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Abstract

Top-down class-specific knowledge is crucial for accu-

rate image segmentation, as low-level color and texture

cues alone are insufficient to identify true object bound-

aries. However, existing methods such as conditional ran-

dom field models (CRFs) generally impose the class-specific

knowledge only at the “node” level, evaluating class mem-

bership probabilities at the (super)pixels that define the ran-

dom field graph. We introduce a strategy for pairwise po-

tential functions that capture top-down information, where

we prefer to assign the same label to adjacent regions when

the entropy reduction that would result from their merging

is high. By measuring how the certainty of the object-level

classifiers changes when considering the appearance de-

scription extracted from adjacent regions, we can “piece to-

gether” objects whose heterogenous texture would prevent

both the too-local node potentials and conventional bottom-

up smoothness terms from recognizing the object. We show

how this idea can be used as either an affinity function for

agglomerative clustering, or a pairwise potential for a CRF

model. Experiments with two datasets show that the pro-

posed entropy-guided affinity function has a clear positive

impact on multi-class segmentation.

1. Introduction

Segmentation and recognition are fundamental vision

problems, and recent work shows that treating them in a uni-

fied way can significantly improve performance over meth-

ods that tackle either component alone. Whereas bottom-up

techniques that rely solely on low-level cues such as tex-

ture or color are limited to finding regions with fairly ho-

mogeneous appearance, methods that also leverage “top-

down” knowledge from category models can guide the

grouping towards regions that best support object detec-

tion. In particular, techniques are available to compute

either a class-specific foreground-background segmenta-

tion [1, 2, 3, 4, 5, 6, 7], or to label all pixels according to

a set of multiple known categories [8, 9, 10, 11, 12, 13, 14].

The key insight of such approaches is that achieving object-

level boundaries requires expressing an objective for seg-

ment quality that includes terms favoring category-specific

attributes, not just pixel similarity.

However, existing methods generally incorporate

category-specific attributes by classifying a single base

“unit” (pixel, superpixel, region)1, whereas interactions

between neighboring units are restricted to capturing

bottom-up cues. For example, a standard conditional ran-

dom field model (CRF) specifies node potentials that prefer

label assignments that agree with the object classifiers’

posterior probabilities as computed for the pixels in that

unit, whereas the pairwise potentials a priori prefer smooth

label assignments for neighbors if their texture/color are

similar, or if they lack a strong intervening edge. Similarly,

techniques based on multiple-segmentations evaluate class

models only within the spatial extent of whatever regions

exist in the pool of candidates.

There are several drawbacks in restricting the top-down

cues’ influence to individual units. First, a unit may give too

local of a view for a classifier to realize actual agreement

with its class-specific model, particularly for objects with

heterogenous texture patterns: imagine looking at a small

superpixel patch on the side of a boat, and trying to decide

if it is more likely a boat, or car, or some other man-made

structure. Secondly, a pairwise potential function that only

uses bottom-up cues will resist giving neighboring units the

same label the more distinct their textures are (see Figure

1). Thirdly, limiting class-specific terms to whatever pool

of units a bottom-up process provides means there is a risk

of missing the combination of units at which some object’s

classifier would strongly respond. Widening the pool of

candidate region scales can help (e.g. [15, 16, 17, 18]), but

one pays a computational price.

To address these shortcomings, we propose a pair-

wise potential function that assesses top-down information

within the full spatial extent of any neighboring units. The

1We use “units” as a generic term to refer to the basic tokens with which

a segmentation method operates. In general, a unit is a region of pixels that

some bottom-up process provides for further processing. In a CRF, these

are the “nodes”, which correspond to pixels or superpixels. We also use

the terms “affinity” and “pairwise potential” interchangeably.
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main idea is to prefer assigning the same label to adjacent

regions that, once merged into a single region, would pro-

duce a reduction in entropy according to the learned top-

down model classifiers. By measuring how the certainty

of the object-level classifiers changes when considering the

appearance description extracted from adjacent regions, we

can “piece together” objects whose heterogenous texture

thwarts conventional measures.

We designate both the feature types and classifiers that

are appropriate for the proposed use of entropy reduction,

meaning that even for merges between local pieces of an ob-

ject we will be able to detect greater confidence. Essentially,

this requires that larger parts of an object be closer in fea-

ture space to the whole than the smaller parts. Our method

first builds classifiers for any known categories of interest

using the ground truth (full object) spatial extent. Given a

novel image, we score the initial individual regions based

on their entropy under the classifiers, and also consider the

reduction in entropy that would result once adjacent pairs

are merged together (assigned the same label). Importantly,

a candidate merging adjusts the feature by extracting it from

the larger region, thereby giving a new view of the pixels,

and affecting the classifier response.

We provide two different frameworks where the affin-

ity is of use, and analyze the tradeoffs. In the first, we use

the entropy-guided affinities to agglomeratively group seg-

ments, updating the affinity and features each time two seg-

ments are merged. This can be seen as a greedy procedure

for decreasing the overall uncertainty in the segmentation

of the image. To avoid getting stuck in local optima, we use

multiple initialization points (multiple segmentations) and

combine the results. In the second, we use the affinity as a

pairwise potential in a CRF, encouraging neighboring seg-

ments that produce high reductions in entropy to be given

the same label. In either case, including our pairwise affin-

ity offers some robustness to what are initially myopic ap-

pearance features within the over-segmented regions. Fur-

thermore, since the adjacency and scale of regions adjust

dynamically as the agglomerative framework proceeds, it

can capture regions with a larger spatial extent—a poten-

tial advantage, since the regions might support a particular

object’s presence only once joined together.

Our main contribution is a novel affinity function be-

tween segments that encourages grouping those which can

be classified with more certainty once they are joined. We

validate the idea within the agglomerative and CRF frame-

works, and demonstrate its impact relative to traditional

models with two benchmark datasets.

2. Related Work

Bottom-up segmentation methods (e.g. [19, 20]) group

low-level cues such as texture, color, or contour continu-

ity, without using any external knowledge about the objects

occurring in the image. Some work shows how to learn

optimal combinations of cues based on human perceptual

judgments to provide robust boundary detection [21].

A number of top-down class-specific segmentation ap-

proaches have been proposed in recent years, where the

low-level cues are balanced concurrently with insight from

trained object models. One set of methods deals with fore-

ground segmentation, where the best figure/ground assign-

ment will have boundaries that agree with a previously

learned shape model or other class-based cue [1, 6, 2, 22,

3, 4, 5, 7]. Such two-class techniques are intended for

single-object images with a given target class, and gener-

ally work best when it is possible to construct a consistent

shape prior for that category (e.g., side views of horses).

Some explore the space of groupings using merge opera-

tions [22, 2], which we also consider here, though with a

distinct objective function. The approach of [22] does not

use any class-specific knowledge but instead learns to dif-

ferentiate between “good” and “bad” moves among merges,

shifts, and splits between superpixels using low-level cues

and hand-drawn segmentations.

A second set of methods handle multi-class segmenta-

tion (also referred to as “image labeling”), where images

containing objects from different categories are concur-

rently recognized and segmented [8, 9, 10, 23, 11, 12, 13].

Many successful approaches are based on conditional ran-

dom field (CRF) models, which yield a pixel-level output

that maximizes the probability of the joint label assignment.

Such methods usually use appearance smoothness and inter-

vening contour information as the pairwise terms, to smooth

the segmentation over local regions. However, this ap-

proach only captures smoothness interactions between the

base units at a single scale.

Several extensions to the random field approach capture

interactions at multiple scales by using hierarchical repre-

sentations [8, 18, 24], or by extracting features from the

neighborhoods of the base superpixels [25]. Our affinity

function also attempts to consider wider spatial extents for

labeling, though in contrast to existing methods it does so

with a novel entropy-guided measure; furthermore, within

an iterative agglomerative grouping framework, our method

considers region combinations that cannot be considered by

CRF models without possibly exorbitant node connections

between hierarchy levels (i.e., not just parent-child connec-

tions). This is in contrast to [25], where node features are

always extracted from a predetermined fixed neighborhood

of the base superpixel. Recent models have also shown how

to incorporate information about co-occurring objects and

their spatial layouts [12, 11].

The authors of [26] design a discriminative pairwise po-

tential for the CRF model, where the features from two

regions are concatenated and then classified as indicating

“same” or “different” labels. However, the intent in that ap-

proach is to moderate the smoothness constraint when two

regions are different in appearance, so while the potential



does incorporate a trained function, its meaning is closer to

other pairwise functions that promote smoothness.

An alternative approach falling somewhere in between

the bottom-up and concurrent methods is to compute mul-

tiple low-level segmentations with varying parameters, and

then essentially look for good segments that are most con-

sistent based on extracted model parameters [15, 10, 17,

16]. In a sense, our approach focuses this search by leverag-

ing the class-based cues with candidate merged neighboring

segments. The idea of expanding the region pool specif-

ically to adjacent regions is explored in [16]; in contrast,

we are proposing to automatically select among adjacent

merges according to learned class-based information.

The proposed top-down pairwise potential function pro-

vides a simple and efficient way to integrate fine-to-coarse

spatial support for objects of interest. We show that even

when starting from an initial over-segmentation that alone

would yield weak classification, our entropy-guided merges

can reliably piece together same-class regions.

3. Approach

Given a test image, we start by preprocessing the image

into a large number of superpixels, which are coherent local

regions that preserve most of the object boundaries [22]. A

set of classifiers provides top-down cues about the content

of the current regions. We would like to prioritize merges

(in the case of the agglomerative variant) or same-label as-

signments (in the case of the CRF variant) for the segments

based on how great of a reduction in uncertainty they yield

when together, as well as their consistency under a collec-

tion of Gestalt-inspired low-level cues.

3.1. Pairwise Affinities for Image Regions

In the following, we first describe classifier construction

for the known categories of interest, then outline how pairs

of regions are compared based on entropy reduction, and

then explain the other low-level cues we incorporate.

3.1.1 Top-down Entropy-Guided Region Affinities

The basic idea behind our top-down affinity is that we

would like to encourage the final segmentation of the ob-

jects to be as close to the examples in the training images

as possible. When starting with units that were produced

by a bottom-up segmentation algorithm, we do not expect

the initial regions to capture the complete spatial extent of

the objects. Therefore, we derive a pairwise potential that

encourages segments to be merged if they look more like

the true objects as seen in the correctly segmented training

images. This idea is the key contribution of the paper.

In order for this to work, the features need to be such

that “the whole is greater (closer to a trained model) than

the sum of the individual parts”. In other words, we require

the feature representations of the larger merged region of

segments, say Si, Sj , to be closer in feature space to the

complete object than when they are separate. Intuitively,

histogram-based features have this property; measuring the

histogram from a joined larger region of an object (i.e., sum-

ming the component histograms) makes it move closer to

the full object’s histogram, if the two component regions

belong to that class.

Therefore, for whatever categories of interest are speci-

fied during training, we learn classifiers based on histogram

representations to provide the top-down cue for segmenta-

tion. The training data consists of labeled, segmented exem-

plars for each of N classes. We extract histogram-based fea-

tures to represent each in-class region—a texton histogram,

color histogram, pyramid of histograms of oriented gradi-

ents [27], and a context descriptor based on the texton his-

tograms of all regions other than the object. (See Sec. 4.)

We compute a combined kernel by averaging individual

kernels that compare each feature type. Given the combined

kernel, we learn a multi-class kernel-based classifier using

the probabilistic K-nearest neighbor (PKNN) classifier de-

veloped in [28]. Importantly, we chose a nearest neighbor

classifier because the changes in kernel values/distances in

feature space directly propagate into the final classification

probabilities, unlike margin-based approaches. Hence, the

entropy score of the classification probabilities will reflect

whether the merge brings the region closer to the feature

representation of the whole object.

Given a new image and its current region segmenta-

tion (initially simply the oversegmented superpixels), we

apply the classifier to each region, and obtain the list of

posterior probabilities for each class. Thus for a given

segmentation S = {S1, . . . , SM} consisting of M re-

gions, for each region Sj , we compute N probabilities:

P (1|Sj), . . . , P (N |Sj), where P (l|Sj) denotes the prob-

ability that the region Sj belongs to class l. These values

compactly capture the top-down uncertainty about the given

region’s content, which we show how to exploit via a novel

region-region affinity function.

Note that although the novel test images will initially

be oversegmented, we train the classifiers using true object

segmentations. The idea is that during grouping, we want

the most confident classifier responses to occur once a re-

gion covers nearly the full spatial extent of an object.

Next we describe how to encourage merges or same-

label assignments between adjacent regions that will reduce

entropy once joined together. Our approach uses the clas-

sifier confidence probabilities outlined above, and is moti-

vated by the following objective. Given an image, we ide-

ally want to select a disjoint set of regions, one per object, so

as to minimize the overall uncertainty in all regions. The un-

certainty is measured by the entropy computed using each

region’s posterior probabilities for the N known classifiers,

weighted by the region size.



Figure 1. Our entropy-guided affinity function favors merges be-

tween adjacent regions that will reduce classifier uncertainty once

joined. Here the two ‘cow’ regions, Si, Sj , are not confidently

classified by any category model, nor would their appearance fea-

tures strongly agree. However, if merged, the more complete re-

gion would more confidently respond to the cow classifier. Our

method uses top-down knowledge to piece together objects from

the bottom-up, as it identifies adjacent regions that when together

reduce uncertainty or agree in appearance.

Thus the optimal segmentation S∗ is defined as:

S∗ = argmin
S

U(S),

where U(S) =

|S|
∑

j=1

N
∑

l=1

−P (l|Sj) log P (l|Sj) |Sj |. (1)

Here, U(S) denotes the pixel-level entropy under the seg-

mentation S, |Sj | denotes the number of pixels in Sj , and

|S| denotes the number of regions in the segmentation.

To obtain the segmentation that is least uncertain, we

need to identify the best pixel grouping among all possi-

ble segmentations. The optimization is intractable due to

the exponential number of possible segmentations. Instead,

we define a local affinity function between neighboring re-

gions such that the affinity is high for segments that produce

reductions in the objective in Equation 1.

The reduction in entropy to segmentation S due to a can-

didate merge between two regions Si and Sj is given by:

R(Si, Sj) = U (S) − U (S ∪ {Sk} r {Si, Sj})

=

(

N
∑

l=1

P (l|Sk) log P (l|Sk)

)

(|Si| + |Sj |)

−

(

N
∑

l=1

P (l|Si) log P (l|Si)

)

|Si|

−

(

N
∑

l=1

P (l|Sj) log P (l|Sj)

)

|Sj |,

where Sk denotes the merging of the inputs: Sk = {Si ∪
Sj}. In other words, since the segments are disjoint in

space, the impact of merging the two inputs on total un-

certainty is simply computed by measuring the change in

the entropy after the proposed merge, with terms weighted

according to segment sizes. Using this we can define the

entropy-guided affinity function Au(Si, Sj) as follows:

Au(Si, Sj) =

{

R(Si, Sj), if (Si, Sj) ∈ A
0, otherwise

, (2)

where A denotes the set of adjacent pairs of segments. This

value is high only if by merging the regions we see some-

thing that “looks more like” a known object according to

our classifiers (see Figure 1). The pairwise term we have

defined can be loosely viewed as if we are putting together

a jigsaw puzzle: pieces that once joined seem to indicate (at

least a part of) some familiar object look promising. The

affinity Au can be used to greedily minimize the objective

in (1) when we consider an agglomerative grouping strat-

egy (Section 3.2.1). In the case of a CRF, it encourages

neighboring segments that are better together to be given

the same label (Section 3.2.2).

3.1.2 Bottom-Up Appearance Cues

Alongside the classifier confidence, we also include usual

appearance cues in the pairwise affinities, motivated by

three factors. First, images we segment may also contain

objects unfamiliar to the classifiers. In this case, using only

the change in entropy could lead to unwanted merges be-

tween the segments of unseen objects. At the same time,

since some objects have rather homogenous appearance

(e.g., grass, sky, water), a local patch alone could satisfy the

classifier; the entropy-based scoring would resist merging

such regions for familiar objects, given that their entropy

would remain level once merged. Third, we could bene-

fit from additional information that is not relevant to the

region-based classifier (e.g., cues from boundaries cutting

between regions). Therefore, using the features described

in [22] as inspiration, we also consider grouping cues based

on classic Gestalt principles:

Similarity. We measure the similarity between two

regions based on their color features. The color affin-

ity is defined in terms of two segments’ color histograms:

As(Si, Sj) = exp (− 1
2σc

‖Ci − Cj‖
2), where Ci and Cj

are the two histogram vectors, and σc is set to the average

L2 distance between the color histograms of the segments

from training images. Similar functions could of course be

added based on additional features, such as texture, bright-

ness, etc.

Contour Energy. We measure the energy along the

boundary of a segment pair using the boundary detector

of [21] and convert it into an affinity as Ae(Si, Sj) =

1 −
∑

p∈Si∩Sj

Pb(p)
|Si∩Sj |

where Pb(p) is the “probability of

boundary” at pixel p, as defined in [21].



3.2. Grouping Strategy

The affinities defined in the previous section can be used

alone within any clustering algorithm to group regions, or

can be taken as a pairwise potential between the nodes of a

CRF defined on superpixels. We explore both approaches,

as each offers different advantages.

An agglomerative procedure that sequentially merges

adjacent regions specifically accounts for the fact that as

more regions are combined, their uncertainty and adjacency

neighborhood continue to change. The procedure converges

to a local optimum of the objective in Equation 1; we run

the approach with multiple initializations (multiple segmen-

tations obtained with different parameters) and combine the

outputs of each run to avoid local maxima and produce bet-

ter segmentations. On the other hand, if the affinity is used

as a pairwise term in a conditional random field, it can help

favor the correct labeling of non-homogenous segments of

an object in cases where bottom-up smoothness cues would

be misleading. In the following sections we explain each

variant in detail.

3.2.1 Agglomerative Grouping Model

For the agglomerative procedure, we train a logistic regres-

sion classifier based on the top-down uncertainty-guided

cue and the two low-level cues. In this way we learn the

weights to associate with each component affinity, and can

compute the probability that two regions should be merged:

P (merge|Si, Sj) =
1

1 + e−(
P

f
wf Af (Si,Sj)+b)

, (3)

where each Af is an affinity function defined above

(Au,As,Ae). We learn the parameters wf , b by maximiz-

ing the likelihood on the training examples using iterated

reweighted least squares.

At each iteration of the agglomerative grouping, we

compute the probability of merges between every pair of

neighboring segments, and choose the pair with the largest

value. Once we merge a pair of segments, we recompute

the neighborhood graphs and the cues, and repeat the pro-

cess until entropy stops decreasing. At that point, we return

the final segmentation, together with the uncertainty associ-

ated with each region. Note that each merge is a greedy step

towards minimizing the objective in Equation 1, and that as

the regions expand we have candidate merges that poten-

tially extend across much farther distances within the image

than the initial superpixels. Thus, whereas the CRF variant

below will need to select a single granularity of “sites” to

be considered for grouping (e.g., a fixed number of super-

pixels), the agglomerative variant iteratively identifies seg-

ments that can be merged in order to form new (larger) sites

with improved classifier confidence. This is a potential ad-

vantage, as our experiments confirm.

The method is straightforward to implement and effi-

cient; at each step we need to compute affinities only for

adjacent pairs, and following a merge operation we need

only to update features and scores corresponding to one row

of the affinity matrix.

The agglomerative merging process can loosely be

viewed as if the algorithm is putting together a jigsaw puz-

zle for which it has not seen the box cover: pieces that seem

consistent just based on appearance look promising, but so

do pieces that once joined seem to indicate some familiar

object. As with piecing together a puzzle, the information

is quite local at first, but then as we attach larger and larger

regions, the confidence about parts of the scene stabilizes.

3.2.2 Conditional Random Field Model

In the second variant, we use our affinity inside the pairwise

potential of a conditional random field model to encourage

similar labels on segments that are better classified when

considered together. Let ci denote a class label for segment

Si. We define the conditional probability of the labeling L

given an image I and a set of segments {Si} as

log P (L|I; θ) =
∑

i

log P (ci|Si, θp)

+
∑

(Si,Sj)∈A

φ(ci, cj ; θφ) − log Z(θ, I),

where P (ci|Si, θp) refers to the probability of classifying

segment Si as ci, as output by the PKNN classifier, and

Z(θ, I) is the partition function.

The pairwise edge potentials are defined based on our

pairwise affinities as follows:

φ(ci, cj; θφ) = δ(ci 6= cj)
∑

f

θ
f
φAf (Si, Sj), (4)

where each Af is an affinity function defined in the previous

sections (Au,As,Ae), and δ is the δ-function. We design the

edge potential φ(·) to incur a high cost on a labeling where

the affinities are high, but the neighbors are given differ-

ent labels. Therefore, similar to the agglomerative group-

ing strategy, Au’s contribution would encourage neighbor-

ing segments that are classified better together to be given

the same label. Furthermore, since the reduction in the en-

tropy can also be negative, it encourages distinct labels for

segments that do not fit together.

Unlike the agglomerative procedures, the CRF works at a

single scale (fixed base units); however, the effects can still

propagate in a neighborhood through the pairwise interac-

tions. Additionally, there are several efficient algorithms for

optimizing the above energy function.

4. Results

The main goal of our experiments is to analyze the use-

fulness of the proposed entropy-based pairwise affinity in

both the grouping strategies explained above.



P
er

-p
ix

el

P
er

-c
la

ss

b
u

il
d

in
g

g
ra

ss

tr
ee

co
w

sh
ee

p

sk
y

ae
ro

p
la

n
e

w
at

er

fa
ce

ca
r

b
ic

y
cl

e

fl
o
w

er

si
g

n

b
ir

d

b
o

o
k

ch
ai

r

ro
ad

ca
t

d
o

g

b
o

d
y

b
o

at

Without Au 70.6 55.0 62.9 97.2 79.3 51.5 48.9 87.9 69.7 68.1 15.2 42.7 81.5 53.5 57.6 22.5 85.8 33.7 69.1 49.6 34.4 36.4 8.4
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Table 1. Results on the MSRC v2 dataset using the agglomerative grouping strategy.
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With Au (ours) 76.8 68.2 87.1 80.3 71.0 74.1 81.7 93.0 84.3 72.8 60.0 55.1 61.7 62.5 44.6 36.6 57.9

Table 2. Results on the MSRC v0 dataset using the agglomerative grouping strategy.

Datasets: We evaluate our approach with the MSRC

v2 and MSRV v0 datasets. We chose these two because

they have ground truth pixel labels (needed for training and

evaluation) and multi-label images. The MSRC contains 21

classes in 591 images, and is commonly used as a bench-

mark by multi-class segmentation methods. We follow the

standard test/train breakdown as given in [9].

We obtained ground truth object outlines for a set of

15 categories in the MSRC v0 dataset. The dataset con-

tains 3,259 images and the following categories: {building,

grass, tree, cow, sheep, sky, car, bicycle, flower, sign, road,

leaf, chimney, door, window}. The categories were cho-

sen based on the criterion that each have at least 150 image

examples. We use a four-to-one train/test split.

Implementation details: We initialize our methods

with two different oversegmentations; about 50-60 super-

pixels computed with Normalized Cuts [20], which forms

small to medium regions of about equal size, and a Mean-

Shift [29] segmentation with kernel parameters (12,15),

which forms more variable-sized regions. We run the ag-

glomerative strategy on both segmentations and obtain the

final result by taking the pixel-wise product of the probabil-

ities output on each segmentation. We do this to mitigate

the influence of local maxima, and we found that this does

produce some gain in the overall segmentation accuracy.

We use texton histograms with 18 filters and 120-d color

histograms as features for the PKNN classifier. In addi-

tion, we compute pHOG histograms [27] for every train-

ing object by masking out the rest of the objects in or-

der to capture both the overall shape of an object and the

scene layout. Finally, we obtain a context descriptor for ev-

ery object/segment by masking out the object/segment and

accumulating a texton histogram of the rest of the image.

We found that the pHOG and context descriptors provide a

boost for structured classes such as “chair” and other cat-

egories which have very few training images. We use χ2

RBF kernels. We set the weights on the pairwise affinities

for the CRF (θφ) equally, although one could potentially

learn them from training data.

In the following subsections we evaluate the impact of

the proposed entropy-guided affinity in each of the two pos-

sible grouping strategies.

Figure 2. Representative outputs when using the agglomerative

grouping variant. First row: input image; Second row: ground

truth segmentation (colors denote labels); Third row: result with-

out our affinity; Fourth row result when including our top-down

affinity to score merges. Our entropy-guided merging correctly

encourages merges between non-homogenous segments in cases

where the purely bottom-up affinity fails. (Best viewed in color).

4.1. Agglomerative Grouping Results

We run our agglomerative grouping strategy in two

modes; (1) with the logistic regression classifier trained on

all three pairwise affinities (denoted “With Au” in the fig-

ures), and (2) with only the bottom-up cues (denoted “With-

out Au”). All other settings (including the classifier) are ex-

actly the same. Note that the “Without Au” baseline does

include the bottom-up pairwise terms Ae and As, and so we

are directly isolating the impact of our approach.

Table 1 compares the classification accuracy in either

setting for the MSRC v2 dataset. The baseline performs

quite well on many of the categories, with a per-pixel aver-

age accuracy of 70.6% and category-wise mean of 55.0%.

This result suggests that for a number of categories such as

“grass”, “tree”, “water”, and “bicycle”, low-level cues are

quite sufficient for obtaining good segmentations. However,

adding our entropy-based affinity improves the per-pixel av-

erage to 76.2% and the category-wise mean to 62.9%. This

shows the dramatic impact of our entropy-guided merg-

ing and illustrates our method’s ability to continually find

wider-scale regions that better support the known classes,

even starting with very local appearance. Table 2 shows the

classification accuracy on the larger MSRC v0 dataset. We

see a similar trend as with the v2.

Figure 2 shows some representative example segmenta-

tions where our top-down pairwise potential improves over



Per-pixel Per-class

Mean shift Ncuts Combined Mean shift Ncuts Combined

Without Au 59.8 69.6 70.6 44.0 54.9 55.0

With Au (ours) 71.9 72.8 76.2 57.4 60.5 62.9

Table 3. Impact of using multiple initializations.

the same model using only the bottom-up affinities. Note

that although the last two rows use different pairwise po-

tentials for defining the merges, they use the same classifier

(PKNN) to classify the image. As seen in several exam-

ples in the figure, our entropy-guided merging is able to

encourage merges between non-homogenous segments on

which bottom-up cues fail. For example, the wheels and

windows of the car in the second column have different col-

ors than the body of the car, and hence a bottom-up affinity

does not merge the segments correctly. Similarly, bottom-

up cues fail to merge the legs of the sheep with its body in

the fourth column, and the shaded part of the building in

the fifth column. The last column shows a failure case by

our method, where the top-down affinity provides the wrong

signal, merging airplane regions with buildings.

In comparison to the state-of-the-art on the MSRC v2,

our approach produces very good results compared to ex-

isting region-based approaches. The authors of [11] report

a per-pixel average of 76.5% using a region-based CRF,

[10] report 75.1%, and [30] report 76.4%, whereas we ob-

tain 76.2% with the agglomerative grouping and entropy-

guided merges. Using pixel-level classifiers and hierarchi-

cal random fields, [18] and [24] report accuracies of 86%

and 81%, respectively. The bottom row of Table 1 shows

the accuracy attainable (85.1%) were we to use our clas-

sifiers to label the ground-truth segmentations on the test

images, indicating the approximate upper bound on perfor-

mance we could achieve if computing perfect merges. This

upper bound helps separate the effects of our grouping pro-

cedure from the classifier/feature choices.

We found that the accuracy of the agglomerative proce-

dure is quite insensitive to the choice of the number of su-

perpixels in the initial segmenatation. When varying the

number of superpixels between (50, 100, 200) the per-pixel

accuracy on the MSRC v2 ranged from 75.2 to 76.2 when

using Au, and from 68.5 to 70.6 when not using Au.

Table 3 shows the impact of using multiple initializa-

tions. The table reports the accuracies obtained by each of

the two multiple segmentations used and the final combined

segmentation. Using our top-down affinity improves all

three results. Combining the two segmentations produces

a large improvement when using the top-down cue, but is

less noticeable for low-level cues alone. This mitigates the

effect of the local maxima, as described above.

4.2. CRF Labeling Results

For the CRF variant we use the probabilities output by

our PKNN classifier directly as unary potentials, and the

pairwise affinities as defined in Equation 4. We again run

Figure 3. Representative outputs when using the CRF variant.

First row: input image; Second row: ground truth segmentation

and labeling (colors denote labels); Third row: result when us-

ing only bottom-up paired potentials with the top-down unary po-

tentials; Fourth row: result when adding our top-down pairwise

potentials. (Best viewed in color.)

the CRF model in two modes to see the impact of our top-

down pairwise affinity; (1) with all three pairwise affinities

(With Au), and (2) with only the bottom-up pairwise poten-

tials (Without Au). All other settings including the classifier

are exactly the same. We stress that while the baseline runs

inference on the CRF without pairwise top-down potentials,

both our method and the baseline are using the usual unary

top-down potentials (i.e., the classifier responses evaluated

per individual node). What our method adds is the pro-

posed pairwise entropy-guided potential. Thus the base-

line is meant to represent the way current CRF-based ap-

proaches use top-down information—restricting the pair-

wise potentials to measure bottom-up cues, like smoothness

of the label assignment and intervening contours.

Table 4 shows the classification accuracy on the MSRC

v2 dataset. Including our top-down pairwise potential again

produces better accuracies for both the pixel-level and the

category-wise averages. Looking more closely at the indi-

vidual categories (see third row), we see that our method

has the best impact for categories such as building, car,

or chair—which are less homogenous in appearance than

“stuff” classes such as grass, sky, or water, and therefore

more difficult to classify if viewed too locally. For the

latter, our affinity usually neither helps nor hurts the per-

formance significantly, which is intuitive, since these ob-

jects have rather homogenous appearance, and a local patch

alone could satisfy the classifier via the unary potential. The

entropy-based scoring might resist merging such regions for

familiar objects, given that their entropy would remain level

once merged. An interesting future extension would be to

learn to weight the impact of each pairwise potential (θφ)

for different classes (or at least “stuff” vs. “things”) in or-

der to mitigate this effect.

The lower absolute performance when using our affin-

ity within the CRF (as compared to others’ reported re-

sults) may be due to the particular feature representation

used in this experiment, which we chose purposefully to

keep things parallel with the above agglomerative test. In

fact, when we run the experiment using the state-of-the-art
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Without Au 58.8 43.0 21.5 96.5 81.4 12.8 41.3 94.1 7.0 18.3 89.9 30.3 47.3 64.9 36.1 22.9 35.4 19.0 89.1 21.8 4.9 49.2 19.1

With Au (ours) 60.4 47.1 33.5 94.3 79.1 25.5 34.0 87.1 21.8 20.5 88.7 53.6 59.8 77.7 28.7 21.5 35.8 37.6 80.9 42.2 4.8 42.9 18.1

% improvement +56% -2% -2% +99% -18% -7% +211% +12% -1% +77% +26% +20% -20% -6% +1% +98% -9% +94% -2% -13% -5%

Table 4. Results on the MSRC v2 dataset using a CRF model.

boosted features provided by [18], we find that using our

top-down potential produces a slight increase in the overall

accuracy (81.3% vs. 80.7%).

Figure 3 shows some representative example segmenta-

tions where our top-down pairwise potential improves over

the purely bottom-up pairwise potential in the CRF variant.

In this case our affinity seems to also prevent segments of

different classes from being given the same label. For ex-

ample, in the example in the leftmost column, bottom-up

pairwise potentials prefer allowing the sign and the build-

ing in the background to have the same label, since they

have very similar appearance. However, our top-down affin-

ity discourages such labelings (possibly, with the help of

the pHOG features) and provides a better result. A similar

effect can be seen in columns two, three, and four, where

(grass, cow regions), (chair, ground regions), (road, and

building regions), respectively, are assigned the same label

by the strictly bottom-up paired potential.

When varying the number of superpixels between (50,

100, 200) the per-pixel accuracy on the MSRC v2 ranged

from 57.1 to 60.4 when using our method, and from 56.7 to

58.8 when not using Au. The improvement in the accuracy

over without Au dropped by 25% for 200 superpixels over

50 superpixels. This is understandable given that merging

very small-scale regions might not produce significant re-

ductions in the entropy, preventing our method from having

as much impact.

5. Conclusions

We introduced a novel affinity function between seg-

ments that encourages grouping those which can be clas-

sified with more certainty once they are joined. We demon-

strated the impact of the proposed top-down pairwise affin-

ity within both an agglomerative procedure and a CRF. Re-

sults on two datasets show that our method notably im-

proves traditional paired terms that strictly capture bottom-

up information.
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