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Eye movements during natural tasks are well coordinated with ongoing task demands and many variables could influence
gaze strategies. Sprague and Ballard (2003) proposed a gaze-scheduling model that uses a utility-weighted uncertainty
metric to prioritize fixations on task-relevant objects and predicted that human gaze should be influenced by both reward
structure and task-relevant uncertainties. To test this conjecture, we tracked the eye movements of participants in a
simulated driving task where uncertainty and implicit reward (via task priority) were varied. Participants were instructed to
simultaneously perform a Follow Task where they followed a lead car at a specific distance and a Speed Task where they
drove at an exact speed. We varied implicit reward by instructing the participants to emphasize one task over the other and
varied uncertainty in the Speed Task with the presence or absence of uniform noise added to the car’s velocity. Subjects’
gaze data were classified for the image content near fixation and segmented into looks. Gaze measures, including look
proportion, duration and interlook interval, showed that drivers more closely monitor the speedometer if it had a high level of
uncertainty, but only if it was also associated with high task priority or implicit reward. The interaction observed appears to
be an example of a simple mechanism whereby the reduction of visual uncertainty is gated by behavioral relevance. This
lends qualitative support for the primary variables controlling gaze allocation proposed in the Sprague and Ballard model.
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Introduction

The deployment of visual attention, in particular eye
movements, involves an interplay between top-down
and bottom-up determinants of gaze (Fecteau, 2007;
Folk, Remington, & Wright, 1994; Hayhoe & Ballard,
2005; Itti & Baldi, 2006; Knudsen, 2007; Wolfe,
Butcher, Lee, & Hyle, 2003). It is known that image
salience plays a role in the guidance of visual attention

and eye movements (Folk & Remington, 1998; Forster
& LaVie, 2008; Leber & Egeth, 2006; Theeuwes, 2004;
Triesman & Gelade, 1980; Wolfe & Horowitz, 2004;
Yantis & Egeth, 1999) and that top-down goals can
modulate this role (Folk & Remington, 1998; Lu &
Han, 2009). Stimulus-driven control is well studied and
has been used as a framework for computational
modeling of human vision (Bruce & Tsotstos, 2009; Itti
& Baldi, 2006; Itti & Koch, 2001; Kanan, Tong, Zhang,
& Cottrell, 2008). This framework has been primarily
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applied to viewing of static two-dimensional displays.
Natural behavior on the other hand is embedded in a
perception and action cycle where the human observer
selects and acts on information in the world and must
in turn deal with the dynamic consequences that those
actions induce on the world, in addition to ongoing
sensory events. It may be the case that vision has
evolved in such a way that many stimuli that can
capture attention or generate eye movements are
relevant to survival. However, in complex interactive
scenes and in the context of flexible task goals, there
may be many visually salient stimuli that are irrelevant
to the current goals and there must be some arbitration
mechanism to evaluate what stimuli need to be
attended to at the current moment. In this paper we
focus on how this arbitration might be achieved in the
presence of multiple potential targets for gaze.

Numerous experiments monitoring eye movements
in natural tasks have shown that human gaze is tightly
linked to ongoing task demands (Droll, Hayhoe,
Triesch, & Sullivan, 2005; Hayhoe, Bensinger, &
Ballard, 1998; Jovancevic & Hayhoe, 2009; Jovan-
cevic-Misic, Hayhoe, & Sullivan, 2006; Land & Hay-
hoe, 2001; Land, Mennie, Rusted, 1999; Pelz, Hayhoe,
& Loeber, 2001; Tatler, Hayhoe, Land, & Ballard,
2011). However, unlike the study of the bottom-up
control of vision, there are few computational models
of top-down control that have been proposed to
explain gaze in natural tasks. In part this is because it
is unclear how task structure should be represented, in
contrast to the more straightforward image processing
algorithms often found in bottom-up models. However,
given the pervasive influence of task goals in gaze
behavior, it is important to develop ‘a theory of tasks’
to understand how sensory information can be used to
guide motor output towards some set of desired states.
Theoretically, there are several ways one might
approach this, in particular Sprague and Ballard
(2003; Sprague, Ballard, & Robinson, 2007) have
proposed a modular architecture for goal oriented
visuomotor control and suggested that eye movements
may be driven by two key parameters: reward and
uncertainty. Within animal learning, the terms positive
and negative reinforcement respectively refer to pre-
senting a learner with an appetitive reward or
withholding that reward. Similarly, positive and
negative punishment refer to presenting or withholding
an aversive stimulus. Note, however, that Sprague and
Ballard describe these situations by using reward as a
blanket term to refer to a numerical representation of
an external learning signal that could be either
numerically positive (appetitive), negative (aversive)
or zero (neutral) and encompasses all of the above
distinctions. This follows the naming tradition con-
cerning Markov decision processes, an underlying
mathematical framework for reinforcement learning,

that use the generic term reward function for a
mapping between a state of the world and a learning
signal. In this article we use reward in this general sense
of a utility function for brevity although it lacks
precision. Their model uses a set of context-specific task
modules, which individually represent state variables
and their uncertainty for their respective tasks. Over
time these uncertainties increase and can only be
reduced by obtaining a sensory measurement through
an eye movement. By tracking the respective uncer-
tainties of the state variables in each module and using
the individual tasks’ rewards, one can compute an
expected value of obtainable reward. If the expected
value of reward for updating a particular task module
is high, then gaze is allocated to update this module. A
central premise of the model is that complex behavior
can be broken down into a set of independent subtasks,
and visual attention is allocated sequentially between
these different tasks. Importantly the model allows
flexible prioritization of visual tasks via reward
weighting. Once the modules have been trained, their
respective reward tables are normalized and each can
be weighted (with the sum of weights across modules
equaling one). The reward weighting on a module is
proportional to its task priority and will directly
influence how often that visual task receives new
sensory information. On the face of it, this seems to
describe the task selectivity of a wide range of natural
behaviors and has the potential to guide our under-
standing of how gaze is allocated between competing
task demands. While this model has been further
developed for new visuomotor control scenarios
(Nunez-Varela, Ravindran, & Wyatt, 2012, May;
Rothkopf & Ballard, 2010, Sullivan, Johnson, Ballard,
& Hayhoe, 2011), there has been little work addressing
if and how the human visual system incorporates
reward and uncertainty to control gaze in natural tasks.
In this study our goal was to further the understanding
of how these variables might be used by the visual
system for eye movement control and provide behav-
ioral observations for further modeling.

Reward and task incentive

Achievement of goals needs to be monitored via
some sort of feedback. Reinforcement learning (RL) is
a useful mathematical tool for function approxima-
tion in control problems (i.e., given an input with
particular dynamics generate a desired output) and
can allow a simulated agent to learn a variety of
complex behaviors. It is also the case that many
problems solved by animals may be cast in the
reinforcement-learning framework. Additionally,
there is considerable evidence that a variety of cortical
and subcortical areas involved in the generation of

Journal of Vision (2012) 12(13):19, 1–17 Sullivan et al. 2



saccadic eye movements have activity that is correlat-
ed with reward and reward prediction. Neural firing in
eye movement control regions in the cortex (lateral
intraparietal area, frontal eye fields, supplementary
eye fields, dorsolateral prefrontal cortex) has been
shown to correlate with reward, although there is still
much debate on the exact computation being carried
out and what mathematical constructs best explain
such activity (Deaner, Khera, & Platt, 2005; Dorris &
Glimcher, 2004; Glimcher, 2003; Platt & Glimcher,
1999; Seo & Less, 2007; Stuphorn, Taylor, & Schall,
2000; Stuphorn & Schall, 2006; Sugrue, Corrado, &
Newsome, 2004). LIP in particular has been subject to
great study and it has been suggested it represents a
combination of signals concerning knowledge and
uncertainty regarding visual input, behavioral rele-
vance, and action output to some degree (Gottlieb &
Balan, 2010). The output from these cortical areas
ultimately converge on the caudate nucleus in the
basal ganglia including the caudate, putamen, and
substantia nigra, all of which have neural activity
correlated with reward. Study of the dopaminergic
circuits in these areas has provided several proposed
mechanisms for how such activity may be generated.
This cortico-basal ganglia-superior collicular circuit
appears to regulate the control of fixations and the
timing of planned movements (Aggarwal, Hyland, &
Wickens, 2012; Hikosaka, Nakamura, & Nakahara
2006, Lauwereyns et al., 2002; Watanabe, Lauwer-
eyens, & Hikosaka, 2003). Additionally, behavioral
studies have found evidence that human observers’
search and gaze behavior can be sensitive to reward
structure, although it is debated if humans optimize
gaze behavior for reward collection (Stritzke, Trom-
mershäuser, & Gegenfurtner, 2009; Hayhoe & Ballard,
2005; Jovancevic-Misic & Hayhoe, 2009; Navalpak-
kam, Koch, & Perona, 2009; Navalpakkam, Koch,
Rangel, & Perona, 2010; Stritzke & Trommerhauser,
2007; Schutz, Trommesrhauser, & Gegenfurtner,
2012).

Given this evidence, it appears that there is a neural
architecture in place that could be well suited to the
learning and control of overt visual attention. Howev-
er, it is worth noting that these types of studies have
largely looked only at learning with a primary
reinforcer, e.g., a monkey gets a sip of juice immedi-
ately after making a correct saccadic movement. While
there are situations where visual stimuli might be
directly rewarding (e.g., social situations), it is unlikely
that representing primary reinforcers is the sole
function of the circuitry described above (Deaner et
al., 2005; Hayhoe & Ballard, 2005; Jovancevic-Misic &
Hayhoe, 2009; Lee, Seo, & Jung, 2012; Sohn & Lee,
2006). Instead, during natural activity, animals must
conduct a series of actions to gain a reward, e.g.,
scavenging for food. In human behavior, gaze changes

accrue information, which could confer secondary
reward as steps are taken to achieve a desired
behavioral goal state. In RL models such as the
Sprague and Ballard model, reward contingencies for
a particular state of the world incorporate both
immediate gains as well as future discounted reward
associated with future possible states. Theoretically,
there has been a great deal of work examining how
systems can use this kind of learning to acquire
complex behavior that requires multiple steps (Sutton,
1988; Sutton & Barto, 1998). Experimental work
examining operant conditioning and shaping have
shown that the reward properties of an unconditioned
stimulus can be associated with predictive stimuli far in
advance of the final reward state (Schultz, 1998). This
evidence suggests that visual attention and deployment
of gaze may have the capacity to be learned over long
time scales. This idea provides a possible low-level
explanation for why natural vision appears to be
dominated by task influences. Gaze strategies could
be learned over time in a way that facilitates the
collection of information that will eventually lead to a
rewarding goal state for a task.

Humans have enormous flexibility in the selection of
visual tasks and goal states. These task priorities can be
altered both endogenously and exogenously. The con-
cepts of motivation, utility, task priority and attention
are deeply intertwined (Maunsell, 2006). In decision
theory a utility structure of some sort is required to
motivate why any decision would be made at all. While it
is unclear exactly how humans select a subset of tasks
from the wide variety that are available to be engaged in
at any given point in time, it is likely that this
prioritization is at least in part driven by external utility
and internal utility (i.e., intrinsic motivation). As
mentioned above, one way such flexibility might be
implemented computationally is via a set of task weights
that alter the expected rewards and costs for learned
behaviors. From this perspective task priority and
reward/cost weighting have a direct relationship.

In our driving study, all participants have had years
of experience and presumably have learned the
structure of rewards and punishments associated. As
detailed below in our method section, we manipulate
task priority via verbal instruction. We suggest that
although this is an indirect manipulation, these
instructions provide an implicit reward structure to
participants that takes advantage of their prior
experience and ability to set cognitive goals, which
presumably have their own reward structure based
around the instructions. While we do not directly
estimate subject’s subjective reward structure in this
experiment, this type of interpretation is useful to
understand how further research may proceed to unite
high level behavioral findings with low level accounts of
neural representation of reward.
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Uncertainty

In addition to reward (in the general sense described
above), sensory uncertainty also appears to be an
important factor in human gaze behavior. Uncertainty
can have a number of interpretations, since there are
both external and internal sources of uncertainty. For
example, uncertainty might be a consequence of
inherent variability in the external stimulus or a
consequence of information losses in the sensory
apparatus as a consequence of low contrast or
peripheral resolution losses, or other internal factors,
such as memory decay or an outdated sensory signal.
Some experiments have manipulated uncertainty about
reward probability, and this has been shown to
influence activity of both midbrain dopamine neurons
and LIP neurons (Bromberg-Martin & Hikosaka, 2009;
Peck, Jangraw, Suzuki, Efem, & Gottlied, 2010). In our
experiments below, we treat uncertainty as the variance
of the probability distribution associated with a belief
that the world is in a particular state given a set of
visual observations over time.

Najemnik and Geisler (2005) used uncertainty
measures for visibility in the peripheral retina to show
that observers are similar to a Bayesian ideal observer
that uses such uncertainty measures to optimize
saccades in visual search. Renninger, Verghese, and
Coughlan (2007) developed a model of eye movements
that used an entropy measure of object features to
predict how human observers foveate and compare
complex visual shapes. They found that while human
observers do not appear to foveate targets in a way that
reduces global uncertainty, behavior is consistent with
reducing local uncertainty. Senders (1980) also formu-
lated an entropy-based uncertainty model of visual
information accrual during driving. Using a set of
estimates and parameters concerning how much data is
present on a road, how fast this information can be
absorbed, and how soon it is outdated or forgotten he
was able to establish a relationship between the velocity
a car traveled and information flux over time. Senders
demonstrated that human drivers self-regulate their
speed, contingent on information flow (e.g., if vision is
disrupted via a blackout period they will slow down in
a systematic manner). Additionally, it has been shown
that visuomotor judgments can incorporate measures
of exogenous uncertainty and often be carried out in a
rational manner (Atkins et al., 2003, Graf, Warren, &
Maloney, 2005; Schlicht & Schrater, 2007; Warren,
Graf, Champion, & Maloney, 2012). However, similar
to debates on optimality of reward-based behavior, it
has been suggested that the human visual system may
not incorporate uncertainty in an optimal fashion, and
may be simply heuristic (Morvan & Maloney, 2012;
Zhang, Morvan, & Maloney, 2010).

The goal of the present experiment is not to evaluate
optimality, but to merely establish a link between reward
and uncertainty in eye movement scheduling in a
naturalistic task. In particular, we wanted to know if
eye movements trade off between sources of uncertainty
and intrinsic reward determined by task goals. To do this
we set up a novel driving simulation environment where
participants’ eyes could be tracked while driving in a
realistic three-dimensional environment with the experi-
mental control available to vary task rewards and
uncertainty. The rationale for the experimental manipu-
lations derives from the structure of Sprague and
Ballard’s scheduling model and its underlying architec-
ture for visuomotor processes. Themodel simplifies visual
processing to consider only foveal vision and predicts
where foveal attention is directed over time.A core idea in
the model is that visual attention is deployed over time to
a set of independent tasks that require different pieces of
information and are serially updated by deployment of
gaze to the relevant location in the scene. Each task is
modeled as a control module (acquired via reinforcement
learning) that receives an estimate of the state of theworld
and uses a rewardmapping between this state and a set of
actions available to ‘vote’ for a particular action, given
that module’s information about the world. For example,
in Sprague and Ballard’s simulations, an agent learned to
navigate a sidewalk using visual information, for three
modules including one module that was designed to keep
the agent in the center of the sidewalk, one to avoid
obstacles and another to ‘pick up’ certain objects. Each
module maintains an estimate of its location in its state
space, i.e., the dimensions of its sensory estimates (e.g.,
this sidewalk module’s state space included the agent’s
distance to the sidewalk center and its relative angle to the
center). This estimate of state uncertainty is computed
using a Kalman filter, which provides a mean and
variance associated with each module’s sensory inputs.
Estimates of reward and uncertainty can be combined
together to form an expected value for each module. This
can be used as a measure that allows a cross module
comparison to determine, which single module has the
most to gain if it receives new sensory information. If a
module is not selected, its mean and variance estimates
are propagated into the future without new sensory
information and gradually become less accurate over
time.

Given that the Sprague and Ballard model has the
potential to explain some properties of natural gaze
control, our goal in the current experiment was to
demonstrate that the primary variables in the model,
reward and uncertainty, were in fact significant
determinants of the way gaze is allocated. We do not
make a quantitative comparison between performance
and the model predictions in this paper, but merely
attempt to validate the approach.
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Methods

Experimental design

Our primary goal in this experiment was to have
participants perform a naturalistic task where there were
several task goals, and uncertainty and reward could be
manipulated. Given the theoretical work described above
that links task goals for model reward parameters, it
seems reasonable to assume that the task instructions
given to subjects will effectively manipulate implicit
reward. Subjects had two instructed tasks: (a) following
a leader car at a constant distance and (b) maintaining a
constant speed. The priority of the two tasks was varied
by instruction. This strategy has the disadvantage that
there is no objective specification of the reward. Explicit
rewards, on the other hand, have the disadvantage that
they are unlikely to reflect natural behavior, where
primary rewards are typically not immediate, and may
not be effective in a well-learned task such as driving. We
therefore assume here that the task instructions function
as a reward manipulation. We elaborate on these
conditions in more detail below. To manipulate uncer-
tainty, we chose to add noise to the car velocity. Our
graphics environment incorporated a speedometer that
gave subjects a constant analog readout of their speed.
This speedometer could give noisy readings that fluctuate
around a mean, adding uncertainty to subject’s speed
estimates and potentially increasing fixations, if subjects
maintain a constant speed. Note, while it is possible to
affect the speedometer reading only, we decided to

introduce noise into the car’s gas pedal signal. This was
chosen because drivers in pilot studies experienced
difficulty when the speedometer’s gauge visually fluctu-
ated but did not influence the car’s behavior. In our
conditions with noise present (detailed below), noise from
a uniform distribution was added to the subject’s car
velocity. In the Sprague and Ballard model, task modules
are assumed to be independent and unique uncertainty
distributions can be introduced to individual task
modules. Our manipulation was intended to only affect
the speed maintenance task. But, this speed variability
inevitably also affected leader following performance.
While noise made both speed maintenance and leader
following more difficult, our results indicate that this
manipulation primarily affected eye movements con-
cerned with speed maintenance. In all conditions, the
leader car drove at an average of 60.8 kph, SD¼7.2, (37.8
mph,SD¼4.3), close to the subject’s instructed velocity of
40 mph but sufficiently varied to encourage engagement
in both tasks. Given our manipulations of reward and
uncertainty, our expectation based on the Sprague and
Ballard model was that both high uncertainty and high
reward would increase the priority of foveating a
particular task-related object, if these factors are indeed
important in controlling natural gaze behavior.

Driving platform overview

The virtual driving platform consisted of a stripped-
down car cab interior with a seat, steering wheel, brake,
and gas pedal (see Figure 1). The wheel and pedals were

Figure 1. Depiction of the driving simulator. (Left) View of the driving platform. (Right) Subject’s view of the virtual environment in the

simulator (subjects were presented with stereo image pairs). The white crosshair shows the subject’s point of gaze on the speedometer.

Neither the crosshair nor the eye image was visible to the subject.
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connected to an analog-to-digital converter that
allowed real-time positional measurement for control
of the driving simulation software. The simulated car
had an automatic transmission that required no
interaction from the driver other than using the gas
pedal. Additionally, a transducer speaker was mounted
onto the car seat to provide vibration and sound that
were proportional to the activity of the engine in the
virtual environment.

Participants wore a head-mounted display (HMD), a
NVIS nVisor SX111 (NVIS, Inc., Reston, VA) with
;1028 · 648 binocular field of view, running at a
resolution of 1280 · 1024 and updated at 60 hz. A
Polhemus Fastrak motion tracking system (Polhemus,
Inc., Colchester, VT) was mounted on the HMD and
recorded subjects’ head movements with 6 degrees of
freedom and was used to update the image at 60 hz.
The HMD display was rendered by in-house software
running on a Dell Precision T7500 running Windows
XP, using an Intel Xeon E5507, 4GB memory and a
NVIDIA GeForce GTX 460 video card.

An Arrington Research ViewPoint EyeTracker
(Arrington Research, Inc., Scottsdale, AZ), a dark
pupil-based video tracking system, sampled eye posi-
tion at 60 hz and in ideal conditions can track with a
precision and accuracy of ;18. Subjects were calibrated
to a nine-point grid at the beginning of each trial and
the calibration was checked at the end of each trial to
allow subsequent error measurements. Video records of
the eye and scene camera were saved directly to disk in
a custom QuickTime digital format, which also allows
the data from our sensor arrays and simulation (e.g.,
position of objects in the world) to be saved as
synchronized metadata on each video frame.

Once a subject was wearing the HMD and calibrated
for the eye tracker, the HMD displayed the driving
environment. From the driver’s perspective they were
inside a car with a dashboard, steering wheel etc., as
show in Figure 1. The virtual car that subjects drove is
modeled by the Vortex physics software engine by CM
Labs (CMLabs, Montreal, Quebec, Canada). This
software application programming interface allows
the simulated forces on three-dimensional objects and
the transmission of a car, including gear ratios and
revolutions per minute levels for shifting gears. The
virtual environment was generated via the Tile Man-
agement Tool software package created by researchers
at the University of Iowa’s National Advanced Driving
Simulator. The path driven was a continuous four-lane
road in an urban setting without traffic signs or signals
or any intersections. The driving path contained many
static objects including buildings, plants, cars parked
on the side of the road, and pedestrians on the
sidewalk. The path was approximately 2 km long and
subjects drove its entirety in one direction in about two
minutes at ;50-72 kph (30-45 mph). To increase the

realism of the driving environment, several dynamic
object models were added. Using only two car models,
a truck and a sedan, eight oncoming and nine outgoing
cars (i.e., cars traveling in the same direction as the
subject) were added to the environment. Additionally,
there was a single red sports car in the environment that
acted as a leader car. The cars were spaced out roughly
uniformly throughout the subject’s driving path and
followed unique non-intersecting paths whose trajecto-
ries were captured from the paths of a human driver.
Outgoing cars were arranged in a staggered fashion in
the two lanes on the subject’s side of the road. These
cars remained fixed in position allowing the lead car
and the subject’s car to weave between cars in the left
and right lanes. Because the driving environment is
simulated, experiments can be conducted across sub-
jects with identical routes and car paths allowing gross
level control of the visual stimuli they observe.
However, since subjects are in control of the exact
speed and course of the drive, each had a unique visual
experience and trajectory.

Procedure

Once participants had practiced in the environment
and had been calibrated with the eye tracker, all were
read a set of standardized instructions where they were
told to drive in a lawful manner in an urban setting, to
follow a lead car at a distance of two car lengths and to
maintain a constant speed of 40 mph (;65 kph). Our
experimental conditions manipulated task priority by
varying the relative emphasis of these two tasks in our
instructions. In the Follow Task condition, subjects
were told that following a lead car at a distance of two
car lengths was most important. In the Speed Task
condition, subjects were told that maintaining a
constant speed was most important. They were also
informed that whichever task was not emphasized,
should also be done but was less important. The
subjects’ primary goal was always reiterated before they
initiated driving.

Each subject performed all four conditions, resulting
in a 2 · 2 within subjects design (Speed and Follow,
with and without noise). The order of the Speed and
Follow conditions was counterbalanced. Within each of
these conditions, the order of trials with or without noise
was counterbalanced. To introduce uncertainty (þNoise
conditions), uniform noise was added to the car’s gas
pedal command. The Vortex software simulation uses a
value from 0 to 1 to indicate the degree to which the gas
pedal is depressed. When the subject achieved a velocity
above 36 kph the software then added a randomly
chosen value between 0 and 0.5 every 200 ms to the car’s
gas command. This resulted in driving a car that
appeared to have a mechanical problem that made it
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quite challenging to maintain a constant speed. Al-
though this type of noise is dependent on the subject’s
current speed, when the gas pedal was held constant the
speedometer representation in the car would typically
vary by 60 to 18 kph.

Subjects were not informed about the presence or
absence of noise in the gas pedal signal. While we
strove to make the car simulation realistic, there is a
certain amount of learning that needs to occur to adapt
to the car’s dynamics and wearing the HMD. To ensure
that participants were familiar with these driving
dynamics in the simulation, prior to the experiment
starting all participants were given a practice period of
5-10 minutes to drive the entire length of the driving
course at least two and up to four times depending on
their level of driving comfort. During the practice
session other cars were absent and subjects were not
exposed to the þNoise condition. Subjects were
encouraged to try hard turns, accelerations and braking
to make sure they were completely familiar with how
the car responded. Once subjects confirmed that they
were comfortable driving the car, they performed the
main experimental conditions.

Thirty-four undergraduate participants with normal
or corrected to normal vision from the University of
Texas at Austin gave informed consent and took part in
the experiment. Ten subjects’ data were not used
because they could not complete all four conditions
either due to motion sickness or a poor eye tracking
signal. Of the remaining 24 subjects, eight additional
subjects’ data were not considered further in the full
analysis due to infrequent checking of the speedometer
in any one condition. We used a criterion to exclude
subjects who made less than seven fixations on the
speedometer, as each driving condition was 98 s
duration on average and the overall mean number of
fixations on the speedometer across all conditions was
34 (13.5 SD). While all subjects were able to complete
the conditions, these particular subjects were possibly
using a different strategy for measuring speed (e.g.,
optic flow) rather than directly foveating the speedom-
eter, making their behavior difficult to compare to the
other subjects who were actively using the speedome-
ter’s information. While this type of behavior may be
present in real world driving, due to our experimental
manipulation we exclude such subjects to ensure that
they were using a common source of visual information
for speed. This yielded a set of data from 16 subjects for
our analysis. Of these 16, there were nine males and
seven females with a mean age of 19.6 years (2.6 SD),
with a mean of 3.8 years driving experience (2 SD).
Additionally, to avoid the inclusion of fixation
behavior at the end and beginning of each trial, when
subjects often were not actively driving or weren’t in
position with other cars, all data files were segmented
to include only the portion where vehicle velocity was

above 54 kph. Note in the data and figures below, the
terms uncertainty and noise are used interchangeably to
describe the presence of the uniform noise added to the
subject’s car velocity.

Data collection and analysis

Subjects’ eye position data were analyzed using an
automated, in-house developed system. The eye signal
was preprocessed using a median filter and a moving
average over three frames to smooth the signal. A 60 ·
60 pixel window, ;28 · 28 of visual angle, was centered
around the location of the point of gaze on each frame
and each pixel in the window returned a label for the
type of object it contained. Each subject’s eye position
was measured against a calibration screen at the
beginning and end of each trial. During the experiment,
a data file was generated that contained readings from
the car controls (steering and pedals), positions of the
subject’s head and eye as well as the positions of all of
the objects in the environment. By using the head
orientation and position of the subject along with the
positions of all the objects in the driving environment
our analysis tool can create a complete reconstruction
of the experimental environment. Each data frame is
analyzed for the types of objects present in the local
area near fixation. Given the reconstruction, we use the
projection of the eye position in three-dimensional to
query the pixels in a local area for the identity of the
object present in that pixel, this is conducted over the
entire window and used to index the object categories
present. Due to a technical limitation in how we recover
object identity information from our three-dimensional
models, the automated data can provide object labels
only for the speedometer, the leader car, oncoming cars
and outgoing cars. All other fixations on the road,
buildings and other scenery were entered into a
category termed ‘other.’

The eye position data of subjects included in the
analysis had a precision of ;18-28, and global offsets
were applied as needed to each subject’s data as
needed to ensure that the point of gaze signal was
correctly lined up with the calibration targets. Eye
movement data were initially segmented in two ways,
segmentation via object labels and using the eye
velocity signal with an adaptive velocity threshold
algorithm (Rothkopf & Pelz, 2004). Both approaches
have limitations, object label segmentation examines
the data for sets of continuous object labels near the
point of gaze that last at least two frames. Label
segmentation is subject to noise in the eye position
signal so if the point of gaze is near the border between
two objects, multiple segments may be found. Addi-
tionally, it does not reveal fixations within an object
category (i.e., the label never changes) and thus can
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only determine looks, the beginning and ending a
fixation or set of fixations on a distinct object class.
The velocity analysis does not use label knowledge but
is also subject to noise in the eye gaze signal. The
velocity analysis marked fixations by looking for
frame sequences of at least 50 ms in length where
the eye velocity is below 358/s (although this param-
eter can change on the local noise level in a local
window). After these segments were found, the object
labels for a given segment were counted. To allow a
liberal description of the image content near the fovea,
all pixel labels in 60 · 60 pixel window were
considered in our analysis. This means that multiple
looks to different objects could occur simultaneously
if they resided within the pixel window. These looks
could be also have asynchronous start and end times
due to the simulation’s dynamics, e.g., a look at the
leader may start at t ¼ 1 and last until t ¼ 10, and
another car may also enter the pixel window for a look
that begins at t¼ 5 until the car exits the window at t¼
8. To have a look labeled as being on the ‘other’
category, all of the pixels had to be labeled as ‘other.’
Due to the nature of our simulation, eye position can
remain relatively stable but the content of fixation can
change. For example, the velocity segmentation may
report a fixation of 1.5 s in length but that fixation
could actually have 1 s of labels for one object and 500
ms for another due to objects moving in and out of the
fixation window. While there are many ways to deal
with this segmentation and labeling problem, we
ultimately chose to categorize eye movement data
via the label segmentation method due to the

simplicity of its assumptions, i.e., the content in the
fixation-labeling window is of primary importance,
and all subsequent graphs and analyses present looks
segmented via object labels. Figure 2 shows an
example of the type of segmented data yielded from
this analysis for a single trial where the speed
following task was emphasized. Note that subjects
devote more time to the lead car regardless of task (see
below).

Results

Driving behavior

We first examine whether subjects’ performance
reflected task instruction. Although all subjects were
instructed to both follow a leader and maintain a
constant speed, one might expect that subjects would
exhibit superior performance in the task instructed as
the most important. Table 1 displays subjects’ mean
speed and mean standard deviation in speed, as well as
their mean distance to the leader and the mean
standard deviation in that distance. It was hypothesized
that subjects in the Speed Task conditions should have
a speed closer to 40 mph (64.4 kph) and less variation
in their speed. Similarly, it was expected that subjects in
the Follow Task conditions should have less variation
in their distance to the leader. Subjects were told to
drive at a heuristic of two car lengths from the leader

Figure 2. Example of gaze behavior from a single driving trial from the Speed Task condition. The horizontal axis displays time in seconds

and the vertical corresponds to object category. Each rectangular chunk corresponds to a portion of time where the center of the subject’s

left eye was within ;28 of an object class. While subjects look at several object classes the most relevant behavior to our experimental

manipulations is the switching behavior exhibited between looks on the speedometer and on the leader. Looks at multiple objects can

occur simultaneously due to labeling of any object that enters the 60 · 60 pixel window centered around the fovea.
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(;15 m as measured from the center of the lead car to
the center of the subject’s car, assuming cars of 5 m in
length), and we cannot address how close subjects were
to a correct distance.

Overall, subjects’ driving behavior is roughly equiv-
alent across our task manipulations. There was a
significant main effect of task in mean speed and a
marginally significant difference in speed variability.
However, the effect sizes were rather small, 0.36 kph for
mean speed and 0.59 kph for speed variability. Much
larger effects were observed due to noise. While
subjects have very similar driving performance across
tasks, our eye movement analyses detailed below reveal
more substantial differences.

Fixation proportion

There are several metrics available to capture how
subject gaze behavior varies in each condition. In this
section and all following sections, a two-way repeated-
measures ANOVA was used to evaluate gaze behavior.
One basic metric is the proportion of time spent
looking at the various object categories in the driving
world as shown in Figure 3.

This figure shows that much of the subjects’ time
driving is spent looking at the leader car and other cars.
In addition there is a clear effect of task on the
allocation of gaze between the Speedometer, Leader
Car, and Oncoming Cars. Note that due to the method
of look labeling, this downplays the amount of
information coming from the road. In nearly all
fixations, except those on the speedometer and some
rare cases (e.g., looking at the sky), the eye is in a
position to gather information about the road.
However, because we cannot explicitly label the road
in our analysis and do not have any specific hypotheses
concerning looks to the road or to a specific part of the
road, these types of fixations will not be addressed.

Most important for our manipulation are the
differences between looks to the leader car and the

speedometer. Figure 4a shows the mean gaze behavior
on the leader across conditions. Note that for this and
all subsequent analyses, the graphs display between-
subjects’ standard errors, but all analyses were within
subjects. A main effect of task was found where the
proportion of leader looks was reduced from 84% to
63% by the instruction to emphasize speed control,
F(1,15)¼ 8.4, p¼ 1e-6. Noise reduced the proportion of
looks on the leader from 76% to 71%, F(1,15)¼ 41.6,p
¼ 0.01. Additionally, there was a significant task and
noise interaction, F(1,15) ¼ 10.33, p ¼ 0.006. This
interaction was examined with paired t-tests and

Speed (kph)1 Speed SD (kph)2 Distance (m)3 Distance SD (m)4

Follow 61.29 (0.22) 6.58 (0.28) 22.43 (1.16) 4.03 (0.35)

FollowþNoise 60.92 (0.16) 10.44 (0.36) 26 (1.4) 7.13 (1.78)

Speed 61.63 (0.13) 5.87 (0.28) 20.79 (1.19) 4.47 (0.32)

SpeedþNoise 61.3 (0.16) 9.97 (0.35) 27.2 (1.98) 8.52 (0.92)

Table 1. Summary of driving performance across conditions. For each condition we present the mean performance for following, leader

distance and leader distance standard deviation, and for maintaining a constant speed, speed and speed standard deviation. SEM is

presented in parentheses. Two-way repeated-measures ANOVA were performed for all measures including: (A) Mean leader distance,

which showed no main effect of task on F(1,15) ¼ 0.02, p ¼ 0.89, a main effect of noise, F(1,15) ¼ 21.7, p ¼ 3e-4 and a marginally

significant task and noise interaction, F(1,15)¼ 3.44, p¼ 0.083. (B) Mean standard deviation of leader distance which had no main effect

of task, F(1,15)¼2.69, p¼0.12, a main effect of noise, F(1,15)¼31.3, p¼5.08e-5, and no significant interaction, F(1,15)¼1.12, p¼0.31.

(C) Mean car velocity which had a main effect of task, F(1,15) ¼ 6.5, p ¼ 0.02, a main effect of noise, F(1,15) ¼ 5.4, p ¼ 0.03, and no

significant interaction, F(1,15)¼0.01, p¼0.94. (D) Mean standard deviation in speed with a marginal main effect of task, F(1,15)¼3.96, p

¼ 0.065, a significant main effect of noise, F(1,15) ¼ 138, p ¼ 5.8e-9) and no significant interaction, F(1,15) ¼ 0.24, p ¼ 0.63).

Figure 3. Mean percentage of looks across all object categories.

Look proportions are calculated for each category and controlled

for amount of time present onscreen and then averaged across

subjects. Note that proportions in the figure do not sum to one

since looks can contain multiple labels across object classes.

Error bars show 61 SEM.
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showed a significant effect in the Speed Task where
noise decreased leader fixation proportion from 68% to
58%, t(15) ¼ 3.59, p ¼ 0.0027, but no such effect was
present in the Follow Task conditions, t(15)¼ 0.38, p¼
0.71. On average, subjects decreased look proportions
on the leader by ;10% when the speed condition was
emphasized and noise was present. This result suggests
that subjects are using uncertainty information but
only in the condition where the speedometer’s task has
high priority.

Figure 4b summarizes gaze proportion data for
looks to the speedometer. There was main of effect of
task that increased the mean proportion of speedom-
eter looks from 11% to 29% in the Speed Task
conditions, F(1,15) ¼ 37.3, p ¼ 2e-5. Speedometer
fixations also increased when noise was present, F(1,15)
¼ 13.3, p¼ 0.002. There was also a significant noise and
task interaction, F(1,15)¼16.18, p¼0.001. This derived
from the Speed Task conditions, where noise increased
looks from 24% to 34%, t(15)¼ 4.8, p¼ 2.4e-4, but no
effect was present in the Follow Task conditions, t(15)
¼ 0.32, p ¼ 0.75. On average, subjects increased look
proportions on the speedometer by ;10% in the Speed
Task when noise was present. This suggests that when
subjects are in the Speed TaskþNoise condition, the
extra proportion of look durations they devote towards
the speedometer is subtracted from the leader task.

Look proportions on the speedometer and leader
were analyzed for order effects. ANOVAs were
conducted comparing fixation distributions per condi-
tion across groups of subjects who drove in the same
condition order. Marginal effects of condition order
were found on speedometer look proportions in the
Follow Task, F(3,12) ¼ 2.97, p ¼ 0.08, and on leader
look proportions also in the same task, F(3,12)¼2.94, p
¼ 0.08. Further inspection found that for subjects who
performed trials in the order FollowþNoise, Follow,
SpeedþNoise, Speed, there was a trend to look more
frequently at the speedometer and less so at the leader
Follow Task than other trial orderings. It is not entirely
clear what this trend means and how order effects
might contribute to the data we collected. However,
due to the marginal significance of the ANOVA results,
we proceeded with our analysis assuming that ordering
effects were not prominent.

Look durations

Look durations on the leader and speedometer were
also examined for the influence of task and noise.
Figure 5a summarizes this data for looks to the leader.
There was a main effect of task, where subjects
decreased the mean duration of leader looks from

Figure 4. Mean look proportions to the leader car and speedometer in Follow and Speed Tasks. (A) Proportion of looks to the lead car in

both tasks, with and without noise added. (B) Proportion of looks to the speedometer in both tasks, with and without noise added. Dashed

lines show the Noise conditions. Note that a repeated-measures ANOVA was used for statistical analysis but between subjects data is

plotted for ease of visualization. The asterisk indicates a statistically significant difference ( p , 0.05 via paired t-test) between normal and

noise conditions. Error bars show 61 SEM between subjects.
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2.76 s in the Follow Tasks to 1.33 s in the Speed Tasks,
F(1,15)¼ 11.52, p¼ 0.004. There was no main effect of
noise, F(1,15) ¼ 0.027, p ¼ 0.87. However, there was a
significant interaction between task and noise presence,
F(1,15) ¼ 5.32, p ¼ 0.036. Paired t-tests were used to
examine the interaction. Compared to the Speed Task
condition, on average subjects decreased look dura-
tions on the leader by 260 ms in the SpeedþNoise Task,
t(15)¼ 2.14, p¼ 0.049). In the Follow Tasks, there was
no reliable effect, t(15)¼ 1.37, p ¼ 0.19).

Figure 5b summarizes data for look durations on the
speedometer. There was a main effect of task such that
in the Speed Task conditions, look durations on the
Speedometer increased from 0.51 s to 0.72 s over the
Follow Task conditions, F(1,15) ¼ 19.7, p ¼ 0.0004.
There was also main effect of noise increasing
speedometer look durations from 0.57 s to 0.66 s when
noise was present, F(1,15)¼ 9.27, p¼ 0.008. Addition-
ally, there was a significant interaction between Noise
and Task variables, F(1,15) ¼ 6.8, p ¼ 0.02. This
interaction was examined with paired t-tests, and
showed that speedometer looks in the SpeedþNoise
Task increased by an average of 160 ms compared to
the Speed Task, t(15) ¼ 3.56, p ¼ 0.003, but no such
effect was present in either Follow Task conditions,
t(15) ¼ 0.65, p ¼ 0.53.

Interlook interval duration

The duration between successive looks on an object
gives a metric for polling frequency, i.e., if a subject
looks away from an object, how long does the subject
wait on average before getting new sensory information
about that same object with a new look? Interlook
intervals were calculated for the leader and the
speedometer and examined for effects of task and
noise. Figure 6a summarizes this data for interlook
intervals for the leader. There was a main effect of task
where the interlook interval on the Leader increased
from 0.46 s in the Follow Task conditions to 0.76 s in
the Speed Task conditions, F(1,15)¼ 33.12 , p¼ 0.0001.
There was also a main effect of noise, where the
presence of noise increased the interlook interval on the
leader from 0.55 s to 0.67 s, F(1,15)¼ 25.4 p¼ 0.0001.
There was also a significant interaction between these
variables, F(1,15)¼ 13.46, p¼ 0.002. This resulted from
the effect of noise in the Speed Task, where it increased
interlook interval on the leader (0.66 s vs. 0.86 s; t(15)¼
5.11, p ¼ 1.3e-4) , but no effect was present in either
Follow Task condition, t(15) ¼ 1.53, p ¼ 0.15. On
average, subjects increased look interlook interval
durations on the leader by ;200 ms in the Speed Task
when noise was present. This presumably reflects the

Figure 5. Mean look durations on the lead car and speedometer. (A) Average duration of looks to the lead car in both tasks, with and

without noise added. (B) Average duration of looks to the speedometer in both tasks, with and without noise added. Dashed lines show

the Noise conditions. Note that a repeated-measures ANOVA was used for statistical analysis but between subjects data is plotted for

ease of visualization. The asterisk indicates a statistically significant difference ( p , 0.05 via paired t-test) between normal and noise

conditions. Error bars show 61 SEM between subjects.
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increasing demands of the Speed TaskþNoise condi-
tion.

Figure 6b summarizes the interlook interval data for
the speedometer. In the Speed Tasks mean interlook
interval was much shorter than in the Follow Tasks,
1.92s versus 4.48s; F(1,15)¼ 16.57, p¼ 0.001. The effect
of Noise was not significant, F(1,15) ¼ 0.82, p ¼ 0.37,
nor was the interaction significant, F(1,15) ¼ 2.5, p ¼
0.13. However, planned paired-sample t-tests revealed
an effect of noise for the Speed Task conditions, 2.3 s
versus 1.6 s; t(15) ¼ 3.56, p ¼ 0.003 and no effect of
noise in the Follow Task conditions, t(15) ¼ 0.35, p ¼
0.73. Thus on average, subjects decreased look inter-
look intervals on the speedometer by 0.72 s when Noise
was present in the Speed Task.

Discussion

The goal of this research was to gain insight into how
human eye movements actively gather information
from a dynamic world. We investigated whether gaze
deployment is controlled by both task priority and
uncertainty in the face of competing potential targets,
as in the Sprague and Ballard model, assuming that
task priority can be interpreted as implicit reward. As

expected from previous work on the importance of task
goals, we found that task emphasis was a primary
factor in the allocation of gaze to the task-relevant
location. The task that was prioritized lead to increased
probability of looking at task relevant targets,
increased look durations, and reduced interlook
intervals. We showed in addition, that the effect of
task is modulated by sensory uncertainty. Subjects
made more frequent and longer looks to the speedom-
eter when speed noise was added. However, this effect
of uncertainty was manifest only when the Speed task
was emphasized as the task with high priority. This
suggests that if uncertainty primarily affects one
visually guided task, this uncertainty will be reduced
via changes in gaze pattern only if the task has a high
priority and uncertainty alone is not sufficient. It is
worth noting that despite the reliable differences found
in eye movements across conditions, there was surpris-
ingly little difference in driving behavior due to task
instruction. There are several reasons this may be the
case. Subjects who had very infrequent looks to the
speedometer were left out of our analysis that would
make our analysis sample more homogenous. Addi-
tionally, our driving conditions were not designed to
test the limits of subject performance. Our subjects
were experienced drivers and it is possible that the tasks
were not sufficiently challenging to depend critically on

Figure 6. Mean interlook intervals for the leader car and speedometer. (A) Average interlook intervals for looks to the lead car in both

tasks, with and without noise added. (B) Average interlook interval duration for looks to the speedometer in both tasks, with and without

noise added. Dashed lines show the Noise conditions. Note that a repeated measures ANOVA was used for statistical analysis but

between subjects data is plotted for ease of visualization. The asterisk indicates a statistically significant difference ( p , 0.05 via paired t-

test) between normal and noise conditions. Error bars show 61 SEM between subjects.
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the visual information afforded by the fixations. It
appears, at least, that the relationship between such
information and driving performance is more complex
than we supposed.

While uncertainty and reward (both explicit reward
and task priority as a proxy for implicit reward) have
each been topics of recent research in human gaze
behavior, the present study manipulated both these
factors and showed that they jointly affect allocation of
gaze between competing targets in the context of
natural behavior. There have been other demonstra-
tions of comparable task-based reward effects in
natural behavior (Jovancevic-Misic & Hayhoe, 2009;
Rothkopf, Ballard, & Hayhoe, 2007), but there has
been no previous demonstration of the role of
uncertainty in regulating gaze in the natural world.
Our primary result showed that when confronted with
a signal with perceptual uncertainty, gaze allocation
changes only if this signal is associated with a task that
has a sufficient amount of reward or behavioral
relevance. This finding is difficult to reconcile with
bottom up models of visual attention. Such models are
not designed with task-based vision in mind and must
be modified to incorporate ideas of reward or task
relevance. One might argue that uncertainty in our
experiment yields a more salient visual stimulus and
thus drives visual attention. However, this does not
explain why we observed an interaction where uncer-
tainty only changed gaze behavior when associated
with sufficient task priority. This result is generally
consistent with the Sprague and Ballard modeling
framework, although it is not clear if this exact
interaction would be predicted, and this is a topic of
our current research. This model is distinctive among
other current models of visual attention in that it
explicitly models the visual perception and action loop
with the premise that an agent or organism in a
dynamic world needs to allocate visual attention in a
rational way that actively reduces uncertainty based
upon reward driven task priorities. While it is
important to understand early bottom-up processing
of visual information, it is simplistic to approach the
deployment of visual attention as a process of stimuli
attracting attention. It is prudent to consider how
visual information is selected for control purposes in
naturalistic scenarios. Bottom-up models can be biased
by knowledge of human gaze behavior to exhibit more
‘top-down like’ behavior towards particular visual
features, but this sidesteps the point of why certain
objects are useful to look at in the first place. Within
the context of our experiment, one could model
monitoring the speedometer and the leader car as two
separate visual tasks. While the exact visual computa-
tions being carried out are speculative, following could
be accomplished using the angle subtended by the
leader car as a control signal (Andersen & Sauer, 2007).

Speed estimation has many potential cues, but in our
manipulation it is plausible that subjects integrated the
orientation of the speedometer needle over time to
estimate its position. The introduction of uncertainty in
speed could hinder this integration process and
attempts to store the position in memory, explaining
why subjects look longer and more frequently at the
speedometer. Because the introduction of noise made
performance worse across our task manipulations, it is
not obvious why our results didn’t show a similar effect
for fixations on the leader. It may be the case that since
the speedometer immediately reflected multiple changes
per second, uncertainty information was more readily
available, whereas the fluctuation in distance to the
leader involved gradual distance changes due to
simulation’s physics model and distance changes due
to variations in the leader car’s speed.

Within the study of behavior and eye movements in
driving several control models have been suggested for
particular behaviors, e.g., car following, lane following
(Andersen & Sauer, 2007; Land & Horwood, 1995;
Land & Lee, 1994; Salvucci & Gray, 2004). Salvucci
and Taatgen (2008, 2011) have also presented a
‘multithreaded theory of cognition’ that is conceptually
quite similar to the Sprague and Ballard scheduling
model. Salvucci studied attentional allocation in
driving using an implementation of his theory using
the ACT-R architecture (Anderson, 1996). Recently,
ACT-R has been modified to more flexibly incorporate
reinforcement learning architectures and additionally
the system uses psychological plausible parameters for
memory to mimic internal uncertainty and recent
simulations indicate this may be another viable way
to model such reward and uncertainty interactions in
visual attention (Anderson, 2007; Janssen, Brumby, &
Garnett, 2012). Models that treat the deployment of
gaze from a task-based level as a set of sensory-motor
interactions in a dynamic environment have consider-
ably more traction in explaining natural fixation
behavior than other approaches. However, as men-
tioned in our Introduction, a core problem is in
building an adaptive task-based framework that
captures such behavior. Additionally, the unification
of bottom-up and top-down control within such a
framework has not been addressed.

Our experiments relied on implicit manipulations of
task related reward and while we obtained large task
effects, such manipulations make quantitative analysis
difficult compared to experiments using explicit reward.
One potential strategy to mitigate this is to estimate the
intrinsic reward weights used by individual subjects
using a technique called inverse reinforcement learning
which, under certain assumptions, can recover the
implicit reward weights of a human actor given the set
of behaviors they execute over time (Ng & Russell,
2000; Rothkopf & Ballard, submitted; Rothkopf &
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Dimitrakakis, 2011). This is a focus of our current
research.

Concerning manipulations of uncertainty, it is useful
to consider Senders’ work, where he captured data with
parametric variations in uncertainty in driving ‘black-
out’ experiments. He found a systematic relationship
between uncertainty and the ability of a driver to keep a
car at a given velocity. This type of approach, although
not always easy experimentally, would be helpful in
illuminating subtleties in behavior beyond the simple
assertion that human eye movements strategies can be
shown to change under uncertainty. Additionally, there
is enormous variety in types of uncertainty. A number
of features in our experiments could be manipulated,
e.g., reducing contrast by adding fog, rain, or a
nighttime situation, or making other cars erratic
instead of the subjects. Additionally, the statistics of
such uncertainty distributions, in particular the statis-
tics of task-related uncertainty, could be rigorously
categorized instead of merely using one particular type
of noise as in our experiments.

It is useful to bear in mind that Sprague and
Ballard’s perceptual arbitration algorithm was devised
as a rational approach to reduce uncertainty within a
reward based framework. It was not modeled directly
on human behavior, nor has it been shown to be an
optimal solution for this type of problem. In our
experiments, we noted that the human drivers in the
Follow Task did not make any extra looks on the
speedometer when noise was present compared to when
it was absent. Current work is under way to test if the
model can capture the uncertainty and reward interac-
tion we observed.

Conclusion

Our study has demonstrated a novel tradeoff
between task priority and uncertainty in a naturalistic
driving task. If task priority is interpreted as an implicit
manipulation of reward structure, our data provide
evidence for a reward and uncertainty based weighting
scheme that could be incorporated into top-down
models of vision. The active polling of task-related
information in the world with sensory systems can be
prioritized by a mechanism that only reduces uncer-
tainty on visual features if they are associated with a
sufficiently high priority task.
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