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is to solve a regularized optimization problem, which combines a loss
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re-derive some existing results, and also to obtain a number of new
results on consistency and convergence rates, in both !2-error and re-
lated norms. Our analysis also identifies two key properties of loss and
regularization functions, referred to as restricted strong convexity and
decomposability, that ensure corresponding regularized M -estimators
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2 S. N. NEGAHBAN AND P. RAVIKUMAR AND M. J. WAINWRIGHT AND B. YU

1. INTRODUCTION

High-dimensional statistics is concerned with models in which the ambient
dimension of the problem p may be of the same order as—or substantially larger
than—the sample size n. On one hand, its roots are quite old, dating back to
work on random matrix theory and high-dimensional testing problems (e.g, [24,
44, 56, 77]). On the other hand, the past decade has witnessed a tremendous surge
of research activity. Rapid development of data collection technology is a major
driving force: it allows for more observations to be collected (larger n), and also
for more variables to be measured (larger p). Examples are ubiquitous throughout
science: astronomical projects such as the Large Synoptic Survey Telescope [1]
produce terabytes of data in a single evening; each sample is a high-resolution
image, with several hundred megapixels, so that p " 108. Financial data is also of
a high-dimensional nature, with hundreds or thousands of financial instruments
being measured and tracked over time, often at very fine time intervals for use in
high frequency trading. Advances in biotechnology now allow for measurements of
thousands of genes or proteins, and lead to numerous statistical challenges (e.g.,
see the paper [7] and references therein). Various types of imaging technology,
among them magnetic resonance imaging in medicine [42] and hyper-spectral
imaging in ecology [38], also lead to high-dimensional data sets.

In the regime p " n, it is well known that consistent estimators cannot be ob-
tained unless additional constraints are imposed on the model. Accordingly, there
are now several lines of work within high-dimensional statistics, all of which are
based on imposing some type of low-dimensional constraint on the model space,
and then studying the behavior of different estimators. Examples include linear
regression with sparsity constraints, estimation of structured covariance or inverse
covariance matrices, graphical model selection, sparse principal component anal-
ysis, low-rank matrix estimation, matrix decomposition problems, and estimation
of sparse additive non-parametric models. The classical technique of regulariza-
tion has proven fruitful in all of these contexts. Many well-known estimators are
based on solving a convex optimization problem formed by the sum of a loss func-
tion with a weighted regularizer; we refer to any such method as a regularized
M -estimator. For instance, in application to linear models, the Lasso or basis
pursuit approach [69, 20] is based on a combination of the least-squares loss with
!1-regularization, and so involves solving a quadratic program. Similar approaches
have been applied to generalized linear models, resulting in more general (non-
quadratic) convex programs with !1-constraints. Several types of regularization
have been used for estimating matrices, including standard !1-regularization, a
wide range of sparse group-structured regularizers, as well as regularization based
on the nuclear norm (sum of singular values).

Past work: Within the framework of high-dimensional statistics, the goal is to
obtain bounds on a given performance metric that hold with high probability
for a finite sample size, and provide explicit control on the ambient dimension
p, as well as other structural parameters such as the sparsity of a vector, degree
of a graph, or rank of matrix. Typically, such bounds show that the ambient
dimension and structural parameters can grow as some function of the sample
size n, while still having the statistical error decrease to zero. The choice of
performance metric is application-dependent; some examples include prediction
error, parameter estimation error, and model selection error.
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By now, there are a large number of theoretical results in place for vari-
ous types of regularized M -estimators.1 Sparse linear regression has perhaps
been the most active area, and multiple bodies of work can be differentiated
by the error metric under consideration. They include work on exact recov-
ery for noiseless observations (e.g., [22, 21, 15]), prediction error consistency
(e.g., [25, 13, 73, 80]), consistency of the parameter estimates in !2 or some other
norm (e.g., [13, 12, 73, 80, 48, 9, 16]), as well as variable selection consistency
(e.g., [47, 76, 82]). The information-theoretic limits of sparse linear regression
are also well-understood, and !1-based methods are known to be optimal for
!q-ball sparsity [58], and near-optimal for model selection [75]. For generalized
linear models (GLMs), estimators based on !1-regularized maximum likelihood
have also been studied, including results on risk consistency [74], consistency in
!2 or !1-norm [5, 31, 46], and model selection consistency [61, 10]. Sparsity has
also proven useful in application to different types of matrix estimation problems,
among them banded and sparse covariance matrices (e.g., [8, 14, 32]). Another
line of work has studied the problem of estimating Gaussian Markov random
fields, or equivalently inverse covariance matrices with sparsity constraints. Here
there are a range of results, including convergence rates in Frobenius, operator
and other matrix norms [66, 62, 37, 83], as well as results on model selection
consistency [62, 37, 47]. Motivated by applications in which sparsity arises in
a structured manner, other researchers have proposed different types of block-
structured regularizers (e.g., [71, 34, 72, 81, 79, 3, 6, 29]), among them the group
Lasso based on !1/!2 regularization. High-dimensional consistency results have
been obtained for exact recovery based on noiseless observations [68, 6], conver-
gence rates in !2-norm (e.g., [49, 28, 41, 6]) as well as model selection consistency
(e.g., [55, 53, 49]). Problems of low-rank matrix estimation also arise in numerous
applications. Techniques based on nuclear norm regularization have been stud-
ied for different statistical models, including compressed sensing [64, 39], matrix
completion [17, 33, 63, 54], multitask regression [78, 52, 65, 11, 4], and system
identification [23, 52, 40]. Finally, although the primary emphasis of this pa-
per is on high-dimensional parametric models, regularization methods have also
proven effective for a class of high-dimensional non-parametric models that have
a sparse additive decomposition (e.g., [60, 45, 35, 36]), and shown to achieve
minimax-optimal rates [59].

Our contributions: As we have noted previously, almost all of these estimators
can be seen as particular types of regularized M -estimators, with the choice
of loss function, regularizer and statistical assumptions changing according to
the model. This methodological similarity suggests an intriguing possibility: is
there a common set of theoretical principles that underlies analysis of all these
estimators? If so, it could be possible to gain a unified understanding of a large
collection of techniques for high-dimensional estimation, and afford some insight
into the literature.

The main contribution of this paper is to provide an affirmative answer to this
question. In particular, we isolate and highlight two key properties of a regular-
ized M -estimator—namely, a decomposability property for the regularizer, and
a notion of restricted strong convexity that depends on the interaction between

1Given the extraordinary number of papers that have appeared in recent years, it must be
emphasized that our referencing is necessarily incomplete.
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the regularizer and the loss function. For loss functions and regularizers satisfying
these two conditions, we prove a general result (Theorem 1) about consistency and
convergence rates for the associated estimators. This result provides a family of
bounds indexed by subspaces, and each bound consists of the sum of approxima-
tion error and estimation error. This general result, when specialized to different
statistical models, yields in a direct manner a large number of corollaries, some of
them known and others novel. In concurrent work, a subset of the current authors
have also used this framework to prove several results on low-rank matrix esti-
mation using the nuclear norm [52], as well as minimax-optimal rates for noisy
matrix completion [54] and noisy matrix decomposition [2]. Finally, en route to
establishing these corollaries, we also prove some new technical results that are
of independent interest, including guarantees of restricted strong convexity for
group-structured regularization (Proposition 1).

The remainder of this paper is organized as follows. We begin in Section 2
by formulating the class of regularized M -estimators that we consider, and then
defining the notions of decomposability and restricted strong convexity. Section 3
is devoted to the statement of our main result (Theorem 1), and discussion of its
consequences. Subsequent sections are devoted to corollaries of this main result
for different statistical models, including sparse linear regression (Section 4) and
estimators based on group-structured regularizers (Section 5). A number of tech-
nical results are presented within the appendices in the supplementary file [51].

2. PROBLEM FORMULATION AND SOME KEY PROPERTIES

In this section, we begin with a precise formulation of the problem, and then
develop some key properties of the regularizer and loss function.

2.1 A family of M -estimators

Let Zn
1 := {Z1, . . . , Zn} denote n identically distributed observations with marginal

distribution P, and suppose that we are interested in estimating some parameter
θ of the distribution P. Let L : Rp × Zn → R be a convex and differentiable loss
function that, for a given set of observations Zn

1 , assigns a cost L(θ;Zn
1 ) to any

parameter θ ∈ Rp. Let θ∗ ∈ arg min
θ∈Rp

L(θ) be any minimizer of the population risk

L(θ) := EZn
1
[L(θ;Zn

1 )]. In order to estimate this quantity based on the data Zn
1 ,

we solve the convex optimization problem

θ̂λn ∈ arg min
θ∈Rp

{
L(θ;Zn

1 ) + λnR(θ)
}
,(1)

where λn > 0 is a user-defined regularization penalty, and R : Rp → R+ is a
norm. Note that this set-up allows for the possibility of mis-specified models as
well.

Our goal is to provide general techniques for deriving bounds on the difference
between any solution θ̂λn to the convex program (1) and the unknown vector θ∗.
In this paper, we derive bounds on the quantity ‖θ̂λn −θ∗‖, where the error norm
‖ · ‖ is induced by some inner product 〈·, ·〉 on Rp. Most often, this error norm
will either be the Euclidean !2-norm on vectors, or the analogous Frobenius norm
for matrices, but our theory also applies to certain types of weighted norms. In
addition, we provide bounds on the quantity R(θ̂λn − θ∗), which measures the
error in the regularizer norm. In the classical setting, the ambient dimension p
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HIGH-DIMENSIONAL ANALYSIS OF REGULARIZED M -ESTIMATORS 5

stays fixed while the number of observations n tends to infinity. Under these
conditions, there are standard techniques for proving consistency and asymptotic
normality for the error θ̂λn−θ∗. In contrast, the analysis of this paper is all within
a high-dimensional framework, in which the tuple (n, p), as well as other problem
parameters, such as vector sparsity or matrix rank etc., are all allowed to tend to
infinity. In contrast to asymptotic statements, our goal is to obtain explicit finite
sample error bounds that hold with high probability.

2.2 Decomposability of R

The first ingredient in our analysis is a property of the regularizer known as
decomposability, defined in terms of a pair of subspaces M ⊆ M of Rp. The role
of the model subspace M is to capture the constraints specified by the model;
for instance, it might be the subspace of vectors with a particular support (see
Example 1), or a subspace of low-rank matrices (see Example 3). The orthogonal
complement of the space M, namely the set

M⊥ :=
{
v ∈ R

p | 〈u, v〉 = 0 for all u ∈ M
}

(2)

is referred to as the perturbation subspace, representing deviations away from the
model subspace M. In the ideal case, we have M⊥ = M⊥, but our definition
allows for the possibility that M is strictly larger than M, so that M⊥ is strictly
smaller than M⊥. This generality is needed for treating the case of low-rank
matrices and nuclear norm, as discussed in Example 3 to follow.

Definition 1. Given a pair of subspaces M ⊆ M, a norm-based regularizer
R is decomposable with respect to (M,M⊥) if

R(θ + γ) = R(θ) +R(γ) for all θ ∈ M and γ ∈ M⊥.(3)

In order to build some intuition, let us consider the ideal case M = M for the
time being, so that the decomposition (3) holds for all pairs (θ, γ) ∈ M ×M⊥.
For any given pair (θ, γ) of this form, the vector θ + γ can be interpreted as
perturbation of the model vector θ away from the subspace M, and it is desirable
that the regularizer penalize such deviations as much as possible. By the triangle
inequality for a norm, we always have R(θ + γ) ≤ R(θ) + R(γ), so that the
decomposability condition (3) holds if and only the triangle inequality is tight
for all pairs (θ, γ) ∈ (M,M⊥). It is exactly in this setting that the regularizer
penalizes deviations away from the model subspace M as much as possible.

In general, it is not difficult to find subspace pairs that satisfy the decom-
posability property. As a trivial example, any regularizer is decomposable with
respect to M = Rp and its orthogonal complement M⊥ = {0}. As will be clear
in our main theorem, it is of more interest to find subspace pairs in which the
model subspace M is “small”, so that the orthogonal complement M⊥ is “large”.
To formalize this intuition, let us define the projection operator

ΠM(u) := arg min
v∈M

‖u− v‖,(4)

with the projection ΠM⊥ defined in an analogous manner. To simplify notation,
we frequently use the shorthand uM = ΠM(u) and uM⊥ = ΠM⊥(u).
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6 S. N. NEGAHBAN AND P. RAVIKUMAR AND M. J. WAINWRIGHT AND B. YU

Of interest to us are the action of these projection operators on the unknown
parameter θ∗ ∈ Rp. In the most desirable setting, the model subspace M can be
chosen such that θ∗M ≈ θ∗, or equivalently, such that θ∗M⊥ ≈ 0. If this can be
achieved with the model subspace M remaining relatively small, then our main
theorem guarantees that it is possible to estimate θ∗ at a relatively fast rate. The
following examples illustrate suitable choices of the spaces M and M in three
concrete settings, beginning with the case of sparse vectors.

Example 1. Sparse vectors and !1-norm regularization. Suppose the error
norm ‖ · ‖ is the usual !2-norm, and that the model class of interest is the set of
s-sparse vectors in p dimensions. For any particular subset S ⊆ {1, 2, . . . , p} with
cardinality s, we define the model subspace

M(S) :=
{

θ ∈ R
p | θj = 0 for all j /∈ S}.(5)

Here our notation reflects the fact thatM depends explicitly on the chosen subset
S. By construction, we have ΠM(S)(θ

∗) = θ∗ for any vector θ∗ that is supported
on S.

In this case, we may define M(S) = M(S), and note that the orthogonal
complement with respect to the Euclidean inner product is given by

M⊥(S) = M⊥(S) =
{

γ ∈ R
p | γj = 0 for all j ∈ S

}
.(6)

This set corresponds to the perturbation subspace, capturing deviations away
from the set of vectors with support S. We claim that for any subset S, the
!1-norm R(θ) = ‖θ‖1 is decomposable with respect to the pair (M(S),M⊥(S)).
Indeed, by construction of the subspaces, any θ ∈ M(S) can be written in the
partitioned form θ = (θS , 0Sc), where θS ∈ Rs and 0Sc ∈ Rp−s is a vector of zeros.
Similarly, any vector γ ∈ M⊥(S) has the partitioned representation (0S , γSc).
Putting together the pieces, we obtain

‖θ + γ‖1 = ‖(θS , 0) + (0, γSc)‖1 = ‖θ‖1 + ‖γ‖1,

showing that the !1-norm is decomposable as claimed. ♦

As a follow-up to the previous example, it is also worth noting that the same
argument shows that for a strictly positive weight vector ω, the weighted !1-norm
‖θ‖ω :=

∑p
j=1 ωj |θj | is also decomposable with respect to the pair (M(S),M(S)).

For another natural extension, we now turn to the case of sparsity models with
more structure.

Example 2. Group-structured norms. In many applications, sparsity arises
in a more structured fashion, with groups of coefficients likely to be zero (or
non-zero) simultaneously. In order to model this behavior, suppose that the in-
dex set {1, 2, . . . , p} can be partitioned into a set of NG disjoint groups, say G =
{G1, G2, . . . , GNG}. With this set-up, for a given vector &α = (α1, . . . ,αNG ) ∈ [1,∞]NG ,
the associated (1, &α)-group norm takes the form

‖θ‖G,$α :=

NG∑

t=1

‖θGt‖αt .(7)
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HIGH-DIMENSIONAL ANALYSIS OF REGULARIZED M -ESTIMATORS 7

For instance, with the choice &α = (2, 2, . . . , 2), we obtain the group !1/!2-norm,
corresponding to the regularizer that underlies the group Lasso [79]. On the
other hand, the choice &α = (∞, . . . ,∞), corresponding to a form of block !1/!∞
regularization, has also been studied in past work [72, 53, 81]. Note that for
&α = (1, 1, . . . , 1), we obtain the standard !1 penalty. Interestingly, our analysis
shows that setting &α ∈ [2,∞]NG can often lead to superior statistical performance.

We now show that the norm ‖ · ‖G,$α is again decomposable with respect to
appropriately defined subspaces. Indeed, given any subset SG ⊆ {1, . . . , NG} of
group indices, say with cardinality sG = |SG |, we can define the subspace

M(SG) :=
{

θ ∈ R
p | θGt = 0 for all t /∈ SG

}
,(8)

as well as its orthogonal complement with respect to the usual Euclidean inner
product

M⊥(SG) = M⊥(SG) :=
{

θ ∈ R
p | θGt = 0 for all t ∈ SG

}
.(9)

With these definitions, for any pair of vectors θ ∈ M(SG) and γ ∈ M⊥(SG), we
have

‖θ + γ‖G,$α =
∑

t∈SG

‖θGt + 0Gt‖αt +
∑

t/∈SG

‖0Gt + γGt‖αt = ‖θ‖G,$α + ‖γ‖G,$α,(10)

thus verifying the decomposability condition. ♦

In the preceding example, we exploited the fact that the groups were non-
overlapping in order to establish the decomposability property. Therefore, some
modifications would be required in order to choose the subspaces appropriately
for overlapping group regularizers proposed in past work [29, 30].

Example 3. Low-rank matrices and nuclear norm. Now suppose that each
parameter Θ ∈ Rp1×p2 is a matrix; this corresponds to an instance of our general
set-up with p = p1p2, as long as we identify the space Rp1×p2 with Rp1p2 in the
usual way. We equip this space with the inner product 〈〈Θ, Γ〉〉 := trace(ΘΓT ), a
choice which yields (as the induced norm) the Frobenius norm

|||Θ|||F :=
√
〈〈Θ, Θ〉〉 =

√√√√
p1∑

j=1

p2∑

k=1

Θ2
jk.(11)

In many settings, it is natural to consider estimating matrices that are low-rank;
examples include principal component analysis, spectral clustering, collaborative
filtering, and matrix completion. With certain exceptions, it is computationally
expensive to enforce a rank-constraint in a direct manner, so that a variety of
researchers have studied the nuclear norm, also known as the trace norm, as a
surrogate for a rank constraint. More precisely, the nuclear norm is given by

|||Θ|||nuc :=
min{p1,p2}∑

j=1

σj(Θ),(12)

where {σj(Θ)} are the singular values of the matrix Θ.
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The nuclear norm is decomposable with respect to appropriately chosen sub-
spaces. Let us consider the class of matricesΘ ∈ Rp1×p2 that have rank r ≤ min{p1, p2}.
For any given matrix Θ, we let row(Θ) ⊆ Rp2 and col(Θ) ⊆ Rp1 denote its row
space and column space respectively. Let U and V be a given pair of r-dimensional
subspaces U ⊆ Rp1 and V ⊆ Rp2 ; these subspaces will represent left and right
singular vectors of the target matrix Θ∗ to be estimated. For a given pair (U, V ),
we can define the subspaces M(U, V ) and M⊥(U, V ) of Rp1×p2 given by

M(U, V ) :=
{
Θ ∈ R

p1×p2 | row(Θ) ⊆ V, col(Θ) ⊆ U
}
, and(13a)

M⊥(U, V ) :=
{
Θ ∈ R

p1×p2 | row(Θ) ⊆ V ⊥, col(Θ) ⊆ U⊥}.(13b)

So as to simplify notation, we omit the indices (U, V ) when they are clear from
context. Unlike the preceding examples, in this case, the set M is not2 equal to
M.

Finally, we claim that the nuclear norm is decomposable with respect to the
pair (M,M⊥). By construction, any pair of matrices Θ ∈ M and Γ ∈ M⊥ have
orthogonal row and column spaces, which implies the required decomposability
condition—namely |||Θ+ Γ|||1 = |||Θ|||1 + |||Γ|||1. ♦

A line of recent work (e.g., [19, 27, 18, 2, 26, 43]) has studied matrix prob-
lems involving the sum of a low-rank matrix with a sparse matrix, along with
the regularizer formed by a weighted sum of the nuclear norm and the element-
wise !1-norm. By a combination of Examples 1 and Example 3, this regularizer
also satisfies the decomposability property with respect to appropriately defined
subspaces.

2.3 A key consequence of decomposability

Thus far, we have specified a class (1) of M -estimators based on regularization,
defined the notion of decomposability for the regularizer and worked through
several illustrative examples. We now turn to the statistical consequences of
decomposability—more specifically, its implications for the error vector ∆̂λn =
θ̂λn − θ∗, where θ̂ ∈ Rp is any solution of the regularized M -estimation proce-
dure (1). For a given inner product 〈·, ·〉, the dual norm of R is given by

R∗(v) := sup
u∈Rp\{0}

〈u, v〉
R(u)

= sup
R(u)≤1

〈u, v〉.(14)

This notion is best understood by working through some examples.
Dual of !1-norm: For the !1-norm R(u) = ‖u‖1 previously discussed in Exam-

ple 1, let us compute its dual norm with respect to the Euclidean inner product
on Rp. For any vector v ∈ Rp, we have

sup
‖u‖1≤1

〈u, v〉 ≤ sup
‖u‖1≤1

p∑

k=1

|uk||vk| ≤ sup
‖u‖1≤1

( p∑

k=1

|uk|
)

max
k=1,...,p

|vk| = ‖v‖∞.

2However, as is required by our theory, we do have the inclusion M ⊆ M. Indeed, given
any Θ ∈ M and Γ ∈ M⊥, we have ΘTΓ = 0 by definition, which implies that 〈〈Θ, Γ〉〉 =
trace(ΘTΓ) = 0. Since Γ ∈ M⊥ was arbitrary, we have shown that Θ is orthogonal to the space
M⊥, meaning that it must belong to M.
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HIGH-DIMENSIONAL ANALYSIS OF REGULARIZED M -ESTIMATORS 9

We claim that this upper bound actually holds with equality. In particular, letting
j be any index for which |vj | achieves the maximum ‖v‖∞ = maxk=1,...,p |vk|,
suppose that we form a vector u ∈ Rp with uj = sign(vj), and uk = 0 for all
k .= j. With this choice, we have ‖u‖1 ≤ 1, and hence

sup
‖u‖1≤1

〈u, v〉 ≥
p∑

k=1

ukvk = ‖v‖∞,

showing that the dual of the !1-norm is the !∞-norm.
Dual of group norm: Now recall the group norm from Example 2, specified in

terms of a vector &α ∈ [2,∞]NG . A similar calculation shows that its dual norm,
again with respect to the Euclidean norm on Rp, is given by

‖v‖G,$α∗ = max
t=1,...,NG

‖v‖α∗
t

where 1
αt

+ 1
α∗
t
= 1 are dual exponents.(15)

As special cases of this general duality relation, the block (1, 2) norm that un-
derlies the usual group Lasso leads to a block (∞, 2) norm as the dual, whereas
the the block (1,∞) norm leads to a block (∞, 1) norm as the dual.

Dual of nuclear norm: For the nuclear norm, the dual is defined with respect
to the trace inner product on the space of matrices. For any matrix N ∈ Rp1×p2 ,
it can be shown that

R∗(N) = sup
|||M |||nuc≤1

〈〈M, N〉〉 = |||N |||op = max
j=1,...,min{p1,p2}

σj(N),

corresponding to the !∞-norm applied to the vector σ(N) of singular values. In
the special case of diagonal matrices, this fact reduces to the dual relationship
between the vector !1 and !∞ norms.

The dual norm plays a key role in our general theory, in particular by specifying
a suitable choice of the regularization weight λn. We summarize in the following:

Lemma 1. Suppose that L is a convex and differentiable function, and con-
sider any optimal solution θ̂ to the optimization problem (1) with a strictly positive
regularization parameter satisfying

λn ≥ 2R∗(∇L(θ∗;Zn
1 )).(16)

Then for any pair (M,M⊥) over which R is decomposable, the error ∆̂ = θ̂λn−θ∗

belongs to the set

C(M,M⊥; θ∗) :=
{
∆ ∈ R

p | R(∆M̄⊥) ≤ 3R(∆M̄) + 4R(θ∗M⊥)
}
.(17)

We prove this result in the supplementary appendix [51]. It has the following
important consequence: for any decomposable regularizer and an appropriate
choice (16) of regularization parameter, we are guaranteed that the error vector ∆̂
belongs to a very specific set, depending on the unknown vector θ∗. As illustrated
in Figure 1, the geometry of the set C depends on the relation between θ∗ and the
model subspace M. When θ∗ ∈ M, then we are guaranteed that R(θ∗M⊥) = 0.
In this case, the constraint (17) reduces to R(∆M̄⊥) ≤ 3R(∆M̄), so that C is
a cone, as illustrated in panel (a). In the more general case when θ∗ /∈ M so
that R(θ∗M⊥) .= 0, the set C is not a cone, but rather a star-shaped set (panel
(b)). As will be clarified in the sequel, the case θ∗ /∈ M requires a more delicate
treatment.
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R(∆M⊥)

R(∆M)

R(∆M⊥)

R(∆M)

(a) (b)

Fig 1. Illustration of the set C(M,M⊥; θ∗) in the special case ∆ =
(∆1,∆2,∆3) ∈ R3 and regularizer R(∆) = ‖∆‖1, relevant for sparse vectors
(Example 1). This picture shows the case S = {3}, so that the model subspace is
M(S) = {∆ ∈ R3 | ∆1 = ∆2 = 0}, and its orthogonal complement is given by
M⊥(S) = {∆ ∈ R3 | ∆3 = 0}. (a) In the special case when θ∗1 = θ∗2 = 0, so that
θ∗ ∈ M, the set C(M,M⊥; θ∗) is a cone. (b) When θ∗ does not belong to M,
the set C(M,M⊥; θ∗) is enlarged in the co-ordinates (∆1,∆2) that span M⊥. It
is no longer a cone, but is still a star-shaped set.

2.4 Restricted strong convexity

We now turn to an important requirement of the loss function, and its in-
teraction with the statistical model. Recall that ∆̂ = θ̂λn − θ∗ is the difference
between an optimal solution θ̂λn and the true parameter, and consider the loss
difference3 L(θ̂λn) − L(θ∗). In the classical setting, under fairly mild conditions,
one expects that that the loss difference should converge to zero as the sample
size n increases. It is important to note, however, that such convergence on its
own is not sufficient to guarantee that θ̂λn and θ∗ are close, or equivalently that
∆̂ is small. Rather, the closeness depends on the curvature of the loss function,
as illustrated in Figure 2. In a desirable setting (panel (a)), the loss function is
sharply curved around its optimum θ̂λn , so that having a small loss difference
|L(θ∗)− L(θ̂λn)| translates to a small error ∆̂ = θ̂λn − θ∗. Panel (b) illustrates a
less desirable setting, in which the loss function is relatively flat, so that the loss
difference can be small while the error ∆̂ is relatively large.

The standard way to ensure that a function is “not too flat” is via the notion
of strong convexity. Since L is differentiable by assumption, we may perform a
first-order Taylor series expansion at θ∗, and in some direction ∆; the error in
this Taylor series is given by

δL(∆, θ∗) := L(θ∗ +∆)− L(θ∗)− 〈∇L(θ∗),∆〉.(18)

One way in which to enforce that L is strongly convex is to require the existence
of some positive constant κ > 0 such that δL(∆, θ∗) ≥ κ‖∆‖2 for all ∆ ∈ Rp

in a neighborhood of θ∗. When the loss function is twice differentiable, strong
convexity amounts to lower bound on the eigenvalues of the Hessian ∇2L(θ),
holding uniformly for all θ in a neighborhood of θ∗.

3To simplify notation, we frequently write L(θ) as shorthand for L(θ;Zn
1 ) when the underlying

data Zn
1 is clear from context.
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θ∗ θ̂λn

dL

∆̂

θ∗ θ̂λn

dL

∆̂

(a) (b)

Fig 2. Role of curvature in distinguishing parameters. (a) Loss function has high

curvature around ∆̂. A small excess loss dL = |L(θ̂λn
) − L(θ∗)| guarantees that

the parameter error ∆̂ = θ̂λn
− θ∗ is also small. (b) A less desirable setting, in

which the loss function has relatively low curvature around the optimum.

Under classical “fixed p, large n” scaling, the loss function will be strongly con-
vex under mild conditions. For instance, suppose that population risk L is strongly
convex, or equivalently, that the Hessian ∇2L(θ) is strictly positive definite in a
neighborhood of θ∗. As a concrete example, when the loss function L is defined
based on negative log likelihood of a statistical model, then the Hessian ∇2L(θ)
corresponds to the Fisher information matrix, a quantity which arises naturally
in asymptotic statistics. If the dimension p is fixed while the sample size n goes
to infinity, standard arguments can be used to show that (under mild regularity
conditions) the random Hessian ∇2L(θ) converges to ∇2L(θ) uniformly for all θ
in an open neighborhood of θ∗. In contrast, whenever the pair (n, p) both increase
in such a way that p > n, the situation is drastically different: the Hessian matrix
∇2L(θ) is often singular. As a concrete example, consider linear regression based
on samples Zi = (yi, xi) ∈ R× Rp, for i = 1, 2, . . . , n. Using the least-squares loss
L(θ) = 1

2n‖y−Xθ‖22, the p×p Hessian matrix ∇2L(θ) = 1
nX

TX has rank at most
n, meaning that the loss cannot be strongly convex when p > n. Consequently, it
impossible to guarantee global strong convexity, so that we need to restrict the
set of directions ∆ in which we require a curvature condition.

Ultimately, the only direction of interest is given by the error vector ∆̂ =
θ̂λn − θ∗. Recall that Lemma 1 guarantees that, for suitable choices of the regu-
larization parameter λn, this error vector must belong to the set C(M,M⊥; θ∗),
as previously defined (17). Consequently, it suffices to ensure that the function is
strongly convex over this set, as formalized in the following:

Definition 2. The loss function satisfies a restricted strong convexity

(RSC) condition with curvature κL > 0 and tolerance function τL if

δL(∆, θ∗) ≥ κL ‖∆‖2 − τ2
L(θ

∗) for all ∆ ∈ C(M,M⊥; θ∗).(19)

In the simplest of cases—in particular, when θ∗ ∈ M—there are many statistical
models for which this RSC condition holds with tolerance τL(θ∗) = 0. In the
more general setting, it can hold only with a non-zero tolerance term, as illus-
trated in Figure 3(b). As our proofs will clarify, we in fact require only the lower
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Fig 3. (a) Illustration of a generic loss function in the high-dimensional p > n
setting: it is curved in certain directions, but completely flat in others. (b) When
θ∗ /∈ M, the set C(M,M⊥; θ∗) contains a ball centered at the origin, which
necessitates a tolerance term τL(θ∗) > 0 in the definition of restricted strong
convexity.

bound (19) to hold for the intersection of C with a local ball {‖∆‖ ≤ R} of some
radius centered at zero. As will be clarified later, this restriction is not necessary
for the least-squares loss, but is essential for more general loss functions, such as
those that arise in generalized linear models.

We will see in the sequel that for many loss functions, it is possible to prove that
with high probability the first-order Taylor series error satisfies a lower bound of
the form

δL(∆, θ∗) ≥ κ1 ‖∆‖2 − κ2 g(n, p)R2(∆) for all ‖∆‖ ≤ 1,(20)

where κ1,κ2 are positive constants, and g(n, p) is a function of the sample size
n and ambient dimension p, decreasing in the sample size. For instance, in the
case of !1-regularization, for covariates with suitably controlled tails, this type
of bound holds for the least squares loss with the function g(n, p) = log p

n ; see
equation (31) to follow. For generalized linear models and the !1-norm, a similar
type of bound is given in equation (43). We also provide a bound of this form for
the least-squares loss group-structured norms in equation (46), with a different
choice of the function g depending on the group structure.

A bound of the form (20) implies a form of restricted strong convexity as long
as R(∆) is not “too large” relative to ‖∆‖. In order to formalize this notion, we
define a quantity that relates the error norm and the regularizer:

Definition 3 (Subspace compatibility constant). For any subspace M of
Rp, the subspace compatibility constant with respect to the pair (R, ‖ · ‖) is
given by

Ψ(M) := sup
u∈M\{0}

R(u)

‖u‖
.(21)

This quantity reflects the degree of compatibility between the regularizer and the
error norm over the subspace M. In alternative terms, it is the Lipschitz constant
of the regularizer with respect to the error norm, restricted to the subspace M.
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As a simple example, if M is a s-dimensional co-ordinate subspace, with regu-
larizer R(u) = ‖u‖1 and error norm ‖u‖ = ‖u‖2, then we have Ψ(M) =

√
s.

This compatibility constant appears explicitly in the bounds of our main the-
orem, and also arises in establishing restricted strong convexity. Let us now il-
lustrate how it can be used to show that the condition (20) implies a form of
restricted strong convexity. To be concrete, let us suppose that θ∗ belongs to a
subspace M; in this case, membership of ∆ in the set C(M,M⊥; θ∗) implies
that R(∆M̄⊥) ≤ 3R(∆M̄). Consequently, by triangle inequality and the defini-
tion (21), we have

R(∆) ≤ R(∆M̄⊥) +R(∆M̄) ≤ 4R(∆M̄) ≤ 4Ψ(M)‖∆‖.

Therefore, whenever a bound of the form (20) holds and θ∗ ∈ M, we are guar-
anteed that

δL(∆, θ∗) ≥
{

κ1 − 16κ2Ψ
2(M)g(n, p)

}
‖∆‖2 for all ‖∆‖ ≤ 1.

Consequently, as long as the sample size is large enough that 16κ2Ψ2(M)g(n, p) <
κ1

2 , the restricted strong convexity condition will hold with κL = κ1

2 and τL(θ∗) =
0. We make use of arguments of this flavor throughout this paper.

3. BOUNDS FOR GENERAL M -ESTIMATORS

We are now ready to state a general result that provides bounds and hence
convergence rates for the error ‖θ̂λn − θ∗‖, where θ̂λn is any optimal solution of
the convex program (1). Although it may appear somewhat abstract at first sight,
this result has a number of concrete and useful consequences for specific models.
In particular, we recover as an immediate corollary the best known results about
estimation in sparse linear models with general designs [9, 48], as well as a number
of new results, including minimax-optimal rates for estimation under !q-sparsity
constraints and estimation of block-structured sparse matrices. In results that we
report elsewhere, we also apply these theorems to establishing results for sparse
generalized linear models [50], estimation of low-rank matrices [54, 52], matrix
decomposition problems [2], and sparse non-parametric regression models [59].

Let us recall our running assumptions on the structure of the convex program (1).

(G1) The regularizer R is a norm, and is decomposable with respect to the
subspace pair (M,M⊥), where M ⊆ M.

(G2) The loss function L is convex and differentiable, and satisfies restricted
strong convexity with curvature κL and tolerance τL.

The reader should also recall the definition (21) of the subspace compatibility
constant. With this notation, we can now state the main result of this paper:

Theorem 1 (Bounds for general models). Under conditions (G1) and (G2),
consider the problem (1) based on a strictly positive regularization constant λn ≥
2R∗(∇L(θ∗)). Then any optimal solution θ̂λn to the convex program (1) satisfies
the bound

‖θ̂λn − θ∗‖2 ≤ 9
λ2
n

κ2
L
Ψ2(M) +

λn

κL

{
2τ2

L(θ
∗) + 4R(θ∗M⊥)

}
,(22)
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14 S. N. NEGAHBAN AND P. RAVIKUMAR AND M. J. WAINWRIGHT AND B. YU

Remarks: Let us consider in more detail some different features of this result.

(a) It should be noted that Theorem 1 is actually a deterministic statement
about the set of optimizers of the convex program (1) for a fixed choice of
λn. Although the program is convex, it need not be strictly convex, so that
the global optimum might be attained at more than one point θ̂λn . The stated
bound holds for any of these optima. Probabilistic analysis is required when
Theorem 1 is applied to particular statistical models, and we need to verify
that the regularizer satisfies the condition

λn ≥ 2R∗(∇L(θ∗)),(23)

and that the loss satisfies the RSC condition. A challenge here is that since
θ∗ is unknown, it is usually impossible to compute the right-hand side of the
condition (23). Instead, when we derive consequences of Theorem 1 for different
statistical models, we use concentration inequalities in order to provide bounds
that hold with high probability over the data.

(b) Second, note that Theorem 1 actually provides a family of bounds, one for
each pair (M,M⊥) of subspaces for which the regularizer is decomposable.
Ignoring the term involving τL for the moment, for any given pair, the error
bound is the sum of two terms, corresponding to estimation error Eerr and
approximation error Eapp, given by (respectively)

(24) Eerr := 9
λ2
n

κ2
L
Ψ2(M), and Eapp := 4

λn

κL
R(θ∗M⊥).

As the dimension of the subspace M increases (so that the dimension of M⊥

decreases), the approximation error tends to zero. But since M ⊆ M, the es-
timation error is increasing at the same time. Thus, in the usual way, optimal
rates are obtained by choosing M and M so as to balance these two contri-
butions to the error. We illustrate such choices for various specific models to
follow.

(c) As will be clarified in the sequel, many high-dimensional statistical models
have an unidentifiable component, and the tolerance term τL reflects the degree
of this non-identifiability.

A large body of past work on sparse linear regression has focused on the case
of exactly sparse regression models for which the unknown regression vector θ∗

is s-sparse. For this special case, recall from Example 1 in Section 2.2 that we
can define an s-dimensional subspace M that contains θ∗. Consequently, the
associated set C(M,M⊥; θ∗) is a cone (see Figure 1(a)), and it is thus possible to
establish that restricted strong convexity (RSC) holds with tolerance parameter
τL(θ∗) = 0. This same reasoning applies to other statistical models, among them
group-sparse regression, in which a small subset of groups are active, as well
as low-rank matrix estimation. The following corollary provides a simply stated
bound that covers all of these models:

Corollary 1. Suppose that, in addition to the conditions of Theorem 1, the
unknown θ∗ belongs to M and the RSC condition holds over C(M,M, θ∗) with
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τL(θ∗) = 0. Then any optimal solution θ̂λn to the convex program (1) satisfies the
bounds

‖θ̂λn − θ∗‖ ≤ 9
λ2
n

κL
Ψ2(M), and(25a)

R(θ̂λn − θ∗) ≤ 12
λn

κL
Ψ2(M).(25b)

Focusing first on the bound (25a), it consists of three terms, each of which has a
natural interpretation. First, it is inversely proportional to the RSC constant κL,
so that higher curvature guarantees lower error, as is to be expected. The error
bound grows proportionally with the subspace compatibility constant Ψ(M),
which measures the compatibility between the regularizer R and error norm ‖ · ‖
over the subspace M (see Definition 3). This term increases with the size of
subspace M, which contains the model subspace M. Third, the bound also scales
linearly with the regularization parameter λn, which must be strictly positive
and satisfy the lower bound (23). The bound (25b) on the error measured in the
regularizer norm is similar, except that it scales quadratically with the subspace
compatibility constant. As the proof clarifies, this additional dependence arises
since the regularizer over the subspace M is larger than the norm ‖ ·‖ by a factor
of at most Ψ(M) (see Definition 3).

Obtaining concrete rates using Corollary 1 requires some work in order to verify
the conditions of Theorem 1, and to provide control on the three quantities in
the bounds (25a) and (25b), as illustrated in the examples to follow.

4. CONVERGENCE RATES FOR SPARSE REGRESSION

As an illustration, we begin with one of the simplest statistical models, namely
the standard linear model. It is based on n observations Zi = (xi, yi) ∈ Rp × R

of covariate-response pairs. Let y ∈ Rn denote a vector of the responses, and let
X ∈ Rn×p be the design matrix, where xi ∈ Rp is the ith row. This pair is linked
via the linear model

y = Xθ∗ + w,(26)

where θ∗ ∈ Rp is the unknown regression vector, and w ∈ Rn is a noise vector. To
begin, we focus on this simple linear set-up, and describe extensions to generalized
models in Section 4.4.

Given the data set Zn
1 = (y,X) ∈ Rn × Rn×p, our goal is to obtain a “good”

estimate θ̂ of the regression vector θ∗, assessed either in terms of its !2-error
‖θ̂ − θ∗‖2 or its !1-error ‖θ̂ − θ∗‖1. It is worth noting that whenever p > n, the
standard linear model (26) is unidentifiable in a certain sense, since the rectan-
gular matrix X ∈ Rn×p has a nullspace of dimension at least p−n. Consequently,
in order to obtain an identifiable model—or at the very least, to bound the de-
gree of non-identifiability—it is essential to impose additional constraints on the
regression vector θ∗. One natural constraint is some type of sparsity in the re-
gression vector; for instance, one might assume that θ∗ has at most s non-zero
coefficients, as discussed at more length in Section 4.2. More generally, one might
assume that although θ∗ is not exactly sparse, it can be well-approximated by a
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16 S. N. NEGAHBAN AND P. RAVIKUMAR AND M. J. WAINWRIGHT AND B. YU

sparse vector, in which case one might say that θ∗ is “weakly sparse”, “sparsifi-
able” or “compressible”. Section 4.3 is devoted to a more detailed discussion of
this weakly sparse case.

A natural M -estimator for this problem is the Lasso [20, 69], obtained by
solving the !1-penalized quadratic program

θ̂λn ∈ arg min
θ∈Rp

{ 1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
,(27)

for some choice λn > 0 of regularization parameter. Note that this Lasso estimator
is a particular case of the general M -estimator (1), based on the loss function
and regularization pair L(θ;Zn

1 ) =
1
2n‖y −Xθ‖22 and R(θ) =

∑p
j=1 |θj | = ‖θ‖1.

We now show how Theorem 1 can be specialized to obtain bounds on the error
θ̂λn − θ∗ for the Lasso estimate.

4.1 Restricted eigenvalues for sparse linear regression

For the least-squares loss function that underlies the Lasso, the first-order
Taylor series expansion from Definition 2 is exact, so that

δL(∆, θ∗) = 〈∆,
1

n
XTX∆〉 =

1

n
‖X∆‖22.

Thus, in this special case, the Taylor series error is independent of θ∗, a fact
which allows for substantial theoretical simplification. More precisely, in order
to establish restricted strong convexity, it suffices to establish a lower bound
on ‖X∆‖22/n that holds uniformly for an appropriately restricted subset of p-
dimensional vectors ∆.

As previously discussed in Example 1, for any subset S ⊆ {1, 2, . . . , p}, the !1-
norm is decomposable with respect to the subspace M(S) = {θ ∈ Rp | θSc = 0}
and its orthogonal complement. When the unknown regression vector θ∗ ∈ Rp

is exactly sparse, it is natural to choose S equal to the support set of θ∗. By
appropriately specializing the definition (17) of C, we are led to consider the
cone

C(S) :=
{
∆ ∈ R

p | ‖∆Sc‖1 ≤ 3‖∆S‖1
}
.(28)

See Figure 1(a) for an illustration of this set in three dimensions. With this choice,
restricted strong convexity with respect to the !2-norm is equivalent to requiring
that the design matrix X satisfy the condition

‖Xθ‖22
n

≥ κL ‖θ‖22 for all θ ∈ C(S).(29)

This lower bound is a type of restricted eigenvalue (RE) condition, and has been
studied in past work on basis pursuit and the Lasso (e.g., [9, 48, 58, 73]). One
could also require that a related condition hold with respect to the !1-norm—viz.

‖Xθ‖22
n

≥ κ′
L
‖θ‖21
|S|

for all θ ∈ C(S).(30)

This type of !1-based RE condition is less restrictive than the corresponding !2-
version (29). We refer the reader to the paper by van de Geer and Bühlmann [73]
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for an extensive discussion of different types of restricted eigenvalue or compati-
bility conditions.

It is natural to ask whether there are many matrices that satisfy these types
of RE conditions. If X has i.i.d. entries following a sub-Gaussian distribution
(including Gaussian and Bernoulli variables as special cases), then known results
in random matrix theory imply that the restricted isometry property [16] holds
with high probability, which in turn implies that the RE condition holds [9, 73].
Since statistical applications involve design matrices with substantial dependency,
it is natural to ask whether an RE condition also holds for more general random
designs. This question was addressed by Raskutti et al. [58, 57], who showed
that if the design matrix X ∈ Rn×p is formed by independently sampling each
row Xi ∼ N(0,Σ), referred to as the Σ-Gaussian ensemble, then there are strictly
positive constants (κ1,κ2), depending only on the positive definite matrix Σ, such
that

‖Xθ‖22
n

≥ κ1 ‖θ‖22 − κ2
log p

n
‖θ‖21 for all θ ∈ Rp(31)

with probability greater than 1−c1 exp(−c2n). The bound (31) has an important
consequence: it guarantees that the RE property (29) holds4 with κL = κ1

2 > 0
as long as n > 64(κ2/κ1) s log p. Therefore, not only do there exist matrices
satisfying the RE property (29), but any matrix sampled from a Σ-Gaussian
ensemble will satisfy it with high probability. Related analysis by Rudelson and
Zhou [67] extends these types of guarantees to the case of sub-Gaussian designs,
also allowing for substantial dependencies among the covariates.

4.2 Lasso estimates with exact sparsity

We now show how Corollary 1 can be used to derive convergence rates for the
error of the Lasso estimate when the unknown regression vector θ∗ is s-sparse. In
order to state these results, we require some additional notation. Using Xj ∈ Rn

to denote the jth column of X, we say that X is column-normalized if

(32)
‖Xj‖2√

n
≤ 1 for all j = 1, 2, . . . , p.

Here we have set the upper bound to one in order to simplify notation. This
particular choice entails no loss of generality, since we can always rescale the
linear model appropriately (including the observation noise variance) so that it
holds.

In addition, we assume that the noise vector w ∈ Rn is zero-mean and has
sub-Gaussian tails, meaning that there is a constant σ > 0 such that for any
fixed ‖v‖2 = 1,

P
[
|〈v, w〉| ≥ t

]
≤ 2 exp

(
−

δ2

2σ2

)
for all δ > 0.(33)

For instance, this condition holds when the noise vector w has i.i.d. N(0, 1) en-
tries, or consists of independent bounded random variables. Under these condi-
tions, we recover as a corollary of Theorem 1 the following result:

4To see this fact, note that for any θ ∈ C(S), we have ‖θ‖1 ≤ 4‖θS‖1 ≤ 4
√
s‖θS‖2. Given the

lower bound (31), for any θ ∈ C(S), we have the lower bound ‖Xθ‖2√
n

≥
{
κ1 −4κ2

√
s log p

n

}
‖θ‖2 ≥

κ1

2
‖θ‖2, where final inequality follows as long as n > 64(κ2/κ1)

2 s log p.
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Corollary 2. Consider an s-sparse instance of the linear regression model (26)
such that X satisfies the RE condition (29), and the column normalization condi-

tion (32). Given the Lasso program (27) with regularization parameter λn = 4σ
√

log p
n ,

then with probability at least 1−c1 exp(−c2nλ2
n), any optimal solution θ̂λn satisfies

the bounds

‖θ̂λn − θ∗‖22 ≤
64σ2

κ2
L

s log p

n
, and ‖θ̂λn − θ∗‖1 ≤

24σ

κL
s

√
log p

n
.(34)

Although error bounds of this form are known from past work (e.g., [9, 16, 48]),
our proof illuminates the underlying structure that leads to the different terms
in the bound—in particular, see equations (25a) and (25b) in the statement of
Corollary 1.

Proof. We first note that the RE condition (30) implies that RSC holds with
respect to the subspace M(S). As discussed in Example 1, the !1-norm is decom-
posable with respect to M(S) and its orthogonal complement, so that we may set
M(S) = M(S). Since any vector θ ∈ M(S) has at most s non-zero entries, the

subspace compatibility constant is given by Ψ(M(S)) = sup
θ∈M(S)\{0}

‖θ‖1
‖θ‖2 =

√
s.

The final step is to compute an appropriate choice of the regularization pa-
rameter. The gradient of the quadratic loss is given by ∇L(θ; (y,X)) = 1

nX
Tw,

whereas the dual norm of the !1-norm is the !∞-norm. Consequently, we need to
specify a choice of λn > 0 such that

λn ≥ 2R∗(∇L(θ∗)) = 2
∥∥ 1
n
XTw

∥∥
∞

with high probability. Using the column normalization (32) and sub-Gaussian (33)
conditions, for each j = 1, . . . , p, we have the tail bound P

[
|〈Xj , w〉/n| ≥ t

]
≤

2 exp
(
− nt2

2σ2

)
. Consequently, by union bound, we conclude that P

[
‖XTw/n‖∞ ≥

t
]
≤ 2 exp

(
− nt2

2σ2+log p
)
. Setting t2 = 4σ2 log p

n , we see that the choice of λn given in
the statement is valid with probability at least 1−c1 exp(−c2nλ2

n). Consequently,
the claims (34) follow from the bounds (25a) and (25b) in Corollary 1.

4.3 Lasso estimates with weakly sparse models

We now consider regression models for which θ∗ is not exactly sparse, but rather
can be approximated well by a sparse vector. One way in which to formalize this
notion is by considering the !q “ball” of radius Rq, given by

Bq(Rq) := {θ ∈ R
p |

p∑

i=1

|θi|q ≤ Rq}, where q ∈ [0, 1] is fixed.

In the special case q = 0, this set corresponds to an exact sparsity constraint—
that is, θ∗ ∈ B0(R0) if and only if θ∗ has at most R0 non-zero entries. More
generally, for q ∈ (0, 1], the set Bq(Rq) enforces a certain decay rate on the
ordered absolute values of θ∗.
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In the case of weakly sparse vectors, the constraint set C takes the form

C(M,M; θ∗) = {∆ ∈ R
p | ‖∆Sc‖1 ≤ 3‖∆S‖1 + 4‖θ∗Sc‖1

}
.(35)

In contrast to the case of exact sparsity, the set C is no longer a cone, but rather
contains a ball centered at the origin— compare panels (a) and (b) of Figure 1.
As a consequence, it is never possible to ensure that ‖Xθ‖2/

√
n is uniformly

bounded from below for all vectors θ in the set (35), and so a strictly positive
tolerance term τL(θ∗) > 0 is required. The random matrix result (31), stated in
the previous section, allows us to establish a form of RSC that is appropriate for
the setting of !q-ball sparsity. We summarize our conclusions in the following:

Corollary 3. Suppose that X satisfies the RE condition (31) as well as
the column normalization condition (32), the noise w is sub-Gaussian (33), and

θ∗ belongs to Bq(Rq) for a radius Rq such that
√
Rq

( log p
n

) 1
2
− q

4 ≤ 1. Then if we

solve the Lasso with regularization parameter λn = 4σ
√

log p
n , there are universal

positive constants (c0, c1, c2) such that any optimal solution θ̂λn satisfies

‖θ̂λn − θ∗‖22 ≤ c0 Rq

(
σ2

κ2
1

log p

n

)1− q
2

(36)

with probability at least 1− c1 exp(−c2nλ2
n).

Remarks: Note that this corollary is a strict generalization of Corollary 2, to
which it reduces when q = 0. More generally, the parameter q ∈ [0, 1] controls the
relative “sparsifiability” of θ∗, with larger values corresponding to lesser sparsity.
Naturally then, the rate slows down as q increases from 0 towards 1. In fact,
Raskutti et al. [58] show that the rates (36) are minimax-optimal over the !q-
balls—implying that not only are the consequences of Theorem 1 sharp for the
Lasso, but more generally, no algorithm can achieve faster rates.

Proof. Since the loss function L is quadratic, the proof of Corollary 2 shows

that the stated choice λn = 4
√

σ2 log p
n is valid with probability at least 1 −

c exp(−c′nλ2
n). Let us now show that the RSC condition holds. We do so via

condition (31) applied to equation (35). For a threshold η > 0 to be chosen,
define the thresholded subset

Sη :=
{
j ∈ {1, 2, . . . , p} | |θ∗j | > η

}
.(37)

Now recall the subspaces M(Sη) and M⊥(Sη) previously defined in equations (5)
and (6) of Example 1, where we set S = Sη. The following lemma, proved in the
supplement [51], provides sufficient conditions for restricted strong convexity with
respect to these subspace pairs:

Lemma 2. Suppose that the conditions of Corollary 3 hold, and n > 9κ2|Sη| log p.
Then with the choice η = λn

κ1
, the RSC condition holds over C(M(Sη),M⊥(Sη), θ∗)

with κL = κ1/4 and τ2
L = 8κ2

log p
n ‖θ∗Sc

η
‖21.
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Consequently, we may apply Theorem 1 with κL = κ1/4 and τ2
L(θ

∗) = 8κ2
log p
n ‖θ∗Sc

η
‖21

to conclude that

‖θ̂λn − θ∗‖22 ≤ 144
λ2
n

κ2
1

|Sη|+
4λn

κ1

{
16κ2

log p

n
‖θ∗Sc

η
‖21 + 4‖θ∗Sc

η
‖1
}
,(38)

where we have used the fact that Ψ2(Sη) = |Sη|, as noted in the proof of Corol-
lary 2.

It remains to upper bound the cardinality of Sη in terms of the threshold η
and !q-ball radius Rq. Note that we have

(39) Rq ≥
p∑

j=1

|θ∗j |q ≥
∑

j∈Sη

|θ∗i |q ≥ ηq|Sη|,

whence |Sη| ≤ η−q Rq for any η > 0. Next we upper bound the approximation er-
ror ‖θ∗Sc

η
‖1, using the fact that θ∗ ∈ Bq(Rq). Letting Sc

η denote the complementary

set Sη\{1, 2, . . . , p}, we have

‖θ∗Sc
η
‖1 =

∑

j∈Sc
η

|θ∗j | =
∑

j∈Sc
η

|θ∗j |q|θ∗j |1−q ≤ Rq η1−q.(40)

Setting η = λn/κ1 and then substituting the bounds (39) and (40) into the
bound (38) yields

‖θ̂λn − θ∗‖22 ≤ 160
(λ2

n

κ2
1

)1− q
2 Rq + 64κ2

{(λ2
n

κ2
1

)1− q
2Rq

}2 (log p)/n

λn/κ1
.

For any fixed noise variance, our choice of regularization parameter ensures that
the ratio (log p)/n

λn/κ1
is of order one, so that the claim follows.

4.4 Extensions to generalized linear models

In this section, we briefly outline extensions of the preceding results to the
family of generalized linear models (GLM). Suppose that conditioned on a vector
x ∈ Rp of covariates, a response variable y ∈ Y has the distribution

Pθ∗(y | x) ∝ exp
{y 〈θ∗, x〉 − Φ(〈θ∗, x〉)

c(σ)

}
.(41)

Here the quantity c(σ) is a fixed and known scale parameter, and the function
Φ : R → R is the link function, also known. The family (41) includes many
well-known classes of regression models as special cases, including ordinary lin-
ear regression (obtained with Y = R, Φ(t) = t2/2 and c(σ) = σ2), and logistic
regression (obtained with Y = {0, 1}, c(σ) = 1 and Φ(t) = log(1 + exp(t))).

Given samples Zi = (xi, yi) ∈ Rp × Y, the goal is to estimate the unknown
vector θ∗ ∈ Rp. Under a sparsity assumption on θ∗, a natural estimator is based
on minimizing the (negative) log likelihood, combined with an !1-regularization
term. This combination leads to the convex program

θ̂λn ∈ arg min
θ∈Rp

{ 1

n

n∑

i=1

{
− yi〈θ, xi〉+ Φ(〈θ, xi〉)

}

︸ ︷︷ ︸
L(θ;Zn

1 )

+λn‖θ‖1
}
.(42)
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In order to extend the error bounds from the previous section, a key ingredient
is to establish that this GLM-based loss function satisfies a form of restricted
strong convexity. Along these lines, Negahban et al. [50] proved the following
result: suppose that the covariate vectors xi are zero-mean with covariance matrix
Σ 4 0, and are drawn i.i.d. from a distribution with sub-Gaussian tails (see
equation (33)). Then there are constants κ1,κ2 such that the first-order Taylor
series error for the GLM-based loss (42) satisfies the lower bound

δL(∆, θ∗) ≥ κ1‖∆‖22 − κ2
log p

n
‖∆‖21 for all ‖∆‖2 ≤ 1.(43)

As discussed following Definition 2, this type of lower bound implies that L
satisfies a form of RSC, as long as the sample size scales as n = Ω(s log p), where
s is the target sparsity. Consequently, this lower bound (43) allows us to recover
analogous bounds on the error ‖θ̂λn − θ∗‖2 of the GLM-based estimator (42).

5. CONVERGENCE RATES FOR GROUP-STRUCTURED NORMS

The preceding two sections addressedM -estimators based on !1-regularization,
the simplest type of decomposable regularizer. We now turn to some extensions
of our results to more complex regularizers that are also decomposable. Vari-
ous researchers have proposed extensions of the Lasso based on regularizers that
have more structure than the !1 norm (e.g., [72, 79, 81, 46, 6]). Such regular-
izers allow one to impose different types of block-sparsity constraints, in which
groups of parameters are assumed to be active (or inactive) simultaneously. These
norms arise in the context of multivariate regression, where the goal is to pre-
dict a multivariate output in Rm on the basis of a set of p covariates. Here it
is appropriate to assume that groups of covariates are useful for predicting the
different elements of the m-dimensional output vector. We refer the reader to the
papers [72, 79, 81, 46, 6] for further discussion of and motivation for the use of
block-structured norms.

Given a collection G = {G1, . . . , GNG} of groups, recall from Example 2 in Sec-
tion 2.2 the definition of the group norm ‖·‖G,$α. In full generality, this group norm
is based on a weight vector &α = (α1, . . . ,αNG ) ∈ [2,∞]NG , one for each group. For
simplicity, here we consider the case when αt = α for all t = 1, 2, . . . , NG , and we
use ‖ · ‖G,α to denote the associated group norm. As a natural extension of the
Lasso, we consider the block Lasso estimator

θ̂ ∈ arg min
θ∈Rp

{ 1
n
‖y −Xθ‖22 + λn‖θ‖G,α

}
,(44)

where λn > 0 is a user-defined regularization parameter. Different choices of the
parameter α yield different estimators, and in this section, we consider the range
α ∈ [2,∞]. This range covers the two most commonly applied choices, α = 2,
often referred to as the group Lasso, as well as the choice α = +∞.

5.1 Restricted strong convexity for group sparsity

As a parallel to our analysis of ordinary sparse regression, our first step is
to provide a condition sufficient to guarantee restricted strong convexity for the
group-sparse setting. More specifically, we state the natural extension of condi-
tion (31) to the block-sparse setting, and prove that it holds with high probabil-
ity for the class of Σ-Gaussian random designs. Recall from Theorem 1 that the
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dual norm of the regularizer plays a central role. As discussed previously, for the
block-(1,α)-regularizer, the associated dual norm is a block-(∞,α∗) norm, where
(α,α∗) are conjugate exponents satisfying 1

α + 1
α∗ = 1.

Letting ε ∼ N(0, Ip×p) be a standard normal vector, we consider the following
condition. Suppose that there are strictly positive constants (κ1,κ2) such that,
for all ∆ ∈ Rp, we have

‖X∆‖22
n

≥ κ1‖∆‖22 − κ2 ρ2G(α
∗) ‖∆‖21,α,(45)

where ρG(α∗) := E

[
max

t=1,2,...,NG

‖εGt
‖α∗√
n

]
. To understand this condition, first con-

sider the special case of NG = p groups, each of size one, so that the group-sparse
norm reduces to the ordinary !1-norm, and its dual is the !∞-norm. Using α = 2

for concreteness, we have ρG(2) = E[‖ε‖∞]/
√
n ≤

√
3 log p

n for all p ≥ 10, usin

gstandard bounds on Gaussian maxima. Therefore, condition (45) reduces to the
earlier condition (31) in this special case.

Let us consider a more general setting, say with α = 2 and NG groups each of
size m, so that p = NGm. For this choice of groups and norm, we have

ρG(2) = E
[

max
t=1,...,NG

‖εGt‖2√
n

]
,

where each sub-vector wGt is a standard Gaussian vector with m elements. Since

E[‖εGt‖2] ≤
√
m, tail bounds for χ2-variates yield ρG(2) ≤

√
m
n +

√
3 logNG

n , so

that the condition (45) is equivalent to

‖X∆‖22
n

≥ κ1‖∆‖22 − κ2

[√
m

n
+

√
3 logNG

n

]2
‖∆‖2G,2 for all ∆ ∈ Rp.(46)

Thus far, we have seen the form that condition (45) takes for different choices
of the groups and parameter α. It is natural to ask whether there are any matrices
that satisfy the condition (45). As shown in the following result, the answer is
affirmative—more strongly, almost every matrix satisfied from the Σ-Gaussian
ensemble will satisfy this condition with high probability. (Here we recall that for
a non-degenerate covariance matrix, a random design matrix X ∈ Rn×p is drawn
from the Σ-Gaussian ensemble if each row xi ∼ N(0,Σ), i.i.d. for i = 1, 2, . . . , n.)

Proposition 1. For a design matrix X ∈ Rn×p from the Σ-ensemble, there
are constants (κ1,κ2) depending only Σ such that condition (45) holds with prob-
ability greater than 1− c1 exp(−c2n).

We provide the proof of this result in the supplement [51]. This condition can be
used to show that appropriate forms of RSC hold, for both the cases of exactly
group-sparse and weakly sparse vectors. As with !1-regularization, these RSC
conditions are milder than analogous group-based RIP conditions (e.g., [28, 68,
6]), which require that all sub-matrices up to a certain size are close to isometries.
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5.2 Convergence rates

Apart from RSC, we impose one additional condition on the design matrix. For
a given group G of size m, let us view the matrix XG ∈ Rn×m as an operator from
!mα → !n2 , and define the associated operator norm |||XG|||α→2 := max

‖θ‖α=1
‖XG θ‖2.

We then require that

|||XGt |||α→2√
n

≤ 1 for all t = 1, 2, . . . , NG .(47)

Note that this is a natural generalization of the column normalization condi-
tion (32), to which it reduces when we have NG = p groups, each of size one.
As before, we may assume without loss of generality, rescaling X and the noise
as necessary, that condition (47) holds with constant one. Finally, we define the
maximum group size m = max

t=1,...,NG
|Gt|. With this notation, we have the following

novel result:

Corollary 4. Suppose that the noise w is sub-Gaussian (33), and the design
matrix X satisfies condition (45) and the block normalization condition (47). If
we solve the group Lasso with

λn ≥ 2σ

{
m1−1/α

√
n

+

√
logNG

n

}
,(48)

then with probability at least 1−2/NG
2, for any group subset SG ⊆ {1, 2, . . . , NG}

with cardinality |SG | = sG, any optimal solution θ̂λn satisfies

‖θ̂λn − θ∗‖22 ≤
4λ2

n

κ2
L

sG +
4λn

κL

∑

t/∈SG

‖θ∗Gt
‖α.(49)

Remarks: Since the result applies to any α ∈ [2,∞], we can observe how the
choices of different group-sparse norms affect the convergence rates. So as to sim-
plify this discussion, let us assume that the groups are all of equal size m, so that
p = mNG is the ambient dimension of the problem.

Case α = 2: The case α = 2 corresponds to the block (1, 2) norm, and the
resulting estimator is frequently referred to as the group Lasso. For this case,

we can set the regularization parameter as λn = 2σ
{√

m
n +

√
logNG

n

}
. If we

assume moreover that θ∗ is exactly group-sparse, say supported on a group subset
SG ⊆ {1, 2, . . . , NG} of cardinality sG , then the bound (49) takes the form

‖θ̂ − θ∗‖22 !
sG m

n
+

sG logNG
n

.(50)

Similar bounds were derived in independent work by Lounici et al. [41] and Huang
and Zhang [28] for this special case of exact block sparsity. The analysis here shows
how the different terms arise, in particular via the noise magnitude measured in
the dual norm of the block regularizer.
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In the more general setting of weak block sparsity, Corollary 4 yields a number
of novel results. For instance, for a given set of groups G, we can consider the
block sparse analog of the !q-“ball”—namely the set

Bq(Rq;G, 2) :=
{

θ ∈ R
p |

NG∑

t=1

‖θGt‖
q
2 ≤ Rq

}
.

In this case, if we optimize the choice of S in the bound (49) so as to trade off
the estimation and approximation errors, then we obtain

‖θ̂ − θ∗‖22 ! Rq

(
m

n
+

logNG
n

)1− q
2

,

which is a novel result. This result is a generalization of our earlier Corollary 3,
to which it reduces when we have NG = p groups each of size m = 1.

Case α = +∞: Now consider the case of !1/!∞ regularization, as suggested in

past work [72]. In this case, Corollary 4 implies that ‖θ̂ − θ∗‖22 ! sm2

n + s logNG
n .

Similar to the case α = 2, this bound consists of an estimation term, and a search
term. The estimation term sm2

n is larger by a factor of m, which corresponds to
amount by which an !∞-ball in m dimensions is larger than the corresponding
!2-ball.

We provide the proof of Corollary 4 in the supplementary appendix [51]. It is
based on verifying the conditions of Theorem 1: more precisely, we use Proposi-
tion 1 in order to establish RSC, and we provide a lemma that shows that the
regularization choice (48) is valid in the context of Theorem 1.

6. DISCUSSION

In this paper, we have presented a unified framework for deriving error bounds
and convergence rates for a class of regularized M -estimators. The theory is high-
dimensional and non-asymptotic in nature, meaning that it yields explicit bounds
that hold with high probability for finite sample sizes, and reveals the dependence
on dimension and other structural parameters of the model. Two properties of
the M -estimator play a central role in our framework. We isolated the notion
of a regularizer being decomposable with respect to a pair of subspaces, and
showed how it constrains the error vector—meaning the difference between any
solution and the nominal parameter—to lie within a very specific set. This fact is
significant, because it allows for a fruitful notion of restricted strong convexity to
be developed for the loss function. Since the usual form of strong convexity cannot
hold under high-dimensional scaling, this interaction between the decomposable
regularizer and the loss function is essential.

Our main result (Theorem 1) provides a deterministic bound on the error for
a broad class of regularized M -estimators. By specializing this result to different
statistical models, we derived various explicit convergence rates for different es-
timators, including some known results and a range of novel results. We derived
convergence rates for sparse linear models, both under exact and approximate
sparsity assumptions, and these results have been shown to be minimax opti-
mal [58]. In the case of sparse group regularization, we established a novel upper
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bound of the oracle type, with a separation between the approximation and es-
timation error terms. For matrix estimation, the framework described here has
been used to derive bounds on Frobenius error that are known to be minimax-
optimal, both for multitask regression and autoregressive estimation [52], as well
as the matrix completion problem [54]. In recent work [2], this framework has
also been applied to obtain minimax-optimal rates for noisy matrix decomposi-
tion, which involves using a combination of the nuclear norm and elementwise
!1-norm. Finally, in shown in the paper [50], these results may be applied to de-
rive convergence rates for generalized linear models. Doing so requires leveraging
that restricted strong convexity can also be shown to hold for these models, as
stated in the bound (43).

There are a variety of interesting open questions associated with our work.
In this paper, for simplicity of exposition, we have specified the regularization
parameter in terms of the dual norm R∗ of the regularizer. In many cases, this
choice leads to optimal convergence rates, including linear regression over !q-
balls (Corollary 3) for sufficiently small radii, and various instances of low-rank
matrix regression. In other cases, some refinements of our convergence rates are
possible; for instance, for the special case of linear sparsity regression (i.e., an
exactly sparse vector, with a constant fraction of non-zero elements), our rates
can be sharpened by a more careful analysis of the noise term, which allows for a
slightly smaller choice of the regularization parameter. Similarly, there are other
non-parametric settings in which a more delicate choice of the regularization pa-
rameter is required [36, 59]. Last, we suspect that there are many other statistical
models, not discussed in this paper, for which this framework can yield useful re-
sults. Some examples include different types of hierarchical regularizers and/or
overlapping group regularizers [29, 30], as well as methods using combinations of
decomposable regularizers, such as the fused Lasso [70].

Acknowledgements

All authors were partially supported by NSF grants DMS-0605165 and DMS-
0907632. BY acknowledges additional support from NSF-grant SES-0835531 (CDI);
MJW and SN acknowledge additional support from the NSF grant CDI-0941742,
and AFOSR grant 09NL184; and PR acknowledges additional support from NSF
grant IIS-101842. We thank a number of people, including Arash Amini, Fran-
cis Bach, Peter Buhlmann, Garvesh Raskutti, Alexandre Tsybakov, Sara van de
Geer and Tong Zhang for helpful discussions.

imsart-sts ver. 2012/04/10 file: statscibody.tex date: May 11, 2012



26 S. N. NEGAHBAN AND P. RAVIKUMAR AND M. J. WAINWRIGHT AND B. YU

REFERENCES

[1] Large Synoptic Survey Telescope, 2003. URL: www.lsst.org.
[2] A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex

relaxation: Optimal rates in high dimensions. To appear in Annals of Statistics, 2011.
Appeared as http://arxiv.org/abs/1102.4807.

[3] F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine
Learning Research, 9:1179–1225, 2008.

[4] F. Bach. Consistency of trace norm minimization. Journal of Machine Learning Research,
9:1019–1048, June 2008.

[5] F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics,
4:384–414, 2010.

[6] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing.
Technical report, Rice University, 2008. Available at arxiv:0808.3572.

[7] P. J. Bickel, J. B. Brown, H. Huang, and Q. Li. An overview of recent developments in
genomics and associated statistical methods. Phil. Trans. Royal Society A, 367:4313–4337,
2009.

[8] P. J. Bickel and E. Levina. Covariance regularization by thresholding. Annals of Statistics,
36(6):2577–2604, 2008.

[9] P. J. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, 37(4):1705–1732, 2009.

[10] F. Bunea. Honest variable selection in linear and logistic regression models via #1 and
#1 + #2 penalization. Electronic Journal of Statistics, 2:1153–1194, 2008.

[11] F. Bunea, Y. She, and M. Wegkamp. Adaptive rank penalized estimators in multivariate
regression. Technical report, Florida State, 2010. available at arXiv:1004.2995.

[12] F. Bunea, A. Tsybakov, and M. Wegkamp. Aggregation for gaussian regression. Annals of
Statistics, 35(4):1674–1697, 2007.

[13] F. Bunea, A. Tsybakov, and M. Wegkamp. Sparsity oracle inequalities for the Lasso.
Electronic Journal of Statistics, pages 169–194, 2007.

[14] T. Cai and H. Zhou. Optimal rates of convergence for sparse covariance matrix estimation.
Technical report, Wharton School of Business, University of Pennsylvania, 2010. available
at http://www-stat.wharton.upenn.edu/ tcai/paper/html/Sparse-Covariance-Matrix.html.

[15] E. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Info Theory,
51(12):4203–4215, December 2005.

[16] E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger
than n. Annals of Statistics, 35(6):2313–2351, 2007.

[17] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Found.
Comput. Math., 9(6):717–772, 2009.

[18] E. J. Candes, Y. Ma X. Li, and J. Wright. Stable principal component pursuit. In Inter-
national Symposium on Information Theory, June 2010.

[19] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. Rank-sparsity in-
coherence for matrix decomposition. Technical report, MIT, June 2009. Available at
arXiv:0906.2220v1.

[20] S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM
J. Sci. Computing, 20(1):33–61, 1998.

[21] D. L. Donoho. Compressed sensing. IEEE Trans. Info. Theory, 52(4):1289–1306, April
2006.

[22] D. L. Donoho and J. M. Tanner. Neighborliness of randomly-projected simplices in high
dimensions. Proceedings of the National Academy of Sciences, 102(27):9452–9457, 2005.

[23] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford, 2002. Avail-
able online: http://faculty.washington.edu/mfazel/thesis-final.pdf.

[24] V. L. Girko. Statistical analysis of observations of increasing dimension. Kluwer Academic,
New York, 1995.

[25] E. Greenshtein and Y. Ritov. Persistency in high dimensional linear predictor-selection
and the virtue of over-parametrization. Bernoulli, 10:971–988, 2004.

[26] D. Hsu, S. M. Kakade, and T. Zhang. Robust matrix decomposition with sparse corruptions.
Technical report, Univ. Pennsylvania, November 2010.

[27] H. Hu, C. Caramanis, and S. Sanghavi. Robust PCA via outlier pursuit. Technical report,
UT Austin, 2010.

[28] J. Huang and T. Zhang. The benefit of group sparsity. The Annals of Statistics, 38(4):1978–

imsart-sts ver. 2012/04/10 file: statscibody.tex date: May 11, 2012



HIGH-DIMENSIONAL ANALYSIS OF REGULARIZED M -ESTIMATORS 27

2004, 2010.
[29] L. Jacob, G. Obozinski, and J. P. Vert. Group Lasso with Overlap and Graph Lasso. In

International Conference on Machine Learning (ICML), pages 433–440, 2009.
[30] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical

sparse coding. Technical report, HAL-Inria, 2010. available at inria-00516723.
[31] S. M. Kakade, O. Shamir, K. Sridharan, and A. Tewari. Learning exponential families in

high-dimensions: Strong convexity and sparsity. In AISTATS, 2010.
[32] N. El Karoui. Operator norm consistent estimation of large-dimensional sparse covariance

matrices. Annals of Statistics, 36(6):2717–2756, 2008.
[33] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from noisy entries. Technical

report, Stanford, June 2009. Preprint available at http://arxiv.org/abs/0906.2027v1.
[34] Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2), 2006.
[35] V. Koltchinskii and M. Yuan. Sparse recovery in large ensembles of kernel machines. In

Proceedings of COLT, 2008.
[36] V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. Annals of Statistics,

38:3660–3695, 2010.
[37] C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrix

estimation. Annals of Statistics, 37:4254–4278, 2009.
[38] D. Landgrebe. Hyperspectral image data analsysis as a high-dimensional signal processing

problem. IEEE Signal Processing Magazine, 19(1):17–28, January 2008.
[39] K. Lee and Y. Bresler. Guaranteed minimum rank approximation from linear observations

by nuclear norm minimization with an ellipsoidal constraint. Technical report, UIUC, 2009.
Available at arXiv:0903.4742.

[40] Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm optimization with
application to system identification. SIAM Journal on Matrix Analysis and Applications,
31(3):1235–1256, 2009.

[41] K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer. Taking advantage of sparsity
in multi-task learning. Technical Report arXiv:0903.1468, ETH Zurich, March 2009.

[42] M. Lustig, D. Donoho, J. Santos, and J. Pauly. Compressed sensing MRI. IEEE Signal
Processing Magazine, 27:72–82, March 2008.

[43] M. McCoy and J. Tropp. Two Proposals for Robust PCA using Semidefinite Programming.
Technical report, California Institute of Technology, 2010.

[44] M. L. Mehta. Random matrices. Academic Press, New York, NY, 1991.
[45] L. Meier, S. van de Geer, and P. Buhlmann. High-dimensional additive modeling. Annals

of Statistics, 37:3779–3821, 2009.
[46] N. Meinshausen. A note on the Lasso for graphical Gaussian model selection. Statistics

and Probability Letters, 78(7):880–884, 2008.
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