similar and equally daunting challenge.

In order to connect raw sensory experience to cognitive
function, an agent needs to decrease the dimensionality of sensory
signals. In this paper a new approach to dimensionality reduction
called sensorimotor embedding is presented, allowing an agent to
extract spatial and geometric information from raw sensorimotor
experience.

This approach is evaluated by learning the geometry of
GRIDWORLD and ROVINGEYE robot domains. The results show
that sensorimotor embedding provides a better mechanism for
extracting geometric information from sensorimotor experience
than standard dimensionality reduction methods.

I. INTRODUCTION

In the early stages of development infants form ego-centric
models of the world, which then serve as a basis for learning
more advanced concepts. A robot waking up in an unfamiliar
body faces a similar challenge, and acquiring an ego-centric
model that includes details of sensor, space, and object geome-
try would facilitate learning more advanced concepts. One im-
mediate barrier to acquiring geometric knowledge is the real-
time, high-dimensional nature of uninterpreted sensorimotor
signals, which poses a real challenge for existing state-of-the-
art manifold learning and dimensionality reduction methods.

With this in mind consider the following fundamental
problem for developmental robotics, called the sensorimotor
geometry problem in this paper.

Design a developmental process that, for any
roughly humanoid robot, starting only with a basic
set of sensor primitives and motor reflexes, pro-
gresses through a period of sensorimotor develop-
ment that results in knowledge of body, sensor and
object location and geometry.

Modern approaches for reducing data dimension applied
to sensory data alone do not take advantage of the power
of interaction between and agent and the environment. This
interaction between an agent and its environment provides a
rich source of sensor and motor data that allows for the more
powerful dimensionality reduction approach presented in this
paper.

II. RELATED WORK

There are a number of related approaches to extracting
structure from raw sensory experience, including several pre-
vious attempts to solve the sensorimotor geometry problem
introduced in the previous section. For instance, Pierce and
Kuipers used dimensionality reduction methods to learn ge-
ometry of robot sensors and motors [2]. This work was later
expanded on in a number of papers based on recent advance-
ments in dimensionality reduction and manifold learning. In
particular, Philipona et al. developed a sensorimotor approach
using embodied ISOMAP for learning spatial structure from
uninterpreted sensors and effectors [3], and Bowling et al.
developed the action respecting embedding (ARE) method
while working towards a solution to the problem of subjective
localization (solving SLAM problems without sensor and
action models) [4].

These methods fall short of solving the sensorimotor ge-
ometry problem. For example, dimensionality reduction alone
may not be able to learn spatial and geometric concepts beyond
sensor organization because these methods are sensitive to, but
do not take advantage of, the policy used to control the agent
during data collection (Stober et al. [5] provide examples of
problematic policies). Advanced approaches such as ARE are
based on maximum-variance unfolding (MVU), which does
not scale well on large datasets.

Stober et al. [6] demonstrated that sensor structure for
foveated sensors can be learned from sensorimotor experience
through careful analysis of saccade policies. 1 The key insight
was that careful analysis of learned policies can make implicit
geometric knowledge about sensor structure explicit. However,
that work was specific to discovering sensor structure. This
paper is motivated by the same insight, but extends it to
a larger class of geometric discovery and dimensionality
reduction problems.

III. ACQUIRING GEOMETRIC KNOWLEDGE

An agent undergoing sensorimotor development needs to
learn to represent certain geometric concepts in order to solve
the sensorimotor geometry problem and progress through
later stages of development. Geometry describes the relative
arrangement of objects or constituent parts. To learn geometry,

1Foveated sensors are non-uniform arrays of sensor elements that have a
high density fovea and a low density periphery. Saccades are ballistic sensor
motions.



an algorithm should take in sensorimotor data and produce
a set of low dimensional points whose relative arrangement
closely follows the true arrangement of the agent-environment
system when that system generated the sensor data.

For example, suppose an agent navigating the world re-
ceived a sequence sensor signals {zi}T0 at unknown poses
{xi}T0 . Sensor signals zi ∈ Rn are typically of much higher
dimension than the unknown poses xi ∈ Rm, e.g. m << n.
To acquire geometric knowledge of pose, the agent seeks a set
of low dimensional points {yi}T0 and a mapping from sensor
signals to these points, zi → yi, such that the points yi are
approximately the same dimension as the unknown poses xi
and ∀i, j, |xi−xj | ≈ |yi−yj |. In other words, the relative ar-
rangement of the learned representative points closely follows
the true arrangement of poses. These learned representative
points will sometimes be referred to as embeddings.

The usual approach to dimensionality reduction with un-
supervised learning methods uses distances among sensor
signals, δ(zi, zj) where δ is a metric over Rn, as a basis
for generating a set of representative low dimensional points
{yi}Ti . In practice, distance measurements between sensor
signals behave quite a bit differently than distance measure-
ments between poses, but modern methods of dimensionality
reduction minimize this difference by relying on only local
distance measurements and additional constraints in order to
generate reasonable low-dimensional representations.

Unlike most methods, both action respecting embedding
and the embodied ISOMAP approach cited earlier utilize
both sensor and action signals in determining low-dimensional
representations. Similarly, sensorimotor embedding takes into
account sequences of agent actions when constructing geomet-
ric representations out of sensorimotor experience.

As an example of why actions may be useful when con-
structing geometric representations, consider the following
example. Let z and z′ be two sensor signals separated by a
pose change ∆x. One reasonable way to describe the distance
between z and z′ is to set it equal to the magnitude of the
underlying change in agent position, δ(z, z′) = |∆x|. Since the
pose change is not known to the agent, another approach might
be to identify some method of comparing sensory inputs that
approximates the underlying change in pose δ(z, z′) ≈ |∆x|.
If this metric is locally accurate, then a global “pose space” can
be inferred using any number of manifold learning methods
(e.g. [7]–[9]).

The sensorimotor approach is different. Since the agent can
manipulate the environment, it can measure the magnitude of
actions taken to estimate the distance between sensor signals.
For methods like embodied ISOMAP, if z and z′ are related by
an intermediate action u, then δ(z, z′) ≈ |u|. In other words,
the magnitude of the action separating two sensory inputs is
approximately the magnitude of the pose change.

In practice, the dimension of the desired pose space is
smaller than the action space. As long as the magnitude of
the actions is similar to the underlying magnitude of the pose
changes, any number of techniques, including sensorimotor
embedding, exist for inferring a low-dimensional representa-

tion of global pose from this kind of local estimate. With
sensorimotor embedding as described in the next section, the
agent takes into account a sequence of actions that take it
from z and z′ to a shared goal in order to determine d(z, z′).
The primary advantage of this approach over others is that it
provides a good proxy for the distance between sensor states
even if those sensor states are not connected by a small local
action.

IV. SENSORIMOTOR EMBEDDING

With sensorimotor embedding, geometric knowledge is in-
ferred from the geometry of actions. The basic framework for
sensorimotor embedding involves three steps:

1) Learn an optimal policy for acquiring a perceptual goal;
2) Compute distances between perceptual states by com-

paring policy trajectories; and
3) Perform dimensionality reduction using the resulting

distance matrix.
This framework is quite flexible in that every step allows

for specific algorithmic choices. The first step requires speci-
fying a method for generating an optimal policy. The second
step requires choosing a method for computing the distances
between agent trajectories, e.g. two sequences of state-action
pairs. The third step requires choosing a method for generating
a low-dimensional representation based on a distance matrix.

A. Policy Improvement

Much of the power of this approach comes from the ability
of an agent to make improvements to its policy for navigating
to a goal state. Both value function and policy search methods
can be applied in this setting. The improved policy is not
analyzed directly. Rather, the (simulated or actual) trajectories
a policy generates are used to determine distances between
perceptual states.

Perceptual goals can be “built in” as in the GRIDWORLD
experiments or arise out of the application of simple gradient
following behaviors as in the IMAGEBOT experiments. Though
not evaluated here, these perceptual goals could also arise out
of the application of self-organizing distinctive state abstrac-
tions in general high-diameter reinforcement learning prob-
lems or bootstrapped topological maps in navigation domains
[10], [11].

The experiments presented below use both a value function
based method in the GRIDWORLD domain and a policy search
method in the IMAGEBOT domain. One key question for
sensorimotor embedding is whether the policy improvements
also “improve” an agent’s metric understanding of sensor
space and a key empirical result established in this paper
is that any method of improving an agent’s policy will also
improve the accuracy of the representation generated using
sensorimotor embedding.

B. Comparing Trajectories

In the experiments presented below, dynamic time warping
is used to compare trajectories. Consider two trajectories that



end at a perceptual goal state z̄. These trajectories are created
by following a policy π : Z → U and so have the form

z1
u1−→ z2

u2−→ z3
u3−→ · · · un−1−−−→ zn = z̄

z′1
u′1−→ z′2

u′2−→ z′3
u′3−→ · · ·

u′m−1−−−→ z′m = z̄,

where each action is the result of applying the policy π at
each state in the trajectory, e.g. π(zj) = uj . Using dynamic
time warping (e.g. [12]), it is possible to compare the sequence
of actions for each trajectory in a way that finds the minimum
difference between the two sequences. Using this difference,
it is possible to define the following dissimilarity measure on
the sensor space Z relative to the policy π:

δπ(z1, z
′
1) ≡ DTW(< ui >

n−1
1 , < u′j >

m−1
1 ),

where DTW represents the minimum distance between two
action sequences under dynamic time warping.2

Informally, the distance between sensory states is the dis-
tance between the sequence of actions that bring about a par-
ticular perceptual goal. δπ(z, z′) may be zero for some sensory
states z and z′ that differ but require the same sequence of
actions to reach a perceptual goal state z̄. This means that this
method aliases sensory states with identical dynamics. One
unique aspect of this approach is that it depends just on the
sequence of actions for the distance computation. Perceptual
information is used only for learning and applying the policy,
not directly for determining distances.

In cases with stochastic dynamics or policies, comparing
individual trajectories may yield inaccurate estimates of the
sensorimotor distance. In this case an agent would need to
use many trajectory samples in order to accurately estimate
the distance between sensory states.

Just like methods of dimensionality reduction applied to
only sensor data, the result of sensorimotor embedding is a
non-parametric map between sensor states {zi} and corre-
sponding low-dimensional representative points {yi}. There
are many possible approaches to deal with new points in-
cluding interpolating among nearest neighbors to infer low-
dimensional points for new data or performing regression on
the set of sensor state, low-dimensional point pairs {zi, yi}.

Ballistic policies are an important special case for sensori-
motor embedding.

Definition (Ballistic Policy). A policy π is a ballistic policy
if π(z) results in an action that takes an agent immediately to
a goal state z̄.

If the agent can learn a ballistic policy in the region of
a perceptual goal, then it can associate with each sensor
signal an action space coordinate given by the ballistic policy.
The agent can then infer an embedding directly, without the

2Dynamic time warping is not a proper metric over the space of action
sequences since the triangle inequality does not hold (see [13] for an example),
though experiments show that dynamic time warping works well in practice.

intermediate step of multidimensional scaling using inferred
distances discussed below. In any case, the key difference
between sensorimotor embedding and other methods is the
intermediate step of learning and analyzing a policy.

C. Dimensionality Reduction

For the experiments presented here, multidimensional scal-
ing [7] is used to generate a set of low-dimensional points
(referred to as an embedding) based on the interpoint distances
computed in step two. In principle many other methods,
including non-linear approaches can be applied at this stage.

Classical multidimensional scaling (MDS) was chosen since
it is a widely available, efficiently computable linear method
still in common use. MDS could also be applied to distance
matrices computed using sensor distances directly, allowing
for a comparison that highlights the contribution of the novel
dissimilarity measure introduced in this paper without the
confounding effects of other dimensionality reduction strate-
gies. MDS still requires that the dimension of the output be
chosen, but this dimension can be determined by analyzing the
eigenvalues associated with each dimension of the transformed
representation (Figure 3).

V. EXPERIMENTS

The steps described above are evaluated in GRIDWORLD
and ROVINGEYE domains. The GRIDWORLD domain is a
simple discrete type of Markov decision process meant to
establish whether geometric information concerning the lo-
cation of states in the domain can be extracted from policy
trajectories using sensorimotor embedding. The ROVINGEYE
domain provides an environment analogous to the visual ego-
sphere of a developing robot.

A. GRIDWORLD Experiments

GRIDWORLDS provide a simple discrete environment for
analyzing the ability of different sensorimotor methods to
recover the spatial layout of the world from the sensorimo-
tor experience of the agent. There are many algorithms for
learning optimal policies, and GRIDWORLDS provide a simple
abstract model for testing these approaches.

In Figure 1, trajectories generated using a random policy
did not lead to a reasonable embedding of the corresponding
states. However, after learning an optimal policy with Least-
Squares Policy Iteration [14] the same analysis resulted in
a far more accurate reconstruction of the underlying state
geometry. This result shows that performing sensorimotor
embedding using trajectories from an optimal policy leads
to a low-dimensional embedding of the states that closely
follows the ground-truth arrangement. Alternatively, this result
demonstrates that optimal policies contain implicit information
about environment geometry that sensorimotor embedding
makes explicit.

Figure 2 highlights the advantage of using sensorimotor
embedding over approaches that only use local distances.
The sensorimotor embedding approach is able to correctly
determine the relative locations of states that are adjacent
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Fig. 1: Figure (a) shows how the error decreases as the policy
improves with each iteration of least-squares policy iteration
(LSPI) [14]; the subplot is a visualization of an optimal policy
in the GRIDWORLD domain used for this experiment. Figure
(b) shows the result of inferring distances from a random walk
policy. Figure (c) shows multidimensional scaling [7] applied
to the distance matrix inferred from policies learned using
LSPI. Sensorimotor embedding is able to recover the state
space geometry using the learned optimal policy.

in the original environment, but separated by a barrier that
prevents any direct movement between them. Approaches
that only use local distance cues, like ISOMAP and ARE,
fail to capture the global geometric structure of the domain
in only two dimensions. By using trajectories to the goal
state, sensorimotor embedding can provide a two-dimensional
representation of the state geometry that is close to the ground
truth.

B. ROVINGEYE Experiments

In the ROVINGEYE domain, a simulated eye moves around a
static image. The goal of the agent is to learn to localize. This
domain was used in related work learning sensor geometry
(e.g. [2], [6]) and learning embeddings using action labels [15].
Unlike the simpler GRIDWORLD domain, the ROVINGEYE do-
main involves continuous action spaces and high-dimensional
perceptual inputs in the form of sub-images of a natural scene.
This provides a good test for the ability of this scheme to
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Fig. 2: Figure (a) shows the GRIDWORLD environment used
for this experiment. Figure (d) shows a 2D embedding gener-
ated using ISOMAP with distances drawn from the magnitude
of the local actions that move between states. Figure (b) shows
the 3D embedding using the same approach. Figure (c) shows
the result of applying sensorimotor embedding to full trajec-
tories. By using the full trajectories to the shared goal state to
determine interstate distances, sensorimotor embedding is able
to generate an accurate representation of the relative locations
using only two dimensions.

reduce the dimension of the input data.
In the experiments in this paper, the eye was a 128x128

array of pixels (Figure 4). The perceptual goal states for
this domain were generated by specifying a gradient policy
using a set of directional filters applied to the intensity image.
By following the gradient policy from each starting point
in the image, the agent can identify a much smaller set of
local maxima, that when clustered, form a reasonable set of
perceptual targets for learning. Following the gradient from
each point in the image results in a trajectory that terminates
at one of theses perceptual goals. The clusters represent the
regions of attraction for these local maxima. The filters used
and the resulting clusters are shown in Figure 4.

The principle goal of this experiment is to establish a link
between the quality of the embedding and the efficacy of the
trajectories that bring the agent from points in the environment
to perceptual goals. To this end several different approaches
to generating trajectories of varying quality were used.

For each of the multi-step policies, the action space is
limited to a set of 16 discrete actions representing movements
of length 5px in 16 different directions. The first type of
trajectories used for sensorimotor embedding resulted from
just following following the gradient. For the second approach,
ε-gradient, the agent followed the gradient but choose random
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Fig. 3: The scree diagram shows the normalized weight of
the first ten components in the new representation. A compact
representation, such as that generated using ballistic trajecto-
ries, should have a small number of high weight components.
A non-compact representation, such at that produced by MDS
applied directly to sensor distances, will have a less concen-
trated weight distribution.

actions with a probability of 15%. The agent used the highest-
scoring sample trajectories as the input for sensorimotor em-
bedding. The third approach used a near-optimal hand-coded
policy. Fourth, the agent learned a ballistic policy using the
same stochastic estimation method found in [6].

Example trajectories are shown in Figure 5. These trajec-
tories all attempt to acquire the same perceptual goal. When
terminating, the agent receives a reward based on the distance
to the goal. The score for a trajectory is discounted by the
number of actions taken to reach the final state. This has
the effect of assigning higher scores to shorter, more efficient
policies. The hand-coded policy generated the highest scoring
trajectories.

Procrustes analysis [16] is used to evaluate the quality of the
embedding that results from applying sensorimotor embedding
using each set of generated trajectories. This analysis corrects
for rotation and scale differences between sets of points before
computing the residual embedding error. A lower error implies
that points are a better statistical fit to the ground truth data,
which consists of the true pose of the roving eye corresponding
to each sensor signal. The scores along with corresponding
errors are shown in Table I.

Note that as the average score of the trajectories (measured
over a sampling of points in the region of a single perceptual
goal) increases, the error after Procrustes analysis decreases.
For comparison, classic multi-dimensional scaling was applied
to the raw intensity images, using pixel differences as a
measure of dissimilarity. That approach (the classic linear
dimensionality reduction approach) resulted in the highest
error. Trajectories that score higher (i.e. are more efficient)
result in lower error after performing sensorimotor embedding.
Figure 3 shows the importance of each component in the new
representation. The better performing methods, such as sen-
sorimotor embedding applied to ballistic trajectories, have the
most weight concentrated on a small number of components
in the new representation.

Figure 6 shows the result of sensorimotor embedding on
randomly selected points used in the analysis in Table I. For
clarity, only the ground truth poses and the result of embedding

+-
+-

Fig. 4: In the ROVINGEYE domain, a simulated eye moves
around a background image. In these experiments, the intensity
image filters determine the gradient. Following the gradient re-
sults in a local maxima which serves as a perceptual goal. The
image on the right shows the clustering of pixels according to
the goal state that results from following the gradient policy
at each pixel. Subsequent figures show the result of applying
sensorimotor embedding to points in the largest cluster.

Fig. 5: This shows three example trajectories (gradient, ε-
gradient, and hand-coded). The action sequences are used
to determine interpoint distances in the corresponding em-
bedding. The more efficient policies result in more accurate
embeddings.

gradient and ballistic trajectories are shown.
The ballistic trajectories result in a more accurate em-

bedding than the gradient trajectories, as indicated by the
Procrustes analysis in Table I. The difference in quality
between using optimal multi-step trajectories and learned
ballistic trajectories indicates that discretizing the action space
reduces the representational power of this approach. Similar
but less substantial improvements are observable with other
methods of generating trajectories.

VI. DISCUSSION AND FUTURE WORK

The experiments in this paper demonstrate that sensorimotor
embedding provides a mechanism for representing geometry
using sensorimotor experience, and that improvements in
policies result in better embeddings. This allows agents to
learn local geometry in an incremental and scalable way.
In addition, since spatial representations are derived from
actions using sensorimotor embedding, the resulting geometric
representations are naturally calibrated to the agent’s own
body.
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Fig. 6: This shows the ground truth, gradient and ballistic
sensorimotor embeddings for a set of randomly chosen points
within the region of the largest goal state cluster. Both ballistic
and gradient embeddings are connected to the ground truth
with line segments. The ballistic embedding provides the best
approximation of the ground truth arrangement of the points.

MDS (Sensor) Gradient ε-Gradient HC Ballistic
Score NA 0.35 0.51 0.62 0.67
Error 0.80 0.20 0.11 0.05 0.01

TABLE I: As the average trajectory score increases, the
residual error after Procrustes analysis decreases. The ballistic
trajectories result in the smallest error, in part because the
ballistic trajectories are capable of expressing the precise
distance relationships between points and goal states. Multi-
step trajectories using discrete actions (even with the near-
optimal hand-coded policy) are only capable of approximating
the ground truth interpoint distances.

Manifold learning methods have been used on a variety
of different kinds of data sets for many different reasons. In
only a limited number of cases have these methods been used
to evaluate sensorimotor data, and in fewer cases still have
these methods been applied to policies and policy trajectories.
This work shows the potential benefits of utilizing policy
trajectories in learning geometric knowledge.

There are several important avenues for future work. First,
the experiments in this paper did not involve the kind of
complex dynamics of fully humanoid robots. Showing that
this method is robust in more complex domains is a key focus
of future work. Since the quality of the knowledge derived
from sensorimotor experience depends crucially on the ability
to learn robust policies, a key issue in scaling this method
involves learning policies in these more complex domains.

A second area of future work involves comparisons with
the results of human experiments. Models that utilize manifold
learning combined with sensorimotor experience, and senso-
rimotor policies, may provide some constructive clues as to
certain observable but unexplained perceptual biases for tasks

that involve both perception and action.

VII. CONCLUSION

Sensorimotor embedding is a new approach to solving
the sensorimotor geometry problem. Unlike other methods
that use only perceptual data or local distances, sensorimotor
embedding takes full advantage of the interactive experience
of an embodied agent.

The experiments show that agents can use sensorimotor
embedding applied to interactive experience to recover the
geometry of the environment in both the GRIDWORLD and
ROVINGEYE domains. In addition, policies that improve on
gradient ascent result in more accurate embeddings, demon-
strating that agents can acquire geometric knowledge incre-
mentally and robustly through policy improvements.
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