A modular reinforcement learning model for human

visuomotor behavior in a driving task

January 10, 2011

Abstract

We present a task scheduling framework for
studying human eye movements in a realistic 3D
driving simulation. Human drivers are modeled
using a reinforcement learning algorithm with
“task modules” that make learning tractable and
provide a cost metric for behaviors. Eye move-
ment scheduling is simulated with a loss mini-
mization strategy that incorporates expected re-
ward estimates given uncertainty about the state
of environment. This work extends a previous
model that was applied to a simulation of walk-
ing; we extend this approach using a more dy-
namic state space and adding task modules that
reflect the greater complexity in driving. We also
discuss future work in applying this model to
navigation and fixation data from human drivers.

1 Introduction

Humans formulate and execute complex visuo-
motor action sequences while performing real-
world tasks like driving or playing sports. Pre-
vious work has explored the role that visually
“salient” [5] features play in making saccades,
but this research has focused largely on 2D im-
ages or videos where human subjects are observ-
ing the scene and not actively participating in
a visuo-motor task. In contrast, when perform-
ing tasks in natural environments, humans inter-
act with the world, and high-level cognitive goals
and reward [3, 6] play an important role in the
execution of eye movements. However, the mech-

anisms underlying these task-driven saccades are
not well understood.

This paper presents a high-level, task-based
scheduling framework for studying human eye
movements in a realistic, 3D driving simulation.
Our primary aim is to present an abstract frame-
work for interpreting human eye movement be-
havior that explicitly represents task demands,
reward and perceptual uncertainty. This ap-
proach allows modeling of visual behavior over
long time scales that has not been typically ad-
dressed in vision science. Our model is quite
abstract in that no image processing is used and
major simplifications are made to ease the pro-
cess of modeling driving behavior. The model is
still in development and we focus here on provid-
ing a technical report of our methodology and a
review of the current state of ongoing research.

We model human drivers computationally us-
ing a reinforcement learning algorithm that
breaks the complex state space of driving into
several “task modules” that make learning com-
putationally tractable [7]. Modules also provide
a cost metric that allows direct comparison of
the relative values of different behaviors. In
our model, eye movement scheduling attempts
to minimize the expected loss of reward given
the current knowledge of the state of the world
and the uncertainty in the state estimate. From
a high level, eye movements are directed toward
targets in order to reduce uncertainty about po-
tentially high-reward portions of the state space.

2 Background

Prior research suggests that although human
vision has massively parallel inputs from the
retina, due to attentional and memory limita-
tions many visuo-motor computations are serial
[3]. Studies have found that humans often em-
ploy active vision strategies of gathering specific
and discrete pieces of visual information as a task
develops [4, 2]. These data suggest that one ap-
proach to model goal directed human vision is
to use serial “visuo-motor task modules,” some-
times referred to as visual routines [1, 11]. These
modules perform very specific computations in
isolation (e.g., finding a road landmark to con-
trol steering), but when coordinated over time
with other modules, complex behaviors can be
achieved.

With this type of approach, a scheduling
problem arises: What visuo-motor computations
should be carried out and when should they be
executed? Our work presents one solution to
this scheduling problem by using reward values
and uncertainty to solve the arbitration of vi-
sual computations. This work extends a previ-
ously developed reinforcement learning model [9]
that has been successfully applied to a simulated
three-task walking world with static obstacles
and goals.

Sprague and Ballard simulated a humanoid
walking down a sidewalk with obstacles and “lit-
ter” to be picked up. Their algorithm has dis-
tinct perceptual and motor components. Vi-
sual computations were broken down into com-
ponents for avoidance of obstacles, “picking up”
items and sidewalk following. Each of these mod-
ules has a dedicated visual computation that
finds the distance and angle to the sidewalk,
obstacles and litter. The motor system uses
this state information to navigate (turn left,
turn right or go straight) using a control pol-
icy learned via reinforcement learning. Only
one visual module at a time can run to get
a new update of state information. Idle mod-
ules are allowed to update their representations
via a Kalman filter, introducing uncertainty into

their state estimates. The perceptual arbitra-
tion system selects a module to be updated with
new sensory information. Crucially, the percep-
tual arbitration algorithm uses reward estimates
from the motor component and estimates of state
uncertainty in the perceptual system to choose
which module to update.

The present research applies a similar method-
ology to a simulated driving task. In compari-
son to walking, the driving task requires a more
complex and dynamic state space and has more
task modules to address the greater variety of
available tasks while driving. After briefly intro-
ducing reinforcement learning and describing the
driving simulation, we present some preliminary
results and then conclude with a description of
future work in applying this model to navigation
and fixation data from human drivers in a real-
istic 3D car simulation.

3 Reinforcement Learning

Reinforcement learning (RL) [10] is a goal-
focused learning framework that directly mod-
els the interaction between learner and environ-
ment. RL finds a mapping between a current
environmental state and an appropriate action
to execute in that state. In our application, we
use RL to find a control policy that maps en-
vironmental states to actions to control steering
and velocity of a simulated car. Our specific im-
plementation of the state and actions spaces is
presented in section 4.

Here we present a brief primer on the RL
framework, focusing on the Q-learning [12] vari-
ant of the algorithm. A learning agent (LA)
maintains a vector s; of discrete variables de-
scribing the state of the world over a series of
discrete time steps t = 1...7T. At each time
step, the LA chooses a discrete action a; that will
maximize the available reward. Positive or nega-
tive reinforcement r; is given to the LA whenever
s¢ is a state that achieves some goal or subgoal,
specified by the modeler as part of the construc-
tion of the world. The LA receives supervision
only in the form of these explicit reward values,

which are often nonzero only for a small fraction
of world states.

During training, the LA constructs an exhaus-
tive @ table Q(s¢, a;) of the expected rewards
that are attainable by taking each action from
each state in the world. If the LA takes an ac-
tion a; when the world is in state s;, it observes
the resulting state s;41 and its associated reward
r¢+1 on the following time step. Using a learn-
ing rule, the LA can then update Q(st,a:) so
that over time this @) value becomes closer to
the “expected future reward” for (s, a¢). The
LA adjusts the @ values by following the gradi-
ent of the error in Q:

Q(st,at) < Q(st,ar) + aAQ(st, ar)

where a € [0, 1] is a learning rate parameter (set
to 0.2 for our simulations) and AQ is the di-
rection of the greatest observed change in @Q at
(St, at).

The optimal () values reflect both the imme-
diate reward in a state, and all future rewards
attainable from that state, discounted exponen-
tially by the number of time steps required to
reach those future states. Thus AQ takes the
form

AQ(s1,ar) = Teg1 + 7Q(5t41) — Q5. ar)

where ryy; is the reward available in state syt
(which follows state s; after taking action ay)
and v is a parameter called the discount factor.
Values of v near 0 cause the LA to rely more
on immediate rewards for the @ values, while
values near 1 blur the distinction between im-
mediate and future reward, allowing the agent
to postpone immediate rewards for potentially
larger future rewards. For our simulations, we
set v = 0.999.

A simple yet powerful learning rule for Q(stH)
is simply the @ value associated with the subse-
quent action selected by the agent:

Q(st41) = Q(St41, e 41)

This rule, called SARSA learning, ensures that,
along any given sequence of state/action pairs

that are actually chosen by the agent, the ex-
pected rewards obey the discounting enforced by
the v parameter.

Our simulation uses the @) values to choose an
action using a softmax rule, where the probabil-
ity of choosing action a; when the world is in
state s; is given by

exp (Q(st, at))
>oaerp(Q(se,a))

GM-SARSA

Traditional RL operates within a single, joint
state space that must be capable of represent-
ing all task-relevant aspects of the world si-
multaneously. Because the LA must visit each
state/action pair multiple times during learning
to formulate an accurate estimate of the @ val-
ues, a large state space leads to slower conver-
gence during learning. In complex environments,
RL is much more efficient if a learner is allowed to
focus just on the state variables that are relevant
for a particular task. Instead of running the driv-
ing simulation in a joint state space that repre-
sents all possible variables of interest simultane-
ously, we used a technique called GM-SARSA 8]
to split the world into small task modules.

In GM-SARSA, each task module : = 1... N
has a separate state space and @ table, Q*(st, a;),
but the tasks share a common action space.
When the LA needs to select action a;, it uses
the state estimates s},...,sY for each task to
retrieve the corresponding vectors of @ val-
ues Q(st,-),...,QN(slN,-). These vectors are
summed, and the result

placlst) =

3.1

N
Q*(ar) =Y Q'(s}, ar)
i=1

is used in the decision rule to select the best ac-
tion.

The SARSA learning rule maintains the cor-
rectness of task learning with multiple modules.
Because the action a; is shared among all mod-
ules, the @ tables can be updated correctly even
though a; might not have corresponded to the

highest-reward action for any of the individual
task modules.

4 Modular RL for Driving

Our driving model consists of C' ~ 20 cars that
drive in the lanes of a simulated world including
a four-lane road (two lanes in each direction),
cars, and pedestrians. Two of the cars in the
world have special roles: car 1 is controlled by
the learning agent in the simulation, and car 2
is called the “pace car” and is described in more
detail below. Cars 3...C serve mostly as ob-
stacles for the learning agent. Figure 1 shows
a screenshot of the cars in the simulated world,
and figure 4 shows a screenshot of state space in
the simulated world, after we have projected it
into the realistic, 3D driving environment that
we use for human subjects.

All of the cars move in the same direction
and are constrained to drive along one of two
tracks that represent the two available lanes on
the road. Each car thus maintains three scalar
variables that describe its state in the world:
0. represents the distance (in meters) traveled
along the track by car ¢, o, represents the speed
(in meters per second) of the car on its track,
and A, € {0,1} represents the lane that car ¢
currently occupies. In the 3D simulation for
humans, described in more detail below, these
scalars are mapped to the 3D positions of the
lanes in a virtual world that also includes build-
ings, signs, and other realistic effects, but each
car in the RL portion of the simulation is com-
pletely represented by these three scalars.

All agents other than the learner move at a
fixed speed along one track, but these states
change randomly on average every 1000 time
steps to prevent the LA from overlearning a
static world. When choosing new values, cars
2...C draw a new speed uniformly from [0, 3]
(where ¥ is the maximum speed allowed for any
car, set to 13 m/s in our simulations) and a new
track uniformly from {0, 1}.

“
¢ é

&u‘.

Figure 1: The simulated RL driving world con-
sists of the LA (black dot), a pace car that the
LA is rewarded for following (blue dot), and sev-
eral other agents that the LA is punished for
hitting (red dots). Each car has a “flag” whose
length indicates the car’s speed. Lanes for driv-
ing are shown as curvy colored lines, even though
to the RL agents the lanes are one-dimensional.

4.1 Task Modules

The RL model uses several modules coordinated
over time to drive. While there are many pos-
sible sub-tasks to include in our framework we
limit ourselves to a basic set that could be ap-
plied to data from human drivers. These mod-
ules are dedicated to tasks for avoidance, fol-
lowing another car, and simply driving forward.
Figure 2 shows a graphical representation of the
state space used by each module discussed be-
low. Additionally, Figure 3 (page 8) shows a
high level overview of the scheduling model and
how modules are coordinated.

4.1.1 Forward Progress

The LA is encouraged to move around the track
by a dedicated task module that provides a small
positive reward Ry, whenever the LA is moving
at speed greater than % Without this task mod-
ule, the LA tends to stop moving, which no hu-
mans do in the 3D driving simulator. The state

space for this task is simply the speed of the LA,
divided into N, uniformly spaced bins.

4.1.2 Car Following

The LA receives a positive reward Ry for follow-
ing the pace car at a fixed distance of 10 m, with
arelative speed of 0 m/s (i.e., whenever the LA is
following behind the pace car and both cars are
going the same speed). The state space for this
module consists of three dimensions: the lane
indicator, the relative distance, and the relative
speed. The lane indicator is an ordered pair from
{0,1} x {0,1} that represents the lanes for the
LA and the pace car. The relative distance is
given by max(min(ds — 1, D), —D), where D is
a constant (set to 200 m in our simulations) that
represents the maximum distance the LA can
discriminate. This dimension is quantized into
Ns uniformly spaced bins. Similarly, the relative
speed is given by max(min(oy — o1, %), —%) and
is quantized into N, uniformly spaced bins.

4.1.3 Car Avoidance

The LA receives a negative reward R, for collid-
ing with any of the other cars in the world. A
world state is considered a collision whenever

|max(min(d, — 41, D), —D)| < —

and the relative speed between the LA and the
obstacle is less than 0. This task uses the same
state space as the following task described above.
The driving simulation includes one task mod-
ule that tracks the closest obstacle (including the
pace car) to the LA at every time step, but could
easily include more such modules representing
the states of the next-closest obstacles.

4.2 Action Space

While each module tracks different information
in the world, they share the same set of actions.
Given the current state of the world, the LA can
read out the) estimates for each module and
evaluate the optimal action via GM-SARSA. The

69 38 7 23 53 84

1.3 5 7 9 11

-3 0 13 43 0 13

pedal

69 38 7 23 53 84

13 5 7 9 11

steering

-3 0 13
follow

13 0 13
avoid

Figure 2: The state space of each of the three
simulated tasks (arranged in columns: move, fol-
low, and avoid) and two action variables (ar-
ranged in rows: pedal and steering). Within
the left column, the “forward progress” task uses
only the speed of the LA. In the middle, the “fol-
low” task uses the lanes of the LA and the pace
car (major horizontal axis), their relative speeds
(minor horizontal axis), and their relative dis-
tances (vertical axis). Within the right column,
the “avoid” task uses the same state space as
the “follow” task, but represents the distance
and speed to the closest obstacle in the world.
Shades of red in this diagram depict the @ val-
ues for corresponding states: dark shades repre-
sent negative values, while bright shades repre-
sent positive values.

action space for each module contains a steer-
ing component and a velocity component. The
actions are discretized such that steering con-
trol has three options: staying in the same lane,
changing to the right lane, or changing to the left
lane. Similarly, velocity control features three
options: speed up, stay at the same speed, or
slow down.

4.3 Training and Evaluation

Training takes place in episodes that start with
a randomly configured world and end whenever
any task module of the LA has been in the same
state for 10 time steps. When an episode ends,

the LA undergoes 100 time steps of evaluation
to track the progress of training, and then the
world is reconfigured randomly and a new train-
ing episode begins.

To reset the world, all cars 2...C are placed
by randomly selecting a lane, position, and speed
from uniform distributions across the full ranges
of these variables. The LA is placed behind the
pace car, but the distance from the LA to the
pace car increases in variance with the number
of training episodes. This gives the LA early
exposure to the high-reward state that follows
the pace car around the track, but makes the
following task increasingly distant in state space
as training progresses.

During evaluation, the world is reset to a “test
state” and 100 time steps of simulation are per-
formed. The LA uses its @) tables to calculate the
optimal action at each time step, but no learning
takes place. The number of time steps in which
the learner is following the pace car, along with
the number of time steps in which the LA inter-
cepts another car (i.e., a collision) are recorded.

5 Eye Movements

5.1 Perceptual Arbitration

In the learning framework we have presented so
far, the LA always has access to accurate state
information. This is not the case in a real driving
task, where a human driver with limited visual
resources must fixate specific targets over time
to resolve their true locations or speeds. There-
fore, we follow the approach developed for a more
static walking task [9] and incorporate the notion
of state uncertainty into our model.

Instead of making a decision based on perfect
state knowledge, the LA maintains an estimate
of i for each task module 4 in the driving sim-
ulation. This state estimate consists of a proba-
bility distribution over the entire state space; the
most likely state of the world corresponds to the
mode of this distribution, but the world might
have changed since the LA last took an accu-
rate state measurement (e.g., by foveating some

object like the pace car).

When choosing an action, the LA multiplies
its state estimate distribution with the learned Q
tables, yielding an expected reward metric. For
a given task module b, the loss ¢° incurred for not
updating a module’s state estimate is the differ-
ence in expected value between the reward that
the LA might receive if it had perfect state in-
formation and the estimated value of the reward
Qb given the action a* that would be selected by
the current (imperfect) state information:

=

E |{mazx, Qb(Sb,a)vLZQi(Siaa)
i%b
_ZQi(éi,a*)

This loss function can be used to guide the LA’s
perceptual resources during a simulation. Fig-
ure 3 (page 8) shows a diagram of the informa-
tion flow in the computational model.

6 Future Work

The computational modeling work described in
this paper forms part of a larger attempt to
quantify and analyze human visual behavior in
a realistic driving task. The model is in develop-
ment and we are currently working to improve
learning and add additional behaviors for deal-
ing with pedestrians and oncoming cars. Addi-
tionally, because the model provides quantitative
costs for various actions that the LA can take in
the world, a major focus of our future work is to
use the model to provide a plausible mechanism
for explaining eye movements of human subjects
navigating in a world involving multiple distinct
tasks.

Our lab has a virtual reality driving simulator,
consisting of driving platform with pedals and a
steering wheel, a head tracking system, and a
head mounted display (HMD). An eye tracker
is mounted on the HMD. Preliminary data has
been collected from human subjects driving in

Figure 4: The state space of the RL simulation
can be projected easily into a 3D virtual reality
driving simulation in the lab. Human subjects
see this sort of view of the driving environment
as they drive around in the virtual world.

a realistic urban environment with a pace car,
other cars and pedestrians present; see Figure 4
for an example screenshot from the environment.

Preliminary analysis of human fixation data
suggests that distributions of fixations are in-
consistent with a simple scheduling models (e.g.
round robin), suggesting a scheduler like the one
presented here may have more utility. While the
current application of our methodology to driv-
ing is still in development, we believe that this
general framework is a powerful and unique ap-
proach to understanding human vision and may
also have broader application in the construction
of computer vision systems.

References

[1] D.H. Ballard, M.M. Hayhoe, P.K. Pook, and
R.P.N. Rao. Deictic codes for the embod-
iment of cognition. Behavioral and Brain
Sciences, 20(04):723-742, 1997.

[2] J.A. Droll, M.M. Hayhoe, J. Triesch, and
B.T. Sullivan. Task demands control ac-
quisition and storage of visual informa-

tion. Journal of FExperimental Psychology,
31(6):1416-1438, 2005.

M.M. Hayhoe and D.H. Ballard. Eye Move-
ments in Natural Behavior. Trends in Cog-
nitive Sciences, 9(4):188-193, 2005.

M.M. Hayhoe, D.G. Bensinger, and D.H.
Ballard. Task constraints in visual working
memory. Vision Research, 38(1):125-137,
1998.

L. Ttti and C. Koch. Computational Mod-
elling of Visual Attention. Nature Reviews
Neuroscience, 2(3):194-203, 2001.

V. Navalpakkam, C. Koch, A. Rangel, and
P. Perona. Optimal reward harvesting in
complex perceptual environments. Proceed-
ings of the Nationalal Academy of Sciences,
in press.

C.A. Rothkopf and D.H. Ballard. Credit as-
signment in multiple goal embodied visuo-
motor behavior. Frontiers in Psychology,
Special Topic: Embodied and grounded cog-
nition, 2010.

N. Sprague and D.H. Ballard. Multiple-
Goal Reinforcement Learning with Modular
SARSA(0). In International Joint Confer-
ence on Artificial Intelligence, volume 18,
pages 1445-1447. Citeseer, 2003.

N. Sprague, D.H. Ballard, and A. Robin-
son. Modeling embodied visual behaviors.
ACM Transactions on Applied Perception,
4(2), 2007.

R.S. Sutton and A.G. Barto. Reinforcement
learning: An introduction. The MIT press,
1998.

S. Ullman. Visual Routines.
18(1-3):97-159, 1984.

Cognition,

C.J.C.H. Watkins and P. Dayan. Q-
learning. Machine learning, 8(3):279-292,
1992.

Velocity
Command
& Steering
Command

State
estimates
propagated
by a Kalman
filter

Selected Module to Update

Figure 3: Flow diagram of the task-module scheduling architecture. Following the numeric labels,
(1) the system initializes with a set of sensory readings about the world. Each task module has a
representation of their state space that is (2) mapped to a learned action policy via the GM-SARSA
algorithm. This mapping allows the driving agent to (3) output a steering and velocity command to
drive the car. These actions (4) take have some effect in the world that changes the world state. (5)
Using information on potential rewards and state uncertainty, the perceptual arbitration algorithm
chooses the module most in need of update to its world state estimate. (6) In this example the Car
Following module is chosen To be updated and is able to gain access to new sensory information.
The other modules cannot update and are forced to propagate estimates of their world state using
a Kalman filter. This perception and action loops repeats itself each time step as the driving agent
traverses through the environment.

