
1UPDATE BY MEANS OF INFERENCE RULESTEODOR C. PRZYMUSINSKI AND HUDSON TURNER. Katsuno and Mendelzon have distinguished two abstract frameworks forreasoning about change: theory revision and theory update. Theory re-vision involves a change in knowledge or belief with respect to a staticworld. By contrast, theory update involves a change of knowledge or beliefin a changing world. In this paper we are concerned with theory update.Winslett has shown that theory update should be computed \one modelat a time." Accordingly, we focus exclusively on update of interpretations.We begin with a study of revision programming , introduced by Marek andTruszczy�nski to formalize interpretation update in a language similar tologic programming. While revision programs provide a useful and naturalde�nition of interpretation update, they are limited to a fairly restrictedset of update rules. Accordingly, we introduce the more general notion ofrule update | interpretation update by arbitrary sets of inference rules.We show that Winslett's approach to update by means of arbitrary sets offormulae corresponds to a simple subclass of rule update. We also spec-ify a simple embedding of rule update in Reiter's default logic, obtainedby augmenting the original update rules with default rules encoding thecommonsense law of inertia | the principle that things change only whenthey are made to. /1. INTRODUCTIONKatsuno and Mendelzon [KM91] have distinguished two abstract frameworks forreasoning about change: theory revision and theory update. Theory revision in-volves a change in knowledge or belief with respect to a static world. For example,suppose you are booked on a
ight, but told only that your destination is eitherAustralia or Europe, i.e., that australia_europe holds. If sometime later you learn,Address correspondence to Teodor Przymusinski, Department of Computer Science,University of California, Riverside, CA 92521, USA (teodor@cs.ucr.edu); or Hudson Turner,Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA(hudson@cs.utexas.edu)THE JOURNAL OF LOGIC PROGRAMMINGc
 Elsevier Science Inc., 1996655 Avenue of the Americas, New York, NY 10010 0743-1066/96/$7.00

2 in addition to what you already know, that you weren't booked on a
ight to Eu-rope, i.e., that :europe holds, then you are likely to conclude that your destinationis Australia, i.e., that australia holds.By contrast, theory update involves a change of knowledge or belief in a changingworld. Again suppose you are booked on a
ight, and told only that your destinationis either Australia or Europe, i.e., that australia _ europe holds. Suppose youlater learn that the situation has changed and all
ights to Europe have just beencancelled, i.e., that :europe holds. Under these circumstances, you are not likelyto conclude that you are going to Australia, i.e., that australia holds. In fact, itmay be the case that your
ight has just been cancelled.In this paper we are concerned with theory update. A key insight into thenature of update is due to Winslett [Win88], who showed that reasoning aboutactions should be done \one model at a time." That is, when reasoning about theoutcome of an action, we must consider its e�ect in each one of the states of theworld that are consistent with our (possibly incomplete) knowledge of the currentstate of the world. This insight is re
ected in the general de�nition of theory updatedue to Katsuno and Mendelzon, which can be formulated as follows. Let � and Tbe sets of propositional formulae. A set T 0 of formulae is a \theory update" of Tby � if Models(T 0) = f I0 : 9I 2Models(T) : I 0 is \an update of I by �" g :We see by the form of this de�nition that in order to determine \theory update,"it su�ces to de�ne when an interpretation I0 is an update of an interpretation Iby a theory �. Accordingly, in this paper we focus exclusively on \interpretationupdate." However, in contrast to the work cited above, we investigate a moregeneral case of update by means of sets R of inference rules, instead of sets � offormulae.The �rst part of the paper is devoted to the study of revision programs, in-troduced by Marek and Truszczy�nski in a series of recent papers [MT93, MT94,MT95a] to formalize interpretation update in a language similar to the language oflogic programming. Revision programs are essentially sets of positive logic programrules, which can be interpreted as inference rules and used to update interpreta-tions. Marek and Truszczy�nski proved that logic programs with stable semanticsare embeddable into revision programs. We show that, conversely, there is a simpleembedding of revision programs into logic programs with stable semantics.1Thusthe two formalisms are precisely equivalent. We go on to demonstrate that variousproperties of revision programs are easily derived from this translation and fromknown properties of logic programs.Our translation of revision programs into logic programs utilizes a simple andintuitive encoding of the commonsense law of inertia, which is the principle thatthings do not change unless they are made to. The fact that revision programming iseasily captured in logic programs using such inertia rules helps clarify the nature ofrevision programming, and, as we will see, of interpretation update more generally.While revision programs provide a useful and natural de�nition of interpretationupdate, they are limited to a fairly restricted set of update rules and thus arenot su�ciently expressive to capture more complex interpretation updates which1Chitta Baral [Bar94] independently found a somewhat more complex embedding.

3may be described by arbitrarily complex formulae, or, more generally, by arbitraryinference rules. Accordingly, in the second part of the paper we introduce thenotion of rule update | interpretation update by arbitrary sets of inference rules.The proposed formalism is not only more general and expressive than revisionprogramming, but also has a very simple and natural de�nition.We show that Winslett's [Win88] approach to update by means of arbitrarysets of formulae corresponds to a simple subclass of rule update. We also inves-tigate how the \directionality" of inference rules contributes to the expressivenessof rule update. Finally, we specify a simple embedding of rule update into defaultlogic [Rei80], obtained by augmenting the original update rules with inertia axiomsanalogous to those used in the translation of revision programs into logic programs.The translation into default logic provides a bridge between our newly introducedformalism and a well-known nonmonotonic formalism.The introduction of rule update provides a new framework for interpretationupdate and thus also for theory update. In spite of its great simplicity, rule updateconstitutes a powerful and expressive mechanism which can be used to determineupdates of theories by arbitrarily complex sets of inference rules and is applicableto various knowledge domains. For example, in [MT95b] McCain and Turner applyrule update to the problem of reasoning about the e�ects of actions. Moreover, thesimple embedding of rule update in default logic | obtained by adding default rulesencoding the commonsense law of inertia | provides a crucial element of proposalsin [Tur96, Tur97] for representing commonsense knowledge about actions in defaultlogic and logic programming.Preliminary de�nitions appear in Section 2. In Sections 3 and 4 we specify asimple embedding of revision programming in logic programming and show thatbasic results obtained by Marek and Truszczy�nski for revision programs are easilydeduced from this embedding, using known properties of logic programs. In Sec-tion 5 we introduce an alternative characterization of revision programming, and inSection 6 we de�ne the more general notion of rule update as a natural extension ofthis alternative characterization. In Section 7 we compare rule update to Winslett's[Win88] de�nition of update by means of propositional formulae, and we investigatehow the \directionality" of inference rules in
uences rule update. In Section 8 wespecify an embedding of rule update in default logic. Section 9 consists of a fewconcluding remarks.2. PRELIMINARY DEFINITIONSLet K be a propositional language. For any set � of formulae from K, by Cn(�) wedenote the least logically closed set of formulae from K that contains �. Inferencerules over K will be written as expressions of the form� where � and are formulae from K. We often �nd it convenient to identify apropositional formula � with the inference ruleTrue� :

4 Let R be a set of inference rules over K, and let � be a set of formulae from K. Wesay � is closed under R if for every rule � 2 R, if � belongs to � then does too.We write � `R �if � belongs to the least logically closed set of formulae from K that contains � andis closed under R.A default rule over K is an expression of the form� : �1; : : : ; �n
 (2.1)where all of �; �1; : : : ; �n;
 are formulae from K. For a default rule r as in (2.1), wede�ne prerequisite(r) = �, justi�cations(r) = f�1; : : : ; �ng, and consequent (r) =
.If prerequisite(r) = True, we sometimes omit it and write : �1; : : : ; �n
 instead. Ifjusti�cations(r) is empty, we identify r with the corresponding inference rule �
 . Ifin addition prerequisite(r) = True, we sometimes simply write
.A default theory over K is a set of default rules over K. Let D be a defaulttheory over K and let E be a set of formulae from K. We de�ne the reduct of Dwith respect to E, denoted by DE , as follows.DE = �prerequisite(r)consequent (r) : r 2 D and for all � 2 justi�cations(r) ; :� =2 E�We say that E is an extension of D if E is the least logically closed set that isclosed under DE .2A logic program over K is a set of logic program rules over K, which are expres-sions of the form A B1; : : : ; Bm; not C1; : : : ; not Cnwhere A, Bi and Cj are atoms from K (m;n � 0). If n = 0 for all program rules,then the program is called positive. By interpreting lists of atoms in rule bodies asconjunctions of atoms, we can identify a positive logic program with a propositionalHorn theory.3De�nition 2.1. (Stable Models) [GL88] Let P be a logic program over a languageK and letM be an interpretation of K. By the quotient of P modulo M we meanthe positive logic program PM obtained from P by:� removing from P all rules which contain a negative premise \not C" suchthat C is true in M , and� deleting all negative premises \not C" from the remaining rules of P .Since the program PM is a Horn theory, it has a unique least model Least(PM).The interpretationM is called a stable model of the program P ifM = Least(PM).2Default logic is due to Reiter [Rei80]. The de�nition of an extension given above follows[GLPT91], and is equivalent to Reiter's de�nition.3Before continuing, we recall the fact that propositional programs and default theories can beviewed as instantiated versions of programs and (quanti�er-free) theories with variables. Thus theresults in this paper apply to the general case.

5De�nition 2.2. (Extended Logic Programs) [GL90] (see also [Prz95]) Let K bea propositional language. Let K� be an extended propositional language obtainedby augmenting K with new propositional letters �A, for some (or all) proposi-tional letters A in K. The new propositional symbols �A are called strong (or\classical") negation of A. A logic program P over the extended language K� iscalled an extended logic program. A stable model of P over K� is an extendedstable model of P if there is no atom A 2 K such that both A and �A are truein M .3. EMBEDDING REVISION PROGRAMS INTO LOGIC PROGRAMSRevision programs were introduced by Marek and Truszczy�nski in a series of papers[MT93, MT94, MT95a] in order to formalize interpretation update in a languagesimilar to the language of logic programming. In [MT93] they showed that logicprograms with stable semantics are embeddable into revision programs. In thissection we specify a remarkably simple embedding of revision programs into logicprograms with stable semantics. Consequently, the two formalisms are preciselyequivalent. In the next section we demonstrate how one can easily derive variousproperties of revision programs from this translation and from known properties oflogic programs.3.1. Revision ProgramsWe �rst recall the de�nition of revision programs. Following [MT94] we �x a count-able set U .De�nition 3.1. (Revision Programs) [MT94] A revision in-rule or, simply, anin-rule, is any expression of the formin(p) in(q1); : : : ; in(qm); out(s1); : : : ; out(sn) (3.1)where p, qi, 1 � i � m, and sj , 1 � j � n, are all in U and m;n � 0. A revisionout-rule or, simply, an out-rule, is any expression of the formout(p) in(q1); : : : ; in(qm); out(s1); : : : ; out(sn) (3.2)where p, qi, 1 � i � m, and sj , 1 � j � n, are all in U and m;n � 0. Acollection of in-rules and out-rules is called a revision program. Any subset B ofU is called a knowledge base.Clearly, revision programs can be syntactically viewed as positive logic programs(or as propositional Horn theories). However, as we will see below, they are given aspecial revision semantics which di�ers signi�cantly from the least model semanticsof positive logic programs. We �rst need the de�nition of the necessary changedetermined by a revision program.De�nition 3.2. (Necessary Change) [MT94] Let P be a revision program withleast modelM . The necessary change determined by P is the pair (I;O), whereI = fq : in(q) 2Mg and O = fq : out(q) 2Mg. The revision program is calledcoherent if I \O = ;.

6 Now we are ready to de�ne the so-called P -justi�ed revisions.De�nition 3.3. (P-Justi�ed Revision) [MT94] 4Suppose that P is a revisionprogram, BI is the initial knowledge base and BR is the revised knowledge base.The reduct of P with respect to (BI ; BR) is de�ned as the revision programPBR jBI obtained from P by:� removing from the body of each rule in P all atoms in(a) such that a 2BI \BR, and all atoms out(a) such that a =2 BI [BR ;� removing every rule of type (3.1) or (3.2) such that qi =2 BR, for some i,1 � i � m, or sj 2 BR, for some j, 1 � j � n .If (I;O) is the necessary change determined by PBR jBI and PBR jBI is coherentand BR = (BI [I) �O, then BR is called a P -justi�ed revision of BI .The reader is referred to [MT94] for the motivation of the above de�nition. Theresults established in the remainder of the paper, e.g., Theorem 3.1, will furtherclarify its intuitive meaning and its relationship to other well-established notions.According to the following lemma, the last condition BR = (BI [I) �O can beequivalently stated as BR = (BR \BI) [I and BR = (BR \BI) [O, where by Awe denote the complement U �A of the set A.Lemma 3.1. Suppose that BI ; BR; O; I are subsets of U such that O \ I = ;. Thefollowing two conditions are equivalent:(i) BR = (BI [I) �O;(ii) BR = (BR \BI) [I and BR = (BR \BI) [O:Proof. Suppose that (ii) holds. We have to show that BR = (BI � O) [I.Clearly, (ii) implies that BR � I . Moreover, if q 2 BI � O then q does not be-long to BR and therefore q 2 BR. This shows that BR � (BI � O) [I.If q 2 BR then, by (ii), q 2 BI [I. Moreover, q 62 O which shows thatBR � (BI � O) [I and therefore BR = (BI � O) [I = (BI [I)� O.Suppose now that (i) holds. We have to show that BR = (BR \BI) [I andBR = (BR \BI) [O. Clearly, by (i), BR � (BR \BI) [I . Moreover, if q 2 BRthen either q 2 I or q 2 BI which shows that BR � (BR \BI) [I and thereforeBR = (BR \BI) [I .Since O is disjoint from BR we infer that BR � (BR \BI) [O. Moreover, ifq 2 BR and q 62 O then q 62 BI which shows that BR � (BR \BI) [O and thereforeBR = (BR \BI) [O. 23.2. Translating Revision Programs into Logic ProgramsWe next show how to embed revision programs into logic programs with stablesemantics. We employ a propositional language K whose set of propositional lettersis fin(q) : q 2 Ug [fout(q) : q 2 Ug [finI(q) : q 2 Ug [foutI(q) : q 2 Ug.4Although the de�nition given here di�ers slightly from the one given in [MT94] it is easilyseen to be equivalent.

7De�nition 3.4. (Translating revision programs into logic programs) Thetranslation of a revision program P and an initial knowledge base BI into alogic program is de�ned as the logic program P(P;BI) = PI [PN [P over Kconsisting of the following three subprograms.Initial Knowledge Rules PI: All q 2 BI are initially in and all s 62 BI areinitially out:inI(q) (3.3)outI(s) (3.4)for all q 2 BI and all s 62 BI .Inertia Rules PN : If q was initially in (respectively, out) then after revisionit remains in (respectively, out) unless it was forced out (respectively, in):in(q) inI(q); not out(q) (3.5)out(q) outI(q); not in(q) (3.6)for all q 2 U .Revision Rules P : All the in-rules and out-rules that belong to the originalrevision program P .A stable modelM of P(P;BI) is called coherent if it does not contain both in(q)and out(q), for any q 2 U .Observe that the above translation is quite simple. It preserves the originalrevision program P and adds to it the set of facts representing the initial state BIand two simple inertia axiom schemas stating that things do not change from onestate to another unless they are forced to.5Example 3.1. Consider the revision programP = f out(a) in(b) gand the initial knowledge base BI = fa; bg. Its translation P(P;BI) into a logicprogram consists of P together with the initial conditions and inertia axioms:6inI (a)inI (b)in(a) inI(a); not out(a)in(b) inI(b); not out(b):One easily checks that program P(P;BI) has a unique stable model, which containsonly the atoms:7 fout(a); in(b)gand therefore corresponds to the unique P -justi�ed revision BR = fbg.5By comparison, the translation in [Bar94] is complicated by the introduction of an auxiliaryabnormality predicate.6Notice that the inertia axioms for out can be skipped in this case.7In addition to the initial state atoms inI(a); inI(b).

8 Example 3.2. Consider now the revision program P :in(a) out(b)in(b) out(a)and the initial knowledge base BI = fg. Its translation P(P;BI) into a logic pro-gram consists of P together with the initial conditions and inertia axioms:8outI(a)outI(b)out(a) outI(a); not in(a)out(b) outI(b); not in(b):One easily checks that program P(P;BI) has two stable modelsM1 and M2, whichcontain only the atoms:9M1 = fout(a); in(b)gM2 = fin(a); out(b)gand therefore correspond to the two P -justi�ed revisions fbg and fag.We now prove that the translation speci�ed in De�nition 3.4 indeed yields anembedding of revision programming into logic programming under the stable se-mantics.Theorem 3.1. (Embedding revision programming in logic programming)Let P be a revision program and let BI be an initial knowledge base. There isa one-to-one correspondence between P -justi�ed revisions of BI and coherentstable models of its translation P(P;BI) into a logic program.More precisely, to every P -justi�ed revision BR of BI there corresponds aunique stable model M of P(P;BI) such that:BR = fq : in(q) 2Mg (3.7)U �BR = fq : out(q) 2Mg (3.8)and, conversely, for every coherent stable model M of P(P;BI) the set BR =fq : in(q) 2Mg is a P -justi�ed revision of BI .Proof. (() Suppose thatM is a coherent stable model of P(P;BI) and let BR =fq : in(q) 2Mg. We must show that BR is a P -justi�ed revision of BI .By De�nition 2.1,M is the least model of the positive logic programQ = P(P;BI)M ,namely the quotient of P(P;BI) moduloM . Since both the initial knowledge rulesPI and the original revision rules P in P(P;BI) = PI [PN [P are positive, onlythe inertia rules PN :in(q) inI(q); not out(q) (3.9)out(q) outI(q); not in(q) (3.10)8Notice that the inertia axioms for in can be skipped in this case.9In addition to the initial state atoms outI(a); outI(b).

9will be a�ected by the quotient transformation and therefore Q = PI [PNM [P .De�ne B0R = fq : out(q) 2Mg and let BI = U�BI . According to De�nition 2.1,in order to construct the quotient PNM we have to remove from PN all the inertiaclauses (3.9) such that q 2 B0R and all inertia clauses (3.10) such that q 2 BR.Subsequently, we have to remove all the negative premises from the remainingclauses of PN . As a result of the quotient transformation we obtain therefore theprogram PNM consisting of rules:in(q) inI(q); for all q =2 B0R (3.11)out(q) outI(q); for all q =2 BR: (3.12)Let us now observe that B0R = BR = U � BR. Indeed, since M is coherent,the sets BR and B0R are disjoint. Suppose that there is a q such that q =2 BR andq =2 B0R. Then both clauses in(q) inI (q) and out (q) out I(q) belong to thequotient program Q. Since we must either have q 2 BI or q 2 BI and since M isthe least model of Q we conclude that either in(q) or out (q) must belong to M ,which contradicts our assumption that q =2 BR and q =2 B0R.Clearly M is also the least model of a modi�ed program obtained by removingsome premises which are true in M . Therefore, we can further reduce the quotientPNM of the set of inertia rules to the set cPNM of all clauses (facts) of the form:in(q) , for all q 2 BR \BI (3.13)out(q) , for all q 2 BR \BI : (3.14)In addition, the quotient program Q contains the initial knowledge rules PI :inI (q) , for all q 2 BI (3.15)outI (q) , for all q 2 BI (3.16)and all the original revision program in-rules (3.1) and out-rules (3.2) in P .We now show that BR is a P -justi�ed revision ofBI . According to De�nition 3.1,in order to compute the reduct PBR jBI of P we �rst have to remove from the bodyof each revision rule in P all atoms in(q) such that q 2 BI \ BR, and all atomsout (s) such that s 2 BI \BR. Notice that these are precisely the atoms that mustbe true in M due to the rules (3.13) and (3.14). Subsequently, we remove fromthe (already reduced) revision program every rule of type (3.1) or (3.2) such thatqi =2 BR, for some i, 1 � i � m, or, sj 2 BR, for some j, 1 � j � n, thus obtainingthe reduct PBR jBI . Notice that by doing so we are removing from P those ruleswhose premises are false in M . As a result, the stable model M remains the leastmodel of the reduced quotient program Q� = PI [cPNM [PBR jBI .Let M0 be the least model of the reduct PBR jBI and let (I;O) be the necessarychange of PBR jBI , i.e. I = fq : in(q) 2 M0g and O = fq : out(q) 2 M0g. Theprogram Q� = PI [cPNM [PBR jBI consists of three independent parts: the initialknowledge rules (3.15) and (3.16), the (reduced) inertia axioms (3.13) and (3.14)and the reduct PBR jBI which no longer contains any premises from the other twoparts. Consequently, the set of atoms that belong to the stable modelM , which isthe least model of this reduced quotient program Q�, consists of:� finI(q) : q 2 BIg [foutI(q) : q 2 BIg;� fin(q) : q 2 BR \BIg [fout(q) : q 2 BR \BIg;� fin(q) : q 2 Ig [fout(q) : q 2 Og.

10 This shows that:BR = fq : in(q) 2Mg = (BR \BI) [I ; (3.17)BR = U � BR = fq : out(q) 2Mg = (BR \BI) [O : (3.18)Since PBR jBI is coherent by assumption, in order to verify that BR is a P -justi�edrevision of BI it su�ces to establish that BR = (BI [I)�O. However, this followsimmediately from Lemma 3.1.()) The proof in the opposite direction is very similar and thus will be skipped.We begin with a P-justi�ed revision BR of BI . From Lemma 3.1 we concludethat the conditions BR = (BR \BI) [I and BR = (BR \BI) [O must be satis-�ed. Using this fact and reversing the steps of the above proof we produce therequired stable model M . 24. PROPERTIES OF REVISION PROGRAMSThe embedding of revision programs into logic programs with stable semanticshelps clarify the notion of revision programming, in part because it allows us toutilize our knowledge of an already well-established and thoroughly investigatednonmonotonic formalism. For instance, many of the results obtained by Marek andTruszczy�nski in [MT93, MT94, MT95a] are simple consequences of the embedding.In this section we illustrate this claim with a few examples.We begin with the following result from [MT94] stating that logic programs withstable semantics are embeddable into revision programs.Theorem 4.1. [MT94] Let P be a logic program, which consists of rules of the formp q1; : : : ; qm; not s1; : : : ; not snand let R(P) be the revision program obtained by replacing each rule of P withthe corresponding in-rulein(p) in(q1); : : : ; in(qm); out(s1); : : : ; out(sn):An interpretation M is a stable model of P if and only if its set of atoms BR isan R(P)-justi�ed revision of BI = ;.Proof. By De�nition 3.4, the translation P(R(P); ;) of the revision programR(P)into a logic program consists ofR(P) itself and the initial knowledge rules outI(q) for all q 2 U , together with the inertia rules10:out(q) not in(q); for all q 2 U:After performing a single step of partial evaluation on the premises out(sj) ofrules fromR(P) (by using the above inertia rules), the rules of R(P) become equiv-alent toin(p) in(q1); : : : ; in(qm); not in(s1); : : : ; not in(sn)and thus they are equivalent (up to renaming) to the rules of the original programP .Theorem 3.1 now easily implies the equivalence between stable models of P andR(P)-justi�ed revisions of BI . 210Notice that we can skip the rules for in and remove the premises outI(q).

11In light of the embedding of revision programming into logic programming (The-orem 3.1), this result shows that the two formalisms are in fact precisely equiva-lent. Given this equivalence, the complexity results obtained in [MT95a, Theorem4.2], regarding the NP-completeness of some problems involving the computationof P -justi�ed revisions, can be easily seen to follow from similar results alreadyknown about the computation of stable models.Finally, the fact that the translation P(P;BI) of a revision program is completelysymmetric with respect to in and out atoms immediately yields the following result.Theorem 4.2. [MT94] Let P be a revision program and let BI be a knowledge base.A knowledge base BR is a P -justi�ed revision of BI if and only if U � BR is aPD-justi�ed revision of U � BI , where PD is the dual of the program P obtainedby simultaneously replacing everywhere in by out and vice versa.5. ALTERNATIVE ACCOUNT OF REVISION PROGRAMMINGIn this section we consider an alternative embedding of revision programming inlogic programming, which is somewhat more compact than the previous one (Def-inition 3.4), but otherwise very similar. This second embedding suggests a simplealternative characterization of revision programming, which serves as the basis forthe de�nition of interpretation update by arbitrary sets of inference rules | or ruleupdate | that is introduced in the next section.For this alternative embedding we use extended logic programs under the sta-ble semantics (De�nition 2.2), and we employ a more compact encoding of thecommonsense law of inertia | the principle that things change only when made to.Given the set U associated with a revision program P , let K� be the propositionallanguage with the atoms U [f�a : a 2 U g. We will translate revision program P ,along with an initial knowledge base BI , into an extended logic program over K�.In this section it will be convenient to represent interpretations of the extendedlanguage K� as sets of atoms a and �a.De�nition 5.1. (Translation of revision programming into extended logicprogramming) Let P be a revision program, with initial knowledge base BI .Let �(P) be the positive extended logic program over K� obtained from P byreplacing each in-rule (3.1) in P with the corresponding rulep q1; : : : ; qm;�s1; : : : ;�snand similarly replacing each out-rule (3.2) in P with the corresponding rule�p q1; : : : ; qm;�s1; : : : ;�sn :Let P�(P;BI) be the extended logic program over K� that is obtained by aug-menting �(P) with the rulea not �a (5.1)for each atom a 2 BI and the rule�a not a (5.2)for each atom a 2 U nBI .

12 Unlike the �rst translation from revision programming to logic programming(De�nition 3.4), this second translation does not include an explicit representationof the initial knowledge base BI , but instead uses BI to determine which rules ofthe forms (5.1) and (5.2) are to be added to the positive extended logic program�(P). Intuitively speaking, rules of the forms (5.1) and (5.2) correspond to a partialevalution of the Inertia Rules (3.5 and 3.6) with respect to the Initial KnowledgeRules (3.3 and 3.4). In this manner we obtain a more compact translation which,nonetheless, still re
ects the commonsense law of inertia.Example 5.1. Consider again the revision program P and initial knowledge baseBI from Example 3.2. The program P�(P;BI) consists of the following four rules.a �bb �a�a not a�b not bRecall that the two P -justi�ed revisions of BI are the knowledge bases fag andfbg. Observe that these two P -justi�ed revisions of BI correspond precisely to thetwo extended stable models of P�(P;BI), which are fa;�bg and f�a; bg.In order to state the correctness of this second translation, we introduce thefollowing auxiliary de�nition, relating knowledge bases and interpretations of K� inthe obvious way.De�nition 5.2. Let M be the injective function from the set of knowledge bases(that is, the set of subsets of U) to the set of interpretations of K� such that, forany knowledge base B,M(B) = B [f�a : a 2 U nB g :Theorem 5.1. (Embedding revision programming in extended logic pro-gramming) Let P be a revision program, with initial knowledge base BI . Aknowledge base BR is a P -justi�ed revision of BI if and only if the interpre-tation M(BR) is an extended stable model of P�(P;BI). Moreover, for everyextended stable model M of P�(P;BI), there is a unique knowledge base BRsuch that M =M(BR).We do not include a proof of this theorem, which follows in straightforwardfashion from the correctness of the �rst translation (Theorem 3.1).Now, it is easy to verify that for any knowledge base BR, we haveP�(P;BI)M(BR) = �(P) [(M(BI) \M(BR)) :This observation immediately yields the following corollary to Theorem 5.1.Corollary 5.1. (Alternative characterization of revision programming) LetP be a revision program, with initial knowledge base BI . A knowledge base BRis a P -justi�ed revision of BI if and only ifM(BR) is an extended stable modelof �(P) [(M(BI) \M(BR)).

136. RULE UPDATERevision programs are sets of revision in-rules and out-rules, which can be inter-preted as positive logic program rules, or as inference rules, and used to updateinterpretations. In this section we introduce a more general approach to interpre-tation update, which allows update by means of arbitrary sets of inference rules.We call this more general notion rule update.Rule update has a simple �xpoint de�nition which can be viewed as an ex-tension of the alternative characterization of revision programming introduced inCorollary 5.1 of the previous section. Rule update not only extends revision pro-gramming, but also includes as a special case the approach to update by means offormulae introduced by Winslett in [Win88]. Furthermore, rule update has a sim-ple embedding in default logic, using essentially the same inertia rules used in theprevious section to embed revision programming in extended logic programming.In the remaining sections of the paper, we will represent interpretations of apropositional language K as maximal consistent sets of literals from K. This choiceof representation allows us to characterize the set of facts that a pair I and I0 ofinterpretations have in common simply by taking their intersection I \ I0.De�nition 6.1. (Rule Update) Let R be a set of inference rules. Let I and I0be interpretations. We say that I 0 is an update of I by R ifI0 = fL : I \ I 0 `R L gwhere L ranges over literals.The literals in I \ I0 can be understood as the facts that are \preserved byinertia" as we move from interpretation I to interpretation I 0. In accordance withthe commonsense law of inertia, our de�nition of rule update does not require anyadditional \explanation" for the truth of these literals in I0. The de�nition doesrequire though that all new facts in I0 | that is, the literals in I0nI | be explainedby the rules in R, along with the literals in I \ I 0. Accordingly, we see that I0 isan update of I by R if and only if the following two conditions are met:� for all literals L in I0 n I, I \ I 0 `R L ;� Cn(I 0) is closed under R .That is, roughly speaking, I0 must be \consistent with" the rules in R, and everyliteral in I0 must be explained | either it held in I or it was forced to become true.Example 6.1. Consider the following.I1 = fa; b; cg R1 = n a:b _ :co I2 = fa;:b; cgFirst we will show that I2 is an update of I1 by R1. Notice that I1 \ I2 = fa; cgand that I1 \ I2 `R1 :b : So for all literals L 2 I2 n I1, I1 \ I2 `R1 L . And sinceCn(I2) is closed under R1, we have shown that I2 is an update of I1 by R1.A symmetric argument shows that the interpretation fa; b;:cg is also an updateof I1 by R1. On the other hand, if we take I3 = f:a; b; cg, then I1\I3 = fb; cg; andwe see that I1 \ I3 6`R1 :a : So I3 is not an update of I1 by R1. One can similarlyshow that the interpretation fa;:b;:cg is not an update of I1 by R1.

14 The following theorem, establishing that rule update indeed extends revisionprogramming, is easily seen to follow from the alternative �xpoint characterizationof revision programming captured in Corollary 5.1, in light of the strong resem-blance between that characterization of revision programming and the de�nition ofrule update.Theorem 6.1. (Rule update subsumes revision programming) Let P be arevision program, with initial and �nal knowledge bases BI and BR. Let R bethe set of inference rules obtained by replacing each in-rule (3:1) in P with thecorresponding inference ruleq1 ^ � � � ^ qm ^ :s1 ^ � � � ^ :snpand similarly replacing each out-rule (3:2) in P with the corresponding inferencerule q1 ^ � � � ^ qm ^ :s1 ^ � � � ^ :sn:p :Let I and I 0 be interpretations such that I \ U = BI and I 0 \ U = BR. BR is aP -justi�ed revision of BI if and only if I 0 is an update of I by R.7. PROPERTIES OF RULE UPDATEIn this section we show that rule update includes as a special case the approachto update by means of formulae introduced by Winslett [Win88].11More generally,we brie
y investigate how the \directionality" of inference rules contributes to theexpressiveness of update by means of inference rules.De�nition 7.1. (Formula-update)12Given interpretations I, I0 and I00, we saythat I0 is closer to I than I 00 is if I00 \ I is a proper subset of I0 \ I.Let � be a set of formulae. Let I and I0 be interpretations. We say that I0 isa formula-update of I by � if I0 is a model of � such that no model of � is closerto I than I0 is.The \principle of minimal change" that is transparently captured in this de�ni-tion is closely related to the commonsense law of inertia that underlies rule update,as we will see. Intuitively speaking, the principle of minimal change stipulatesthat there be as few changes as possible, whereas the commonsense law of inertiaassumes that things change only when made to.In order to compare formula-update and rule update in a precise fashion, weintroduce the following additional de�nition.11McCain and Turner [MT95b] discuss this comparison at some length, in the framework ofreasoning about action. Propositions 7.1 { 7.3 below are essentially identical to Propositions 2{4from [MT95b].12The de�nition given here is equivalent, and almost identical, to the corresponding de�nitionin [Win88]. (Recall that we represent interpretations as maximal consistent sets of literals.)

15De�nition 7.2. Given a set R of inference rules, we de�ne a corresponding set offormulae Theory(R) as follows.Theory(R) = �� � : � 2 R�Thus, for example, Theory(R1) = fa � :b_ :cg.Let R be a set of inference rules and I an interpretation. Notice that Cn(I) isclosed under R if and only if I is a model of Theory(R). Thus, every update of Iby R is a model of Theory(R). In fact, we have the following stronger result, whichshows that rule update satis�es the principle of minimal change.Proposition 7.1. Let R be a set of inference rules and I an interpretation. Everyupdate of I by R is a formula-update of I by Theory(R).Proof. Assume that I0 is an update of I by R. So I0 is a model of Theory(R).Let I00 be a model of Theory(R) such that I 0 \ I � I00 \ I. We need to show thatI00 = I0. Since I0 and I00 are both interpretations, it's enough to show that I0 � I00.I 0 = fL : I \ I 0 `R Lg (I 0 is an update of I by R)� fL : I \ I 00 `R Lg (I 0 \ I � I00 \ I)� fL : I00 `R Lg (I00 \ I � I 00)= I00 (I 00 is a model of Theory(R))2The converse of Proposition 7.1 doesn't hold in general. For instance, we haveseen (Example 6.1) that I3 is not an update of I1 by R1, and yet it is easy to verifythat I3 is a formula-update of I1 by Theory(R1).On the other hand, the following proposition shows that if every inference rulein R has the form True�then the updates of I by R will be exactly the formula-updates of I by Theory(R).Thus, rule update includes formula-update as a simple special case. And sincerule update also subsumes revision programming, we see that rule update bothgeneralizes and uni�es these two approaches to interpretation update.Proposition 7.2. Let R be a set of inference rules, each of which has the form True� .For any interpretation I, every formula-update of I by Theory(R) is also anupdate of I by R.Proof. Assume that I0 is a formula-update of I by Theory(R). Let I 00 be a modelof (I \ I0) [Theory(R). So I00 is a model of Theory(R). Also I0 \ I � I 00, soI0 \ I � I00 \ I. Since no model of Theory(R) is closer to I than I 0 is, we canconclude that I00 = I0. Thus, I0 is the only model of (I\I 0)[Theory(R). It followsthat I0 = fL : (I \ I 0)[Theory(R) ` Lg. Due to the special form of the rules in R,we see that (I \ I0)[Theory(R) ` � i� I \ I0 `R �, for every formula �. Therefore,I0 = fL : I \ I0 `R Lg. 2We may say that Proposition 7.2 shows that \directionality" plays no essentialrole in inference rules of the form True� . To consider another extreme case, the

16 following straightforward proposition shows that rules of the form�Falseonly eliminate updates.Proposition 7.3. Let R be a set of inference rules. Let I and I0 be interpretations.For any formula �, I0 is an update of I by R [n �Falseo if and only if I 0 is anupdate of I by R such that I0 6j= �.In fact, we see that if every rule in R has the form �False , then I0 is an updateof I by R if and only if I is a model of Theory(R) and I0 = I. Intuitively speaking,this is the most pronounced example of the e�ect of the directionality of inferencerules. At the other extreme, we have seen that if every rule in R has the formTrue� , then I 0 is an update of I by R if and only if I 0 is a formula-update of I byTheory(R). Thus, in such cases, the directionality of rules has no e�ect at all. Webrie
y explore in the remainder of this section the middle ground that lies betweenthese two extremes.De�nition 7.3. Let R, R0 be sets of inference rules. We say R0 is as strong as Rif for all sets � of formulae, if � is closed under R0 then � is closed under R.It is clear that if R0 is as strong as R, then for any formula �, � `R0 � whenever� `R �. We use this fact in the proof of the following proposition.Proposition 7.4. Let R and R0 be sets of inferences rules suchthat Cn(Theory(R)) = Cn(Theory(R0)). Let I be an interpretation. If R0 isas strong as R, then every update of I by R is also an update of I by R0.Proof. Assume that R0 is as strong as R and that I 0 is an update of I by R.Since Cn(Theory(R)) = Cn(Theory(R0)) and Cn(I 0) is closed under R, we knowthat Cn(I 0) is closed under R0. Consider any L 2 I 0. Since I \ I 0 `R L, and sinceR0 is as strong as R, it follows by previous observation that I \ I 0 `R0 L. 2Now we de�ne an ordering on inference rules that, intuitively speaking, allowsus to compare the degree of directionality in (otherwise similar) rules.De�nition 7.4. Let �, �0, , 0 be propositional formulae.� � �0 0 i� � ` �0 and ` (� �) � (�0 � 0)Example 7.1. By the preceding de�nition, we have the following.a ^ b ^ cFalse � a ^ b:c � a:b _ :c � True:a _ :b_ :cRoughly speaking, the idea behind this ordering of rules is that, as we move fromleft to right, the degree of directionality in the rule is lessened, which makes therule \stronger." Below, we make this claim precise.

17Let R be a set of inferences rules, and let r and r0 be inference rules such thatr � r0. It is clear that Cn(Theory(R [frg)) = Cn(Theory(R [fr0g)). Moreover,it follows easily from the de�nitions that R [fr0g is as strong as R [frg. Thus,we have the following corollary to Proposition 7.4.Corollary 7.1. Let R be a set of inferences rules and let r; r0 be inference rules suchthat r � r0. Let I be an interpretation. Every update of I by R[frg is also anupdate of I by R[fr0g.8. EMBEDDING RULE UPDATE IN DEFAULT LOGICIn this section we specify a very simple embedding of rule update in default logic,using essentially the same inertia rules used in Section 5 to embed revision program-ming in logic programming. The resulting default theories use normal defaults toencode the commonsense law of inertia.13De�nition 8.1. (Translating rule update into default logic) Given a set Rof inference rules and an interpretation I, letD(R; I) = R [� : LL : L 2 I � :Theorem 8.1. (Embedding rule update in default logic) Let R be a set ofinference rules and I an interpretation. The following hold.� An interpretation I0 is an update of I by R if and only if Cn(I 0) is anextension of D(R; I).� For every consistent extension E of D(R; I), there is an interpretation I0such that E = Cn(I0).Proof. For part one, let I0 be an interpretation. Observe thatD(R; I)Cn (I0) = R [(I \ I 0)which justi�es the last step below.I0 is an update of I by R i� I0 = fL : I \ I 0 `R Lgi� Cn(I 0) = f� : I \ I 0 `R �gi� Cn(I 0) is the extension of R [(I \ I 0)i� Cn(I 0) is an extension of D(R; I)For part two, assume that E is a consistent extension of D(R; I). Suppose thereis no interpretation I0 such that E = Cn(I 0). So there is an atom A such thatA =2 E and :A =2 E. But D(R; I) includes one of the following two inertia rules.: AA : :A:AIt follows that D(R; I)E includes either A or :A, and thus E does also. Contra-diction. 213See [Tur96, Tur97] for applications of essentially this encoding of the commonsense law ofinertia in default theories and logic programs for representing knowledge about actions.

189. CONCLUDING REMARKSRule update is a simple and expressive framework for interpretation update whichextends both revision programming and Winslett's approach to update by meansof formulae. Furthermore, it has a simple embedding in default logic, based on astraightforward encoding of the commonsense law of inertia | the principle thatthings change only when made to.In [MT94] Marek and Truszczy�nski proposed a di�erent extension of revision pro-gramming, called disjunctive revision programming . Disjunctive revision programsconsist of rules of the following form.in(p1) _ � � � _ in(pk) _ out(r1) _ � � � _ out (rl) in(q1); : : : ; in(qm); out(s1); : : : ; out(sn)However, the proposed de�nition exhibits what may be undesirable behavior. Forexample, given the disjunctive revision programP = f in(a) _ in(b) gand initial knowledge base BI = fag, we obtain the knowledge base BR = fa; bg asone of the two P -justi�ed revisions of BI , which violates of the principle of minimalchange.14By contrast, the only update of the interpretation fa;:bg byR = fa _ bgis fa;:bg itself. In fact, as noted earlier, Proposition 7.1 shows that rule updatenever violates the principle of minimal change, although, as we have seen, it isactually based on a principle of \causal" or \justi�ed" change.Finally, since revision programming is equivalent to logic programming underthe stable semantics, computational methods developed for the stable semantics(or, perhaps, for its approximations, such as the well-founded semantics) can beused to provide a query answering mechanism for revision programming. Similarly,since rule update can be embedded in default logic, it should be possible to usecomputational methods developed for default logic to compute rule update.ACKNOWLEDGMENTSThanks to Vladimir Lifschitz, Norman McCain and Halina Przymusinska for manyhelpful discussions and suggestions. We are also grateful for comments from ChittaBaral, Enrico Giunchiglia and G. N. Kartha. The �rst author is partially supportedby NSF grant #IRI-9313061; the second by NSF grant #IRI-9306751.REFERENCES[Bar94.] Chitta Baral. Rule-based updates on simple knowledge bases. In Proc. AAAI-94, pages 136{141, 1994.14Mirek Truszczy�nski has agreed (personal communication) that this example shows that theoriginal de�nition fails to capture the intended intuition.

19[GL88.] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-ming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth LogicProgramming Symposium, pages 1070{1080, Cambridge, Mass., 1988. Associa-tion for Logic Programming, MIT Press.[GL90.] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceed-ings of the Seventh International Logic Programming Conference, Jerusalem,Israel, pages 579{597, Cambridge, Mass., 1990. Association for Logic Program-ming, MIT Press.[GLPT91.] Michael Gelfond, Vladimir Lifschitz, Halina Przymusi�nska, and Miros lawTruszczy�nski. Disjunctive defaults. In James Allen, Richard Fikes, and ErikSandewall, editors, Principles of Knowledge Representation and Reasoning:Proc. of the Second Int'l Conf., pages 230{237, 1991.[KM91.] Hirofumi Katsuno and Alberto O. Mendelzon. On the di�erence between up-dating a knowledge base and revising it. In James Allen, Richard Fikes, andErik Sandewall, editors, Principles of Knowledge Representation and Reason-ing: Proc. of the Second Int'l Conf., pages 387{394, 1991.[MT93.] W. Marek and M. Truszczy�nski. Revision programming. Research report,University of Kentucky, 1993.[MT94.] W. Marek and M. Truszczy�nski. Revision speci�cations by means of revisionprograms. In Logics in AI. Proceedings of JELIA '94. Lecture Notes in Arti�cialIntelligence. Springer-Verlag, 1994.[MT95a.] W. Marek and M. Truszczy�nski. Revision programming, database updates andintegrity constraints. In Proceedings of the 5th International Conference onDatabase Theory | ICDT 95, pages 368{382. Springer-Verlag, 1995.[MT95b.] Norman McCain and Hudson Turner. A causal theory of rami�cations andquali�cations. In Proc. of IJCAI-95, pages 1978{1984, 1995.[Prz91.] T. C. Przymusinski. Stable semantics for disjunctive programs. New Gener-ation Computing Journal, 9:401{424, 1991. (Extended abstract appeared in:Extended stable semantics for normal and disjunctive logic programs. Proceed-ings of the 7th International Logic Programming Conference, Jerusalem, pages459{477, 1990. MIT Press.).[Prz95.] T. C. Przymusinski. Static semantics for normal and disjunctive logic programs.Annals of Mathematics and Arti�cial Intelligence, Special Issue on DisjunctivePrograms(14):323{357, 1995. File: static.tex. Available on WWW.[Rei80.] Raymond Reiter. A logic for default reasoning. Arti�cial Intelligence,13(1,2):81{132, 1980.[Tur96.] Hudson Turner. Representing actions in default logic: A situation calculusapproach. In Working Papers of the Third Symposium on LogicalFormalizationsof Commonsense Reasoning, 1996.[Tur97.] Hudson Turner. Representing actions in logic programs and default theories: Asituation calculus approach. Journal of Logic Programming, 1997. Forthcoming.[Win88.] Marianne Winslett. Reasoning about action using a possible models approach.In Proc. AAAI-88, pages 89{93, 1988.

