UPDATE BY MEANS OF INFERENCE RULES

TEODOR C. PRZYMUSINSKI AND HUDSON TURNER

>

Katsuno and Mendelzon have distinguished two abstract frameworks for
reasoning about change: theory revision and theory update. Theory re-
vision involves a change in knowledge or belief with respect to a static
world. By contrast, theory update involves a change of knowledge or belief
in a changing world. In this paper we are concerned with theory update.
Winslett has shown that theory update should be computed “one model
at a time.” Accordingly, we focus exclusively on update of interpretations.
We begin with a study of revision programming, introduced by Marek and
Truszczyniski to formalize interpretation update in a language similar to
logic programming. While revision programs provide a useful and natural
definition of interpretation update, they are limited to a fairly restricted
set of update rules. Accordingly, we introduce the more general notion of
rule update — interpretation update by arbitrary sets of inference rules.
We show that Winslett’s approach to update by means of arbitrary sets of
formulae corresponds to a simple subclass of rule update. We also spec-
ify a simple embedding of rule update in Reiter’s default logic, obtained
by augmenting the original update rules with default rules encoding the
commonsense law of inertia — the principle that things change only when
they are made to. <

1. INTRODUCTION

Katsuno and Mendelzon [KM91] have distinguished two abstract frameworks for
reasoning about change: theory revision and theory update. Theory revision in-
volves a change in knowledge or belief with respect to a static world. For example,
suppose you are booked on a flight, but told only that your destination is either
Australia or Europe, i.e., that australiaV europe holds. If sometime later you learn,

Address correspondence to Teodor Przymusinski, Department of Computer Science,
University of California, Riverside, CA 92521, USA (teodor@cs.ucr.edu); or Hudson Turner,
Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA
(hudson@cs.utexas.edu)

THE JOURNAL OF LOGIC PROGRAMMING

© Elsevier Science Inc., 1996
655 Avenue of the Americas, New York, NY 10010 0743-1066/96/$7.00

in addition to what you already know, that you weren’t booked on a flight to Eu-
rope, 1.e., that —europe holds, then you are likely to conclude that your destination
1s Australia, i.e., that australia holds.

By contrast, theory update involves a change of knowledge or belief in a changing
world. Again suppose you are booked on a flight, and told only that your destination
is either Australia or Europe, i.e., that australia V europe holds. Suppose you
later learn that the situation has changed and all flights to Europe have just been
cancelled, i.e., that —europe holds. Under these circumstances, you are not likely
to conclude that you are going to Australia, i.e., that australia holds. In fact, it
may be the case that your flight has just been cancelled.

In this paper we are concerned with theory update. A key insight into the
nature of update is due to Winslett [Win88], who showed that reasoning about
actions should be done “one model at a time.” That is, when reasoning about the
outcome of an action, we must consider its effect in each one of the states of the
world that are consistent with our (possibly incomplete) knowledge of the current
state of the world. This insight is reflected in the general definition of theory update
due to Katsuno and Mendelzon, which can be formulated as follows. Let I and T’
be sets of propositional formulae. A set 7" of formulae is a “theory update” of T’

by T if
Models(T') = { I' : I € Models(T) . I' is “an update of I by T” }.

We see by the form of this definition that in order to determine “theory update,”
it suffices to define when an interpretation I’ is an update of an interpretation I
by a theory I'. Accordingly, in this paper we focus exclusively on “interpretation
update.” However, in contrast to the work cited above, we investigate a more
general case of update by means of sets R of inference rules, instead of sets ' of
formulae.

The first part of the paper is devoted to the study of revision programs, in-
troduced by Marek and Truszczyniski in a series of recent papers [MT93, MT94,
MT95a] to formalize interpretation update in a language similar to the language of
logic programming. Revision programs are essentially sets of positive logic program
rules, which can be interpreted as inference rules and used to update interpreta-
tions. Marek and Truszczynski proved that logic programs with stable semantics
are embeddable into revision programs. We show that, conversely, there is a simple
embedding of revision programs into logic programs with stable semantics.! Thus
the two formalisms are precisely equivalent. We go on to demonstrate that various
properties of revision programs are easily derived from this translation and from
known properties of logic programs.

Our translation of revision programs into logic programs utilizes a simple and
intuitive encoding of the commonsense law of wnertia, which is the principle that
things do not change unless they are made to. The fact that revision programmingis
easily captured in logic programs using such inertia rules helps clarify the nature of
revision programming, and, as we will see, of interpretation update more generally.

While revision programs provide a useful and natural definition of interpretation
update, they are limited to a fairly restricted set of update rules and thus are
not sufficiently expressive to capture more complex interpretation updates which

! Chitta Baral [Bar94] independently found a somewhat more complex embedding.

may be described by arbitrarily complex formulae, or, more generally, by arbitrary
inference rules. Accordingly, in the second part of the paper we introduce the
notion of rule update — interpretation update by arbitrary sets of inference rules.
The proposed formalism is not only more general and expressive than revision
programming, but also has a very simple and natural definition.

We show that Winslett’s [Win88] approach to update by means of arbitrary
sets of formulae corresponds to a simple subclass of rule update. We also inves-
tigate how the “directionality” of inference rules contributes to the expressiveness
of rule update. Finally, we specify a simple embedding of rule update into default
logic [Rei80], obtained by augmenting the original update rules with inertia axioms
analogous to those used in the translation of revision programs into logic programs.
The translation into default logic provides a bridge between our newly introduced
formalism and a well-known nonmonotonic formalism.

The introduction of rule update provides a new framework for interpretation
update and thus also for theory update. In spite of its great simplicity, rule update
constitutes a powerful and expressive mechanism which can be used to determine
updates of theories by arbitrarily complex sets of inference rules and is applicable
to various knowledge domains. For example, in [MT95b] McCain and Turner apply
rule update to the problem of reasoning about the effects of actions. Moreover, the
simple embedding of rule update in default logic — obtained by adding default rules
encoding the commonsense law of inertia — provides a crucial element of proposals
in [Tur96, Tur97] for representing commonsense knowledge about actions in default
logic and logic programming.

Preliminary definitions appear in Section 2. In Sections 3 and 4 we specify a
simple embedding of revision programming in logic programming and show that
basic results obtained by Marek and Truszczynski for revision programs are easily
deduced from this embedding, using known properties of logic programs. In Sec-
tion 5 we introduce an alternative characterization of revision programming, and in
Section 6 we define the more general notion of rule update as a natural extension of
this alternative characterization. In Section 7 we compare rule update to Winslett’s
[Win88] definition of update by means of propositional formulae, and we investigate
how the “directionality” of inference rules influences rule update. In Section 8 we
specify an embedding of rule update in default logic. Section 9 consists of a few
concluding remarks.

2. PRELIMINARY DEFINITIONS

Let K be a propositional language. For any set T' of formulae from X, by Cn(T') we
denote the least logically closed set of formulae from K that contains I'. Inference
rules over K will be written as expressions of the form

¢

(G

where ¢ and ¥ are formulae from K. We often find it convenient to identify a
propositional formula ¢ with the inference rule

True

¢

Let R be a set of inference rules over K, and let T be a set of formulae from K. We
say I is closed under R if for every rule % € R, if ¢ belongs to I' then ¥ does too.
We write

'z ¢

if ¢ belongs to the least logically closed set of formulae from K that contains I' and
is closed under R.
A default rule over K is an expression of the form

a:ﬁla"'aﬁn
v

where all of o, 51, . .., By, v are formulae from K. For a default rule r as in (2.1), we
define prerequisite(r) = «, justifications(r) = {f1,..., Bn}, and consequent(r) = ~.

(2.1)

If prerequisite(r) = True, we sometimes omit it and write % instead. If

Justifications(r) is empty, we identify r with the corresponding inference rule %. If

in addition prerequisite(r) = True, we sometimes simply write ~.

A default theory over K 1s a set of default rules over K. Let D be a default
theory over K and let E be a set of formulae from K. We define the reduct of D
with respect to E, denoted by D¥ | as follows.

it
D = w :r € D and for all B € justifications(r), =3 ¢
consequent (r)

We say that F is an extension of D if E is the least logically closed set that is
closed under DF 2

A logic program over K is a set of logic program rules over K, which are expres-
sions of the form

A+ By,...,By,not C1,...,not Cp

where A, B; and Cj are atoms from K (m,n > 0). If n = 0 for all program rules,
then the program is called positive. By interpreting lists of atoms in rule bodies as
conjunctions of atoms, we can identify a positive logic program with a propositional
Horn theory.?

Definition 2.1. (Stable Models) [GL88] Let P be a logic program over a language
K and let M be an interpretation of K. By the quotient of P modulo M we mean
the positive logic program % obtained from P by:

e removing from P all rules which contain a negative premise “not C” such
that C'is true in M, and
o deleting all negative premises “not C” from the remaining rules of P.

Since the program % is a Horn theory, it has a unique least model Least(

The interpretation M is called a stable model of the program P if M = Least(

).
).

£
M
£
M

?Default logic is due to Reiter [Rei80]. The definition of an extension given above follows
[GLPT91], and is equivalent to Reiter’s definition.

3Before continuing, we recall the fact that propositional programs and default theories can be
viewed as instantiated versions of programs and (quantifier-free) theories with variables. Thus the
results in this paper apply to the general case.

Definition 2.2. (Extended Logic Programs) [GL90] (see also [Prz95]) Let K be
a propositional language. Let £* be an extended propositional language obtained
by augmenting K with new propositional letters ~A, for some (or all) proposi-
tional letters A in K. The new propositional symbols ~A are called strong (or
“classical”) negation of A. A logic program P over the extended language K* is
called an extended logic program. A stable model of P over K* 1s an extended
stable model of P if there is no atom A € K such that both A and ~A are true
in M.

3. EMBEDDING REVISION PROGRAMS INTO LOGIC PROGRAMS

Revision programs were introduced by Marek and Truszczyniski in a series of papers
[MT93, MT94, MT95a] in order to formalize interpretation update in a language
similar to the language of logic programming. In [MT93] they showed that logic
programs with stable semantics are embeddable into revision programs. In this
section we specify a remarkably simple embedding of revision programs into logic
programs with stable semantics. Consequently, the two formalisms are precisely
equivalent. In the next section we demonstrate how one can easily derive various
properties of revision programs from this translation and from known properties of
logic programs.

3.1. Revision Programs

We first recall the definition of revision programs. Following [MT94] we fix a count-

able set U.

Definition 3.1. (Revision Programs) [MT94] A revision in-rule or, simply, an
wmn-rule, i1s any expression of the form

in(p) < in(q1),...,in(gm), out(s1),..., out(sy) (3.1)

where p, ¢;, 1 <i<m,and s;, 1 <j<n,areallin U and m,n > 0. A revision
out-rule or, simply, an out-rule, 1s any expression of the form

out(p) < in(q1), ..., in(qm), out(s1),. .., out(sy) (3.2)

where p, ¢;, 1 <t <m,and s;, 1 < j < n,areallinU and m,n > 0. A
collection of in-rules and out-rules is called a revision program. Any subset B of
U is called a knowledge base.

Clearly, revision programs can be syntactically viewed as positive logic programs
(or as propositional Horn theories). However, as we will see below, they are given a
special revision semantics which differs significantly from the least model semantics
of positive logic programs. We first need the definition of the necessary change
determined by a revision program.

Definition 3.2. (Necessary Change) [MT94] Let P be a revision program with
least model M. The necessary change determined by P is the pair (I,0), where
I'={q:in(q) € M} and O = {q : out(q) € M}. The revision program is called
coherent if TN O = ().

Now we are ready to define the so-called P-justified revisions.

Definition 3.3. (P-Justified Revision) [MT94] *Suppose that P is a revision
program, By is the initial knowledge base and Bpg is the revised knowledge base.
The reduct of P with respect to (Br, Br) is defined as the revision program
Pg. |By obtained from P by:

e removing from the body of each rule in P all atoms in(a) such that a €
Br N Bg, and all atoms out(a) such that a ¢ By U By ;

e removing every rule of type (3.1) or (3.2) such that ¢; ¢ Bpg, for some %,
1<i<m,ors; €Bg,forsomej 1<j<n.

If (I, 0) is the necessary change determined by Pg,|Br and Pg,|By is coherent
and Br = (BrUI) — O, then Bp is called a P-justified revision of By.

The reader is referred to [MT94] for the motivation of the above definition. The
results established in the remainder of the paper, e.g., Theorem 3.1, will further
clarify its intuitive meaning and its relationship to other well-established notions.

According to the following lemma, the last condition Bg = (Br U) — O can be
equivalently stated as Br = (Br N B;) U and Br = (Br N Br) U O, where by A
we denote the complement U — A of the set A.

Lemma 3.1. Suppose that By, Br, O, I are subsets of U such that ONI =0. The
following two conditions are equivalent:

(Z) BRI(B[UI)—O; L o
(ZZ) Bp = (BRQB[) U and Bgr = (BRQB[) uo.

PRrROOF. Suppose that (ii) holds. We have to show that Br = (Br—O)U .
Clearly, (ii) implies that Bg D I. Moreover, if ¢ € By — O then ¢ does not be-
long to Br and therefore ¢ € Bg. This shows that Bg D (By — O) U I.

If ¢ € Bg then, by (ii), ¢ € BfUI. Moreover, ¢ ¢ O which shows that
Br C (Br — O) U and therefore Bp = (B —O)UI = (BrUl)—0.

Suppose now that (i) holds. We have to show that Br = (Bg N Br)U T and
Br = (BrRNBr)UO. Clearly, by (i), Br 2 (Br N Br)UI. Moreover, if ¢ € Br
then either ¢ € T or ¢ € By which shows that Bgr C (Br N Br) U T and therefore
B = (BRQB[)UI.

Since O is disjoint from Bg we infer that Br D (Bgr N By) UO. Moreover, if
€ Br and ¢ ¢ O then ¢ € By which shows that Bg C (Bg N By) U O and therefore

q an
BRI(BRQB])UO. O

3.2. Translating Revision Programs into Logic Programs

We next show how to embed revision programs into logic programs with stable
semantics. We employ a propositional language K whose set of propositional letters

is {in(g) :q €Ut U {out(q):qe U}t U{ing(q):qe U} U{outs(q) :q €U}

4 Although the definition given here differs slightly from the one given in [MT94] it is easily
seen to be equivalent.

Definition 3.4. (Translating revision programs into logic programs) The
translation of a revision program P and an initial knowledge base By into a
logic program is defined as the logic program P(P, By) = PrU Py U P over K
consisting of the following three subprograms.

Initial Knowledge Rules Pr: All ¢ € By are initially in and all s € By are
initially out:
inr(q) + (3.3)
outr(s) < (3.4)
for all ¢ € By and all s ¢ By.

Inertia Rules Py: If ¢ was initially in (respectively, out) then after revision
it remains in (respectively, out) unless it was forced out (respectively, in):

in(q) < inz(q),not out(q) (3.5)
out(q) + outr(g),not in(q) (3.6)
forallg e U.

Revision Rules P: All the in-rules and out-rules that belong to the original
revision program P.

A stable model M of P(P, By) is called coherent if it does not contain both in(q)
and out(q), for any ¢ € U.

Observe that the above translation is quite simple. It preserves the original
revision program P and adds to it the set of facts representing the initial state By
and two simple inertia axiom schemas stating that things do not change from one
state to another unless they are forced to.%

Ezxample 3.1. Consider the revision program
P ={out(a) < in(b) }
and the initial knowledge base By = {a, b}. Tts translation P(P, Br) into a logic
program consists of P together with the initial conditions and inertia axioms:®
ingr(a)
in(a) < iny(a),not out(a)
in(b) < iny(b),not out(b).

One easily checks that program P (P, Br) has a unique stable model, which contains
only the atoms:”

{out(a), in(b)}

and therefore corresponds to the unique P-justified revision Bg = {b}.

5By comparison, the translation in [Bar94] is complicated by the introduction of an auxiliary
abnormality predicate.

6Notice that the inertia axioms for out can be skipped in this case.

"In addition to the initial state atoms inz(a), ing(b).

Ezrample 3.2. Consider now the revision program P:
in(a) < out(b)
in(b) « out(a)
and the initial knowledge base By = {}. Tts translation P(P, By) into a logic pro-
gram consists of P together with the initial conditions and inertia axioms:®
outy(a)
outy(b)
out(a) « outr(a),not in(a)
out(b) + outr(b),not in(b).
One easily checks that program P(P, Br) has two stable models M; and Ms, which
contain only the atoms:®
My = {out(a), in(b)}
My = {in(a), out(b)}
and therefore correspond to the two P-justified revisions {b} and {a}.

We now prove that the translation specified in Definition 3.4 indeed yields an
embedding of revision programming into logic programming under the stable se-
mantics.

Theorem 3.1. (Embedding revision programming in logic programming)
Let P be a revision program and let By be an wnitial knowledge base. There s
a one-to-one correspondence between P-justified revisions of Br and coherent
stable models of its translation P(P, Br) into a logic program.
More precisely, to every P-justified revision Br of By there corresponds a
unique stable model M of P(P, Br) such that:

Br ={¢:in(q) € M} (3.7)
U—Br=1{q:out(q) e M} (3.8)
and, conversely, for every coherent stable model M of P(P, Br) the set Bg =

{q :in(q) € M} is a P-justified revision of By.

PRrROOF. (<) Suppose that M is a coherent stable model of P(P, By) and let Bg =
{¢q :in(q) € M}. We must show that Bp is a P-justified revision of By.

By Definition 2.1, M is the least model of the positive logic program @) = %,
namely the quotient of P(P, Br) modulo M. Since both the initial knowledge rules
Pr and the original revision rules P in P(P, B;) = Py U Py U P are positive, only
the inertia rules Py

in(q) < inz(q),not out(q) (3.9)

out(q) + outr(g),not in(q) (3.10)

8Notice that the inertia axioms for in can be skipped in this case.
°Tn addition to the initial state atoms outr(a), outr(b).

will be affected by the quotient transformation and therefore @ = Py U IJDW—N UP.

Define B = {q : out(q) € M} and let B; = U — B;. According to Definition 2.1,
in order to construct the quotient PVN we have to remove from Py all the inertia
clauses (3.9) such that ¢ € By and all inertia clauses (3.10) such that ¢ € Bg.
Subsequently, we have to remove all the negative premises from the remaining
clauses of Py. As a result of the quotient transformation we obtain therefore the
program IJDW—N consisting of rules:

in(q) ins(q), forall ¢ ¢ By (3.11)
out(q) + outr(q), forall ¢ & Bg. (3.12)

Let us now observe that Bj, = Br = U — Bg. Indeed, since M is coherent,
the sets Br and B}, are digjoint. Suppose that there is a ¢ such that ¢ ¢ Br and
q & Bp. Then both clauses in(q) < ins(¢q) and out(q) « outr(q) belong to the
quotient program . Since we must either have ¢ € By or ¢ € By and since M is
the least model of @ we conclude that either in(q) or out(q) must belong to M,
which contradicts our assumption that ¢ ¢ Br and ¢ ¢ Bf,.

Clearly M is also the least model of a modified program obtained by removing

some premises which are true in M. Therefore, we can further reduce the quotient

PVN of the set of inertia rules to the set IJDW—N of all clauses (facts) of the form:
in(q) « , for all ¢ € Bp N By (3.13)
out(q) « , for all ¢ € Bp N By. (3.14)

In addition, the quotient program) contains the initial knowledge rules Pr:
inr(q) « , forall ¢ € By (3.15)
outr(q) <, for all ¢ € By (3.16)

and all the original revision program in-rules (3.1) and out-rules (3.2) in P.

We now show that Bpg is a P-justified revision of By. According to Definition 3.1,
in order to compute the reduct Pg,|Br of P we first have to remove from the body
of each revision rule in P all atoms in(g) such that ¢ € Br N Bg, and all atoms
out(s) such that s € Bj N Bg. Notice that these are precisely the atoms that must
be true in M due to the rules (3.13) and (3.14). Subsequently, we remove from
the (already reduced) revision program every rule of type (3.1) or (3.2) such that
¢; ¢ Br, for some i, 1 <i<'m, or, s; € Bg, for some j, 1 < j < n, thus obtaining
the reduct Pg,|B;. Notice that by doing so we are removing from P those rules
whose premises are false in M. As a result, the stal/)l\e model M remains the least

model of the reduced quotient program @* = Pr U PVN U Pg.|Br.
Let My be the least model of the reduct Pp,|Br and let (I,0) be the necessary
change of Pp,|Br, i.e. I = {q :in(q) € My} and O = {q : out(q) € My}. The

program @* = PruU PVN U Pgr|Br consists of three independent parts: the initial
knowledge rules (3.15) and (3.16), the (reduced) inertia axioms (3.13) and (3.14)
and the reduct Pg,|Bs which no longer contains any premises from the other two
parts. Consequently, the set of atoms that belong to the stable model M, which is
the least model of this reduced quotient program @, consists of:

o {ini(q):q€BrtU{outs(q):q€Br},
e {in(q) :q€ BpN Br}U{out(q):q € BrN Br},
o {in(q):qe I} U{out(q):q€ O}.

10

This shows that:
Br={q:m(q) e M} =(BrNB)UI, (3.17)
Br=U—-Br=1{q:out(¢) e M} =(BrRNBr)uUO. (3.18)

Since Pgp|By is coherent by assumption, in order to verify that Bg is a P-justified
revision of By it suffices to establish that Bp = (BrUT)— O. However, this follows
immediately from Lemma 3.1.

(=) The proof in the opposite direction is very similar and thus will be skipped.
We begin with a P-justified revision Br of By. From Lemma 3.1 we conclude
that the conditions Br = (Bg N Br)UI and Br = (Bg N By) UO must be satis-
fied. Using this fact and reversing the steps of the above proof we produce the
required stable model M. O

4. PROPERTIES OF REVISION PROGRAMS

The embedding of revision programs into logic programs with stable semantics
helps clarify the notion of revision programming, in part because it allows us to
utilize our knowledge of an already well-established and thoroughly investigated
nonmonotonic formalism. For instance, many of the results obtained by Marek and
Truszczynski in [MT93, MT94, MT95a] are simple consequences of the embedding.
In this section we illustrate this claim with a few examples.

We begin with the following result from [MT94] stating that logic programs with
stable semantics are embeddable into revision programs.

Theorem 4.1. [MT94] Let P be a logic program, which consists of rules of the form
P qi,...,q9m,not s;,... not s,

and let R(P) be the revision program obtained by replacing each rule of P with
the corresponding in-rule

in(p) < in(q1), ..., in(gm), out(s1), ..., out(sy).
An interpretation M 1is a stable model of P if and only if its set of atoms Bg s
an R(P)-justified revision of Br = ().

ProOF. By Definition 3.4, the translation P(R(P),) of the revision program R(P)
into a logic program consists of R(P) itself and the initial knowledge rules outy(q) «
for all ¢ € U, together with the inertia rules'?:

out(q) < not in(q), for all ¢ € U.

After performing a single step of partial evaluation on the premises out(s;) of
rules from R(P) (by using the above inertia rules), the rules of R(P) become equiv-
alent to

in(p) < in(q1), ..., in(gm),not in(s1),...,not in(sy)

and thus they are equivalent (up to renaming) to the rules of the original program P.
Theorem 3.1 now easily implies the equivalence between stable models of P and
R(P)-justified revisions of By. O

10Notice that we can skip the rules for in and remove the premises outr(q).

11

In light of the embedding of revision programming into logic programming (The-
orem 3.1), this result shows that the two formalisms are in fact precisely equiva-
lent. Given this equivalence, the complexity results obtained in [MT95a, Theorem
4.2], regarding the NP-completeness of some problems involving the computation
of P-justified revisions, can be easily seen to follow from similar results already
known about the computation of stable models.

Finally, the fact that the translation P(P, By) of a revision program is completely
symmetric with respect to in and out atoms immediately yields the following result.

Theorem 4.2. [MT94] Let P be a revision program and let By be a knowledge base.
A knowledge base Br 1s a P-justified revision of By if and only if U — Bgr 1s a
PP_justified revision of U — By, where PP is the dual of the program P obtained
by stmultaneously replacing everywhere in by out and vice versa.

5. ALTERNATIVE ACCOUNT OF REVISION PROGRAMMING

In this section we consider an alternative embedding of revision programming in
logic programming, which is somewhat more compact than the previous one (Def-
inition 3.4), but otherwise very similar. This second embedding suggests a simple
alternative characterization of revision programming, which serves as the basis for
the definition of interpretation update by arbitrary sets of inference rules — or rule
update — that is introduced in the next section.

For this alternative embedding we use extended logic programs under the sta-
ble semantics (Definition 2.2), and we employ a more compact encoding of the
commonsense law of inertia — the principle that things change only when made to.

Given the set U associated with a revision program P, let * be the propositional
language with the atoms UU{~a : a € U }. We will translate revision program P,
along with an initial knowledge base By, into an extended logic program over K*.

In this section it will be convenient to represent interpretations of the extended
language K* as sets of atoms a¢ and ~a.

Definition §.1. (Translation of revision programming into extended logic
programming) Let P be a revision program, with initial knowledge base By.
Let m(P) be the positive extended logic program over K* obtained from P by
replacing each in-rule (3.1) in P with the corresponding rule

P Qi qm,~S1, ..., 8p
and similarly replacing each out-rule (3.2) in P with the corresponding rule
~p =1y qmy ™S, -, S

Let P*(P, Br) be the extended logic program over K* that is obtained by aug-
menting 7(P) with the rule

a < not ~a (5.1)
for each atom a € By and the rule

~a < not a (5.2)

for each atom a € U \ By.

12

Unlike the first translation from revision programming to logic programming
(Definition 3.4), this second translation does not include an explicit representation
of the initial knowledge base By, but instead uses By to determine which rules of
the forms (5.1) and (5.2) are to be added to the positive extended logic program
7(P). Intuitively speaking, rules of the forms (5.1) and (5.2) correspond to a partial
evalution of the Inertia Rules (3.5 and 3.6) with respect to the Initial Knowledge
Rules (3.3 and 3.4). In this manner we obtain a more compact translation which,
nonetheless, still reflects the commonsense law of inertia.

Ezample 5.1. Consider again the revision program P and initial knowledge base
By from Example 3.2. The program P*(P, Br) consists of the following four rules.

a — ~b
b+ ~a
~a < not a

~b + not b

Recall that the two P-justified revisions of By are the knowledge bases {a} and
{b}. Observe that these two P-justified revisions of By correspond precisely to the
two extended stable models of P*(P, Br), which are {a,~b} and {~a,b}.

In order to state the correctness of this second translation, we introduce the
following auxiliary definition, relating knowledge bases and interpretations of £* in
the obvious way.

Definition 5.2. Let M be the injective function from the set of knowledge bases
(that is, the set of subsets of U) to the set of interpretations of £* such that, for
any knowledge base B, M(B) = BU{~a:a€ U\ B}.

Theorem 5.1. (Embedding revision programming in extended logic pro-
gramming) Let P be a revision program, with initial knowledge base By. A
knowledge base Br is a P-justified revision of By if and only if the interpre-
tation M(BR) is an extended stable model of P*(P, Br). Moreover, for every
extended stable model M of P*(P, Br), there is a unique knowledge base Bp
such that M = M(BR).

We do not include a proof of this theorem, which follows in straightforward
fashion from the correctness of the first translation (Theorem 3.1).
Now, 1t 1s easy to verify that for any knowledge base Br, we have

P*(P’BI) _
Mo = m(P)U (M(Br) N M(Br)).

This observation immediately yields the following corollary to Theorem 5.1.

Corollary 5.1. (Alternative characterization of revision programming) Let
P be a revision program, with initial knowledge base Byr. A knowledge base Bg
is a P-justified revision of By if and only if M(BgR) is an extended stable model
of m(P)U (M(Br) N M(Br)).

13

6. RULE UPDATE

Revision programs are sets of revision in-rules and out-rules, which can be inter-
preted as positive logic program rules, or as inference rules, and used to update
interpretations. In this section we introduce a more general approach to interpre-
tation update, which allows update by means of arbitrary sets of inference rules.
We call this more general notion rule update.

Rule update has a simple fixpoint definition which can be viewed as an ex-
tension of the alternative characterization of revision programming introduced in
Corollary 5.1 of the previous section. Rule update not only extends revision pro-
gramming, but also includes as a special case the approach to update by means of
formulae introduced by Winslett in [Win88]. Furthermore, rule update has a sim-
ple embedding in default logic, using essentially the same inertia rules used in the
previous section to embed revision programming in extended logic programming.

In the remaining sections of the paper, we will represent interpretations of a
propositional language K as maximal consistent sets of literals from K. This choice
of representation allows us to characterize the set of facts that a pair I and I’ of
interpretations have in common simply by taking their intersection I N [I’.

Definition 6.1. (Rule Update) Let R be a set of inference rules. Let I and I’
be interpretations. We say that I’ is an update of I by R if

I'={L:Inl'tg L}
where L ranges over literals.

The literals in I N I’ can be understood as the facts that are “preserved by
inertia” as we move from interpretation I to interpretation I’. In accordance with
the commonsense law of inertia, our definition of rule update does not require any
additional “explanation” for the truth of these literals in I’. The definition does
require though that all new facts in I’ — that is, the literals in I’\ I — be explained
by the rules in R, along with the literals in I N I’. Accordingly, we see that I’ is
an update of I by R if and only if the following two conditions are met:

o for all literals Lin I'\ I, INTI' Fgr L;
e Cn(I') is closed under R .

That is, roughly speaking, I" must be “consistent with” the rules in R, and every
literal in I’ must be explained — either it held in I or it was forced to become true.

Ezample 6.1. Consider the following.

a
Ilz{aabac} Rlz{m} 12:{aa_'bac}

First we will show that I5 is an update of Iy by Ry. Notice that Iy N Iy = {a,c}
and that Iy N Iy bz, —=b. So for all literals L € I\ Iy, [y N Iz Fr, L . And since
Cn(I3) is closed under Ry, we have shown that 5 is an update of I} by R;.

A symmetric argument shows that the interpretation {a, b, —c} is also an update
of I by R1. On the other hand, if we take Is = {—a, b, ¢}, then Iy N I3 = {b, ¢}; and
we see that 1 N I3 /g, —a. So I3 is not an update of I; by Ri. One can similarly
show that the interpretation {a,—b, —c} is not an update of I; by Rq.

14

The following theorem, establishing that rule update indeed extends revision
programming, is easily seen to follow from the alternative fixpoint characterization
of revision programming captured in Corollary 5.1, in light of the strong resem-
blance between that characterization of revision programming and the definition of
rule update.

Theorem 6.1. (Rule update subsumes revision programming) Let P be a
reviston program, with nitial and final knowledge bases By and Br. Let R be
the set of inference rules obtained by replacing each in-rule (3.1) in P with the
corresponding inference rule

G N Ngm A5y Ao A sy,
p

and similarly replacing each out-rule (3.2) in P with the corresponding inference
rule

g N ANgm A5y A A sy
Let T and I' be interpretations such that INU = By and I' "U = Bg. Bg is a
P-justified revision of By if and only if I' is an update of I by R.

7. PROPERTIES OF RULE UPDATE

In this section we show that rule update includes as a special case the approach
to update by means of formulae introduced by Winslett [Win88].1*More generally,
we briefly investigate how the “directionality” of inference rules contributes to the
expressiveness of update by means of inference rules.

Definition 7.1. (Formula-update)!?Given interpretations I, I’ and I”, we say
that I’ is closer to I than I" is if I NI is a proper subset of I' N I.
Let T be a set of formulae. Let I and I’ be interpretations. We say that I’ is
a formula-update of I by I'if I’ is a model of I such that no model of I is closer
to I than I’ is.

The “principle of minimal change” that is transparently captured in this defini-
tion is closely related to the commonsense law of inertia that underlies rule update,
as we will see. Intuitively speaking, the principle of minimal change stipulates
that there be as few changes as possible, whereas the commonsense law of inertia
assumes that things change only when made to.

In order to compare formula-update and rule update in a precise fashion, we
introduce the following additional definition.

1I'MecCain and Turner [MT95b] discuss this comparison at some length, in the framework of
reasoning about action. Propositions 7.1 — 7.3 below are essentially identical to Propositions 2—4
from [MT95b].

12The definition given here is equivalent, and almost identical, to the corresponding definition
in [Win88]. (Recall that we represent interpretations as maximal consistent sets of literals.)

15

Definition 7.2. Given a set R of inference rules, we define a corresponding set of
formulae Theory(R) as follows.

Theory(R) = {qb D % € R}

Thus, for example, Theory(R1) = {a D =bV —c}.

Let R be a set of inference rules and I an interpretation. Notice that Cn(7) is
closed under R if and only if I is a model of Theory(R). Thus, every update of T
by R is a model of Theory(R). In fact, we have the following stronger result, which
shows that rule update satisfies the principle of minimal change.

Proposition 7.1. Let R be a set of inference rules and I an interpretation. Every
update of I by R is a formula-update of I by Theory(R).

PROOF. Assume that I’ is an update of I by R. So I’ is a model of Theory(R).
Let I” be a model of Theory(R) such that I’ NI C I N 1. We need to show that
I"” = I'. Since I’ and I"" are both interpretations, it’s enough to show that I’ C I".

I'={L:InI'tg L} (I’ is an update of I by R)

C{L:INI"Fg L} (I'n1Cr'nir)
C{L:I"+r L} (1"aIcr)
=1" (I is a model of Theory(R))

O

The converse of Proposition 7.1 doesn’t hold in general. For instance, we have
seen (Example 6.1) that I3 is not an update of I} by Ry, and yet it is easy to verify
that I3 is a formula-update of I; by Theory(Rq).

On the other hand, the following proposition shows that if every inference rule

in R has the form
True

¢

then the updates of I by R will be exactly the formula-updates of I by Theory(R).
Thus, rule update includes formula-update as a simple special case. And since

rule update also subsumes revision programming, we see that rule update both
generalizes and unifies these two approaches to interpretation update.

Proposition 7.2. Let R be a set of inference rules, each of which has the form %.

For any interpretation I, every formula-update of I by Theory(R) is also an
update of I by R.

PRrROOF. Assume that I’ is a formula-update of I by Theory(R). Let I" be a model
of (I NI'")U Theory(R). So I"” is a model of Theory(R). Also I' NI C 1", so
I'nl CI"NI. Since no model of Theory(R) is closer to I than I’ is, we can
conclude that I = I’. Thus, I’ is the only model of (INI")U Theory(R). Tt follows
that I' = {L: (INI')U Theory(R) F L}. Due to the special form of the rules in R,
we see that (/N I)U Theory(R) F ¢ iff INT' Fr ¢, for every formula ¢. Therefore,
I'={L:InI'FgL}. O

We may say that Proposition 7.2 shows that “directionality” plays no essential

True

role in inference rules of the form . To consider another extreme case, the

16

following straightforward proposition shows that rules of the form

¢
Fualse

only eliminate updates.

Proposition 7.3. Let R be a set of inference rules. Let I and I' be interpretations.
For any formula ¢, I' is an update of I by R U {%} if and only if I' is an
update of I by R such that I' [~ .

In fact, we see that if every rule in R has the form %, then I’ is an update
of I by R if and only if T is a model of Theory(R) and I' = I. Intuitively speaking,
this is the most pronounced example of the effect of the directionality of inference

rules. At the other extreme, we have seen that if every rule in R has the form
True

, then I’ is an update of I by R if and only if I’ is a formula-update of I by

Theory(R). Thus, in such cases, the directionality of rules has no effect at all. We
briefly explore in the remainder of this section the middle ground that lies between
these two extremes.

Definition 7.3. Let R, R’ be sets of inference rules. We say R’ is as strong as R
if for all sets T' of formulae, if T' is closed under R’ then T is closed under R.

It is clear that if R is as strong as R, then for any formula ¢, I' Fz: ¢ whenever
' Fr ¢. We use this fact in the proof of the following proposition.

Proposition 7.4. Let R and R' be sets of inferences rules such
that Cn(Theory(R)) = Cn(Theory(R')). Let I be an interpretation. If R’ is
as strong as R, then every update of I by R is also an update of I by R'.

PROOF. Assume that R’ is as strong as R and that I’ is an update of I by R.
Since Cn(Theory(R)) = Cn(Theory(R')) and Cn(I') is closed under R, we know
that Cn(I’) is closed under R’. Consider any L € I'. Since I NI’ Fgr L, and since
R’ is as strong as R, it follows by previous observation that I NI’ Fr: L. a

Now we define an ordering on inference rules that, intuitively speaking, allows
us to compare the degree of directionality in (otherwise similar) rules.

Definition 7.4. Let ¢, ¢, 1, ¢/ be propositional formulae.

gﬁ% ff ot and F (6 D) =(¢' DY)

Ezxample 7.1. By the preceding definition, we have the following.

aANbAc aAb a True
< < <
Fualse - —¢ T =bV-e T —aV-obV-e

Roughly speaking, the idea behind this ordering of rules is that, as we move from
left to right, the degree of directionality in the rule is lessened, which makes the
rule “stronger.” Below, we make this claim precise.

17

Let R be a set of inferences rules, and let » and 7’ be inference rules such that
r < 7. Tt is clear that Cn(Theory(R U{r})) = Cn(Theory(R U {r'})). Moreover,
it follows easily from the definitions that R U {7’} is as strong as R U {r}. Thus,
we have the following corollary to Proposition 7.4.

Corollary 7.1. Let R be a set of inferences rules and let v, v’ be inference rules such
that v < r'. Let I be an interpretation. Every update of I by R U {r} is also an
update of I by R U {r'}.

8. EMBEDDING RULE UPDATE IN DEFAULT LOGIC

In this section we specify a very simple embedding of rule update in default logic,
using essentially the same inertia rules used in Section 5 to embed revision program-
ming in logic programming. The resulting default theories use normal defaults to
encode the commonsense law of inertia.'3

Definition 8.1. (Translating rule update into default logic) Given a set R
of inference rules and an interpretation I, let

D@J):RU{—;:LEI}

Theorem 8.1. (Embedding rule update in default logic) Let R be a set of
winference rules and I an interpretation. The following hold.

o An interpretation I' is an update of I by R if and only if Cn(I') is an
extension of D(R, I).
o For every consistent extension E of D(R,I), there is an interpretation I'
such that E = Cn(I').
ProoF. For part one, let I’ be an interpretation. Observe that
DR, ") = RUUINT)
which justifies the last step below.
I' is an update of T by R off I' ={L:INnI'tg L}
iff Cn(I')y={¢:INTItx ¢}
iff Cn(I') is the extension of RU(INT')
iff Cn(I') is an extension of D(R,I)
For part two, assume that F is a consistent extension of D(R, I). Suppose there

is no interpretation I’ such that £ = Cn(I'). So there is an atom A such that
A¢ E and -A ¢ E. But D(R,) includes one of the following two inertia rules.

CA : A

A —A
It follows that D(R, I)¥ includes either A or =A, and thus E does also. Contra-
diction. ad

138ee [Tur96, Tur97] for applications of essentially this encoding of the commonsense law of
inertia in default theories and logic programs for representing knowledge about actions.

18

9. CONCLUDING REMARKS

Rule update 1s a simple and expressive framework for interpretation update which
extends both revision programming and Winslett’s approach to update by means
of formulae. Furthermore, it has a simple embedding in default logic, based on a
straightforward encoding of the commonsense law of inertia — the principle that
things change only when made to.

In [MT94] Marek and Truszczyniski proposed a different extension of revision pro-
gramming, called disjunctive revision programming. Disjunctive revision programs
consist of rules of the following form.

in(p1) V- Vin(pg) Vout(r) V-V out(r) «
in(q1), ..., in(gm), out(s1), ..., out(s,)

However, the proposed definition exhibits what may be undesirable behavior. For
example, given the disjunctive revision program

P ={in(a) vVin(b)}

and initial knowledge base By = {a}, we obtain the knowledge base Br = {a, b} as
one of the two P-justified revisions of By, which violates of the principle of minimal
change.!*By contrast, the only update of the interpretation {a, =b} by

R ={aVb}

is {a,—b} itself. In fact, as noted earlier, Proposition 7.1 shows that rule update
never violates the principle of minimal change, although, as we have seen, it is
actually based on a principle of “causal” or “justified” change.

Finally, since revision programming is equivalent to logic programming under
the stable semantics, computational methods developed for the stable semantics
(or, perhaps, for its approximations, such as the well-founded semantics) can be
used to provide a query answering mechanism for revision programming. Similarly,
since rule update can be embedded in default logic, it should be possible to use
computational methods developed for default logic to compute rule update.

ACKNOWLEDGMENTS

Thanks to Vladimir Lifschitz, Norman McCain and Halina Przymusinska for many
helpful discussions and suggestions. We are also grateful for comments from Chitta
Baral, Enrico Giunchiglia and G. N. Kartha. The first author is partially supported
by NSF grant #IRI-9313061; the second by NSF grant #IRI-9306751.

REFERENCES

[Bar94.] Chitta Baral. Rule-based updates on simple knowledge bases. In Proc. AAAI-
94, pages 136-141, 1994.

14Mirek Truszczynski has agreed (personal communication) that this example shows that the
original definition fails to capture the intended intuition.

[GLSS.]

[GL90.]

[GLPT91]

[KMO91.]

[MT93]

[MT94]

[MT95a.]

[MT95b.]

[Prz91.]

[Prz95.]

[Rei80.]

[Tur96.]

[Tur97.]

[Win88.]

19

M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Logic
Programming Symposium, pages 1070-1080, Cambridge, Mass., 1988. Associa-
tion for Logic Programming, MIT Press.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceed-
ings of the Seventh International Logic Programming Conference, Jerusalem,
Israel, pages 579-597, Cambridge, Mass., 1990. Association for Logic Program-
ming, MIT Press.

Michael Gelfond, Vladimir Lifschitz, Halina Przymusinska, and Mirostaw
Truszczynski. Disjunctive defaults. In James Allen, Richard Fikes, and Erik
Sandewall, editors, Principles of Knowledge Representation and Reasoning:
Proc. of the Second Int’l Conf., pages 230-237, 1991.

Hirofumi Katsuno and Alberto O. Mendelzon. On the difference between up-
dating a knowledge base and revising it. In James Allen, Richard Fikes, and
Erik Sandewall, editors, Principles of Knowledge Representation and Reason-
ing: Proc. of the Second Int’l Conf., pages 387-394, 1991.

W. Marek and M. Truszczynski. Revision programming. Research report,
University of Kentucky, 1993.

W. Marek and M. Truszczynski. Revision specifications by means of revision
programs. In Logics in Al. Proceedings of JELIA °94. Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1994.

W. Marek and M. Truszczynski. Revision programming, database updates and
integrity constraints. In Proceedings of the 5th International Conference on
Database Theory — ICDT 95, pages 368-382. Springer-Verlag, 1995.

Norman McCain and Hudson Turner. A causal theory of ramifications and
qualifications. In Proc. of IJCAI-95, pages 1978-1984, 1995.

T. C. Przymusinski. Stable semantics for disjunctive programs. New Gener-
ation Computing Journal, 9:401-424, 1991. (Extended abstract appeared in:
Extended stable semantics for normal and disjunctive logic programs. Proceed-
ings of the 7th International Logic Programming Conference, Jerusalem, pages
459-477, 1990. MIT Press.).

T. C. Przymusinski. Static semantics for normal and disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence, Special Issue on Disjunctive
Programs(14):323-357, 1995. File: static.tex. Available on WWW.

Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13(1,2):81-132, 1980.

Hudson Turner. Representing actions in default logic: A situation calculus
approach. In Working Papers of the Third Symposium on Logical Formalizations
of Commonsense Reasoning, 1996.

Hudson Turner. Representing actions in logic programs and default theories: A
situation calculus approach. Journal of Logic Programming, 1997. Forthcoming.
Marianne Winslett. Reasoning about action using a possible models approach.
In Proc. AAAI-88, pages 89-93, 1988.

